
Mapping Study on Constraint Consistency Checking in
Distributed Enterprise Systems

Tomas Cerny
tomas_cerny@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Andrew Walker
Andrew_Walker2@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Jan Svacina
Jan_Svacina2@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Vincent Bushong
Vincent_Bushong1@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Dipta Das
dipta_das1@baylor.edu

Computer Science, Baylor University
Waco, Texas, USA

Karel Frajtak
frajtak@fel.cvut.cz

CS, FEE, Czech Technical University
Prague, Czech Republic

Miroslav Bures
miroslav.bures@fel.cvut.cz

CS, FEE, Czech Technical University
Prague, Czech Republic

Pavel Tisnovsky
ptisnovs@redhat.com

Red Hat
Brno, Czech Republic

ABSTRACT
Constraint consistency errors in distributed systems can lead to
fatal consequences when left unobserved and undetected. The pri-
mary goal of quality engineers should be to avoid system inconsis-
tencies in general. However, it is typically a much more straight
forward process in monolith-like systems with one codebase than
in distributed solutions where heterogeneity occurs across modules.
In this paper, we raise the research question of what is the exist-
ing state-of-the-art and research literature practice when it comes
to consistency checking in distributed systems. We conducted a
systematic search for existing work and assess the evidence to
categorize the approaches and to identify used techniques. Identi-
fied works offer interesting directions and achievements. Often the
works share tool prototypes and instruments to build on the top of
when performing further research in this direction and we share
them in this paper. Finally, we discuss open challenges and gaps in
this field to promote the interest of the research audience.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Parsers; Formal methods; Consistency; • Social and profes-
sional topics→ Systemmanagement; • Security and privacy
→ Logic and verification; Access control; • Information systems
→ Data extraction and integration.

KEYWORDS
Constraint Consistency, Consistency Checking Distributed Systems,
Mapping Study, Quality Assurance, Security Policies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8025-6/20/10. . . $15.00
https://doi.org/10.1145/3400286.3418257

ACM Reference Format:
Tomas Cerny, Andrew Walker, Jan Svacina, Vincent Bushong, Dipta Das,
Karel Frajtak, Miroslav Bures, and Pavel Tisnovsky. 2020. Mapping Study
on Constraint Consistency Checking in Distributed Enterprise Systems. In
International Conference on Research in Adaptive and Convergent Systems
(RACS ’20), October 13–16, 2020, Gwangju, Republic of Korea. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3400286.3418257

1 INTRODUCTION
During software development, we often define certain system con-
straints that we expect the system to enforce. These constraints
could be domain rules, user input validation, security policies, data
restrictions, etc. We expect the defined constraints are valid in
the system. However, mainstream application design does not al-
ways make it possible to define constraints separately from the
program logic, which would enable efficient reuse of constraints,
and instead binds constraints with particular program logic. As a
result of this binding, the definition of constraints might lead to
explicit restatements of the constraints across the program, leaving
space for errors. For instance, when we define a constraint for an
input field to restrict the maximal length of the user input value,
we expect the persistence to match the setting. However, it is not
necessarily true unless both the user interface and backend match
in their constraint setting. Moreover, at any time the same type
of input can be accepted by the system by two distinct paths. If
constraint enforcement in one area is left unaddressed, it opens a
space for constraint consistency errors.

Let us depict a few examples of consistency errors in a competi-
tion management system with team registration. This systemmight
be accepting teams for a competition under a business rule restrict-
ing the team to have at most three members. This rule might be
defined and enforced in the code when we create and register a new
team. Still, when we edit the team, the rule code might be omitted,
leaving space for registered teams with more members. Next, the
business rules may state that only a coach can edit a team. However,
the member removal functionality might be exposed to members,
which leads to inconsistent security policy on the system methods.

167

https://doi.org/10.1145/3400286.3418257
https://doi.org/10.1145/3400286.3418257

RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea T. Cerny et al.

Furthermore, the frontend might have an interactive interface to
add teams or an Excel import feature. Initially, the system enabled
the import of any sort of team name. A team manager might define
an active JavaScript alert function as the team name. This incident
would trigger an actual call by the systemwhen the contest manager
went to see team details causing concerns. Thus developers enforced
input validation for the interactive part of the system disallowing
all HTML tags. However, they forgot to address the import feature
leaving the import feature unchecked. Later, a new request came to
reduce the size of the team name character length. Primarily, this
was restricted in the persistence level, so the interactive interface
must be updated to match the persistence setting. Since there are
multiple endpoints in the system, one path was mistakenly left
unchanged. Then the system would allow users to import teams
even when the imported names were longer than the rules specified,
but it silently cropped the name lengths. These kinds of data-loss
errors are hard to observe in real-time by users leaving space for
their surprise upon arrival to the competition (e.g., team name
"Awesome Assembly" reduced to eleven characters).

When we aim to observe the above errors, we can assess and
debug the code for a specific patch only, which is rather compli-
cated or we could perform code analysis [7, 27, 29, 30] and trans-
form the code representation to graphs, e.g, Abstract Syntax Trees
(AST), Control-Flow Graphs (CFG) [18, 28, 37], or Program Depen-
dency Graphs (PDG) [29, 33], to analyse the consistency across
graph paths [41].

However, the complexity of modern software systems continues
to grow. Nowadays, the most common need is virtually infinite scal-
ability, which is provided by cloud computing. This, however, leads
into the fragmentation of the system into smaller self-contained
and self-scalable modules. Microservice Architecture [6, 12] is the
mainstream direction for cloud-friendly systems. These enable each
microservice module to follow different development practices or
use a different platform. As the individual modules interact, and
assist with distributed processes, they need to preserve some level
of consistency, which becomes a nightmare for quality engineers
seeking consistency assurance. Naturally, code assessment is a so-
lution but most likely very inefficient, especially since the nature of
different microservice might not be homogeneous, and they might
not have the knowledge of all the involved frameworks.

