Node-attributed Spatial Graph Partitioning

Daniel Bereznyi
dbereznyi2016@fau.edu
Florida Atlantic University
Boca Raton, Florida

YoungGu Her
yher@ufl.edu
University of Florida
Homestead, Florida

ABSTRACT

Given a spatial graph and a set of node attributes, the Node-attributed
Spatial Graph Partitioning (NSGP) problem partitions a node-attributed
spatial graph into k homogeneous sub-graphs that minimize both
the total RMSE, ;1 and edge-cuts while meeting a size constraint
on the sub-graphs. RMSE,. ;,x1 is the Root Mean Square Error be-
tween a matrix and its rank-one decomposition. The NSGP prob-
lem is important for many societal applications such as identifying
homogeneous communities in a spatial graph and detecting inter-
related patterns in traffic accidents. This problem is NP-hard; it is
computationally challenging because of the large size of spatial
graphs and the constraint that the sub-graphs must be homoge-
neous, i.e. similar in terms of node attributes. This paper proposes
a novel approach for finding a set of homogeneous sub-graphs that
can minimize both the total RMSE, ;1 and edge-cuts while meet-
ing the size constraint. Experiments and a case study using U.S.
Census datasets and HP#6 watershed network datasets demonstrate
that the proposed approach partitions a spatial graph into a set of
homogeneous sub-graphs and reduces the computational cost.
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1 INTRODUCTION

In this work, we propose a new problem of spatial graph parti-
tioning, namely Node-attributed Spatial Graph Partitioning (NSGP).
Given a spatial graph and a set of node attributes, the NSGP problem
partitions the node-attributed spatial graph into k homogeneous
sub-graphs that minimize both the total RMSE, ;.11 and edge-cuts
while meeting a size constraint. Fig. 1(a) shows an example input of
NSGP consisting of a graph with 15 nodes with 4 attributes and 23
edges. Assume that k = 3 and that each sub-graph should contain at
least 4 nodes. Figure 1(b) shows an example output of NSGP where
the sub-graphs minimize the total RMSE, ;,x1 and edge-cuts while
meeting the size constraint. The NSGP problem is NP-hard (a proof
is provided in Section 1.3). Intuitively, the problem is computation-
ally challenging because of the large size of spatial graphs and the
constraint that the sub-graphs must be homogeneous, i.e. similar
in terms of node attributes.

1.1 Application Domain

NSGP is important in many societal applications such as identifying
patterns in spatial graph data where each node is associated with
additional information. One such application is discovering com-
munities in the spatial graph of a city by finding partitions where
attributes of the population (e.g., average age, income, education,
etc.) are similar and the nodes are spatially close to one another.
This information can then be used to better identify and target
these communities [4]. Another application is for Hydrological
Response Unit delineation that helps us to understand the spatial
variability of the watershed among soil, land use, and topographic
characteristics [12, 15]. The size constraint allows for flexibility in
the partitioning, allowing for more focus to be placed on homo-
geneity over balanced-size partitions if desired [3]. The high-level
intent of NSGP is to identify groups of nodes that are related both
structurally in the graph and in their attributes.

1.2 Problem Definition

In our formulation of the NSGP problem, a node-attributed spa-
tial graph is represented as a graph composed of nodes, edges,
and node attributes. Each node represents a spatial location in
geographic space and each edge represents the topological con-
nectivity between two nodes. Each node has a set of numerical
attributes that can characterize the aspects of the spatial location.
The NSGP(N, E, A, k, s, ) problem is defined as follows:

Input: A node-attributed spatial graph G with
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(a) Input (Node-attributed Spatial Graph)
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Figure 1: Example of the Input and Output of NSGP (k = 3,s = 4,and A = 1)

a set of nodes N and a set of edges E,
a set of node attributes A = {ay, ap, ..., am} for eachnoden € N,
the number of sub-graphs k,
the minimum number of nodes in a sub-graph (i.e., size con-
straint) s, and
o the weight multiplier A for RMSE, ;51
Output: k homogeneous sub-graphs
Objective:
e Minimize A - RMSE, ;11 + edge-cuts.
Constraints:
e Size Constraint (s): Every sub-graph has at least s nodes

The objective of the NSGP problem is minimizing both total
RMSE, 4nk1 and edge-cuts. In this paper, we formulate the objective
of NSGP as a single objective by assigning a weight (i.e., 1) to
RMSE, gpk1 [18]. The value of A is used to control the importance
of homogeneous sub-graphs. The number of partitions (i.e., k) is
used for the resolution of partitions. The size constraint (i.e., s) is
used to remove a trivial solution (e.g., a partition with a few nodes).

DEFINITION 1. Rank-one decomposition: Given a matrix M, the
rank-one decomposition factorizes M into a product of two vectors: u
andv (ie,M=u-ol).

DEFINITION 2. RMSE, 411 : Given a matrix M andu-vT, RMSE, gnic1
is the standard deviation of the difference between M and u - o™ .

DEFINITION 3. Edge-cuts: Given a set of sub-graphs, edge-cuts is
the number of edges with endpoints in different sub-graphs.

1.3 Problem Hardness

The NP-hardness of NSGP follows from a well-known result about
the NP-hardness of the balanced min-cut graph partitioning prob-
lem.

THEOREM 1. The NSGP problem is NP-hard.

