On Cloud Computing Infrastructure for Existing
Code-Clone Detection Algorithms

Andrew Walker
Computer Science
ECS, Baylor University
One Bear Place #97141
Waco, TX 76798

andrew_ walker2@baylor.edu

ABSTRACT

Microservice Architecture (MSA) is becoming a design stan-
dard for modern cloud-based software systems. However,
even though cloud-based applications have been thoroughly
explored with regards to networking, scalability, and decom-
position of existing monolithic applications into MSA based
applications, not much research has been done showing the
viability of MSA in new problem domains. In this paper, we
explore the application of MSA to the code-clone detection
problem domain to identify any improvements that can be
made over existing local code-clone detection applications.
A fragment of source code that is identical or similar to an-
other is a code-clone. Code-clones make it difficult to main-
tain applications as they create multiple points within the
code that bugs must be fixed, new rules enforced, or design
decisions imposed. As applications grow larger and larger,
the pervasiveness of code-clones likewise grows. To face the
code-clone related issues, many tools and algorithms have
been proposed to find and document code-clones within an
application. In this paper, we show that many improve-
ments can be made by utilizing emerging cloud-based tech-
nologies.

CCS Concepts

s Applied computing — Enferprize applications; Service-
oriented architectures; sSoftware and its engineering —
Formal software verification; Software maintenance
tools; Software verification and validation; Parsers;

Keywords

Microservices, Cloud Computing, Code Clone, Clone Detec-
tion, Scalable Code Clone Detection, Software as a Service

1. INTRODUCTION

Microservices [8, 14] are the latest trend in software design,
development, and delivery. Several benefits are often associ-
ated with microservices, including faster delivery, improved

Copyright is held by the aothoms. This work is based on an earlier
work: RACS'19 Proceedings of the 2019 ACM Rescarch in Adap-
tive and Convergent Systems, Copyright 2019 ACM 978-1-4503-6843-8,
hitps:/dl scm.org! doif10. 1145/ 3338840, 3355659

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

Tomas Cerny
Computer Science
ECS, Baylor University
One Bear Place #37141
Waco, TX 76798

tomas_cerny@baylor.edu

scalability, and greater antonomy. Greater antonomy also
provides features such as smaller codebases, strong compo-
nent isolation, and organization around business capabili-
ties. These benefits promise improved maintainability over
traditional monoliths.

In this context, it i not surprising that demand has grown
for migrating legacy monolith applications to microservices.
The research in this area, which provides design patterns
and guidelines on how to implement the migration, is sub-
stantial. However, most of these studies are from the macro
architecture perspective, and they target issues such as iden-
tifying candidates for microservices on the monolithic sys-
tem or separating these candidates into a hybrid architecture
[14]. We wished instead to focus on the issue of transferring
this cutting-edge technology to a new problem domain.

In this paper, we introduce a problem domain that we show
can significantly benefit from the utilization of cloud tech-
nologies. Our chosen domain is code-clone detection al-
gorithms and applications. To show how the problem do-
main can benefit from cloud technologies, we first explored
the new domain and identified a series of four problems
that should be addressed by future code-clone detection al-
gorithms and applications. We then implement an exist-
ing code-clone detection algorithm, Sourcerer-CC [41], as a
cloud-based application that we named Corpus-CC to show
how a cloud-based solution can be used to solve the issues
we identified. Bevond just resolving issues in the problem
domain, cloud-based solutions offer the ability to extend the
domain into new areas of research. Our tool is applied in
one of these new areas of research, infer-application code-
clone detection, and two experiments are run to show the
viability.

The remaining content is crganized as follows - Section 2 cov-
ers the background of microservice architecture, and Section
3 covers related work. Section 4 explores the new problem
domain, including background, state-of-the-art, and prob-
lems within the domain. Section 5 introduces our proposed
solution and gives results on two use cases. Lastly, Section
fi covers future work and concludes the paper.

2. BACKGROUND

Monolithic architecture produces large systems that are de-
ployved as atomic units, which makes them hard to evolve or
update. When one component in such a svstem was modi-
fied, it usually meant extensive testing and redeplovment of
the entire structure. Also, scaling a single component meant
scaling the whole application.

Microservice architecture aims to solve the challenges of
monolithic systems. The main emphasis is on systems’ mod-
ularity. Software built with MSA is composed of multiple
component services. So each of them can be tweaked, up-
dated, and deploved separately without compromising the
integrity of the application. Therefore, the developers can
update the system and redeploy just a single module instead
of the whole app. From the business perspective, this also
means that, instead of having different teams handling the
back-end, front-end, operations, and quality assurance, each
small team owns a microservice. In other words, the team
not only creates it but also takes responsibility for deploy-
ment and maintenance.

Microservices are nsually deploved in service containers like
Docker [10]. An infrastructure like this requires an orches-
tration system to provide the necessary features such as au-
tomated deployment, scaling, security [47], service discov-
ery, load balancing, or externalized confizuration. There are
open-source container orchestration solutions such as Kuber-
netes [32] or Docker Swarm Mode that can be used.

Each microservice defines an interface that other com-
ponents can consume, and the services communicate via
RESTful APIs or through a message broker. The message
routing is simple. There i= no centralized element inte-
grating the services; the governance, as well as the data
management, is distributed. This interaction style is called
dumb pipes and smart endpoints.

Since each service uses a different data-store, there is no
need to share the data model across the whole app (canoni-
cal data model). Instead, each service operates on a subset
of the data model in a so-called bounded context [14]. Since
each service specializes in a different business case, natu-
rally, not all services need to operate with all entities. A
gervice may even consider only certain attributes of some
object and ignore others. For example, in some systems, a
person management service uses all the information about
users, including the degree they pursue. However, a hotel
management service would not need the degree attributes at
all.