Perhaps code analysis is the right direction; however, to get the
answers of what is the current best practice to detect constraint
inconsistencies in enterprise distributed systems, we perform this
systematic research mapping study [24]. We seek to find techniques
and tools previously used to avoid consistency errors in these sys-
tems and aim to identify gaps in this important topic to report them
to the research community as open challenges worth addressing.

The rest of this paper is organized as follows. In Section 2, we
define the notions used in this paper. Section 3 walks through the
settings and resulting statistics of the systematic mapping study.
The actual results we analyzed are shared in Section 4. The paper
closes with a conclusion that summarizes the contributions along
with future work.

2 BACKGROUND
In this study, we focus on enterprise systems. Enterprise [12, 13]
systems are typically seen as large and complex. These systems
enable interaction with many users concurrently while enforcing
business constraints and processes. This kind of software is used by
a business to help the organization solve enterprise problems or to
bring automation. Enterprise systems could be found in many dis-
ciplines, including healthcare, transportation, telecommunication,
banking, e-commerce, power grids, and defense systems, among
others. Modern enterprise solutions follow a set of development
standards. Besides, their design direction is given by development
frameworks that expedite the development process and simplify
developer training. Enterprise solutions share similar architecture
[12, 13], which evolved into a cloud-friendly industry-standard
microservice architecture [6]. One can expect modern enterprise
solutions to be divided into separate self-contained modules. The
advantage of this approach is that each module can auto-scale in-
dependent of other modules, which makes the solutions flexible to
end-user needs and responsiveness. It is also important to highlight
that modern enterprise solutions fit under distributed software.

In the above paragraph, we mentioned that enterprise systems
enforce certain constraints. These could be constraints placed on
the data scheme, also known as integrity rules. Next, we could
consider user input validation constraints, enforcing data format,
e.g., email or credit card number format. Additionally, there are
domain or business rules that constrain the situations and state
how business objects can operate under a given system. There is a
specific category that could be seen as a part of business rules or
on its own, which is the security policies or access rules.

The constraints of a system can be seen as a specific set of limita-
tions or restrictions. It can be understood as a specific state, which
corresponds to an object state in object-oriented programming [14].
However, it could also mean a condition or even representation of
behavior. In programming, we often speak about rules enforcing
constraints. Similarly, what is not constrained is allowed.

In the Introduction section, we mentioned inconsistency and
provided a few examples. Inconsistency could be understood as
not being compatible with one another, which could relate to facts
or claims, or commonly in software development related to con-
ditions, policies, or rules. Inconsistency could happen because of
the inclusion of additional elements making something incoherent
or illogical, especially in the aspect of business rules [13]. This
might not happen intentionally; it could be a result of a typological
error in constructs missing language type-safety, or duplication of
the constraint in multiple locations in the system (e.g., distributed
modules). Software evolution could introduce such inconsistencies,
especially when selected modules or subsystems are managed by
distinct teams, which is the case for microservices. We could also
consider what it means for a software system to be consistent. Con-
sistency is a set of cohesive facts or claims, a harmony between
states. Naturally, in software development, we target consistency
within the set of constraints and aim to avoid inconsistencies.

168

Mapping Study on Constraint Consistency Checking in Distributed Enterprise Systems RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea

Table 1: Search Query Results for Various Index Sites

Indexer Found results Used results

ACM DL 111 8
IEEE Xplore 136 5
SpringerLink 841 1
ScienceDirect 1052 1

Total 436 15

3 MAPPING STUDY METHOD
The previous Section narrowed the target scope of this study. To
find existing techniques, instruments and insight for constraint con-
sistency in distributed enterprise systems, we consider the software
engineering practice of systematic mapping studies [24].

The phases of the mapping study are as follows. We define the
research questions of this study. Next, we identify terms for the
search query to identify existing related works. We filter the papers
that are out of scope for this study after we perform the search at
various indexing sites. Finally, we assess the identified papers.
Our research questions are as follows:

RQ1 What is the taxonomy of current research directions?
RQ2What techniques have been previously used or identified
to check constraint consistency?
RQ3 What tools have been used to avoid consistency errors?
RQ4 What are present time open challenges and gaps?
Next, we identify the search terms. The research direction of

constraint consistency in distributed enterprise systems drives our
initial search query string for the indexing servers of ACMDL, IEEE
Xplore, Spring, and ScienceDirect. However, upon experimentation
and the quality assurance on the known set of literature, we extend
the search terms to use possible synonyms.

We divide the search query into four parts for discussion. We
search for constraints, but we consider that literature can use alter-
native naming, e.g., business rules, security policy, or even property.
From this, we derive the search clause to be a constraint OR rule OR
property OR policy OR security . Next, we want to filter the results to
match consistency OR inconsistency. The nature of the related work
should be in consistency verification with similar terms leading to
checking OR verification OR enforcement OR detection OR avoidance
Finally, we further filter the results to those that match enterprise
distributed systems but also extended it with similar terms applied
to specific architecture leading to distributed OR cloud OR microser-
vice. The full Search Query is showed by Listing 1.

We apply the search query to perform search over the indexing
sites. The results represent the primary set of works we assess
in this study. The search results are shown in Table 1. The first

1Due to the specifics of SpringerLink we have replaced𝐴𝑁𝐷 operators with𝑁𝐸𝐴𝑅\2
(𝑁𝐸𝐴𝑅 \ 10 for the last𝐴𝑁𝐷)
2Since ScienceDirect limits the number of boolean connectors we combined the results
using BibDesk tool [21])

column specifies the indexing site, and the second column provides
the results found by the Search Query.

Next, we filter the primary set of works. Specifically, we filter
works that are related to our intended scope and focus on distributed
systems. Also, we assess the quality of the paper for selection.
Finally, we exclude papers based on the title, abstract, full–text
reading, and quality assessments.