Proor. The NP-hardness of NSGP follows from a well-known
result about the NP-hardness of the following balanced min-cut
graph partitioning (BMGP) problem [3]. Given a graph G = (N, E),
where N denotes a set of nodes and E a set of edges, the goal
of BMGP is to partition N into k equal-sized parts N1, N, ..., Ni
while minimizing edge-cuts. Let X = (N, E, k) be an instance of
BMGP. Let Y = (N, E, A, k, s, A) be an instance of NSGP, where N is

a set of nodes, E is a set of edges, A is a set of node attributes, k is
the number of sub-graphs, s is the minimum number of nodes in
a sub-graph, and 4 is the weight multiplier for RMSE, ;,,1.1- Then
it is easy to show that the instance of BMGP is a special case of
NSGP, where s = [N|/k and A = 0. Since X is constructed from Y in
polynomial-bounded time, the proof is complete. O

1.4 Our Contributions

In this paper, we propose a novel algorithm, Clustering and Local
Refinement (CLR), that partitions a node-attributed spatial graph
into k homogeneous sub-graphs that can minimize both the total
RMSE, ;nk1 and edge-cuts while meeting a size constraint. The
proposed approach consists of three main components: 1) Initial
solution based on a hierarchical clustering strategy, 2) Homogeneity
measurement using RMSE, .11, and 3) Local refinement using the
generalized k-way Fiduccia-Mattheyses (FM) algorithm [11]. Our
contributions are as follows:

e We introduce a new spatial graph partitioning problem, namely
the Node-attributed Spatial Graph Partitioning (NSGP) problem.

e We prove that the NSGP problem is NP-hard.

e We propose the Clustering and Local Refinement (CLR) ap-
proach for the NSGP problem.

e We provide a cost model for our proposed approach.

e We experimentally evaluate our proposed approach using U.S.
Census datasets [1] and HP#6 watershed network datasets [16].
Experimental results and a case study demonstrate that the
proposed algorithm outperforms the baseline algorithm and
creates a solution of NSGP.

1.5 Related Work

Approaches to partitioning or clustering node-attributed graphs
range from converting node attributes into edge weights [8, 24],
defining distance functions to apply traditional distance-based clus-
tering techniques [6], random walk distance [29], and statistical
inference [27]. Each edge can be weighted by the similarity be-
tween the attributes of its endpoint nodes. Afterwards, an exist-
ing algorithm for partitioning edge-weighted graphs is applied.
This requires the selection of a similarity function, such as the
extended matching coefficient [24]. Traditional distance-based clus-
tering techniques can be used by defining a distance function that
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combines structural and attribute similarity [6]. A neighborhood
random walk distance on node-attributed graphs can be defined by
counting the number of attributes that two nodes share [29]. How-
ever, this approach is only applicable for categorical attributes.
Statistical inference approaches can be used to partition node-
attributed graphs by treating the input graph and the attributes as
observations and attempting to predict a partition class for each
node using a statistical method. For example, a generative Bayesian
model that produces samples of all possible partitionings of a graph
can be used to find desirable partitionings [27]. Although such
models combine topological features and attributes, they often re-
quire costly parameter optimization and non-trivial expertise to
choose the required a priori distributions [5]. However, no existing
approach incorporates the min-cut objective, the size constraint,
and the group homogeneity measurement into the spatial graph
partitioning problem. The min-cut objective is important for iden-
tifying spatially connected regions. The size constraint is useful
for excluding a trivial solution, where a single node becomes one
partition (i.e. a sub-graph). In addition, the group homogeneity mea-
surement with noise and irrelevant/redundant attributes is critical
for discovering meaningful sub-graphs. In this work, we propose
a novel approach for NSGP that honors the size constraint and
minimizes both the total RMSE, ;11 and edge-cuts.

1.6 Basic Concepts

1.6.1 Node-attributed spatial graph. A node-attributed spatial graph
is a graph where each node represents a location in geographic
space, each edge represents the topological connectivity between
two nodes, and each node has a set of numerical attributes that
can characterize the aspects of the spatial location. Consider a net-
work representing houses in a neighborhood. Each node represents
a spatial location (e.g. a house) and each edge represents a road
segment. Assume that the property value of a house is affected by
its age and square footage. We can collect datasets regarding the
property values of houses (in thousands of dollars), their ages (in
years), and their square footage (in thousands of square feet). Let
a = ( property value, age, square footage ). Then we can represent
the network as a node-attributed spatial graph.

(105,20,1.20) (122,22, 1.35) (259, 61,1.60) (301,70,1.75) (105,20,1.20) (122,22, 1.35) | (269, 61, 1.60) (301,70, 1.75)
A T T | A T ‘ T |
D—O—O0—® O—O—O0—«

(133,15, 1.40) (120,17, 1.30) (270, 63,1.80) (285,59, 1.65) (133,15,1.40) (120,17, 1.30) | (270, 63, 1.80) (285, 59, 1.65)

(a) Input (k =2,s =4,and A = 1) (b) Output
Figure 2: Example of the Input and Output of NSGP

Figure 2(a) shows an example of a node-attributed graph with
8 nodes, 10 edges, and 3 attributes for each node. The attributes
associated with each node are indicated by the vector displayed
above or below the node. The objective of NSGP is to partition the
spatial graph into k sub-graphs such that A- RMSE,. ;1.1 + edge-cuts
is minimized. This means each sub-graph should be topologically
well-connected and the set of attributes within a sub-graph should
be close to one another in terms of homogeneity (i.e. RMSE, 4,k1)-
Let k = 2, s = 4, and A = 1. Figure 2(b) shows an example output of
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NSGP. The graph is partitioned into two sub-graphs, separated by
the dashed line. The left sub-graph contains the nodes A, B, E, and
F and the right sub-graph contains the nodes C, D, G, and H. The
value of the objective function A - RMSE,. ;1 + edge-cuts for this
partitioning is 1 - 4 + 2 = 6. The computation of RMSE, ;,,x1 Will be
explained in the following subsection.