3. RELATED WORK

The popularity of microservice architecture (MSA) has
grown consistently over the past five years [5]. As an ex-
ample of this, just look at the Google search trend for
microservices during the last five years 1. During this time,
many businesses migrated their systems from monolith or
Service Oriented Architecture (SOA) into MSA [8]. MSA
has become a core architecture concept for many big tech
companies [18, 27, 34]. However, microservices aren't silver
bullets, and the difficult process of migration has drawn the
attention of the industry as well as academia.

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

Figure 1: Google search trends for microservices

Taibi et al. [45] conducted a study interviewing experienced
developers and examined the motivations, issues, and bene-
fits behind migration to MSA. The study concluded that the
critical drivers for migration are the overall maintainability
and scalability. However, the main technical issues were
monolith decoupling, database migration, and data split-
ting.

Another empirical study with MSA practitioners [9] de-
scribes the incremental migration. The researchers de-
compose the process into three parts: reverse engineering
- gaining knowledge about the legacy system; architec-
ture transformation - domain decomposition and applying
domain-driven design practices; and forward engineering -
the actual implementation of the new system. They recom-
mend adding new functionalities written as microservices
and then incrementally migrate the existing ones.

Knoche and Hasselbring [26] also highlight maintainability
as the critical reason supporting modernization. They argue
that monolith systems are challenging to extend since any
change requires extensive testing and rework. And that lim-
iting the number of entry points and establishing platform-
independent interfaces allows the future evolution of the
system to become more feasible. They describe modern-
ization from COBOL to Java, and, for complex high-value
systems, they suggest first to define the service facades, then
implement them in the legacy technology, and to finally re-
implement them again as Java microservices.

In 2017, Balalaie et al. [5] published a catalog of migration
and rearchitecting patterns derived from the observation of
several industrial projects. They provided general puidelines
with a concrete technology stack for implementing them.

Ome of the challenges with migration is the identification
of the microservice candidates on the monolithic system.
Levcovitz et al. [30] proposed a technique based on mapping
the database tables on business areas and facades, which
creates a dependency graph that can be used to identify the
subsystems. In 2018, Zhongshan et al. [38] went even further
with a division approach that analvees both the application
data model and the data flow.

Since the migration to MSA varies from project to project,
many authors published case studies concerning certain
business domains. Belalie et al. [6] reported their experi-
ence with migrating to a cloud-native environment. They
emphasize the continuous delivery and importance of ser-
vice contracts. The implementation of a service can evolve;
however service contract should remain the same across all
implementation versions.

Gouioux and Tamzalit [17] published a case study of mi-
grating large-scale systems to MSA. They also highlighted
the importance of a proper continuous delivery pipeline for
its significant reduction in deployment costs. This allows for
higher optimal microservice granularity. Regarding MSA in-
tegration, the authors argued in favor of lightweight passive
choreography over orchestration solutions like the Enterprise
Service Bus [8], which can be too heavy for MSA. For the
former, they report higher rense of components as well as
gignificantly decreased response time.

In 2018, Mazzara et al. [11] presented an extensive case
gtudy on migrating a bank system. Many of their motiva-
tions were common: the system had too many functionali-
ties, the coupling between components was too high, it was
hard to understand, and the deplovment was complicated
due to extensive testing. They have migrated to MSA run-
ning at Docker Swarm and introduced choreography based
on the messaging system RabbitMQ) [19].

Furda et al. [15] sees microservice migration as a promising
technique of modernizing monoliths and elaborate on three
challenges: multitenancy, stateful, and data consistency.

However, these studies failed to explore motivations related
to breaking into new problem domains. The studies gener-
ally followed the widely accepted use case for MSA of diving
a monolithic application into microservices. We wished to
show, through the following case study, that motivation can
be found in new problem domains as there some problems
which require a cloud-based solution.

4. TARGET DOMAIN : CODE CLONES

Code duplication is when one piece of code mirrors, or
closely resembles another. It can happen from copy and
pasting portions of code, duplicating the structure of code,
or copying components within an application. Code duplica-
tion makes codebases harder to maintain by both increasing
complexity and size of existing code. When bugs are found
in one portion of the codebase, any duplicated regions must
alzo be updated. In modern distributed applications, usu-
ally with multiple development teams, this problem can
grow exponentially more difficult. Traditionally the prob-
lem of code-clone detection has looked at the problem of
infra-application, or code the is copied between source-code
of a single application. However, with the rise of online
code-sharing services such as StackOverflow and GitHub, it
has never been easier to view or copy the code from other
resources. This has caused the problem of code duplication
to become more and more pervasive in modern software
development. Simple modifications of code found online
can allow a developer to present existing code as one's own
work. Utilizing cloud-technologies, we can explore at the
lesser researched problem of inter-application code-clones,
or code copied from outside sources into an application
and show a cloud-based solution is necessary for detecting
code-clones from outside sources.

4.1 Basic Notions on Code Clones
There are four types of identifiable code clones [16, 46]

1. Type 1 clones are exact copies of each other

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

2. Type 2 clones are also exact copies however they may
change some non-structural elements like the names of
variables, functions, and classes

3. Type 3 clones are similar in structure but have slight
modifications, including adding, deleting, or reorder-
ing lines. Clones of thiz type are common in large

codebases where large chunks of code may have been
copied and modified to fit the developer’s specific need

4. Type 4 clones perform similar tasks but may do so in
very different wavs, so they are similar semantically

While the first three tyvpes of code clones all involve copy
and pasted code snippets, type four clones do not. There
have been many algorithms and tools developed to find code-
clones in repositories. Most of these tools focus on types 1-3,
with very few bridging into type 4.