We do not consider short papers with less than four pages,
non-English language, papers without available full-text, non-peer-
reviewed papers, books, papers without a particular contribution,
e.g., opinion papers. Also, we do not consider existing work on
distributed databases, nor do we consider resource consistency on
a cloud platform. Also, we do not look into law compliance or com-
pliance with provider policies. The filtered results are in Table 1
presented as the last column, which is the number of papers that
made it through the filtering phase. Finally, we assess the related
work sections, cited and citing papers, and identify other relevant
papers that fit this study.

For all the papers that pass trough our filtering process, we per-
form the mapping phase and the content analysis. Here we extract
the relevant information answering our defined research questions
from the primarily selected papers. The extracted information from
the selected papers is classified. Also, we analyze threats to the
validity and limitations of the study. These results are shared in the
next Section.

4 ANALYSIS OF RESULTS
Out of 436 papers returned by the search, we identified a small
number of relevant works. Only 15 papers were selected and con-
sidered for the analysis. We list the selected papers in Table 2. The
majority of the works relate to compliance with law-based policies,
infrastructure, distributed data synchronization, or low-level pro-
tocols. Even out of the identified papers, we included some that
are only a partial match. The major area of works we identified
is security-related. However, we also identified works related to
business processes, rule matching, development life-cycle, testing,
and persistence. These areas correspond to the RQ1, and below, we
provide more details.

4.1 Security
In the area of security, existing works look into construction of
a global policy [17], suspicious operation detection [11, 23, 42],
effective policy matching [19], and distinct policies applied [34, 35]
across the same API implementations.

Role-Based Access Control (RBAC) is commonly used by enter-
prise systems to address security. Authorization resolvers consider
the concept of role rather than individual users. For instance, Java
EE has a security standard for this [16, 25] that provides an annota-
tion profile for endpoints. The composition of local access control
policies into a global coherent security policy based on Role-Based
Access Control (RBAC) is tackled in [17]. Violations in policies may

Listing 1: The Search Query for Research Indexing Sites
(constraint OR rule OR property OR policy OR security) AND (consistency OR inconsistency OR compliance)

AND (checking OR verification OR enforcement OR detection OR avoidance)

AND (distributed OR cloud OR microservice)

169

RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea T. Cerny et al.

permit unwanted access; therefore, resolving conflicts is one of the
most important issues in inter-operation policy design. Such viola-
tions can be introduced by component evolution. The work illus-
trates several kinds of RBAC violations thatmay occur in distributed
systems/domains during composition (Role Inheritance Violation,
Separation of Duty, Cardinality Violation, Resource sharing).
• Role Inheritance Violation - happens in a situation when the
hierarchy of crossing domains opens a path that enables a partic-
ular role without inheritance relation with another role from a
local domain to assume the permission of the local domain role.

• Cardinality Violation - may happen for roles, users, and shared
resources with multiplicity restrictions. An example is when
roles can be assigned at most 𝑛 users who can access the system
simultaneously.

• Separation of Duty - happens when the same user cannot be
assigned conflicting roles at once. Alternatively, in reverse, the
same role cannot be assigned to conflicting users.

• Resource sharing - happens when a local resource is shared
with other domains under a cardinality restriction, which may
lead to circular waiting and deadlock

To address these situations, the authors have adopted colored Petri
nets. Each of the violations is then transformed into a graph-based
problem. Moreover, they show how each can be detected by com-
mon algorithms such as shortest-path for role inheritance violation,
depth-first search to detect cycles, max-flow for user role assign-
ments. They also define the algorithm to prevent deadlocks. In a case
study demonstration, they demonstrated on two-domain environ-
ments. There are no limitations to multiple-dimensional domains.

To broaden the details in the RBAC area, we have previously
addressed violations in non-distributed environments [41] across
overlapping executions paths if distinct endpoints using the Java
standard [16]. The conflicts we identified with roles were:
• An unrelated access violation - is the most primitive and occurs
when two non-linked roles access the same parts of a system.

• A hierarchy violation - is basic and occurs when two inheritance
related roles access the same part of the system.

• An entity access violation - which reports the situation when
access to a specific persistence entity occurs through distinct
endpoints with different roles.

• An unknown role violation - occurs when an endpoint applies
for a role not found on the role tree.

• An exposed public endpoint - happens when there is no security
definition defined on an endpoint, which is often caused by
human error.
In our case, we used code analysis to identify endpoints, and

access enforcements, which can scale towards the results presented
[17] but applicable to the distributed domain.

What one may notice, especially in the microservice model is
that each module defines its own rules. Whether these rules corre-
spond to security policy or business rules, the challenge is to match
them when searching for conflicts. This challenge is well addressed
by one of the identified works [19], where authors look into secu-
rity policy matching. They present a formal definition of policies
and relationships among rules. In addition, they identify various
categories of matching expressed as Sets. For instance, for two rules
R1(attribute1, attribute2, attribute3, attribute4, action), R2(attribute1,
attribute2, attribute3, attribute4, action) they recognize:
• irrelevant match : 𝑅1 ∩ 𝑅2 = ∅
• exact match : 𝑅1 = 𝑅2
• partial match :
∃𝑖 (1 ≤ 𝑖 ≤ 4), 𝑅1.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 ∩ 𝑅2.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 ≠ ∅

• really contain match :
∀𝑖 (1 ≤ 𝑖 ≤ 4), 𝑅1.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 ⊋ 𝑅2.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖

• associated match :
∀𝑖 (1 ≤ 𝑖 ≤ 4), 𝑅1.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 ∩ 𝑅2.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 ≠ ∅ AND
∃ 𝑗 (1 ≤ 𝑗 ≤ 4), 𝑅1.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑗 ⊉ 𝑅2.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑗
∧𝑅1.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑗 ⊈ 𝑅2.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑗

Furthermore, they provide conflict categorization. For instance,
they recognize redundant rules with the same action and some or
additional attributes. Next, they consider generalization conflict
where one rule contains another, and the attribute values of the
action parts are different. Moreover, they see a reverse redundancy

Table 2: Papers analysed in this study

Reference Paper Title Year

[17] Secure interoperation design in multi-domains environments based on colored Petri nets 2013
[42] Digging Evidence for Violation of Cloud Security Compliance with Knowledge Learned from Logs 2019
[19] A Method of Conflict Detection for Security Policy Based on B+ Tree 2019
[35] A Security Policy Oracle: Detecting Security Holes Using Multiple API Implementations 2011
[23] DeaPS: Deep Learning-Based User-Level Proactive Security Auditing for Clouds 2019
[11] DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning 2017
[40] Towards Property-Based Consistency Verification 2016
[38] Conformance checking of electronic business processes to secure distributed transactions 2013

[10] Online and offline conformance checking of inter-organizational business processes with
incomplete process log 2016

[43] A Constraint Mechanism for Dynamic Evolution of Service Oriented Systems 2012
[3] Test-Based Security Certification of Composite Services 2018
[20] A Mobile Agent Approach for Global Database Constraint Checking 2004
[22] Flexible Consistency Checking 2003
[9] Efficient Detection of Inconsistencies in a Multi-Developer Engineering Environment 2016
[39] Live and Global Consistency Checking in a Collaborative Engineering Environment 2019

170

Mapping Study on Constraint Consistency Checking in Distributed Enterprise Systems RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea

where one role contains another, and the attribute values of the
action part are the same. Apart from this, there is also coverage
redundancy wherein one rule contains another, and the attribute
values of the action part are different. Next, they define a partial
redundancy with two rules being associated matches, and the at-
tribute values of the action part are the same. Furthermore, they
recognize an associated conflict with two rules being associated
matches, and the attribute values of the action part are different.
Finally, there is no conflict for an irrelevant match. A great contri-
bution of the paper is the proposed B+ tree-based policy conflict
detection algorithm. Since we can expect a large number of rules in
distributed management systems, detecting policy conflicts brings
performance issues. The proposed method constructs the rule at-
tribute index based on an efficient indexing structure (B+ tree). All
the recognized policy library rules are inserted into an index tree,
uniquely mapping each rule, and speeding up the process of con-
flict detection. In the presented evaluation, a B+ tree-based policy
conflict detection time maintained at about 0.3 milliseconds, no
matter the number of rules in the system.

Quite a different evaluation perspective is runtime detection.
The next considered work [42] uses an interesting perspective
involving log analysis, which we believe could be used in a dynamic
environment. The goal is to detect suspicious cloud user operations
that cause security compliance violations. In this work, system
logs are grouped, extracted, and parsed into log event sequences.
These then represent cloud behaviors related to user operations.
The execution traces are recovered and labeled from the log. These
traces are transformed to vectors for feature representation, in
particular, authors suggest using N-gram [32] and Term Frequency
- Inverse Document Frequency [31] techniques. With this, classifiers
can be trained with labeled vectors from normal system behavior
for automatic recognition of suspicious operation requests. When
traces are recognized as suspicious operation requests, the normal,
abnormal, and predicted log events are marked in these traces as
evidence of compliance violations for auditors. In a case study, the
authors present several security compliance scenarios. Even though
the work does not share a prototype, it provides a comparison with
other log analysis techniques that could be used for log analysis.
Among those mentions DeepLog [11] uses deep learning, Long
Short-Term Memory (LSTM) neural network. They train the model
on a normal system executions log and indicate anomaly on a
trained model. DeepLog builds on top of Keras open-source neural
network library for Python and shares the project. Another similar
work DeaPS [23] was identified in our search. It uses an identical
LSTM approach to DeepLog as proactive security auditing in the
cloud.

The final security perspective looks into an unusual use case.
It considers distinct implementations of the same API to detect
security policy compliance errors. In [35], authors suggest that
derivation of the policy by code-mining utilizing patters might
be insufficient. They suggest that the analytical system should be
dynamic. The work extracts the security policies dynamically from
at least two different implementations of the same API to compare
their access to system operations and other resources and identify
differences. They utilized flow- and context-sensitive analysis. In
particular, they take as an input the API definition and multiple of
its implementations along with the definitions of security checks

and security-sensitive events. The starting point of the process
is each API endpoint that they analyze in-depth for the applied
checks to derive the policy and compare the results across distinct
implementations. In a study, they found 31 severe issues in various
Java libraries, e.g., those used in enterprise systems following a
particular specification. While this work lacks the distributed sys-
tem aspect, it brings an interesting perspective. This use case is not
transferable to systems with a single implementation; however, it
could be a foundational concept for further research as it provides
in-depth detail to construct security policy oracles. An extension of
this work [34] has been applied to access control policies in enter-
prise applications. It considers static analysis to compute what they
call an inter- procedural access-control template. Such a template
includes all program statements involved in this instance of access-
control logic. Next, it finds faulty access-control logic that misses
some or all of these statements and inserts the missing statements
to the given code.

4.2 Other Research Areas
4.2.1 Property-based testing. One of the research perspectives on
test consistency uses property-based testing [40]. This declarative
approach enables static checking of correctness conditions. The
work adopts a first-order logic predicates for graph entity repre-
sentation. What needs to be provided as input are application-level
properties that should be satisfied along with the generic format
of valid input. Proposed property-based consistency verification
framework Conver then generates test cases with random inputs
to the program under test while collecting details of all involved
operations and verifying the validity of the supplied properties
throughout the execution. Next, it derives a graph of entities de-
scribing the client-side outcomes, global ordering, and visibility of
events. Based on [40], the framework verifies the compliance to a
given consistency model by building and validating the required en-
tities for all logic terms composing the entire consistency predicate.
However, a significant limitation of this approach is that it requires
manually written property-like specifications of the system.