1.6.2  Rank-one decomposition. Given a sub-graph Gg,;, the at-
tribute matrix of Gy, is defined as a matrix where each row is the
attributes of one of the nodes in Gg,;,. Figure 3 shows an example
attribute matrix for a given sub-graph of nodes in a partition. Note
that the order of the rows in the attribute matrix is not impor-
tant [25].

(105,20, 1.20) (122,22, 1.35)

105 20 1.20
122 22 1.35
T 133 15 1.40
120 17 1.30

(133,15, 1.40) (120,17, 1.30)

Figure 3: A node-attributed sub-graph and a
corresponding attribute matrix

The Root Mean Square Error (RMSE) measures the difference
between two matrices [28]. Given two matrices Apxm and Bnxm,
the RMSE between A and B is defined as:

RMSE(Anxm, Bnxm) = J ! i i(aij - bij)z) (1)
j=1

nm i3 =

where a;; is the element of A at the ith row and jth column and b;;
is the element of B at the ith row and jth column.

Given a matrix M, the rank-one decomposition factorizes M into
a product of two vectors: u and o (i.e, M = u-07). RMSE, gpi1(M) is
defined as RMSE(M, u - vT). RMSE, g1 (M) can be used to measure
the similarity of the row vectors in M (see Lemma 2.1). Furthermore,
RMSE, ;nk1(M) can efficiently identify homogeneous groups even
with the presence of irrelevant, redundant, and noisy attributes [25].
As the value of RMSE, ;.1 (M) decreases, the homogeneity of the
row vectors in M increases. This is because M can be decomposed
into u and v with a lower RMSE, ;51 when the row vectors (or
column vectors) in M are similar to one another.

2 PROPOSED APPROACH

In this section, we introduce our novel approach, Clustering and
Local Refinement (CLR), to the NSGP problem. CLR consists of three
main components: (1) Construction of an initial solution based on
a hierarchical clustering strategy, (2) Homogeneity measurement
using RMSE, ;,x1, and (3) Local refinement using the generalized
k-way Fiduccia-Mattheyses (FM) algorithm.

2.1 Initial solution based on hierarchical
clustering strategy

CLR starts by constructing an initial solution based on a hierarchi-
cal clustering strategy. Consider the example node-attributed graph
shown in Figure 4 (reproduced from Figure 1(a)). The nodes and
edges are illustrated on the right-hand side while the correspond-
ing attributes for each node are listed on the left-hand side. For
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instance, node A is adjacent to nodes B and E and has the attributes
(0, 50,51, 0).

Node Attributes
A 0 [50[ 5110
B 0 49 | 52 1
C 48 | 2 0 |51
D 100 [ 3 [ 100 | 2
E 1 49 | 50 1
F 1 50 | 49 0
G 101 | 2 | 99 1
H 99 | 3 ]100 ] 1
1 50 ] 0] 0 [49
J 99 1 101 | 2
K 102 [ 1 [100 | 3
L 41 0 1 50
M 49 0 1 49
N 50 1 0 |51
[ 51 1 1 149

Figure 4: An example input graph with
corresponding node attributes

Let the number of sub-graphs be 3 (i.e., k = 3) and let the size
constraint s be 4. First, CLR converts the node-attributed graph
into an edge-weighted graph where the weight of each edge is the
cosine similarity between the attributes of its two nodes. Cosine
similarity is defined as

-b
cosine—similarity(a, b) = ”a”w, 2
a

where a and b are vectors.

(a) Step 1: Edge-weighted Spatial Graph

(b) Step 2: 1st-level matching

Figure 5: Initial Solution Construction (Steps 1-2)

Consider the example input in Figure 4. Figure 5(a) shows the
edge-weighted graph that results from assigning each edge the
cosine similarity between its two nodes as a weight. Cosine simi-
larity is a measure of similarity between two non-zero vectors of
an inner product space [26]. However, it is important to note that
cosine similarity cannot directly measure the similarity between
groups because it compares only two non-zero vectors. To remedy
this, CLR groups similar nodes and measures similarities between
groups in a hierarchical fashion.

CLR groups pairs of nodes into a single node by using the highest-
weighted edge between them. We refer to this single node as a super-
node. This grouping process can be generalized to the maximal
matching problem [17]. Figure 5(b) shows the output of the first-
level matching. Every node can be matched with at most one node
to form a super-node (represented as dashed ovals). If a node has
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(a) Step 3: 2nd-level matching

(b) Step 4: 3rd-level matching (Output)

Figure 6: Initial Solution Construction (Steps 3-4)

no other node to match with, then it becomes a super-node with a
single node (see node O).

After the first-level matching, CLR defines the similarity between
two super-nodes as the smallest-weighted edge between them and
continues to group super-nodes based on the maximal matching.
The size of every super-node should be bounded and approximately
balanced. Figure 6(a) shows the second-level matching. In this ex-
ample, {A, E} is merged with {B, F}, {C, D} is merged with {H, L},
and {J, N} is merged with {O}. Figure 6(b) shows the output of
the third-level matching. {C, D, H, L} is merged with {G, K}, and
{I, M} is merged with {J, N, O}. Since the number of groups is now
3 (i.e., k = 3), which is the desired number of partitions, the initial
solution is complete.

2.2 Homogeneity measurement with RMSE, ;11

Cosine similarity can only compare two non-zero vectors. In addi-
tion, it has a limited ability to measure the homogeneity of groups
that consist of more than two vectors. The core idea of CLR is to
utilize the rank-one decomposition to measure group homogeneity.