In 2017, an analysis of repositories on GitHub [33] was con-
ducted using a new code-clone detection tool, Sourcerer-CC
[41]. This study found that for most applications analyzed,
a staggering 809 of their source-code could be found copied
elsewhere. Furthermore, the experimenters found that a vast
majority of the discovered code-clones were of types 1 and
2. For types 3, they used Sourcerer-CC with a threshold
of 80% similarity. This report serves as reasoning for why
a consistent integration of code-clone detection is so neces-
sary for the age of open-source and readily available code
snippets.

A study [28] on the benefits of incorporating code-clone de-
tection into the development process found that within 6
iterations of the project, a telecommunications application,
nearly 1000 code clones, were detected and assessed. This
study focused on intra-module only; however, when consid-
ering the influence of copying code from outside sources, the
possibilities are boundless. Another study [31] found that
about 15% of the source code for Linux is an identical copy
from elsewhere in the same application. The study [31] also
found that 30-50% of copied code sections have a least one
different line of code. For extremely large codebases such
a5 Linux, this can result in tens of thousands of lines of
identical code. Managing the propagation of bugs through
code-clones can be nearly impossible once the code is copied
throughout the codebase.

While modern code-clone detection tools excel at finding
code-clones within an application, they are unsuited to
the task of detecting clones from outside sources without
changes to the way they are implemented. These tools are
too large and unwieldy for use by developers in modern
software development. For code-clone detection tools to be
appealing to developers, they must address four main issues
we've identified with current implementations of code-clone
detection algorithms. We show that the current approach
by code-clone detection tools is insufficient for many use
cases faced by modern developers. We compare multiple
code-clone detection tools and consider the limitations of
each in the context of recent software development. We
present a solution to the problems discussed by applying a
cloud-based architecture to an existing code-clone detection
tool and consider two use cases in a case study on our tool
that supports the considered features.

4.2 State of the Art

The algorithms for finding code-clones in applications is
greatly varied across the different implementations. Some of
these algorithms focus on pattern matching [22, 23], some
on tokenizing code [41] and some on other methods such as
AST or tree matching [1, 2, 7]. Below we go through some
of the most important algorithms and tools and discuss the
differences and commonalities between them.

Some of the earliest and most seminal work on code-clone
detection was in 1992 by Baker [2] and focuses on finding
code-clones using line-based comparison using a tool called
Dup. This algorithm ignores whitespace and comments for
comparison and returns pairs of longest matches of code-
clones for visualization. In an extension to the algorithm,
Dup can look for parameterized code clones in which the
code snippets vary in small details, such as variable names.
Using pure matching, Dup found in their experiment, that
nearly 24% of the file they analyzed was copied. By us-
ing parameterized matching [3, 4], this percentage jumped
to 85%. The actual implementation of this matching uses
hashing of the lines and then a trie for suffix-tree match-
ing [36]. Like most of the tools mentioned, this algorithm
focuses on intra-application code duplication.

In 1995, Baker updated the algorithm [1] to find code du-
plication in large software systems. This is done using an
updated data structure known as a parameterized suffix tree.
Using this updated structure, Dup can process over a mil-
lion lines of code in about 7 minutes. The results from pro-
cessing the application resulted that 13% of the code was
duplicated.

Various unique implementations have been proposed, includ-
ing one by Johnson in 1993 [23], which uses fingerprinting
to find exact matches within an application. The algorithm
uszes Rabin-Karp fingerprinting [25] and comparison to lo-
cate and report on the matches. In 1994, Johnson proposed
a new algorithm [22], which replaces distinctive words with
a special character resulting in a fingerprinting algorithm
for types 1 and 2 clones. Interestingly, a metric-based al-
gorithm was proposed in 1996 by Mayrand [35]. This algo-
rithm used another tool, Datrix [29], to extract metric in-
formation for comparison. Later, an algorithm for abstract
syntax tree (AST) matching was proposed in 1998 by Baxter
[7]. Trees are created and hashed into buckets to reduce the
number of comparisons between the trees. An inadequate
hash function is purposefully used to account for near-miss
code clones. This algorithm allows the efficient finding of
types 1-3 code clones in effectively O(N).

Up until now the methods proposed were language-dependent,
or would only work for a small number of languages. Those
algorithms relied on a language-specific parser to analvee
source-code files. In 1999 a method for a language-indepen-
dent code-clone detection algorithm [12] was proposed. This
algorithm works by removing all whitespace within lines and
effectively condensing them to language-independent string,
and the semantics of the coding language is ignored.

In 2002, one of the most critical advancements in code-
clone detection was proposed in the form of CCFinder [24)].
CCFinder begins by tokenizing the application’s source-code
files using lexical rules for the specific language. CCFinder

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

can efficiently tokenize applications consisting of millions
of lines of code. The streams of tokenized source-code are
transformed using rules specific to the language. These
rules, for example, may include parameter replacement and
removing unnecessary tokens. CCFinder then utilizes a
novel prefix-tree matching algorithm to search common pre-
fixes to identify matches. A divide and conguer approach is
used to allow for suffix trees that would be too large to hold
in memory. In their experiment on the Java 1.3 JDK [20],
it took about 3 minutes for almost 600k lines of code, with
nearly 30% discovered as clones. This approach was a novel
improvement; however, it still focuses on intra-application
code clone detection.

