
Kong, S.C., Hoppe, H.U., Hsu, T.C., Huang, R.H., Kuo, B.C., Li, K.Y., Looi, C.K., Milrad, M., Shih, J.L., Sin, K.F., Song, K.S., Specht,
M., Sullivan, F., & Vahrenhold, J. (Eds.). (2020). Proceedings of International Conference on Computational Thinking Education 2020.
Hong Kong: The Education University of Hong Kong.

63

Workshops and Co-design Can Help Teachers Integrate Computational Thinking
into Their K-12 STEM Classes

Sally P. W. WU1*, Amanda PEEL2, Connor BAIN3, Gabriella ANTON4, Michael HORN5, Uri WILENSKY6

1,2,3,4,5,6Northwestern University, United States

sally.wu@northwestern.edu, amanda.peel@northwestern.edu, connorbain2015@u.northwestern.edu,
gabriellaanton3.2020@u.northwestern.edu, michael-horn@northwestern.edu, uri@northwestern.edu

ABSTRACT
This work aims to help high school STEM teachers integrate
computational thinking (CT) into their classrooms by
engaging teachers as curriculum co-designers. K-12 teachers
who are not trained in computer science may not see the
value of CT in STEM classrooms and how to engage their
students in computational practices that reflect the practices
of STEM professionals. To this end, we developed a 4-week
professional development workshop for eight science and
mathematics high school teachers to co-design
computationally enhanced curriculum with our team of
researchers. The workshop first provided an introduction to
computational practices and tools for STEM education.
Then, teachers engaged in co-design to enhance their science
and mathematics curricula with computational practices in
STEM. Data from surveys and interviews showed that
teachers learned about computational thinking,
computational tools, coding, and the value of collaboration
after the professional development. Further, they were able
to integrate multiple computational tools that engage their
students in CT-STEM practices. These findings suggest that
teachers can learn to use computational practices and tools
through workshops, and that teachers collaborating with
researchers in co-design to develop computational enhanced
STEM curriculum may be a powerful way to engage
students and teachers with CT in K-12 classrooms.

KEYWORDS
computational thinking, STEM education, K-12, teacher
professional development, curriculum design

1. INTRODUCTION
Initiative to incorporate computational thinking (CT) in K-
12 education face challenges on several fronts, particularly
in the United States. CT education often takes place within
computer science courses, which may limit access to those
who traditionally take computing courses (Heinz, Mannila,
& Färnqvist, 2016). Moreover, there is a dearth of K-12
teachers trained in computer science and technologies
(Advocacy Coalition, 2018; Cuny, 2012).

In order to address the systemic barriers to CT education,
researchers argue for the integration of CT in K-12 STEM
classes (Wilensky, Brady, & Horn, 2014). Integrating CT in
STEM classes can broaden access to computational practices
for all students, as STEM classes are required in middle and
high school. Further, students’ use of computational tools
has been shown to deepen learning in mathematics and
science domains (e.g., Brady et al., 2016; Wilensky, 2003).
Weintrop and colleagues (2016) organize computational
thinking practices in mathematics and science classrooms
into four strands: data practices, modeling and simulation

practices, computational problem-solving practices, and
systems thinking practices. In this paper, we focus on
modeling and simulation (using, modifying, and creating
computational models) and data practices (collecting,
visualizing, and analyzing data). Engaging in these CT-
STEM practices can help students develop science and
mathematics content understanding through authentic
STEM practices used in modern science (Weintrop et al.,
2016).

Integrating CT in STEM classes further addresses the
shortage of teachers trained in computer science by shifting
the focus to training STEM teachers in the computational
tools and practices relevant to their associated fields. This
shift requires both curriculum designers and teachers to
reimagine classroom practices and to learn how to
incorporate computational methods and tools (Ball &
Forzani, 2009; Windschitl et al., 2012). We address this shift
using a Design Based Implementation Research (DBIR)
framework (Penuel et al., 2011) that supports teachers in
professional development and integration of
computationally enriched STEM units. Over multiple years
of partnering with teachers and schools, our team has shifted
from providing day-long professional development to
ongoing teacher-driven support. Through these design
iterations, we have sought to support teacher ownership,
agency, and comfort in teaching with computational tools.