The rank-one decomposition factorizes a matrix M into two
vectors (i.e., u and v), aiming to minimize RMSE, ;;,x1- RMSE, gni1
is used as a measure of homogeneity of the attributes in a sub-
graph (Lemma 2.1). When the attributes of a sub-graph are close
in value or follow similar patterns, the rank-one decomposition
of the attribute matrix is able to better approximate the original
attribute matrix and so the RMSE, ;1 will be lower, indicating
higher homogeneity. Consider the following example of a rank-one

decomposition.
2 2 2 2 2 2 2
3 3 3|3t 1 1]=3 3 3

4 4 4] (4 4 4 4

M=

In this example, the matrix M can be decomposed into two vec-
tors such that RMSE, k1 = 0. Since M can be completely repre-
sented by the product of two vectors, all vectors in M are considered
homogeneous in terms of RMSE, ;,x1-

The Singular Value Decomposition (SVD) with the highest sin-
gular value can be used to find the rank-one decomposition [25].
However, since computing the SVD is expensive, CLR utilizes the
Coordinate Descent (CD) optimization technique to factorize a ma-
trix M into two vectors (i.e., u and v). The CD method starts with
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an initial decomposition where the elements of the column vector
and row vector are randomly chosen [7]. Then, it alternatingly and
iteratively estimates the value of each element in the two vectors to
minimize RMSE, ;,,x1. Consider the following example of the CD
method for the rank-one decomposition.

2 4 7
M=(3 6 9| —>
4

8 12

1

(o

1

Here, the elements of u and v are each set to 1. The Coordinate
Descent (CD) method estimates the value of each element in the two
vectors (i.e., u and v) using the following equations (see Lemma 2.2
and 2.3).

oT - r

uj = s 3
e (3)

where u; is the ith element of vector u and r; is the ith row vector
of matrix M.

T...
u -cj

Uj:uT.u’ (4)

where v; is the jth element of vector v and c; is the jth column
vector of matrix M.

First, CD estimates the value of the first element of the column
vector (i.e., u1).

2 4 7 a
36 9|—|1|[1 1 1],
4 8 12 1
T
vt -r 1,1,1)-(2,4,7
€= uy - 1 @LY)-@47 .

o0 (1L,L1)-(1,1,1)
Next, CD estimates the value of the first element of the row
vector (i.e., v1).

2 4 7 433
36 9|—|1|[e 1 1],
4 8 12 1

ul cep (433,1,1)-(2,3,4)
a=0p = = =0.75
ul -y (4.33,1,1)-(4.33,1,1)
Then, CD estimates the value of the second element of the col-

umn vector (i.e., u).

2 4 7 4.33
3.6 9|—|allo7s 1 1],
4 8 12 1

ol - ry  (0.75,1,1)-(3,6,9)
o =1up= = =6.73
oT v (0.75,1,1) - (0.75,1,1)
This alternating estimation process continues until the value of
RMSE, 4k, no longer decreases. The final decomposition for this

example is shown below.

2 4 7 4.75 2.19 437 6.70
3 6 9|— [643][046 092 1.41]={296 592 9.07

4 8 12 8.57 3.94 7.88 12.08

SIGSPATIAL °20, November 3-6, 2020, Seattle, WA, USA

This decomposition produces a matrix similar to the original
matrix with RMSE = 0.18.

2.3 Local refinement using the generalized
k-way FM algorithm

In this subsection, we describe the generalized k-way FM algorithm
for the NSGP problem. CLR uses the following objective function
to measure the cost of a partitioning:

k
cost = A- Z RMSE, g1 (i) + edge-cuts, (5)
i=1
where RMSE, 4,11 (i) is the RMSE,. ;.11 of the ith partition, edge-cuts
is the number of edge cuts, and A is a user-specified parameter that
controls the importance of homogeneity over edge cuts. CLR begins
with an initial partitioning of a node-attributed graph that meets
the size constraint and iteratively moves nodes between partitions
in order to minimize the cost of the partitioning. To reduce the
potential increase in edge cuts, CLR moves only boundary nodes,
i.e. nodes adjacent to nodes in a different partition. The gain of a
move is defined as the amount of decrease in the objective function
after the move is made:

gain = cost,jg — COStperys (6)

where cost,jg and costpeqy are the costs before and after, respec-
tively, the move.

Figure 7 shows an initial partitioning based on a hierarchical
clustering strategy. Let the number of sub-graphs be 3 (i.e., k = 3),
let the size constraint s be 4, and let the weight multiplier A be 1.
The Moves table shows all possible moves of a boundary node to
an adjacent partition along with the gain of each move. The gain
is computed as —1 - (A - ARMSE + ACuts), so that the decreases in
the objective function result in positive gains. The History table is
used to record moves that have been made as well as the running
net gain. The Locked table records nodes that have already been
moved during this iteration, and so cannot be moved again until
the next iteration [11, 14, 17].

After all gains have been computed, CLR makes the move with
the highest gain. Moves that violate the size constraint are not
considered. Figure 8 shows that node J was moved into P1 (i.e.,
partition 1). After the move, node J is considered locked, and so
it cannot be moved again for the remainder of the iteration [14].
Locked nodes are illustrated as gray instead of white. After the
move, all nodes incident to the moved node must have their gains
recomputed. The Moves table shows the updated available moves
and their respective gains, and the History table records that node
J has been moved to P1 for a net gain of 21.

Next, CLR makes the move with the highest gain. Figure 9 shows
that the move with the highest gain is moving node L to P2, which
has a gain of +3. Node L is then locked and the gains for incidents
of node L are recomputed. The move is recorded in the History
table, bringing the running net gain to 24.