A suecessor to CCFinder was CP-Miner [31], proposed in
2004, This approach has a similar running time and fea-
tures to CCFinder; however, it reports a 17-52% improve-
ment on the number of clones it can detect over CCFinder.
Furthermore, CP-Miner scales to repositories totaling over
2 million lines of code. The main addition to CP-Miner is
the automatic detection of bugs resulting from code clones.
This tool was applied to operating systems with impressive
results, including finding bugs in both the Linux distribution
and Apache web server, which were later patched.

In 2007, Deckard |21] was introduced as a new approach to
tree-based code-clone detection. The algorithm used in the
Deckard tool would generate vectors from the AST or parse
trees generated from the source code. The vectors were then
clustered to reduce the number of comparisons needed to be
done. The AST or parse trees could be built for a large
number of languages. Link CCFinder and CP-Miner, the
Deckard tool was applied to large scale repositories, includ-
ing the Linux kernel, to verify it's scalability.

The tool discussed in the study of GitHub repositories was
Sourcerer-CC [41], a token and heuristic-based algorithm
that focuses on scaling for large repositories. In addition to
using tokens to find code-clones, heuristics and hashes were
used to account for a large number of types 1 and 2 code
clones. This algorithm serves as the basis for the application
We Propose.

At the time of writing this paper, we are aware of no code-
clone detection tool or algorithm that utilizes either MSA or
any kind of cloud-based architecture. All of the aforemen-
tioned tools are solely theoretical or local deployment. This
limits the tools to the efficiency of the host machine and
limits scalability. We propose the first of its kind code-clone
detection tool that utilizes cloud-based technologies and is
built with deplovability and scalability in mind.

4.3 Challenges in the Domain

While the advancements in code-clone detection algorithms
and tools in recent vears have been expansive and thorough,
the tools developed remain difficult for use in everyday soft-
ware development. We've identified four key issues with the
current implementations of code-clone detection tools. Most
of the tools we've discussed are quite challenging to set up
and use. They often require much confizuration on the user's
end; sometimes, applications must go as far as to provide vir-
tual machine images with settings already complete so that
users can use their tool. Furthermore, these tools are occa-

gionally platform-dependent, making portability and reuse
in development a big concern.

We propose that a code-clone detection tool must be (1)
cloud-based and deployable. Using a service like Docker [10]
to host clone detection tools allows for easy deployvment and
platform-independence, which makes tools far more com-
fortable to use in evervday development. The second issue
is the lack of integration or standard API among the tools.
Each tool is unique, but there are frequent commonalities
in features between them. Swapping between tools is an in-
credibly time-intensive process that is not easily undertaken.
We propose that code-clone detection tools must (2) easily
integrate into third-party frameworks and continuous inte-
gration pipelines. Third, the tools discussed mainly rely on
local file storage for storing tokens and heuristics. This is
impractical for developers nowadays, especially with cloud-
hosted applications and distributed development teams. For
ease of use in development, it would be advantageous for
the developer to keep a repository of already parsed code
to check against to avoid the overhead of repeating pre-
processing when checking a new repository for clones. For
this reason, we propose that code-clone detection tools (3)
adopt a "corpus™based storage mechanism. This involves
keeping a separate repository of already-parsed code snip-
pets to avold time spent reprocessing code. Lastly, the pro-
cess of finding the clones is often time-intensive and rela-
tively brute force. The speed for finding clones in a project
leaves much to be desired for use in everyday development.
We propose one solution to this problem by (4) adoption of
an advanced heuristic-based index for selecting and filtering
the code snippets into a pool of code-clone candidates, in-
stead of considering the entire pool of code snippets as most
modern tools do.

5. CASE STUDY : CORPUS-CC

While there have been many algorithms proposed to solve
the problem of detecting code clones, this paper proposes
a new application built on a cloud-based architecture that
uniformly fits the average software developer's pipeline. Our
architecture transforms code-clone detection into a service,
able to be easily used and integrated into the software devel-
opment pipeline. Below we introduce the Corpus-CC code-
clone detection tool and walk through two use cases for the
tool.

5.1 Introducing Corpus-CC

Corpus-CClis a cloud-based code-clone detection tool with
emphasis on integration and speed for the developers. Built
on existing developments in code-clone detection, the archi-
tecture is designed specifically for ease of use in modern soft-
ware development. Corpus-CC utilizes a microservice-based
pipeline for discovering the code, tokenizing, and code-clone
detection. Our decizion to use microservices was rooted in
acalability and ease of deployment. Each of the microser-
vices can be deploved independently of the operating svs-
tem of the user, meaning it can be easily used in a develop-
ment environment where each host configuration may varv.

1 Corpus-CC is available open-source at
https://github.com/clondhubs /corpus-ce

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

CC-Detection | [~=="""1 Database [==""" CC-Pipeline
Q]
----| CC-Discovery |k------# . CC-Tokenizer
E- || A

Figure 2: The architecture of the Corpus-CC

Furthermore, multiple instances of each microservice can be
deployed for load-balancing. A diagram of the architecture
and the interaction between the microservices can be seen
in Fig 2.