4.2.2 Distributed Business Processes. Distributed Business Pro-
cesses are occasionally found in this research direction. In [38],
authors consider conformance checking as an area of process min-
ing. They aim to verify that the execution of a distributed business
process satisfies specifications represented by formal models. A soft-
ware agent intercepts the communication of each module for this
purpose. Agents send the messages to a centralized validation au-
thority to collect information from particular modules about given
processes. This could be seen as similar to using distributed log-
ging. Here, the validation authority merges the events to a process
tree, which is then extended with validation rules to a validation
tree that represented possible paths of the particular process. The
verification uses the validation tree, which is traversed, and the
validation rules contained in the node are verified. An extended
work [10] of the same authors considers incomplete event logs.
They suggest utilizing it for security verification and for anomaly
detection, which leads to the log-based anomaly detection discussed
in the security subsection [11, 23, 42].

171

RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea T. Cerny et al.

Business processes have been mentioned more often in the con-
text of our search. For instance, in [43], service-oriented architec-
ture is considered for topological constraints and their satisfaction.
The work implements a verification tool to model runtime appli-
cation constraints and verify consistency to facilitate evolution.
However, the goal is to evaluate behavior and topology. They use
Graph Grammars with Neighborhood Controlled Embedding for
which they consider Web Service Business Process Execution Lan-
guage (WS-BPEL)-based process description and involve Web Ser-
vice Definition Language(WSDL) documents. Similarly, in [3], the
authors considered the verification of security properties of com-
posite services. They considered extensions of test-based security
certification for composition. The target domain of the approach
is in the "Business Process as a Service" cloud model. The solution
idea is to derive a virtual test-based security certificate for a service
composition based on the certificates of its component services. The
composite service evidence proving the property is inferred from
the evidence initially used to certify the individual components.
The technique then uses derived of machine-readable virtual certifi-
cates along with virtual test cases and their quantitative evaluation
of the quality of the virtual certification process and corresponding
service composition. Even here, service specifications are used (e.g.,
WSDL), along with BPEL. This idea of virtual qualities built from
individual services qualities seems promising for possible future
research directions.

4.2.3 Constraints in Multi-bases. Constraint checking of multi-
base with multiple instances of a database on distinct mobile devices
is considered in [20]. This work discusses another possible direction
a meta-model for constraint exchange. For databases, they consider
the enforcements related to insert, update, and delete operations.
This could be the same in the case of a software system. A multi-
base with multiple instances of a database on distinct mobile devices
interacts and integrates with a federated database. This scenario
has a great likelihood of a global constraint violation. To address
this use case, mobile agents periodically retrieve global meta-data
from the federating database to perform local constraint checking.
A similar approach can be applied for constraint verification in
an enterprise where it is important to collect information from
distributed peers; to form a virtual overlay perspective.

4.2.4 Artifact Consistency. Another research perspective consid-
ers consistency across artifacts and development process phases.
In [22], authors considered checking the consistency of hetero-
geneous distributed documents and demonstrate the application
on Java Enterprise Edition projects. This work carries out some
requirements and observations usable in nowadays distributed solu-
tions. The paper’s focus is to evaluate consistency across the design,
implementation, and deployment of a given system along with in-
cremental checking upon evolution. The authors propose a new
xlinkit framework for this task. They derive a set of requirements
for consistency management services. These consist of "flexibility
in constraint application and a tolerant approach to consistency;
support for distributed documents; a mechanism for bridging the
heterogeneity gaps between different specification languages, with-
out resorting to a common vocabulary; and strong diagnostics that
show which parts of specifications contribute to inconsistency." The
approach utilizes XML-based technologies turning the documents

into a Document Object Model (DOM) (a tree structure). The work
use legacy XML application deployment descriptors in addition to
file descriptors. Both these correspond to the current technology
approach, YAML deployment descriptor files, or annotation descrip-
tors. Each found element is linked to the source or to a file where
it reappears. They recognize horizontal and vertical constraints. In
particular, they define them as follows:
• "horizontal constraints between artifacts at the same stage of
the process, and

• vertical constraints between stages, for example, between the
design and implementation".

Authors observe that constraints can be expressed in UML through
stereotypes and tagged values. Moreover, they recognize four types
of constraints:
• standard - given by the specification language,
• extension - where additional semantics is needed,
• integration - for cross-platform interaction,
• and custom - for organization-specific conventions.
Moreover, they observe that specification languages such as Object
Constraint Language (OCL) are rather limited when it comes to
diagnostics feedback or issues. Since OCL returns true or false, it
makes it hard to locate the cause of the issue. Their proposed tool
xlinkit uses a simple language based on first-order logic involving
XPath expressions. Thus it recognizes XML structures and uses
static analysis for Java checking along the tree paths recognizing
intersections.

A similar approach to xlinkit looks into the global consistency
of distributed artifacts ported into a cloud called DesignSpace. It is
detailed in [9, 39]. This direction moves towards Java code and UML
model artifact consistency. It transforms the artifacts into a uniform
representation. For the XML, it deals with parsing, and for Java,
it used Reflection API[4], also referenced as metaprogramming.
Besides, linking across artifacts is achieved by manually populated
trace matrices. For rule definitions, the work considers an OCL-like
specification with context (starting point of a reference) and condi-
tions to be met (e.g., an attribute must exist in all linked attributes).
Consistency rules are defined for checking and performed upon
changes in the environment.

4.3 Discussion
From analyzed works, we can answer RQ1 in different research
directions. The major direction is security, in particular policy
evaluation [17, 19, 35] along with anomaly detection [11, 23, 42].
Security direction is followed by distributed processes checking
[3, 10, 38, 43], distributed artifact verification [9, 22, 39], rule match-
ing [19], testing towards specification [40] and persistence [20].
Clearly, the current space for consistency checking in microservices
is wide-open. From what we have discovered, it is more common
to verify the system towards a given specification than to compare
constraint replicas in the system. As suggested by [35] it might be a
better direction to derive information rather than to pay attention
to pattern-based matching or to verify towards the specification.