This process repeats until no possible moves are left. Figure 10(a)
shows the History table after the last possible move has been made.
CLR uses the History table to identify that the net gain was highest
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Node Attributes Attributes History Locked
A 0 |50 )51 ]0 Node | Target | ARMSE | ACuts | Gain Move | Net Gain
B 0 |49]52 |1 B Pl +2 +1 -3
C 48 2 0 51 C PO +10 +1 -11
D 100 | 3 | 100 | 2 = 53 3 ) 3
? } 43 Zg (1) F P 2 +1 3

bl 3 - G

G o1 2 99 1 F P2 +2 +1 -3
o 09 T3 100 1 G PO +22 +2 -24

= -
T [ 50 [0] 0 [49 I Po +15 +1 | -16
T |99 | 1 101 2 J Po 0 +1 -1
K || 102] 1 [100] 3 J P1 -22 +1 ] +21
L i1 0 1 50 K P2 +2 0 -2
M 9 [0 1[4 L P2 -4 +1 +3
N 50 1 0 51 N P1 +2 +2 -4
0] 51 1 1 49 (6] P1 +2 0 -2

(a) Attributes (b) Sub-graphs (c) Moves Table (d) History & Locked Tables
Figure 7: Initial solution (k = 3,s = 4,and 1 = 1)

H Node H Attributes Attributes History Locked
A 0 |50 51 Node | Target | ARMSE | ACuts | Gain Move | Net Gain J
B 0 |49 52 B Pl 2 1 3 J—P1 21
C J4]2]0 C PO 110 1 | -1
D100} 3 |100 E | P2 +2 1 | 3
? i ;3 Zg F P1 2 1| 3
G i T2 99 F P2 +2 0 -2
o 99 1 3 1100 G PO +22 +2 -24
I 50 10 0 I PO +15 0 -15
3 99 T 1101 I P1 +2 0 -2
K 102 | 1 | 100 K P2 +22 +2 -24
L a1 0 1 L P2 -4 +1 +3
M 9 10 1 N P1 +2 0 -2
N 50 1 0 (6] P1 +2 0 -2
[0) 51 1 1

(a) Attributes (b) Sub-graphs (c) Moves Table (d) History & Locked Tables
Figure 8: After 1st move (k = 3,s = 4,and 1 = 1)

Node Attributes Attributes History Locked
A 0 |50)51 |0 Node | Target | ARMSE | ACuts | Gain Move | Net Gain J
B 0 [49] 521 B Pl ) 1 3 J—P1 21 L
C [[48]2] 0 |51 ¢ PO +10 1| -1 LoP2) 2
D 100 | 3 | 100 | 2 E P2 D)) +1 -3
E |1 149]50 )1 F P1 2 1| 3
S ENEIRIK SN

. € PO 22 2 | 2
H I, H P2 20 1 21
T |5 | 0] 0 |49 +20 + -
T |99 | 1 |01 2 I PO +15 0 -15
K |[102] 1 |100] 3 L b1 +2 0 -2
L A1 0 1 50 K P2 +20 0 -20
M 49 0 49 N P1 +2 0 -2
N 50 1 0 51
(0] 51 1 1 49

(a) Attributes (b) Sub-graphs

(c) Moves Table (d) History & Locked Tables

Figure 9: After 2nd move (k =3,s =4,and 1 = 1)

after node L was moved to P2, highlighted in red [14]. The par-
titioning after this move is chosen as the output of the iteration,
shown in Figure 10(b).

Algorithm 1 shows the pseudocode for CLR. Line 1 starts by
computing an initial solution using the hierarchical clustering strat-
egy described in Section 2.1. Lines 2-11 improve the solution using
the generalized k-way FM algorithm. Line 3 creates a copy of the
current solution. Line 4 checks that there are unlocked boundary
nodes to move. Line 5 examines all possible moves of an unlocked
boundary node to an adjacent partition. Lines 6-7 make the best

move and add the moved node to the History and Locked tables.
Line 9 finds the point at which the net gain was maximum. Line 10
applies the moves up to the maximum point to the current solution.
After t iterations of the local improvement, Line 12 returns the
solution.

2.4 Analysis of CLR

In this section, we prove that CLR is correct, i.e., CLR creates a
solution of NSGP.
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History Locked PO P1

Move Net Gain J by N .
J— Pl 21 L
L — P2 24 N
N - P1 22 E
E — P2 19 C
C— PO 8 F
F — P1 3 G
G — PO -5 H
H— PO -5 D
D — PO -3 K
K — PO -4 B
B - P1 -6 A
A— Pl -1 M
M — Pl -4 I
I1—-P1 -6

(a) History & Locked Tables (b) Output
Figure 10: After last move (k =3,s =4, and A = 1)

Algorithm 1: CLR Algorithm (Pseudocode)

Input:
- A spatial graph G with a set of graph-nodes N and a set of edges E.,
- A set of node attributes A = {aj, ay, ..., am, } for eachnode n € N,

- The number of sub-graphs k,
- The size constraint s,
- The maximum number of iterations, ¢
Output: k homogeneous, complete, and non-overlapping sub-graphs
Step:
1 Compute an initial solution, I, using the hierarchical clustering strategy.
2 for up to t iterations do

3 Create a copy of the current solution (i.e., copy < II).
4 while there are unlocked boundary nodes do
5 Compute the gain of each possible move of an unlocked boundary

node to an adjacent partition.