Corpus-CC is divided into three distinct phases, with each
phase corresponding to a specific microservice. The first
phase iz the discovery phase in which the user specifies a
project to be analveed, and the project’s structure and files
are scraped. This metadata is then passed to the tokenizing
phase, which uses an AST built from each of the code files
to extract the code on a method-wise scale. The raw code
is parsed into a series of heuristics, which is encapsulated
into an object representing each method. These heuristics
include the total number of lines, lines of code, and logical
lines of code. In addition, the raw code, at varying stages of
refinement, is hashed using MD5 [48]. Lastly, the code itself
is tokenized. The tokens then undergo a series of transfor-
mations which are detailed below -

1. Adding tokens: Tokens are added to add clarity to
the structure of the token stream and the conditional
structures within the stream

2. Removing unnecessary tokens: Tokens are removed if
they are unnecessary to interpreting the structure of
the stream

3. Translation of tokens into consistent placeholders: To-
kens such as function, class or method names are trans-
lated into placeholders

Omee the code is tokenized and translated, a count of each
tyvpe of token and the number of unique tokens is taken. A
unigue token is any token that underwent translation during
the first step. This is for use in the last phase to help reduce
the number of comparisons made. This metadata is stored
along with the list of tokens. The full information dump
for each method is then passed to the third phase for use in
code-clone detection.

In the last phase, the metadata for each method is used to
query the database of alreadv parsed code using the heuris-
tics and custom queries to drastically decrease the number
of comparisons needed to be done. Using the heuristic-based
indexing 18 how we have accomplished a speed increase on
the previous methods. The method metadata is compared
to the queried results, and clones are added to a centralized
report which is presented to the user after all methods have
been analyzed. The comparison beging with comparisons
of source-code and hashes to account for quick detection of
tvpes 1 and 2. If the comparison fails at that stage, then

Table 1: Frequency of Code Clones - StackOwverflow

Typel Type2 Typed Total
0 506 5,780 6,205

Jaccard similarity [44)] is used to find the similarity between
the sets of tokens for each method. The similarity thresh-
old is variable; however, we set ours at 65%. Any pair of
methods that exact match or are above the threshold are
reported.

To fill the database and create the corpora to compare to, a
fourth microservice is used as a pipeline for receiving code
snippets. These snippets can come from scraping the web,
parsing repositories, or manual upload by the user. This
microservice then passes the code onto the previously men-
tioned tokenizing microservice for tokenization and then
loads the metadata into the database. This microservice is
designed to be extensible; it is given the various locations
from where a developer could want to scrape.

Below we discuss two use cases for our service, StackOwver-
flow and GitHub.

5.2 Use Case I: StackOverflow

With the rise of StackOverflow, and other similar code shar-
ing and help websites, copying code has never been easier.
Developers can find code snippets just by searching for key-
words related to what they are working on. Issues arise,
however, due to the very nature of StackOverflow as a fo-
rum for help when problems are present in code. The code
on websites such as these iz unverified, untested, and not
always a perfect fit for the project one is working on.

We tested our framework on a corpus loaded with a small
amount of code sampled from StackOwerflow as a proof of
concept. The snippets we chose were from the top results
when guerving for Java questions. These snippets are a
mixture of the top voted answers, the initial broken code,
and snippets that StackOverflow independently verified to
be the correct answer to the guestion. In total, we manu-
ally scraped about 50 code snippets to use in our corpus. We
checked the source-code repository of the Spring Framework
[43] against this corpus using our tool.

Even with the small sample size, we found meaningful code
clones within the application. The process was quick, not
even taking a half a minute to fully analvee the testbed,
and most of that time was in the discovery and tokenization
process of the application, not in the actual code clone detec-
tion. In total, we identified almost 500 methods within our
testbed that were code clones with one of the snippets from
StackOverflow. In total, code clones accounted for nearly
5% of the complete testbed application.

The snippets were sporadic and not tailored to the testbed
beyond the fact that they were the same programming lan-
guage. As such, we expected a low percentage of matches
within the application, purely based around chance match-
ing. We ran another experiment using a separate set of
code snippets of similar sige and once again found around
5% code-clones within the testbed application. We manu-

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

Table 2: Grouping of Code Clones - StackOverflow

Low Medium High Total
4.404 1,387 504 6,205

ally checked the code-clones that were found and were able
to verify that they were true code-clones. In both our ex-
periments, all of the code-clones were type 3. This finding
is consistent with what we would expect from a developer
utilizing code snippets on StackOverflow. As mentioned pre-
viously, the code is not always a perfect fit, and so it would
be quite rare to find an exact match. An example of a code-

clone from this experiment can be found in Listings 1 and
2.

We then moved forward in implementing a web-scraper de-
signed specifically to scrape code snippets off of StackOwver-
flow. We used this scraper to generate a new corpus consist-
ing of 5,000 methods and nearly 50,000 lines of code. We
used this corpus along with the Spring Framework testbed
to run a new experiment to test the validity of our proof of
concept results. The results from testing against the Stack-
Owerflow corpus can be seen in Table 1.

To further analyze the clones found, we applied an algo-
rithm for grouping the clones by severity. This algorithm
took into account the type of clone, the percentage of the
code snippet that was cloned as well as the overall length
of the clone in comparison to the others. These clones were
grouped and ranked accordingly within each group. We de-
fine three groups for code clones - low, medium, and high.
A low severity clone is one that was a borderline clone, or a
clone with a minimal amount of cloned lines within a code
snippet. A medinm severity clone is a clone in which a sig-
nificant portion of the code is cloned. Lastly, a high severity
clone is a snippet that is fully cloned or nearly fully cloned.
This is beneficial to the developer by reducing a pool of thou-
sands of clones down to just the critical clones that should be
addressed immediately. The results from the severity break-
down of the StackOwverflow clones can be seen in Table 2.