In the latest design iteration, we position teachers as active
co-designers in modifying their existing STEM curricula to
include computational tools and practices. Our approach
foregrounds teachers’ views on how the curriculum aligns
with teaching strategies and expectations for student
learning (Allen & Penuel, 2015; Coburn, 2005; Penuel et al.,
2009). Researchers serve as computational experts and work
alongside teachers to develop new computationally enriched
STEM curricula that align with individual teacher’s views
and goals. The co-design process aims to (1) help teachers
develop an understanding of CT and (2) empower teachers
to integrate and teach CT in their STEM courses. In this
paper, we present the results of a month-long professional
development in which high school teachers co-design CT-
STEM curricula with researchers. We investigate the
research questions: (1) What did teachers learn about CT
through a 4-week professional development? and (2) How
did teachers integrate CT into their curriculum?

2. METHOD
To investigate our research questions, we developed the CT-
STEM Summer Institute (CTSI), a 4-week professional
development workshop that positioned teachers and
researchers as co-designers of curriculum. Teachers and

64

researchers formed design teams by subject area: three
biology teachers (pseudonyms: Betty, Briana, Brooke); one
chemistry teacher (Carrie); three physics teachers (Penny,
Peter, Philip); and one mathematics teacher (Matt). The
eight participants teach high school science or mathematics
in four U.S. public schools (2 urban and 2 suburban).
Teachers received $1000 U.S. dollars per week of
participation in CTSI and were asked to create a CT-STEM
curriculum for their classroom that would be implemented
in the following school year. Seven graduate students and
one post-doctoral researcher were assigned to work with
teachers based on their prior experience working with
specific subject areas and participating teachers.

Table 1. Overview of Professional Development Activities
over Four Weeks of CTSI, Organized by Day.

Week Monday Tuesday Wednesday Thursday Friday
1 Pre-survey

Introductions
Demo CT
Lesson

Computational
Models and
CT-STEM
Practices

Computational
Tools

Computational
Tools
Unit planning
Reflection

Work from
home

2 + 3 Work from
home

Review
partner’s
work

Discuss
feedback

Co-design (2-
3 hours)

Co-design (2-3
hours)

CT-STEM
Workshop

Co-design (3.5
hours)

Reflection

Work from
home

4 Work from
home

Review
partner’s
work

Discuss
feedback

Co-design (2-
3 hours)

Co-design (3
hours)

CT-STEM
Workshop

Co-design (3.5
hours)

Reflection

Post-survey
Post-interview
Co-design (1
hour)
Curriculum
Showcase

Table 1 shows an overview of activities during the 4-week
professional development. Teachers and researchers met in-
person for 14 days from 10am-3pm, with one hour for a
catered lunch.

The first week of CTSI (4 days) comprised of workshops led
by the researchers. Each workshop introduced
computational practices and tools by engaging teachers in
lessons designed for students. Each lesson demonstrated
how computational tools can engage students in CT-STEM
practices while learning disciplinary content. For example,
one lesson (https://tinyurl.com/IntroToCT) first asked
teachers to use, modify, and debug a series of computational
models that simulate how fire spreads through a forest
(http://tinyurl.com/netlogofire; Wilensky, 1997) using
NetLogo, a multi-agent programmable modeling
environment (Wilensky, 1999). Next, teachers collected and
analyzed ‘density vs. percent burned’ data using CODAP
(https://codap.concord.org/; Common Online Data Analysis
Platform), a web-based data analysis environment. Then,
they posed research questions about other variables that may
affect the spread of fire and discussed how scientists use
such computational models. Finally, teachers reflected on
the pedagogy of CT-STEM practices and how they may use
computational models and/or data analysis tools with
students.