6 InIl;opy, move the boundary node with the highest gain.
7 Add the moved node to the History and Locked tables.
8 end
9 Identify the point at which the net gain was maximum in the History
table.
10 Apply all moves up to the maximum point to the current solution IT.
11 end

12 returnII (i.e, NSGP).

LEMMA 2.1. When all row vectors in a matrix M have the same
direction but different magnitudes, RMSE, 4pi1(M) becomes 0.

ProOF. Let r; be the ith row vector of M. Assume thatr; =¢; -0
and ¢; is a constant. Then the rank-one decomposition of M is
(c1,¢2,...,cn) - v. Therefore, RMSE, ;,11(M) is 0. O

LEMMA 2.2. Given a matrix M and two vectorsu andv, RMSE, 4px1

T i . .
can be minimized when u; = % where r; is the ith row vector of
M.

ProoF. Let a;j be the element of matrix Mpx;, from the ith
row and jth column, let u; be the ith element of vector u, and
let v; be the jth element of vector . According to Equation 1,

RMSE, gy (M, u-0T) = /-1 iy 27 (aij —wi - 0;)?. Minimizing

RMSE,guk1 is equivalent to minimizing %7, Z;.”:l(a,-j - u; - vj)%.
Assume that u; is unknown. Since the function becomes strictly
convex, RMSE, ;11 can be minimized if the first derivative of the

function becomes 0 (i.e., diu,(( T ;”zl(a,-j —uj- Uj)z) = 0). Then
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we see that Z;”zl(aij —u; - 0j)-0j = oTr; — ujoTo = 0. Therefore,
ol'r; S T
uj = 7, can minimize RMSE, gni1(M,u - v"). O

LEMMA 2.3. Given a matrix M and two vectorsu andv, RMSE, ;11
T,
can be minimized whenv; = = C], where c; is the jth column vector
J uTy J

OanXm~

ProoF. Let a;;j be the element of matrix My, from the ith row
and jth column, let u; be the ith element of vector u, and let v; be
the jth element of vector v. Minimizing RMSE, ;11 is equivalent
to minimizing X7 Z;”:l(aij —u;- vj)z. Assume that v; is unknown.

Then, RMSE, ;51 can be minimized if divj((zl'.’:1 Z;.”Zl(a,-j - u; -

vj)z) = 0. We see that 2.7 | (aij — u; - vj) - u;j = uch - vjuTu =0.
Therefore, v; = ZTCJ can minimize RMSE, gpj1 (M, u - 07). O

2.4.1 Computational Complexity of CLR. Let n be the number of
nodes, let m be the number of edges, let a be the number of at-
tributes, let k be the number of partitions, let i be the number of
iterations of the Coordinate Descent (CD) method, and let ¢ be the
number of passes (or iterations) for the k-way FM algorithm. Since
a spatial graph is a sparse graph, m = O(n) [4, 13]. First, CLR con-
structs an initial solution based on a hierarchical clustering strategy.
The construction of the edge-weighted graph takes O(n - a). The
hierarchical grouping process takes O(n?). Then, CLR computes
RMSE, 4,51 to measure the homogeneity of all groups. This takes
O(n - a - i). Afterwards, CLR uses the k-way Fiduccia-Mattheyses
(FM) algorithm to re-optimize the partitions. This requires multiple
passes (i.e., t) to identify the near-optimal solution. In each pass,
CLR identifies the best boundary node and moves it to an adjacent
partition to reduce the cost of the objective function. Next, it recom-
putes RMSE, 4,1 for the updated group. This takes O(n? + n - a - i).
Since the number of boundary nodes is bounded by O(n), each
pass takes O(n® + n? - a - i). Therefore, the cost model of CLR is
O((n® + n? - a - i) - t). In practice, the number of iterations of both
CD and FM is small, so we can set the two parameters (i.e., i and t)
as constants.

3 EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the performance of CLR.
The experiments set out to answer: (1) What is the effect of the
number of nodes? (2) What is the effect of the number of attributes?
(3) What is the effect of the number of partitions, k? (4) What is the
effect of the weight parameter, A? (5) Is solution quality preserved?
(6) Is CLR scalable?

3.1 Experiment Layout

Figure 11(a) shows our experimental setup. We used ACS 2016
data (see Figure 11(b)) and constructed the nearest neighbor spatial
graph [1]. We fixed the size constraint to 30% less than the balanced
partition size across all experiments.

Ideally, we would test our proposed algorithm against compa-
rable algorithms from related work. Unfortunately, we found no
algorithms in the literature that handle multiple numeric attributes,
enforce a size constraint, and incorporate the min-cut objective.
Instead, we provide a rough baseline comparison by applying hierar-
chical clustering using cosine similarity as the distance metric with
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the single linkage criterion [20, 26]. We enforce a size constraint
by disallowing merges that would result in clusters that violate
the maximum allowed size. After all clusters have been formed,
we incrementally move nodes from excess clusters (clusters whose
sizes are greater than the minimum allowed size) to deficit clusters
(clusters whose sizes are less than the minimum allowed size) [11].
When choosing a deficit cluster to move a node to, we choose the
cluster with the closest centroid to the excess cluster’s centroid.
This results in a size-constrained hierarchical clustering (SCHC),
which we used as a baseline comparison against CLR.