5.3 Use Case II: GitHub

In addition to code-sharing sites, open-source projects have
vastly expanded the number of repositories available for
viewing by developers. Much like the concerns with copying
code from StackOwverflow, the code on GitHub can be un-
verified, untested, and not a perfect fit. More to the point,
however, is that a company with distributed applications
may have multiple repositories for an enterprize system. It
would be advantageous for a company to create a corpus out
of the other repositories for a team to compare their code
against, to help avoid duplication across systems. The study
[28] previously mentioned has shown the benefits of using
code-clone detection within one repository; we now propose
a system for detection across distributed repositories.

We loaded a corpus with code taken from the top five
repositories on GitHub [13, 37, 30, 40, 42]. In total, these
five repositories contained almost 40,000 methods with near
500,000 lines of code to be analyzed. The total time spent to

10

if (1sF11e()) {
try {
return getFile()}.exists();
}

catch (IDException ex) {
Log logger = LogFactory.getLog{getclass());
if (logger.isDebugEnabled ()] {
logger .debug ("Could not retriave =
+ getDescriptiom(), ex);
}
}
}

Listing 1: Code for AbstractResource#texists
from the org.springframework.core.io package

Table 3: Frequency of Code Clones - GitHub

Total
11,062

Type2 Typeld
1 1,103 0,058

Type 1

build the corpus, including discovery, tokenizing, heuristic
building, and saving was less than 3 minutes. We tested our
GitHub corpus against the Spring Framework [43] repos-
itory for our testbed application. On average, using the
heuristic-based indexing, for each method we tested, we saw
an average reduction in the total code-clone candidate pool
of around 80% when querying for possible code-clones. This
drastically sped up our testing, making it feasible for use in
a continuous integration pipeline, or even integration into
third-party plugins. Our GitHub corpus is a much larger
corpus than the StackOwverflow, and so we found a signifi-
cantly higher number of code-clones. In total, we found that
out of the nearly 13,000 methods in our testbed application,
86.7% were code-clones. A breakdown of the types of code
clones can be seen in Table 3. We manually checked about
5% of the code-clones to check our threshold metrics were
sufficient and were able to verify that the clones we checked
were indeed valid code-clones.

These results are consistent with findings from a previous
study [23] on code-clones in popular GitHub repositories.
That study found that nearly 80% of all files in the GitHub
repositories they tested weren't unique and were easily
found, in some form, in other repositories. Our consistency
with previous findings further verified that our thresholds
were correct. The experiment as a whole was a successful
demonstration of the nature of using code-clone detection as
a service. We showed that it is possible to use a cloud-based
application and preloaded repositories of snippets to achieve
both the speeds [31] that other tools have reached and the
accuracy of previous studies.

We applied the previously mentioned ranking algorithm to
the code clones from our experiment with results seen in
Table 4.

6. CONCLUSION

Microservice architecture, and on a larger scale, cloud-based
architectures are here for the foreseeable future, and it is
important to continue to explore and utilize the benefits of
these architectures. Even though much research has been

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

if (1sF11e(}) {
try {
return getFile().exists();
} catch (IDExceptiom ex) {
System.out.println{ex. getMessage (1)

}

Listing 2: Code found at StackOwverflow

Table 4: Grouping of Code Clones - GitHub

Low Medium High Total
6,552 4,308 112 11,062

done on the process of deconstructing monolithic systems
into microservices, not enough research has been done ex-
ploring new problem domains using cloud-based solutions.
In this paper, we chose to take a look at the problem domain
of code-clone detection, one which has existed for decades
but is stagnant in innovation. We show that the current
implementations of code-clone detection tools are insuffi-
cient for the needs of the modern development industry.
More specifically, the current implementations lack deploy-
ability, are too difficult to integrate, lack efficient storage
mechanisms, and are too slow for modern software develop-
ment. We proposed an upgrade to existing algorithms in the
form of Corpus-CC, a cloud-based architecture for integrat-
ing code-clone detection as a service for use in the software
development pipeline. We verified the validity of use for such
a tool in two use cases by running a testbed against common
sources of outside code-clones, StackOwverflow and GitHub.
Even though the code snippet repository for StackOverflow
was small, a meaningful number of clones were found in the
sample application, and a much larger number of clones were
found when comparing against the GitHub corpus.

Creating such a solution would not have been possible with-
out utilizing the benefits of a cloud-based code-clone detec-
tion tool. Even though at present, our tool merely wraps
an existing code-clone detection solution, we encourage re-
search within this problem domain to explore a transition
into cloud-based applications. It is time for the creators of
these code-clone detection algorithms to focus on the mod-
ern developer and allow their tools to be useful in the new
age of software development. Let this paper serve as a chal-
lenge to all other tools that they must increase the usability
of their tools. As of this moment, our tool, Corpus-CC,
is the only tool that addresses any of the problems we've
identified.

7. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1854049

11

[1]

[2

(3]

[4]

(5]

[€]

[7

(8

[

[10]

[11]

[12]

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

REFERENCES

BE. 5. Baker. “On finding duplication and near-duplicati-
on in large software systems”. In: Proceedings of 2nd
Working Conference on Reverse Engineering. 1995,
pp. 86-95. poI: 10, 1109/WCRE . 1995 . 514697,

B. 5. Baker. A program for identifving duplicated
code. Computing Science and Statistics, 1992,

B. 5. Baker. “A Theory of Parameterized Pattern
Matching: Algorithms and Applications™. In: Procesd-
ings of the Twenty-fifth Annual ACM Symposium on
Theory of Computing. STOC '93. San Diego, Cali-
fornia, USA: ACM, 1993, pp. 71-80. 1sEN: 0-80701-
501-7. poI: 10 . 1145/ 167088 . 167116, URL: http:
/fdoi.acm.org/10.1145/167088. 167116,

B. 5. Baker. Parameterized Pattern Matching: Algo-
rithms and Applications. Journal of Computer and
System Sciences 52.(1): 28 —42, 1996, 1558: 0022-0000.
Dol https://doi. org/10. 1006/ jcss . 1996 . 0003,
URL: http: / /www . sciencedirect . com / science /
article/pii/S0022000096900033.