Regards previously used techniques and RQ2 we found a broad
range of directions, including checking with XML-based specifi-
cations [9, 22], extracting an oracle [35] from the system via code
analysis or deriving a virtual composite model [3]. Some approaches

172

Mapping Study on Constraint Consistency Checking in Distributed Enterprise Systems RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea

Table 3: Existing tools

Tool Purpose Web link Reference

Soot Soot static analysis framework http://www.sable.mcgill.ca/soot/ [35]
Xlinkit Software artifact sychronization http://xml.coverpages.org/ni2001-02-27-d.html [22]
DesignSpace Software artifact sychronization isse.jku.at/tools/dsspc/xadr.zip (pw: dsisse) [9, 39]
Conver Property-based consistency verification framework https://github. com/pviotti/conver [40]
N-gram R package for constructing n-grams https://github.com/wrathematics/ngram [42]
Keras Deep learning API https://keras.io/ [42]
DeepLog DeepLog’s log key anomaly detection mode https://github.com/wuyifan18/DeepLog [11]

even suggest using the meta-model perspective [20, 39]. This meta-
model perspective could be well-combined with the virtual global
model. Among others we noticed log analysis [11, 23, 42] and event
interception [38], which is just another form of logging. Code anal-
ysis [35] can be very efficient with access to system module details.
Alternatively, research considered markup, typically XML-based,
specification processing [3, 10, 22, 38, 39, 43]. We observed inter-
esting perspectives using N-grams, Term Frequency - Inverse Doc-
ument Frequency, LSTM neural networks [11, 23, 42]. We noticed
various data structures involved, such as transformation to graphs,
tree structures, or B+ trees, colored Petri nets [17]. All mentioned
directions might help with further research since we recognized
parts which have been addressed along with existing solutions.

Next, we identified various tools to answer RQ3. We noted the
mentioned tools and listed them in Table 3. We also associated them
with a particular research paper that mentions them.

Perhaps most challenging to answer is RQ4 related to current
open challenges and gaps. The identified volume of relevant works
is rather small. However, we believe in the importance of this re-
search perspective, especially since the growing adoption of mi-
croservice architecture leads to self-deployable modules that, to
some extent, interact and redefine certain constraints. Since mod-
ules are managed by distinct teams who coordinate their work over
the API, constraint consistency issues might be especially evident
upon module evolution. Consistency conflict resolution should be
addressed in a better way than manually, which is error-prone
and tedious. Log analysis and event tracing seem to be a direction
that can identify conflicts that happen in runtime, and with proper
mechanisms in place, it could mitigate error impacts. However,
the current approaches consider deep learning, and clearly, more
options exist. Distributed system modules have their log that can
be easily centralized (e.g., via Kafka [15], and thus this approach
could be easily adopted. However, to prevent issues in runtime, a
static analysis could be considered, which leads to code analysis.
However, the current work in a distributed environment is mar-
ginal. Perhaps local analysis could be performed as part of building
a virtual global system overlay, as suggested by composite service
certification in [3]. This opens a significant potential for research,
and if accomplished, we could transform many non-distributed
approaches to the distributed environment. However, this direction
needs to cope with heterogeneity since modules may use distinct
frameworks, languages, or design practices, and this is where we
could take advantage of experience from heterogeneous and dis-
tributes artifact consistency tracking [9, 22, 39], although the link
population should be automated. A new development model for

distributed systems could also be a research direction. Neverthe-
less, in our opinion, this would hardly be adopted by industry; it is
better to comply with, and extend, the existing practice. Besides,
we must assume that different modules may apply different rules,
and rule extraction from code could be addressed. We noticed that
graph representation might be used [17] and that there exists an
efficient mechanism to look-up and match rules [19]. However, it
must be noted that constraints and variables might differ across
modules. For instance, the same-named access role in two distinct
services might mean two distinct things since separate definitions
and resolvers of these roles exist in the modules. A simple name
matching is insufficient in a distributed environment. Automation
in distributed access role merging should be researched.

4.3.1 Threats to Validity. One threat in survey studies is inadequate
coverage. This study searched through fourmajor research indexing
sites recognized by literature [24]. We followed a practice well
accepted for performing mapping studies. However, we did not
include statistics on authors, countries, conferences, etc. Since we
performed manual selection and filtering, it might be possible that
related work has been skipped. Still, we intended to mitigate it
by assessment of work references and citation analysis. Similarly,
data extraction could be threatened by the human factor; this was
addressed by multi-peer evaluation.

5 CONCLUSION
This study looked into existing research on constraint consistency
error detection in distributed systems. It provides an analysis of
exiting research directions, techniques, and instruments that one
could build on top of to contribute to this field. The addressed
perspective is aimed to motivate research peers in conducting new
research in these directions. To support research peers, we discussed
open challenges that are currently under-addressed by research
or completely missing but needed for efficient enterprise system
evaluation. This work identifies some critical achievements that
others could build on top of rather than reinventing the wheel.

Our long term overarching research goal is to develop a new
automated approach for software architecture reconstruction of
distributed systems [2, 26]. Our ongoing work is capable of basic
multi-module integration based on data models or based on remote
calls. This survey helped us identify existing work in the area of
constraint consistency detection, and our virtual overlay could be
applied to it. Besides we performed other similar studies towards
our long term goals [5, 8, 36]. In a short term perspective, we will
extend our previous work on security policy evaluation [41] and
assess fit for the internet of things domain [1].

173

RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea T. Cerny et al.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1854049 and a grant from Red Hat
Research https://research.redhat.com.

REFERENCES
[1] B. S. Ahmed, M. Bures, K. Frajtak, and T. Cerny. 2019. Aspects of Quality in

Internet of Things (IoT) Solutions: A Systematic Mapping Study. IEEE Access 7
(2019), 13758–13780.