In addition to NetLogo and CODAP, teachers engaged in
Unplugged CT activities, which teach CT without
computing tools (e.g., writing loops on paper), and
NetTango, a blocks-based programming interface for
exploring NetLogo Web models (Horn et al., 2014), in the
context of a chemistry unit on molecular particle collisions.

The last three weeks of CTSI provided co-design time for
teams of teachers and researchers to sit together as they
worked on computational models and units. Teams engaged
in approximately 24 hours of in-person co-design time. On
Fridays and Mondays, teams worked from home and
communicated via email as needed. Each team reviewed
each other’s work on Monday afternoons and discussed the
feedback on Tuesdays. In addition, teams engaged in
supplemental CT-STEM workshops that focused on CT
tools or pedagogy on Wednesdays and participated in a
reflection session on Thursdays. Each co-design team
differed in how they collaboratively built models and
curricula materials (Kelter et al., 2020).

At the end of CTSI, the teachers and researchers showcased
their co-designed CT-STEM curriculum in an event open to
the community: https://tinyurl.com/CTSI2019Expo. All
teachers also responded to pre/post surveys and post-
interviews, as described below.

2.1. Data Sources
To assess what teachers learned from CTSI (RQ1), the 33-
item pre/post surveys asked teachers to rate on a 5-point
Likert Scale (1 = Strongly Disagree, 5 = Strongly Agree):
their perception of CT (Adapted from Cabrera et al., 2018)
and comfort with CT-STEM practices. Further, in the post-
interview, we asked teachers what they learned from CTSI.

To assess how teachers integrated CT into their curriculum
(RQ2), we asked teachers to describe their curriculum in the
post-interview and examined the computational tools and
practices used in their CT-STEM curriculum.

3. RESULTS
3.1. What Teachers Learned about CT
To address RQ1 (what teachers learned about CT through
professional development), we first analyzed teachers’
ratings on the pre-/post-survey. Due to the small sample size,
we qualitatively compare differences from pre to post. Note
that Brooke did not complete the pre-survey (4.8 average
across all categories on post-survey) and Philip did not
complete the post-survey (4.4 average on pre-survey).

Table 2. Average Pre/Post Survey Response by Category.
 CT

Value
CT in
STEM

CT
Integration

Modeling
Practices

Data
Practices

Overall

Pre 4.1 4.1 4.1 3.8 3.0 3.7
Post 4.3 4.6 4.4 4.2 4.0 4.2

As shown in Table 2, teachers were more likely to agree or
strongly agree on all item categories on the post-survey,
compared to the pre-survey. That is, after the professional
development, teachers reported that they understood the role
of CT in STEM education and valued CT to a greater degree.
Teachers also reported higher confidence in their ability to
identify and integrate computational modeling and data
practices into their teaching.

Next, we analyzed the post-interview responses to: “What
have you learned from CTSI?” We qualitatively reviewed
responses of all eight teachers to identify themes mentioned
by multiple teachers. Below, we present teachers’ responses
with the four themes underlined: computational thinking,
computational tools, coding, and collaboration.

https://tinyurl.com/IntroToCT
http://tinyurl.com/netlogofire
https://codap.concord.org/
https://tinyurl.com/CTSI2019Expo

65

3.1.1. Computational thinking
Two teachers described learning about CT: Briana (see
Section 3.1.3) and Peter. Peter described different levels of
CT practices in how they affect students’ thinking:
I think being able to see the different domains of
computational thinking and the different levels was
important. That at one level, it's just: Can you use a model?
Can you change a model? Right? Can you collect data? Can
you represent data? That's one level, but then can you dig in
deeper? Can you change a model? Can you design a model?
Can you manipulate data and represent it in different ways?
Those are deeper levels that the goal is to try to push down
as far as you can to get the kids’ thinking, at a really deep
level. So that's one thing that I've learned about
computational thinking itself.
Peter learned that CT can engage students in more
procedural thinking, such as using models and collecting
data, as well as more deep conceptual thinking, such as
changing and designing their own models. His goal now is
to focus on “push[ing]” students’ thinking “at a really deep
level” because “the different levels [are] important.”

