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Abstract
Themagnetotransport,magnetic andmagnetocaloric properties in the polycrystalline Pr1−xSrxMnO3

(0.20�x�0.40)have been studied. TheX-ray diffraction peaks for the composition x=0.20, 0.33
and 0.40 have been indexedwith orthorhombic structure having Pnma space group, whereas
x=0.25 composition has been indexed toR-3c space group having rhombohedral symmetry. The
substitution of Sr2+ at Pr3+site shows an increase inmetal-insulator transition temperature (TMI) and
ferromagnetic ordering temperature (Tc). The composition, x=0.25 shows the higher isothermal
magnetic entropy change, DSm∣ ∣=2.84 J kg−1K−1 with RCP=116.33 J kg−1 atΔH=3 Tesla. The
highRCP value (=151.16 J kg−1)with DSm∣ ∣=2.41 J kg−1 K−1 atΔH=3Tesla for the composition,
x=0.40, implies that dTfwhm plays a significant role.

1. Introduction

Perovskitemanganites having common formula R1−xAxMnO3where ‘R’ is a rare-earth cation (La
3+, Pr3+, Y3+,

Nd3+ etc ) and ‘A’ an alkali or alkaline earth cation (Ca2+, Sr2+, Ba2+, Na+, K+, etc ) show a lot of interesting
properties, arising from the strong interplay between spin, charge, orbital and lattice degrees of freedom [1–9].
Colossalmagnetoresistance (CMR)phenomena observed in thesemanganites has beenmainly explained
through double exchangemechanism [10], phase separation [11] and spin-polarized tunnelling effect [12].
Besides theCMRproperties, in the vicinity of ferromagnetic (FM) to paramagnetic transition temperature the
manganites also show largemagnetocaloric effect (MCE). These correlations ofmagneto-transport and
magnetic properties inmanganitesmake it suitable for awide range of applications; such as inmagnetic sensors,
bolometric devices andmagnetic refrigeration, which add to theirmultifunctionality and are studied
continuously in recent years [12–18]. However, the prime challenge in thesematerials remains due to their
complex transport andmagnetic behaviour as well as study of the fundamental physics involved [1–4]. In this
paper, we have discussed in detail themagnetotransport andmagnetocaloric properties of Pr1−xSrxMnO3

(0.20�x�0.40) perovskitemanganite.

2. Experimental

The polycrystalline Pr1−xSrxMnO3 (0.20�x�0.40)have been synthesized using the nitrate route. Powder of
Pr6O11, SrCo3 andMnO2were taken in stoichiometric ratio. The powders were ground and calcined several
times between 800 °Cand 1200 °C for 24 hwith intermediate grindings. The powders thus, obtainedwere
pressed into a pellet form at 10MPa pressure and finally sintered at 1400 °C for 30 hwith a cooling down to
room temperature in air. The phase formation and structural characterizationwas carried out using powder
x-ray diffraction (Bruker AXD-8 advance, CuKα radiation) at room temperature. DC electrical resistivity as a
function of temperature andmagnetic field down to 5 Kwasmeasured using the standard four-probe technique
bymeans of resistivity/magnetoresistance set-up alongwith 8 TOxford-Superconductingmagnet at CSR,
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IndoreCentre. Themagnetization (M)measurements as a function of temperature (T) andMagnetic field (H)
were performed using Superconducting Vibrating SampleMagnetometer (VSM) (Versa Lab).

3. Result and discussion

3.1. Structural study
The x-ray diffraction (XRD) patterns of Pr1−xSrxMnO3 (0.20�x�0.40) alongwith Rietveld analysisof all the
compositions carried out using Fullprof program are shown in the figure 1.We do not observe any impurity in
this XRDpattern except for a very small and broad peak around 2θ=32°, which could be due to a very small
quantityMn5O8&Mn3O4 (111) phase. The intensity of this impurity peak in x=0.20 composition is less than
1%of that of the (020) peak of highest intensity andweakens in later compositions. Similar results of the
presence of impurity phase are reported in JCPDS-862337 and 22. TheXRDpattern of x=0.20, 0.33 and 0.40
compositions have been indexed to Pnma space group having orthorhombic symmetry, whereas, of x=0.25
composition has been indexed toR-3c space group having rhombohedral symmetry. Inset of figure 1 shows
highest intense peak in theXRDpattern for each composition.