NuTber of Nodes Number of Altribu}es No. of No. of

ACS Node-amibuteg Spatial Graph_] Area 1\(I|(;\C7l|e)§ ]?\dEg\e)b
[ scHc | [ cR ] Miami 632 2175
Runllime | Runltime ] F}Zii&ﬂ 1254 | 4004

| Solution quality | | Solution quality |

Southeast | ga0-0 | 11960
Florida

(b) Datasets (Source: ACS 2016)[1]
Figure 11: Experiment Setup

(a) Experiment Layout

We evaluated CLR by comparing the impact on performance
and solution cost of (1) the number of nodes, (2) the number of
attributes, (3) the number of partitions, and (4) the value of the
weight parameter A. The algorithms were implemented in Java 1.8
with a 1 GB memory runtime environment. All experiments were
performed on an Intel i5-6600K CPU machine running Windows
10 with 16 GB of RAM.

3.2 Experiment Results and Analysis

3.2.1 Effect of the number of nodes. The first set of experiments
evaluated the effect of the number of nodes on the performance
of CLR compared to SCHC. We used the three datasets described
in Section 3.1 which had node counts of 682, 1,254, and 3, 395,
respectively. Parameters k, A, and the number of attributes (i.e.,
a) were fixed to 25, 100, and 30, respectively. Figure 12 shows the
execution times and solution costs for the different network sizes.
CLR outperforms SCHC in both execution time and solution quality.
SCHC starts with each node in its own cluster and incrementally
merges similar clusters. SCHC considers all possible merges to find
the optimal one whereas CLR moves only boundary nodes. SCHC
is unaware of graph edges, so its partitionings have high numbers
of edge cuts, leading to degradation of solution quality.

3.2.2  Effect of the number of attributes. The second set of experi-
ments evaluated the effect of the number of attributes on the per-
formance of CLR compared to SCHC. We varied the number of
attributes (i.e., a) from 10 to 50. We used the West Florida dataset
(IN|= 1,254) and fixed k and A to 25 and 1, 000, respectively. Fig-
ure 13 shows that CLR outperforms SCHC in both execution time
and solution quality. As the number of attributes increases, the exe-
cution time of CLR increases because the attribute matrix will have
more columns, making the computation of RMSE, ;1 more expen-
sive. SCHC only needs to compute the cosine distance between each
pair of node attributes, which does not take substantially longer
from 10 attributes to 50 attributes.
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Figure 12: Effect of the number of graph-nodes (k = 25, A =
100, a = 30)
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Figure 13: Effect of the number of attributes (|N|= 1,254, k =
25, A = 1,000)

(b) Comparison of Solution Quality

3.2.3  Effect of the number of partitions. The third set of experi-
ments evaluated the effect of the number of partitions, k, on the
performance of CLR compared to SCHC. We varied the number of
partitions (i.e., k) from 10 to 250. We used the West Florida dataset
(IN|= 1,254) and fixed A and the number of attributes (i.e., a) to
100 and 30, respectively. Figure 14 shows that CLR outperforms
SCHC in both execution time and solution quality. As the number
of partitions increases, the execution time of CLR decreases. This is
because the size of the attribute matrices decreases as the number
of partitions increases. The solution quality degrades as k increases
because the number of edge-cuts increases.
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(a) Run-time Comparison
Figure 14: Effect of the number of partitions (|N|= 1,254, A =
100, a = 30)

(b) Comparison of Solution Quality
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3.24  Effect of the weight parameter. The fourth set of experiments
evaluated the effect of the weight parameter, A, on the performance
of CLR compared to SCHC. We varied the weight parameter from
100 to 1000. We used the West Florida dataset (|N|= 1, 254) and fixed
k and the number of attributes (i.e., a) to 25 and 30, respectively.
Figure 15 shows CLR outperforms SCHC in both execution time
and solution quality. The execution times of both algorithms were
not affected by the value of A. The solution qualities of both algo-
rithms degrade slightly as the value of A increases. This is because
increasing the value of A causes the value of the objective function
to increase as well.

10 CLR momm 6000 olR o
SCHC SCHC
e 5000
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3
g 4000
e 3
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£ ]
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(a) Run-time Comparison

Figure 15: Effect of the weight parameter (|N|= 1,254, k = 25,
a = 30)

(b) Comparison of Solution Quality

3.3 Case Study

In our case study, we look at how NSGP partitions a watershed into
homogenous sub-graphs to delineate hydrological response units
(HRUs). A node-attributed spatial graph can efficiently represent a
watershed. The watershed area can be decomposed into cells. Each
edge signifies the direction of flow movement betwen two cells (i.e.,
nodes) (see Figure 16(a) and 16(b)). Each cell has multiple spatial
attributes, such as land use and land cover (LULC), soil, and slope
(see Figure 16(c)).

Node Attribute

Node ID 0T TUTLC [ Soil | Slope

A E| 4 [SL| 5

B C| 4 _[SL| 6

C G| &1 | SL| 7

D W[ 4 | SL| 8

E F| 4 |SL| 6

F T % |SL| 3

€ K| 8 |SL| 4

il G| 4 [SL| 6

T T 82 [SIL| 4

7 K| 8 |SIL| 2

K N[ 8 |SL| 2

T 0] 22 |[CL| 3

M N| 8L |CL| 3

H - ; i N O 90 [SIC| 1
Flow Direction  Element Node Edge 0 - [ % [SIC] 0

(a) Grid Cells (b) Spatial Graph (c) Node Attributes
Figure 16: Graph representation of a watershed

A hydrological response unit (HRU) is the smallest spatial unit
that has “common land use and pedo-topo-geological associations
generating and controlling their homogeneous hydrological dy-
namics” [12]. An HRU is often described as a group of individual
cells that have the same or similar hydrological characteristics (or
attributes). The HRU delineation is important for understanding
the spatial heterogeneity and complexity of a watershed as well as
for improving the hydrological modeling efficiency [12, 15].
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The traditional way of delineating HRUs is to find common ar-
eas of overlap for LULC and soil layers [12]. Since the overlapping
method does not consider the topological relationships between
cells, the nodes in the sub-graph may not be hydrologically con-
nected to each other. Thus, no interaction between HRUs is assumed,
which is not the case in reality [10, 22].