3.1.2. Computational tools
Four teachers stated what they learned about specific
computational tools (Peter, Matt, Philip, and Carrie). Peter
and Matt listed different computational tools that they
learned about and plan to use in their classroom.
Additionally, Matt discussed how the computational tools
can help students engage in math as professionals do:
I'd never heard of CODAP or NetLogo or NetTango or any
of those. So for me, it just gave me some tools that I can use
in stats and hopefully geometry to present math in a relevant
way to today's learners. I think it will help me answer the
question: Why are we learning this? When am I ever going
to have to use this? ‘Cause it'll be easy to show them, this is
what actual researchers are using. ‘Here's what actual
statisticians are using, rather than we're using the calculator
because that's what the AP exam requires you to use.’
Philip and Carrie, who had prior experience building models
or implementing CT-STEM lessons, both stated that they
became aware of new tools. Carrie added that she was “very
excited that [she’s] integrating some CODAP this
year...[She] already see[s] other possible places in [her] year
that [she] can use [CODAP].” Even though the workshops
only aimed to help teachers integrate tools into their CT-
STEM curriculum, teachers identified CT tools as resources
they can use for other lessons in their classroom.
3.1.3. Coding/programming
In contrast to the four teachers above who seemed “excited”
and comfortable integrating computational tools into their
classrooms, three of the female teachers mentioned learning
about coding in general because they had little or no prior
experience (Betty, Penny, Briana). For example, Betty said
she cannot “code anything” but learned how code works and
how to explain it to her students:
I knew nothing about coding […] I cannot code anything,
maybe a tiny little change I can make, but I at least see now
what goes into it and I think I'll be better at explaining things
to the kids.

Although Betty feels she can only make “a tiny little change”
in code, another teacher Penny discussed learning “a lot”
about coding by building NetLogo models for her
curriculum and participating in the introductory workshops:
I never knew anything about NetLogo before and I've now
learned a lot about NetLogo and modified or helped build
some simulations. And that's largely my first and only
exposure to coding. So that's relatively new...I thought a
couple of the coolest things that we did were within the first
week workshops you have for us: the forest fires
simulation....that was the first thing where we really looked
at the code behind it- and why aren't the trees burning? And
I thought that was fun. As well as just seeing the emergent
phenomena in that throwing in the same density doesn't
always result in the same forest burn rates. So that was cool
for me.
While Penny learned that coding was “fun” and “cool” in the
first week, Briana stated that she learned to love coding in
the second week as she started writing her curriculum and
now wants to learn more about how to build models herself.
She also mentions learning about all four themes stated
across teachers (computational thinking, computational
platforms/tools, coding, and collaboration):
I learned more about what computational models are, what
computational thinking is. I learned how to incorporate that
into my classroom and my lessons more easily.
Collaboration is so important. I learned a little bit of how to
do some coding and learned different modalities that can be
used for different platforms that can be used for different
types of analysis....the second week, my Aha moment was I
think that creating models is way cooler than writing
curriculum...I thought I hated the coding process. At first, I
was like it's gonna be terrible, but when I actually learn the
foundation/fundamentals, I was like: well this is actually
really cool: how a line I write can completely change how
something else works. So that was an Aha moment for me is
that I would love to learn more about how to do that.
3.1.4. Collaboration
Lastly, four teachers mentioned the value of collaboration
in their curriculum design process (Briana, Betty, Brooke,
Carrie). Betty learned that “a whole team of people”
contribute to constructing computational models:
I learned that the value of co-design is very important. Yeah, I'm
just more comfortable with using NetLogo...I think just
understanding that things have to be coded, like preferences have
to be put in there. Someone put that in ‘cause I'm like: how do these
models know to do this? So you have to actually do some of the
research ahead of time, then put it in. And you need a whole team
of people. It's not- a computer programmer doesn't know the
science necessarily, so you need a scientist with a computer
programmer to work together. I love that. I love that idea.
Betty learned that “co-design is very important” because
models involve collaborative design decisions from experts
from different fields. Similarly, Brooke noted that she
benefited from collaborating and brainstorming with the
researcher in her team who had a different expertise:
It's just been really nice to have the time to sit down and have
conversations around some of this stuff. That's giving me time to
dig into the content, research more about what actually- I want it
to be about think a little bit more deeply about like the alignment