[2] N. Alshuqayran, N. Ali, and R. Evans. 2018. Towards Micro Service Architecture
Recovery: An Empirical Study. In 2018 IEEE International Conference on Software
Architecture (ICSA). 47–4709.

[3] Marco Anisetti, Claudio Ardagna, Ernesto Damiani, and Gianluca Polegri. 2018.
Test-Based Security Certification of Composite Services. ACM Trans. Web 13, 1,
Article 3 (Dec. 2018), 43 pages. https://doi.org/10.1145/3267468

[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, andMichael
Stal. 1996. Pattern-oriented software architecture: a system of patterns. John Wiley
& Sons, Inc., New York, NY, USA.

[5] Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, Tomas Cerny, Karel
Frajtak, Miroslav Bures, Pavel Tisnovsky, and Dongwan Shin. 2020. On Matching
Log Analysis to Source Code: A Systematic Mapping Study. In International
Conference on Research in Adaptive and Convergent Systems(RACS ’20) (RACS ’20).
ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/3400286.3418262

[6] Tomas Cerny, Michael J. Donahoo, and Michal Trnka. 2018. Contextual Under-
standing of Microservice Architecture: Current and Future Directions. SIGAPP
Appl. Comput. Rev. 17, 4 (2018), 29–45. https://doi.org/10.1145/3183628.3183631

[7] Tomas Cerny, Jan Svacina, Dipta Das, Vincent Bushong, Miroslav Bures, Pavel
Tisnovsky, Karel Frajtak, Dongwan Shin, and Jun Huang. 2020. On Code Analysis
Opportunities and Challenges for Enterprise Systems and Microservices. IEEE
Access (2020), 1–22. https://doi.org/10.1109/ACCESS.2020.3019985

[8] Dipta Das, Micah Schiewe, Elizabeth Brighton, Mark Fuller, Tomas Cerny,
Miroslav Bures, Karel Frajtak, Dongwan Shin, and Pavel Tisnovsky. 2020. Failure
Prediction by Utilizing Log Analysis: A Systematic Mapping Study. In Interna-
tional Conference on Research in Adaptive and Convergent Systems(RACS ’20) (RACS
’20). ACM, New York, NY, USA, 1–7. https://doi.org/10.1145/3400286.3418263

[9] Andreas Demuth, Markus Riedl-Ehrenleitner, and Alexander Egyed. 2016. Effi-
cient Detection of Inconsistencies in aMulti-Developer Engineering Environment.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2016). Association for Computing Machinery, New York,
NY, USA, 590–601. https://doi.org/10.1145/2970276.2970304

[10] A. C. D’Iddio, C. H. Schunck, F. Arcieri, and M. Talamo. 2016. Online and
offline conformance checking of inter-organizational business processes with
incomplete process logs. In 2016 IEEE International Carnahan Conference on
Security Technology (ICCST). 1–8.

[11] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection andDiagnosis from System Logs throughDeep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17). Association for Computing Machinery, New York, NY, USA, 1285–1298.
https://doi.org/10.1145/3133956.3134015

[12] K. Finnigan. 2018. Enterprise Java Microservices. Manning Publications. https:
//books.google.com/books?id=KaSNswEACAAJ

[13] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[15] Nishant Garg. 2013. Apache Kafka. Packt Publishing.
[16] Will Hopkins. 2009. JSR 375: JavaTMEE Security API. (November 2009). Retrieved

March 27, 2020 from https://jcp.org/en/jsr/detail?id=375
[17] Hejiao Huang and Hélène Kirchner. 2013. Secure interoperation design in multi-

domains environments based on colored Petri nets. Information Sciences 221
(2013), 591 – 606. https://doi.org/10.1016/j.ins.2012.09.027

[18] K. S. Kumar and D. Malathi. 2017. A Novel Method to Find Time Complexity
of an Algorithm by Using Control Flow Graph. In 2017 International Conference
on Technical Advancements in Computers and Communications (ICTACC). 66–68.
https://doi.org/10.1109/ICTACC.2017.26

[19] X. Luo and Y. Lu. 2019. A Method of Conflict Detection for Security Policy
Based on B+ Tree. In 2019 IEEE Fourth International Conference on Data Science in
Cyberspace (DSC). 466–472.

[20] Praveen Madiraju and Rajshekhar Sunderraman. 2004. A Mobile Agent Approach
for Global Database Constraint Checking. In Proceedings of the 2004 ACM Sym-
posium on Applied Computing (SAC ’04). Association for Computing Machinery,
New York, NY, USA, 679–683. https://doi.org/10.1145/967900.968043

[21] M McCracken, A Maxwell, and C Hofman. 2015. BibDesk. (2015).
[22] Christian Nentwich,Wolfgang Emmerich, Anthony Finkelsteiin, and Ernst Ellmer.

2003. Flexible Consistency Checking. ACM Trans. Softw. Eng. Methodol. 12, 1 (Jan.

2003), 28–63. https://doi.org/10.1145/839268.839271
[23] M. Ou, L. Wang, and H. Xun. 2019. DeaPS: Deep Learning-Based User-Level

Proactive Security Auditing for Clouds. In 2019 IEEE Global Communications
Conference (GLOBECOM). 1–6.

[24] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64, Supplement C (2015), 1 – 18. https:
//doi.org/10.1016/j.infsof.2015.03.007

[25] Pivotal. 2019. Spring Security. (2019). Retrieved March 27, 2020 from https:
//spring.io/projects/spring-security

[26] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. 2020. A Modeling
Method for Systematic Architecture Reconstruction of Microservice-Based Soft-
ware Systems. In Enterprise, Business-Process and Information Systems Modeling.
Springer International Publishing, Cham, 311–326.