The compositions with x=0.20, 0.33, 0.40 having single intense peak and x=0.25 having bifurcation in
intense peak suggests the crystallization of their structure in orthorhombic and rhombohedral symmetry
respectively in accordance with the Rietveld analysis. The relevant structural parameters obtained are tabulated
in table 1. It has been observed that the unit cell parameter and cell volume decreases with increase in Sr2+

concentrations for x=0.20, 0.33 and 0.40. Itmay be understood here that as Sr2+ (1.31 Å)has higher ionic radii
of compared to Pr3+ (1.18 Å), hence generally the substitutionmay lead to increase in lattice parameter. The
increase in the unit cell parameters and cell volume for x=0.25 is understood due to its rhombohedral
structure.Markovich et al [9], for Pr1−xSrxMnO3 single crystal (where, x=0.22, 0.24, 0.26) also observed
decrease in lattice parameter with increasing Sr2+ concentration and attributed it to a progressive decrease of
Jahn–Teller distortions. Additionally, authors also suggested that for compositionswith Sr2+ (x>0.3), a
structural transition toR-3c space group having rhombohedral symmetrymust take place citing reference
Boujelben et al [19].

Further, Knizek et al [20] in the composition range 0<x<0.5 suggested the crystallization of
compositions in orthorhombic symmetry having Pbnm space group and reported that the lattice volume
decreases with increasing Sr2+ concentration. Chand et al [21], also reported the decrease in lattice parameter

Figure 1.The x-ray diffraction patterns of Pr1−xSrxMnO3 (0.20�x�0.40) at room temperature alongwithRietveld analysis. Inset
shows highest intense peak in theXRDpattern for each composition.
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with Sr2+ concentration x=0.2, 0.3 and 0.5 in Pr1−xSrxMnO3.Nasari et al [22, 23] indexed theXRDpattern for
Pr0.6Sr0.4MnO3 having orthorhombic structure. Hence, the variation in lattice structures in our study are in
accordancewith the above discussed reported literature. The variation in structural parametersmay be due to
differentmethod of preparation [7].

3.2.Magnetotransport study
The temperature dependent resistivity ρ(T) plot in the absence (0 T) and presence ofmagnetic field 5 T and 8 T
are shown infigures 2(a)–(d). All the compositions showdistinctivemetal–insulator transition (TMI), which
increases for compositions with Sr2+concentration x=0.20–0.33 and decreases for x=0.40. The decrease in
resistivity and increase in TMI indicates that with Sr

2+ substitution, the ferromagneticmetallic state becomes
more dominant. Additionally, the decrease in resistivity alongwith the increase in TMIwith the application of
magnetic field also suggests the dominance of themagnetic field in enhancing the FMnature of the
compositions. For lower composition x=0.20, a large change in resistivity is observed aroundTMI, themetal to
insulator transition becomes broader and shifted to a higher temperature sidewith the application ofmagnetic
field as shown infigure 2(e). The temperature dependence ofmagnetoresistance, defined as

= r - r r ´MR % H 0 0 100( )( ) {([ ( ) ( )] ( )) }/ is also shown alongwith the resistivity curve in figures 1(a)–(d).
NegativeMRhas been observed in the entire temperature range ofmeasurement for all the compositions,
however for compositions, x=0.20 and 0.25,MR is nearly 80% around respective TMImakes its suitable for the
device application.

3.3.Magnetic properties study
The temperature dependentmagnetization (T), of the compositions at 100 Oe down to 50 K is shown in the inset
offigure 3. All the compositions showparamagnetic (PM) to ferromagnetic (FM) transition. Transition
temperature TC is determined from theminimumof dM/dT versus T curve. It can be observed that with the
increase in Sr2+ concentration TC increases significantly, from150 K to 286 K, which clearly indicates the
strengthening of ferromagnetism in accordancewith the transport properties. Aswe increase Sr2+ (x), a lower
saturationmagnetization (MS) is expected, as Sr is practically non-magnetic element. However, there is a
crossover forMS values between x=0.20 and 0.25, breaks this systematic. Asmentioned earlier in XRD section,
x=0.20 and 0.25 have orthorhombic and rhombohedral structural respectively. This structural transitionmay
have lead to the increase inMS value of x=0.25 composition [19]. In order to understand themagnetic
behavior of the compositions in the PM region above TC, we studied the inverse ofDCmagnetic susceptibility
(M/H) as a function of temperature (T) shown infigure 3. In high temperature region,much above TC theDC
magnetization data in paramagnetic region follows theCurie–Weiss (CW), expressed as c q= -C T CW( )/ as
shown infigure 3.