A. Balalaie, A. Heydarnoori, and P. Jamshidi. Mi-
croservices architecture enables devops: Migration to
a cloud-native architecture. IEEE Software 33.(3): 42—
52, 2016.

A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Mi-
grating to cloud-native architectures using microser-
vices: an experience report”. In: European Conference
on Service-Oriented and Cloud Computing. Springer.
2015, pp. 201-215.

I. D. Baxter et al. “Clone detection using abstract
syntax trees”. In: Proceedings. Imternational Confer-
ence on Software Maintenance (Cat. No. 98CB36272).
1908, pp. 368-377. DOL: 10.1109/ICSM. 1998, T38528.

T. Cerny, M. J. Donahoo, and M. Trnka. Contex-
tual Understanding of Microservice Architecture: Cur-
rent and Future Directions. SIGAFPP Appl. Comput.
Rev. 17.(4):20-45, Jan. 2018. 155N: 1550-6915. DOL:
10.1145/3183628 . 3183631. URL: http://doi.acm.
org/10.1145/3183628. 3183631.

P. I Francesco, P. Lago, and 1. Malavolta. “Migrating
towards microservice architectures: an industrial sur-
vey”. In: 2018 IEEE International Conference on Soft-
ware Architecture (TCSA). IEEE. 2018, pp. 20-20909.

Docker Inc. Docker, Enterprise Container Plafform.
2019. vRL: https : //www . docker . com (visited on
06,/10,/2019).

N. Dragoni et al. Microservices: Migration of a mission
critical system. arXiv preprint arXiv:1704.04173, 2017.

5. Ducasse, M. Rieger, and 5. Demever. “A lan-
guage independent approach for detecting duplicated
code”. In: Proceedings IEEE Imternational Confer-
ence on Software Maintenance - 1999 (TCSM'99).
‘Software Maintenance for Business Change’ [Cat.
No. 99CBE36360). 1999, pp. 109-118. porn: 10. 1109/
ICSM. 1999, 792693,

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

ElasticSearch. ElasticSearch: a distributed, RESTful
search and analytics engine. 2019, URL: https: //www.
elastic.co/products/elasticsearch.

K. Finnigan. Enterprise Java Microservices. Manning
Publications, 2019, 1seN: 9781617204242,

A. Furda et al. Migrating enterprise legacy source code
to microservices: on multitenancy, statefulness, and
data consistency. IEEE Software 35.(3): 63-72, 2017.

P. Gautam and H. Saini. “Various Code Clone Detec-
tion Techniques and Tools: A Comprehensive Survey™,
In: Aug. 2016, pp. 655667, 1sEN: 9758-081-10-3432-9,
Dol 10.1007/978-981-10-3433-6_79.

J-P. Gouigoux and D. Tamzalit. “From monolith to
microservices: Lessons learned on an industrial migra-
tion to a web oriented architecture”. In: 2017 IEEE

International Conference on Software Architecture
Workshops (ICSAW). IEEE. 2017, pp. 62-65.

5. Thde. From a Monolith to Microservices! REST:
The Evolution of Linkedin’s ServiceA rchitecture. 2019,
URL: https : / /www . infoq . com / presentations /
linkedin-microservices-urm.

P. 5. Inc. Rabitt M. 2019. URL: https : / / www .
rabbitmg.com/ (visited on 06,/10,/2019).

Java JOK 1.3 bttps://docs.oracle. con/javase/1.
3/docs/api/. 2000. (Visited on 09/10,/2019).

L. Jiang et al. “DECKARI): Scalable and Accu-
rate Tree-Based Detection of Code Clones™. In: 20th
International Conference on Software Enginesring
(TCSE'(7). 2007, pp. 96-105. por: 10. 1109/ ICSE.
2007 .30.

Johnson. “Substring matching for clone detection and
change tracking”. In: Proceedings 199§ Imfernational
Conference on Software Maintenance. 1994, pp. 120
126. pol: 10.1109/IC8M. 1994, 336TE3.

J. H. Johnson. “Identifving Redundancy in Source
Code Using Fingerprints”. In: Proceedings of the 1993
Conference of the Cenire for Advanced Studies on
Collaborative Research: Software Engineering - Vol-
ume 1. CASCON "03. Toronto, Ontario, Canada: IBEM
Press, 1993, pp. 171-183. URL: http://dl. acn. org/
citation.cfm?id=962289.962306.

T. Kamiva, 5. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection sys-
tem for large scale source code. IEEE Transactions
on Software Engineering 28.(7): 654670, 2002. 135N:
2326-3881. por: 10.1109/TSE. 2002, 1019480.

R. M. Karp and M. 0. Rabin. Efficient randomized
pattern-matching algorithms. IBEM Journal of Re-
search and Development 31.(2):249-260, 1987. Do
10.1147/rd . 312. 0249,

H. Knoche and W. Hasselbring. Using microservices
for legacy software modernization. IEEE Software
35.(3): 4449, 2018.

5. Kramer. The Biggest ThingAmazon Got Right: The
Flatform. 2019. vRL: https://gigaom. com/2011/10/
12/419-the-biggest - thing - amazon - got -right-
the-platform/.