66

of the unit itself. And that's just been really great to have
[researcher] there to say: Okay, this is the idea. What might fit
well? And he'll be like: ‘Oh, you could do this or you could do that.’
Or just that piece of brainstorming around expertise that I don't
have.
In addition to brainstorming, Carrie also mentioned that “[h]aving
a researcher with us the whole time was so beneficial” because she
could get help on her questions right away from a collaborator
sitting right next to her.

3.1.5. Summary of what teachers learned from CTSI
In sum, teachers generally learned more about CT after
CTSI. Some of them learned about computational tools and
practices that they can integrate into their classroom. Other
teachers with limited CT experience learned coding so that
they can engage in and explain CT to their students. Further,
multiple teachers mentioned collaboration, which supported
them in building and integrating computational tools and
practices into a CT-STEM curriculum.

3.2. How Teachers Integrated CT
To assess how teachers integrated CT into their curriculum
(RQ2), we analyzed how teachers used computational
practices and tools in their CT-STEM curricula. We first
describe their curriculum below and then discuss their use of
CT-STEM practices (summarized in Table 3):
1. Experimental Design and Computational Thinking: 8-

day AP Biology unit that uses a physical lab, CODAP,
NetTango, and NetLogo to conduct experiments on
animal behavior, further described below (Betty)

2. Evolution Part II: Natural Selection (Darwin's Finches
and The Case of the Rock Pocket Mouse): 20-day
Freshmen Biology unit that uses CODAP and NetLogo
models to collect and analyze data on the mechanisms
of natural selection (Briana)

3. Climate Change in the Great Lakes: 10-day
Environmental Science unit that uses Unplugged
activities, CODAP, and NetLogo models to investigate
various environmental factors and make sense of
climate change models (Brooke)

4. Energy in Chemical Reactions: 13-day Chemistry unit
that uses NetLogo and CODAP to explore changes in
energy when bonds break and form during chemical
reactions (Carrie)

5. Charge Interactions: 8-day Physics unit that uses a
physical lab, CODAP, NetLogo, and PhET simulations
to explore the behavior of charges in electricity and
magnetism, further described below (Penny and Peter)

6. 1-D Kinematics Motion Maps: 3-day Physics unit that
uses NetLogo and NetTango to analyze and draw
velocity in kinematics motion maps, building on
Philip’s 1-D Kinematics NetLogo model, further
described below (Penny and Peter)

7. 1-D Kinematics and Newton's Laws: six Physics
lessons that use CODAP, NetTango, and NetLogo to
collect and analyze data through writing formulas and
generating graphs on kinematics and Newton’s Laws,
implemented throughout the fall semester (Philip)

8. Descriptive Statistics: 8-day AP Statistics unit using
Python notebooks and Unplugged activities to generate
formulas, data tables, and plots that describe various
real-world datasets (Matt)

Table 3. CT-STEM Practices Targeted in Curriculum
 Curricular Unit

(see Section 3.2)
1 2 3 4 5 6 7 8

Modeling and simulation practices
Using computational models (CMs) to
understand a concept

x x x x x x x x

Using CMs to find and test solutions x x x x x
Designing CMs x x
Assessing CMs x x x x x x
Constructing CMs x x x

Data practices
Collecting data x x x x x x x
Manipulating data x x x x x x x
Analyzing data x x x x x x x
Visualizing data x x x x x x x
Creating data x x x x x x

The descriptions of CT-STEM curriculum show that all
teachers integrated several computational tools into their
curricula to teach disciplinary content. In addition, Table 3
shows that all CT-STEM curricula targeted multiple CT-
STEM modeling and data practices. To better understand
how teachers integrated computational practices and tools,
we present three example curricula (#1, #5, #6) below.