HereC is a constant and can be defined as m=C b N ,eff
2 where meff is the effectivemagneticmoment, ‘b’ is

universal constant, ‘N’ is concentration ofmagneticmoments and θCW is the CW temperature. meff
expt calculated

from the linear fitting to the c- T1( ) curves are tabulated in table 1 alongwith that expected from the theoretical
model. The theoretical effectivemoment for each case can bewritten as g +s s 1( ) μB for (Mn3+andMn4+ )
and g +J J 1( ) μB for Pr

3+where g is the gyromagnetic factor, S is the spin angularmomentum, J(L±S)is
total angularmomentum, L is orbital angularmomentum andμB is the Bohrmagneton. The theoretical values

Table 1. Lattice parameters obtained fromRietveld fittings toXRDpattern, Bestfit values
obtained fromM(T) in PMregion usingCW law.MCEDSM andRCP value.

Pr1−xSrxMnO3 x=0.20 x=0.25 x=0.33 x=0.40

a(Å) 5.459(9) 5.479 (7) 5.448(0) 5.442(3)
b(Å) 7.719(5) 5.479 (7) 7.701(4) 7.678(9)
c(Å) 5.493(3) 13.396(9) 5.482(1) 5.484(1)
V(Å3) 231.533(1) 348.346(6) 230.013(4) 229.186(0)
TMI (K) 100 200 253 230

(-)MR%at TMI (8 T) 86 88 66 45

TC (K) 150 186 261 286

C 0.0200 0.0199 0.0180 0.0171

θCW 160 190 236 268

meff
expt 6.10 6.04 5.71 5.51

meff
cal 4.90 4.64 4.25 3.95

−ΔS M
max (J/kgK) (3 T) K 2.84 2.36 2.41

dTfwhm (K) K 40.96 50.60 62.72

RCP (J/kg)(3 T) .. 116.33 119.42 151.16
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ofμth(Mn3+) ,μth(Mn4+) andPr3+ are∼4.88μB,∼3.87μB and 3.58μB respectively. The calculated meff
cal /formula

unit for the composition e.g. for x=0.33 can bewritten as,

m m m m= + + ++ + +0.67 Pr 0.67 Mn 0.33 Mn . 1eff
cal

eff
th 3 2

eff
th 3 2

eff
th 4 2[( ) ( )}] { [ { ( }] [ { ( )}] ( )

TheC, θCW, meff
cal and meff

expt values so obtained from the bestfit to the experimental data are listed in table 1. The

obtained value of meff
exp are found to be greater than that of m .eff

cal The difference between the experimental effective

paramagneticmoment and the calculated can be explained by the existence of FMclusters within the PMphase,
evidenced by the downturn in c- T1( ) curve near TCwith the decreasing temperature [24, 25]. This downturn in
c- T1( ) suggests the deviation fromCW lawwith the decreasing temperature and is an indication of non-
analytical behaviour ofmagnetization arising frommagnetic inhomogeneities [26–29].

Figure 2. (a)–(d)Resistivity (ρ) versus Temperature (T) plots of the compositionsmeasured at appliedmagnetic field of 0 T, 5 T and
8 T (Left).MR (%) versus T plots at 5 T and 8 T (Right). (e)dρ/dT versus T plot for x=0.20 composition.

Figure 3. Inverse susceptibility versus T obtained fromDCmagnetization at 100 OeDC. (Inset)Magnetization versus T plots.
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3.4.Magnetocaloric effect (MCE)
In order to study to the change inmagnetic entropy DSM( )with respect to the temperature (T), themagnetic
field (H) dependentmagnetizations (M)measured up to 3 T (within the instrumental limit) at the interval of 2 K
and are shown infigures 4(a)–(d). As shown in the inset offigures 4(a)–(d), the observed positive slope for all
studied temperatures specifies that themagnetic transition between the FMandPMphase is of the second order.
The pragmatic second order transitionwithout any thermal andmagnetic hysteresis suggests that the
compositions are suitable for refrigeration application. Themagnetocaloric effect (MCE) is an intrinsic property
ofmagneticmaterials [30–36]. It is the heating or cooling ofmaterials when subjected tomagnetic field variation
under adiabatic condition, which ismaximizedwhen thematerials are near itsmagnetic ordering temperature.