12

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

B. Lague et al. “Assessing the benefits of incorporat-
ing function clone detection in a development process”.
In: 1287 Proceedings International Conference on Soft-
ware Maintenance. 1997, pp. 314-321. pon: 10,1109/
ICSM. 1997.624264.

5. Lapierre, B. Lagug&, and C. Leduc. Datrix& Trade;
Source Code Model and Its Inmterchange Format:
Lessons Learned and Considerations for Future Work.
SIGSOFT Softw. Eng. Notes 26.(1): 53-56, Jan. 2001.
135N 0163-5948. Dol 10. 1145 /505894 . GOE90T. URL:
http://doi.acm.org/10. 1146/606894 . EOEI0T.

A. Leveovitz, R. Terra, and M. T. Valente. Towards a
technigue for extracting microservices from monolithic
enterprise systems. arXiv preprint arXiv:1605.03175,
2016.

Z. Li et al. “CP-Miner: A Tool for Finding Copy-paste
and Related Bugs in Operating System Code”. In:
QSDI. 2004,

Linux Foundation. Kubernetes Container Orchestra-
tion. 2019, URL: https: //kubernetes. io (visited on
06,/10,/2019).

C. V. Lopes et al. DéJaVu: A Map of Code Dupli-
cates on GitHub. Proc. ACM Program. Lang. 1.(QOP-
SLA): 84:1-84:28, Oct. 2017. 155N: 2475-1421. DOI: 10.
1145/3133908. URL: http://doi.acm.org/10. 1146/
3133908.

T. Mauro. Nginr - Adopting Microservices af Net-

fliz:Lessons for Architectural Design. 2019. URL: https:

/ / wew . nginx . com / blog / microservices - at -
netflix-architectural-best-practices/.

Mayrand, Leblanc, and Merlo. “Experiment on the
automatic detection of function clones in a software
system using metrics”. In: 1996 Proceedings of Infer-
national Conference on Software Maintenance. 1996,
pp. 244-253. po1: 10.1109/ICSM. 1996. 666012,

E. M. McCreight. A Space-Economical Suffix Tree
Construction Algorithm. J. ACM 23.(2): 262-272, Apr.
1976. 158M: 0004-5411. po1: 10.1145/321941 . 321946,
URL: http: //doi.acm.org/10.1145/321941 . 321946,

OkHttp. 2019. URL: https : //github. com/ square /
okhttp (visited on 09/23,/2019).
Z. Ren et al. “Migrating Web Applications from Mono-
lithic Structure to Microservices Architecture”. In:
Froceedings of the Tenth Asia-Pacific Symposium on
Internetware. ACM. 2018, p. 7.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Retrofit. 2019, URL: https: //github. com/squarae/
retrofit (visited on 09,/23/2019).

RzJava. 2019, URL: https: //github. com/ReactiveX/
RxJava#irxjava-reactive-extensions-for-the-jvm
{visited on 08,/23/2019).

H. Sajnani et al. “SourcererCC: Scaling Code Clone
Detection to Big-code”. In: Proceedings of the 38th In-
ternational Conference on Software Engineering. ICSE
"16. Austin, Texas: ACM, 2016, pp. 1157-1168. 1SEN:
O7T8-1-4503-3900-1. pDoI1: 10. 1145 /2884781 . 28B4877.
URL: http: //doi. acm. org/ 10 . 1145 / 2884781 .

2884877
Spring Boot. 2019. URL: https : / / spring . io /
projects/spring-boot (visited on 09,/23/2019).

Spring Framework. 2019, URL: https://github. com/
spring - projects / spring - framework (visited on
0925 /2019).

N. H. Sulaiman and D). Mohamad. “A Jaccard-based
similarity measure for soft sets”. In: 2012 IEEE Sym-
posium on Humanities, Science and Engineering He-
search. 2012, pp. 659-663. Do 10 . 1109 / SHUSER .
2012.6268901.

D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, mo-
tivations, and issues for migrating to microservices ar-
chitectures: An empirical investigation. IEEE Cloud
Computing 4.(5): 22-32, 2017.

A, Walker, T. Cerny, and E. Song. Open-Source
Tools and Benchmarks for Code-Clone Detection:
Past, Present, and Future Trends. SIGAPP Appl.
Comput. Rev. 19.(4): 28-39, Jan. 2020. 13sn: 1550-
6915. pon: 10.1146/3381307 . 3381310. URL: https:
ffdoi.org/10.1145/3381307.3381310.

A. Walker et al. “On Automated Role-Based Access
Control Assessment in Enterprise Systems”. In: Infor-
mation Science and Applications. Ed. by K. J. Kim
and H.-Y. Kim. Singapore: Springer Singapore, 2020,
pp. 375-385. 15EN: 978-081-15-1465-4.

Z. Yong-Xia and . Ge. “MD5 Research”. In: 2010 Sec-
ond International Conference on Multimedia and In-
formation Technology. Vol. 2. 2010, pp. 271-273. poI1:
10.1109/EMIT. 2010.186.

13

ABOUT THE AUTHORS:

Andrew Walker is a senior computer science undergraduate at Baylor University.
His areas of research are verification of distributed systems, stafic-code analysis and
code-clone detection. He 15 a member of Upsilon Pi Epsilon and ACM.

Tomas Cerny is a Professor of Computer Science at Baylor University. His area of
research 15 software engineering, code analysis, security, aspect-onented
programming, user interface engineering and enterprise application design He
received his Master’s, and Ph D. degrees from the Faculty of Electrical Engineering
at the Czech Technical University in Prague, and M.S. degree ffom Baylor
University.

APPLIED COMPUTING REVIEW MAR. 2020, VOL. 20, NO. 1

14