Biology. Betty, with her co-design partner, developed
Experimental Design and Computational Thinking (#1) for
her AP Biology course. She described it as: “really about
scientific design and inquiry.” In the unit, students design
experiments to find the preferred habitat conditions of the
pill bug (rolypoly). Betty decided that students start with a
physical lab experiment using two connected chambers, one
damp and one dry. The students place 10 pill bugs and
observe change in population of the two chambers over time.
After the physical experiment, students then explore, modify
and recreate the animal behavior experiment digitally using
NetLogo and NetTango models.
Betty also explained that her unit engages students in
multiple CT-STEM data practices: “the kids learn how to set
up a controlled experiment, how to collect data, how to make
graphs, and it's also where we start to teach them how to
analyze some of that data.” She integrated these data
practices with the CT-STEM practice of using models:
[My class uses] the computational model to learn about the
importance of sample size because we only get to use 10
rolypolies and then when we do Chi Square, we don't always
get good answers. And then we looked it up, they're like: oh,
you need at least 30, for your sample size...So with the
model, they can say: oh, what happens if we have 20
rolypolies, 40 rolypolies?
Betty wanted students to not only use models but modify
them based on a physical lab: “[students] are now also
learning how to change the model. So the first model just has
wet and dry, and then in the second activity, they actually
changed the code and add their variable, like the one that
they tested in class.” Specifically, Betty wanted students to
learn “that the model is actually coded by a human, based
on things that actually happened in real life,” as she herself
learned at CTSI (see Section 3.1.4). Her integration of
NetTango block-based programming makes this design
decision particularly salient: “[students] build their chamber
using NetTango. Then they put the rolypolies in and all the

67

rolypolies escape because they didn't tell them to stay within
the chamber.”

Although Betty expressed that she “cannot code anything”
(see Section 3.1.3), her CT-STEM curriculum is the only
unit that integrates all modeling and data practices into
science content (see Table 3) and forefronts CT in its title.

Importantly, after Betty taught this unit in the fall, classroom
observations and an interview suggests that this unit helped
students learn science content and engage in CT-STEM
practices because Betty discussed coding and CT in context
of disciplinary science content, as a result of the professional
development (Peel et al., 2020).

Physics. Peter and Penny, who work at the same school,
developed two units together for their general Physics
classes. With their co-design partners, they designed Charge
Interactions (#5), which focused on “electrostatics: electric
charge, Coulomb's law, electric fields” (Peter), and a short
unit on 1-D Kinematics Motion Maps (#6).
The electrostatics unit first asks students to engage in
physical lab experiment with sticky tape and then explore a
NetLogo library model on electrostatics (Sengupta &
Wilensky, 2005), which was modified with researchers to fit
the curriculum. Penny described the unit as primarily
focused on the model and how the code works:
Most of it is around the simulation and specific questions
asking them to observe particular behaviors or how things
happen using their prior knowledge to try to explain why
those are things that are happening. And then a few
questions asking them to look at the code and, fine, where
did we program in that the electron should repel from each
other? Like where did we program in that the conductor's
color is gray. Could you change that?
Then, students use CODAP to understand Coulomb’s Law,
as Peter explained: “If we really want them to come up with
Coulomb's law, which is our goal, then you have to keep one
thing constant and vary another. And CODAP lets you do
that really quickly. So that's why we chose that.” Finally,
students examine a PhET simulation of charges.

Penny and Peter finished their first unit in Week 3, and then
modified Philip’s 1-D Kinematics NetLogo model for the
motion maps unit (#6). Peter saw this short unit as a way to
help students dynamically see changes in velocity:
“[students] don't often see the map being drawn, as
something moves. I think that the simulation that we put
together does that and sort of bridge that gap between what
we want them to see and what they actually see.” The unit
also asks students to build their own motion map using
NetTango, as Peter explained: “The NetTango thing is a way
to help kids gain more control over making a motion
map…they have that ownership of the whole process and I
think they'll be able to internalize what's going on better.”