Alternatively,MCE is also defined as isothermal change in entropy (ΔSM)with change inmagnetic field. The
isothermal entropy change (DSM) can be calculated from the isothermalmagnetization curves. According to
Maxwell′s thermo dynamical relations, themagnetic entropy changeDSM produced by the variation in a
magnetic field from0 to Hmax is given by

òD =
¶
¶
M

T
dHS T, H 2M

H

T0
⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

In case ofmagnetizationmeasurement at small discretefields and temperature intervals, numerical
approximation to the integral could be expressed as

åD =
-
-

D+

+

M M

T T
HS T, H 3M

i

i i

i i
i

1

1

( ) ( )

where,D = - DH T TS S , S 0,M M M( ) ( ) is themagnetic entropy change, + +M T H,i i1 1( ) and M T H,i i( ) are
themagnetization values at temperature +Ti 1 andT ,i respectively, for amagnetic field interval ofDH.

Figures 5(a)–(c) shows,−ΔSM calculated using equation (2) for the compositions with x=0.25, 0.33 and
0.40. The−ΔSM value for x=0.20 composition comparably less and hence not shown here. It can be observed
that both themagnitude of -ΔSM and its peak value -DS ,M

max increases with the highermagnetic field change. It
can be seen that, isothermal change in entropy (ΔSm) is negative and shows caret like shape, which is typical of
second order PM-FM transition in accordance with the Banerjee’ criterion discussed earlier.

Themagnetic isothermsmeasurements have been carried outwith the difference of 2 K (DT ), we have
adopted a suitablefitting approach to obtain apparentmaximum entropy change -ΔSM max and full width at
halfmaximum dTfwhm and to further calculate relative cooling power (RCP).We used theGaussianAsym
equation, = + ´ - -y y0 A exp 0.5 x xc w 2 ,( (( ) )ˆ )/ where y0 is the offset, A denotes the amplitude, w is a

Figure 4.Dependence ofmagnetization onmagnetic field at different temperatures. Inset displays the Arrott plots (M2versusH/M).
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parameter specifying thewidth calledGaussianwidth of the and xc represents the abscissa of the peak. Fitting
-ΔSM versus T plot with the said equation, the obtained bestfit values ( +y0 A) represents -ΔSM max and

d = ´ T w2 ln 4 .fwhm ( ) The -ΔSM ,max dTfwhm andRCP values are tabulated in table 2. It can be observed that
-ΔSM max ismaximum for x=0.25 composition having value 2.84 J kg−1 K at 3 T. The relative cooling power
(RCP), defined as RCP =−ΔSM max ×dT ,fwhm which provides ameasure of the amount of heat transfer
between hot and cold sinks during one ideal refrigeration cycle. The obtainedRCP values of all the compositions
are presented infigure 5(d). The higher RCP value 151.16 J kg−1 for x=0.40 composition suggests that dTfwhm

plays a significant role.

4. Conclusions

Perovskitemanganite Pr1−xSrxMnO3with x=0.20, 0.25, 0.33 and 0.40 are grown in single phase. The
compositions x=0.20, 0.33 and 0.40 crystallize in orthorhombic structure with Pnma space group, whereas
x=0.25 crystallize in Rhombohedra structure with R c3 space group. Bothmetal to insulator transition and
Curie temperature increases with increase in Sr2+ concentration.Magneticmeasurements revealed that all the
compositions undergo a second ordermagnetic transitionwith the PM–FM transition near room temperature.
Through thermodynamicMaxwell relations, the isothermal entropy change (−ΔSM)has been determined. The
entropy behaviour also suggests typical second order transition in all the studied compositions. The

Figure 5.Magnetic entropy changes under appliedfields ranging from 1 T to 3 T. (d)Displays the Relative Cooling Power plot.

Table 2.Reported Tc andΔS value Pr1−xSrxMnO3 (x=0.20 to 0.4) compositions synthesized by differentmethods and this work (in
table 1).

Compositions TC (K) ΔSmax (J/kgK) Synthesizedmethod References

Pr
0.6
Sr

0.4
MnO

3
320 1.90 Solid state reaction [14]

Pr
0.6
Sr

0.4
MnO

3
305 2.60 Solid state reaction [15]

Pr
0.6
Sr

0.4
MnO

3
310 1.95 Solid state reaction [16]

Pr
0.6
Sr

0.4
MnO

3
306 2.70 Solid state reaction [17]

Pr
0.6
Sr

0.4
MnO

3
297 1.55 Solid state reaction [22]

Pr
0.6
Sr

0.4
MnO

3
281 2.06 Ceramic Technology [37]

Pr
0.6
Sr

0.4
MnO

3
295 2.90 Solid state reaction [18]

6

Mater. Res. Express 7 (2020) 016105 AK Saw et al



compositions with Sr2+concentration x=0.25 and x=0.40 shows a goodmagnetocaloric effect, indicating its
potential application for refrigerant applications.
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