[27] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165 – 1199. https://doi.org/10.1016/j.infsof.2013.01.008

[28] José Carlos Bregieiro Ribeiro, Francisco Fernández de Vega, and Mário Zenha-
Rela. 2007. Using Dynamic Analysis Of Java Bytecode For Evolutionary Object-
Oriented Unit Testing. In 25th Brazilian Symposium on Computer Networks and
Distributed Systems (SBRC). 143–156.

[29] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A Qualitative Ap-
proach. Sci. Comput. Program. 74, 7 (May 2009), 470–495. https://doi.org/10.1016/
j.scico.2009.02.007

[30] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-code. In Proceed-
ings of the 38th International Conference on Software Engineering (ICSE ’16). ACM,
New York, NY, USA, 1157–1168. https://doi.org/10.1145/2884781.2884877

[31] Claude Sammut and Geoffrey I. Webb (Eds.). 2010. TF–IDF. Springer US, Boston,
MA, 986–987. https://doi.org/10.1007/978-0-387-30164-8_832

[32] Drew Schmidt and Christian Heckendorf. 2017. ngram: Fast n-Gram Tokenization.
(2017). https://cran.r-project.org/package=ngram R package version 3.0.4.

[33] G. M. K. Selim, K. C. Foo, and Y. Zou. 2010. Enhancing Source-Based Clone
Detection Using Intermediate Representation. In 2010 17th Working Conference
on Reverse Engineering. 227–236. https://doi.org/10.1109/WCRE.2010.33

[34] Sooel Son, Vitaly Shmatikov, and Kathryn S McKinley. 2013. FixMeUp: Repairing
Access-Control Bugs in Web Applications. In Network and Distributed System
Security Symposium (NDSS).

[35] Varun Srivastava, Michael D. Bond, Kathryn S. McKinley, and Vitaly Shmatikov.
2011. A Security Policy Oracle: Detecting Security Holes Using Multiple API
Implementations. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’11). ACM, New York, NY,
USA, 343–354. https://doi.org/10.1145/1993498.1993539

[36] Jan Svacina, Jackson Raffety, Connor Woodahl, Stone Brooklynn, Tomas Cerny,
Miroslav Bures, Karel Frajtak, Dongwan Shin, and Pavel Tisnovsky. 2020. On
Vulnerability and Security Log analysis: A Systematic Literature Review on
Recent Trends. In International Conference on Research in Adaptive and Convergent
Systems (RACS ’20). ACM, 1–6. https://doi.org/10.1145/3400286.3418261

[37] Muhammad M. Syaikhuddin, Choirul Anam, Ade R. Rinaldi, and Moch E. B.
Conoras. 2018. Conventional Software Testing Using White Box Method. Kinetik:
Game Technology, Information System, Computer Network, Computing, Electronics,
and Control 3, 1 (2018), 65–72. https://doi.org/10.22219/kinetik.v3i1.231

[38] M. Talamo, F. Arcieri, C. H. Schunck, and A. C. D’Iddio. 2013. Conformance
checking of electronic business processes to secure distributed transactions. In
2013 47th International Carnahan Conference on Security Technology (ICCST). 1–6.

[39] Michael Alexander Tröls, Atif Mashkoor, and Alexander Egyed. 2019. Live and
Global Consistency Checking in a Collaborative Engineering Environment. In
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC
’19). Association for Computing Machinery, New York, NY, USA, 1776–1785.
https://doi.org/10.1145/3297280.3297454

[40] Paolo Viotti, Christopher Meiklejohn, and Marko Vukolić. 2016. Towards
Property-Based Consistency Verification. In Proceedings of the 2nd Workshop
on the Principles and Practice of Consistency for Distributed Data (PaPoC ’16).
Association for Computing Machinery, New York, NY, USA, Article 1, 4 pages.
https://doi.org/10.1145/2911151.2911162

[41] Andrew Walker, Jan Svacina, Johnathan Simmons, and Tomas Cerny. 2020. On
Automated Role-Based Access Control Assessment in Enterprise Systems. In
Information Science and Applications, Kuinam J. Kim and Hye-Young Kim (Eds.).
Springer Singapore, Singapore, 375–385.

[42] Yue Yuan, Anuhan Torgonshar, Wenchang Shi, Bin Liang, and Bo Qin. 2019.
Digging Evidence for Violation of Cloud Security Compliance with Knowledge
Learned from Logs. In Trusted Computing and Information Security. Springer,
318–337.

[43] B. Zhao, Y. Zhao, and D. Ma. 2012. A Constraint Mechanism for Dynamic
Evolution of Service Oriented Systems. In 2012 IEEE 15th International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing. 103–110.

174

https://doi.org/10.1145/3267468
https://doi.org/10.1145/3400286.3418262
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1109/ACCESS.2020.3019985
https://doi.org/10.1145/3400286.3418263
https://doi.org/10.1145/2970276.2970304
https://doi.org/10.1145/3133956.3134015
https://books.google.com/books?id=KaSNswEACAAJ
https://books.google.com/books?id=KaSNswEACAAJ
https://jcp.org/en/jsr/detail?id=375
https://doi.org/10.1016/j.ins.2012.09.027
https://doi.org/10.1109/ICTACC.2017.26
https://doi.org/10.1145/967900.968043
https://doi.org/10.1145/839268.839271
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1007/978-0-387-30164-8_832
https://cran.r-project.org/package=ngram
https://doi.org/10.1109/WCRE.2010.33
https://doi.org/10.1145/1993498.1993539
https://doi.org/10.1145/3400286.3418261
https://doi.org/10.22219/kinetik.v3i1.231
https://doi.org/10.1145/3297280.3297454
https://doi.org/10.1145/2911151.2911162

	Abstract
	1 Introduction
	2 Background
	3 Mapping Study Method
	4 Analysis of Results
	4.1 Security
	4.2 Other Research Areas
	4.3 Discussion

	5 Conclusion
	Acknowledgments
	References