As of this writing, Penny and Peter have not yet
implemented their Charge Interactions unit, but classroom
observations of students engaging with the 1-D Kinematics
Motion Maps unit showed that both teachers encouraged
students to not only understand the science content, but to
“explore the code” and “try to break the model.”

4. DISCUSSION
Results from our qualitative study suggests that engaging
high school STEM teachers in workshops and co-design of
CT-STEM curricula in a 4-week professional development
can help them develop an understanding of CT and integrate
CT into their classroom. We are particularly encouraged by
the fact that although these eight teachers already valued CT
at the beginning of the workshop because they chose to
participate in the professional development, all teachers
reported even more favorable perceptions of CT and greater
confidence in integrating it into their classroom at the end of
the professional development. Teachers shared in post-
interviews that they learned not only about CT and
computational tools for their classroom, but also about
coding in general and the value of collaboration in the co-
design process. Due to the relatively recent emergence of CT
in STEM for K-12 teachers, particularly in the United States,
this work takes one step towards understanding where
teachers may need particular support when learning about
CT and how to help teachers integrate CT into their
classroom practices.
Our analysis of co-designed curriculum showed all teachers
were able to integrate multiple computational tools that
engage their students in CT-STEM practices. Teacher
interviews and classroom observations show that teachers
designed and implemented activities that reflect what they
personally learned about coding, computational tools, and
CT during the professional development. For example, Betty
learned that computational models involve design decisions
made by people and thus engaged her students in designing
computational models where they write code for the
behaviors that they expect to see. Further, because Penny
found it “fun” and “cool” to see the code behind a model to
understand how it works, she encouraged her students to
similarly explore and break the code.
Taken together, these findings suggest that teachers
benefited from both parts of our professional development:
workshops in Week 1 and co-design in Weeks 2-4.
Particularly, learning about specific computational tools and
how to use them in the context of disciplinary content was
important for four of the eight teachers, who reported being
“excited” about integrating the tools into their classrooms.
However, three of our teachers had little experience with
coding and may not have the ability to integrate new
computational tools into their classroom without the
additional support provided in Weeks 2-4. At the end of the
professional development, these three teachers reported
learning to be comfortable with code and one teacher,
Briana, even learned to love coding in the second week when
she began working side-by-side with researchers to co-
design curriculum. Moreover, multiple teachers viewed
researchers as valuable thinking partners with expertise in
CT. Hence, co-design may be an effective way to help
teachers in integrate CT into their curriculum, particularly
those with little or no CT experience. This finding aligns
with prior work which showed that teachers’ confidence in
CT and ability to reach their curricular goals grew over a
multi-week process of working with researchers as co-
designers (Wu et al., 2020). We propose that additional
research support integration of CT in K-12 by positioning
teachers not only as learners of CT in workshops or

68

trainings, but as co-designers and collaborators who can
augment existing STEM disciplinary content with CT in
their classroom.
This work has the potential to engage more K-12 teachers
and students in computational practices and tools by
integrating CT into existing K-12 STEM classrooms.
Through one summer professional development, teachers
were empowered to develop and implement eight
computationally enhanced STEM curricula for up to three
weeks in mathematics and science classrooms. Our
observations of these classrooms showed that the teachers
talked about their experience during the 4-week professional
development and leveraged what they learned about CT to
help students become more comfortable with CT and engage
in CT-STEM practices. Additional professional
developments will help us identify what factors contribute to
our success, beyond those specific to our eight teachers. This
will help us scale this work to a larger population using in-
person and online support on CT integration. By helping
more teachers understand CT and computational tools, we
can empower K-12 STEM teachers to engage their students
in authentic scientific practice while also broadening
participation in computing.

5. REFERENCES
Advocacy Coalition. (2018). 2018 State of Computer

Science Education. Retrieved October 8, 2019, from
https://advocacy.code.org/

Allen, C. D., & Penuel, W. R. (2015). Studying Teachers’
Sensemaking to Investigate Teachers’ Responses to
Professional Development Focused on New Standards.
Journal of Teacher Education, 66(2), 136-149.