126'560°E 126570 126°560°E 126'570E

Stream Networks
[T Subwatershed Boundries

Stream Networks
[ subwatershed Boundaries

37 120N
T
37°120°N
3T120N
37°120°N

T T T T
126°560'E 126°570'E 126°560°E 126°570°E

(a) Overlapping Method (b) NSGP

Figure 17: Delineating hydrological response units (HRUs)
using the traditional overlapping method and NSGP.

In our case study, we compared the results of the overlapping
method and CLR. We used the geospatial layers of the HP#6 wa-
tershed in South Korea [16]. The spatial graph of the watershed
landscape consists of 4,201 nodes, 4,209 edges, and 3 attributes.
The 30-m resolution digital elevation model (DEM) was rasterized
from 1 : 5000 vector maps developed from the National Geographic
Information Institute [21]. The DEM was used to derive slope, de-
fine stream flows, and delineate the watershed boundary. The soil
texture was rasterized from 1 : 25,000 vector maps and the dataset
was provided by the Rural Development Administration [23]. The
land use information was obtained from the Ministry of Environ-
ment [19]. The number of HRUs (i.e., k) was set to 42 derived from
the number of unique combinations of LULC and soil classes. The
slope values were considered in CLR but not in the overlapping
method because we wanted to test if CLR can remove noisy or
redundant information for identifying homogeneous sub-graphs.
We set the size constraint s to 0.90 to accommodate the variations
found in the sizes of HRUs based on the overlapping method. We
set the weight multiplier A for RMSE, 4,1, to 1,000.

Figure 17 shows the output of the overlapping method and NSGP.
The overlapping method created HRUs that were often divided by
the ridge lines (the subwatershed boundary lines in black in Fig-
ure 17(a)), which violates the fundamental assumption of similar
hydrological behavior. Surface runoff generated in an HRU is as-
sumed to be transported to common downstream areas, but HRU
parts divided by the ridge are connected to different downstream
areas. On the other hand, NSGP delineated HRUs along the wa-
ter flows (or paths) and identified homogeneous sub-graphs even
though the node attributes included noisy information (i.e., slope).
The result clearly demonstrates that CLR can effectively identify
HRUs based on the homogeneity of sub-graphs and topological
connectivity.

3.4 Discussion
CLR achieves a significant computational performance gain over
SCHC. This improvement was obtained by three key components:

(1) Initial Solution based on hierarchical clustering strategy, (2) ho-
mogeneity measurement using RMSE, ;,,x1 , (3) Local refinement
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using the generalized k-way FM algorithm. Since the problem is
a discrete optimization problem and is not convex, we limit the
number of iterations to a threshold (t) that can minimize the objec-
tive function sufficiently. The parameter A is crucial to achieving a
tradeoff between connectivity (or contiguity) and homogeneity. The
correct choice of A is not trivial because the best output depends
on shape (i.e., edge-cuts), homogeneity (i.e., RMSE, ;,,11), desired
partition resolution (i.e, k), and size (i.e., s) for the users. CLR is an
exploratory method for the Node-attributed Spatial Graph Partition-
ing problem. If we have no prior information (e.g., domain expert
opinions), we can perform sensitivity analysis to identify the best
parameters. In our experiments, we see that 100 or 1,000 are the
best choices for A to clearly show the contiguous and homogeneous
sub-graphs using ACS datasets. The case study demonstrates that
CLR produces partitions with semantic value, i.e. they identify HRU
boundaries present in the input spatial network. When the datasets
contain null or missing attributes, we can use mean imputation
to estimate the values. A better approach is to modify RMSE, ;,,x1
to account for only available attributes [2]. The CLR method uses
node-attributes to identify homogeneous sub-graphs. For edge-
attributes, we can convert the graph to a line graph and construct
a node-attributed graph. For both node and edge attributes, we can
split a node (or edge) into two nodes (or two edges) and create a
virtual edge (or node) between the two nodes (edges) to construct
a node-attributed graph [9]. These approaches do not lose infor-
mation regarding topological connectivity. However, the graph
transformation increases the size of the input spatial graph.

4 CONCLUSION AND FUTURE WORK

We presented the problem of Node-attributed Spatial Graph Par-
titioning (NSGP). An important potential application of NSGP is
identifying well-connected homogeneous groups in spatial net-
works by identifying partitions where the nodes have similar at-
tributes and are spatially close to one another. NSGP is challenging
because of the large size of spatial graphs and the constraint that
the sub-graphs must be homogeneous, i.e. similar in terms of node
attributes. In this paper, we proposed the Clustering and Local Re-
finement (CLR) approach to the NSGP problem, which partitions
a node-attributed spatial graph such that the attribute similarity
between nodes in the same partition is maximized and the number
of edge cuts is minimized. We presented experiments and a case
study using real-world spatial network datasets.

In future work, we will explore new initialization methods for
various spatial graphs to improve the performance of CLR. We will
also study the effect of adding a contiguity constraint to the output
partitioning. Lastly, we will investigate parallel formulations of
the CLR algorithm. The rank-one decomposition can be parallelly
executed using multiple threads or big data processing platforms
(e.g., Hadoop and Spark). Multi-level graph partitioning techniques
can be utilized to reduce the size of a spatial-graph. We plan to
study scalable techniques for CLR to efficiently handle big spatial
graph datasets.
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