Ball, D., & Forzani, F. (2009). The Work of Teaching and
the Challenge for Teacher Education. Journal of Teacher
Education, 60(5), 497-511.

Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez,
S., & Wilensky, U. (2016). All Roads Lead to Computing:
Making, Participatory Simulations, and Social Computing
as Pathways to Computer Science. IEEE Transactions on
Education, 60(1), 59-66.

Cabrera, K., Morreale, P., & Li, J. J. (2018). Computer
Science+ Education: An Assessment of CS Professional
Development. Journal of Computing Sciences in Colleges,
33(3), 141-147.

Coburn, C. E. (2005). Shaping Teacher Sensemaking:
School Leaders and the Enactment of Reading Policy.
Educational Policy, 19(3), 476-509.

Cuny, J. (2012). Transforming High School Computing: A
Call to Action. ACM Inroads, 3(2), 32-36.

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of
models for introducing computational thinking, computer

science and computing in K-12 education. Proceedings of
2016 IEEE Frontiers in Education Conference (FIE), 1-9.

Horn, M. S., Brady, C., Hjorth, A., Wagh, A., & Wilensky,
U. (2014, June). Frog Pond: A Codefirst Learning
Environment on Evolution and Natural Selection.
Proceedings of the 2014 conference on Interaction Design
and Children. ACM, 357-360.

Kelter, J., Peel, A. M., Bain, C., Anton, G., Dabholkar, S.,
Aslan, U., Horn, M. & Wilensky, U. (in press). Seeds of
(r)Evolution: Constructionist Co-Design with High School
Science Teachers. Proceedings of Constructionism 2020.

Peel, A. M., Dabholkar, S., Anton, G., Wu, S. P. W., Horn,
M. S., & Wilensky, U. (in press). A case study of teacher
professional growth through co-design and
implementation of computationally enriched biology units.
Proceedings of 14th International Conference of the
Learning Sciences (ICLS) 2020. Nashville, TN.

Penuel, W. R., Fishman, B. J., Cheng, B. H., & Sabelli, N.
(2011). Organizing Research and Development at the
Intersection of Learning, Implementation, and Design.
Educational Researcher, 40(7), 331-337.

Sengupta, P. and Wilensky, U. (2005). NetLogo
Electrostatics model. Retrieved December 1, 2019, from
http://ccl.northwestern.edu/netlogo/models/Electrostatics

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,
Trouille, L., & Wilensky, U. (2016). Defining
Computational Thinking for Mathematics and Science
Classrooms. Journal of Science Education and
Technology, 25(1), 127-147.

Wilensky, U. (1997). NetLogo Fire model. Retrieved
December 1, 2019, from
http://ccl.northwestern.edu/netlogo/models/Fire

Wilensky, U. (1999). NetLogo. Retrieved December 1, 2019,
from http://ccl.northwestern.edu/netlogo/

Wilensky, U. (2003). Statistical Mechanics for Secondary
School: The GasLab Multi-agent Modeling Toolkit.
International Journal of Computers for Mathematical
Learning, 8(1), 1-41.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering
Computational Literacy in Science Classrooms.
Communications of ACM, 57(8), 24-28.

Windschitl, M., Thompson, J., Braaten, M., & Stroupe, D.
(2012). Proposing a Core Set of Instructional Practices and
Tools for Teachers of Science. Science Education, 96(5),
878-903.

Wu, S.P.W., Anton, G, Bain, C, Peel, A.M., Horn, M.S. &
Wilensky, U. (2020). Engage teachers as active co-
designers to integrate computational thinking in STEM
classes. Presented at NARST Annual International
Conference (NARST 2020). Portland, Oregon.

https://advocacy.code.org/
http://ccl.northwestern.edu/netlogo/models/Electrostatics
http://ccl.northwestern.edu/netlogo/models/Fire
http://ccl.northwestern.edu/netlogo/

