
Node–attributed Spatial Graph Partitioning
Daniel Bereznyi

dbereznyi2016@fau.edu

Florida Atlantic University

Boca Raton, Florida

Ahmad Qutbuddin

aqutbuddin2017@fau.edu

Florida Atlantic University

Boca Raton, Florida

YoungGu Her

yher@ufl.edu

University of Florida

Homestead, Florida

KwangSoo Yang

yangk@fau.edu

Florida Atlantic University

Boca Raton, Florida

ABSTRACT
Given a spatial graph and a set of node attributes, theNode-attributed

Spatial Graph Partitioning (NSGP) problem partitions a node-attributed

spatial graph into 𝑘 homogeneous sub-graphs that minimize both

the total 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
and 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 while meeting a size constraint

on the sub-graphs. 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
is the Root Mean Square Error be-

tween a matrix and its rank-one decomposition. The NSGP prob-

lem is important for many societal applications such as identifying

homogeneous communities in a spatial graph and detecting inter-

related patterns in traffic accidents. This problem is NP-hard; it is

computationally challenging because of the large size of spatial

graphs and the constraint that the sub-graphs must be homoge-

neous, i.e. similar in terms of node attributes. This paper proposes

a novel approach for finding a set of homogeneous sub-graphs that

can minimize both the total 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
and 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 while meet-

ing the size constraint. Experiments and a case study using U.S.

Census datasets and HP#6 watershed network datasets demonstrate

that the proposed approach partitions a spatial graph into a set of

homogeneous sub-graphs and reduces the computational cost.

CCS CONCEPTS
• Information systems→ Geographic information systems.

KEYWORDS
spatial graph partitioning, node-attributed spatial graph, matrix

rank-one decomposition

ACM Reference Format:
Daniel Bereznyi, Ahmad Qutbuddin, YoungGu Her, and KwangSoo Yang.

2020. Node–attributed Spatial Graph Partitioning. In 28th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL ’20),
November 3–6, 2020, Seattle, WA, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3397536.3422198

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8019-5/20/11. . . $15.00

https://doi.org/10.1145/3397536.3422198

1 INTRODUCTION
In this work, we propose a new problem of spatial graph parti-

tioning, namely Node-attributed Spatial Graph Partitioning (NSGP).

Given a spatial graph and a set of node attributes, the NSGP problem

partitions the node-attributed spatial graph into 𝑘 homogeneous

sub-graphs that minimize both the total 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
and 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠

while meeting a size constraint. Fig. 1(a) shows an example input of

NSGP consisting of a graph with 15 nodes with 4 attributes and 23

edges. Assume that 𝑘 = 3 and that each sub-graph should contain at

least 4 nodes. Figure 1(b) shows an example output of NSGP where

the sub-graphs minimize the total 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
and 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 while

meeting the size constraint. The NSGP problem is NP-hard (a proof

is provided in Section 1.3). Intuitively, the problem is computation-

ally challenging because of the large size of spatial graphs and the

constraint that the sub-graphs must be homogeneous, i.e. similar

in terms of node attributes.

1.1 Application Domain
NSGP is important in many societal applications such as identifying

patterns in spatial graph data where each node is associated with

additional information. One such application is discovering com-

munities in the spatial graph of a city by finding partitions where

attributes of the population (e.g., average age, income, education,

etc.) are similar and the nodes are spatially close to one another.

This information can then be used to better identify and target

these communities [4]. Another application is for Hydrological

Response Unit delineation that helps us to understand the spatial

variability of the watershed among soil, land use, and topographic

characteristics [12, 15]. The size constraint allows for flexibility in

the partitioning, allowing for more focus to be placed on homo-

geneity over balanced-size partitions if desired [3]. The high-level

intent of NSGP is to identify groups of nodes that are related both

structurally in the graph and in their attributes.

1.2 Problem Definition
In our formulation of the NSGP problem, a node-attributed spa-

tial graph is represented as a graph composed of nodes, edges,

and node attributes. Each node represents a spatial location in

geographic space and each edge represents the topological con-

nectivity between two nodes. Each node has a set of numerical

attributes that can characterize the aspects of the spatial location.

The 𝑁𝑆𝐺𝑃 (𝑁, 𝐸,𝐴, 𝑘, 𝑠, 𝜆) problem is defined as follows:

Input: A node-attributed spatial graph 𝐺 with

https://doi.org/10.1145/3397536.3422198
https://doi.org/10.1145/3397536.3422198

SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Bereznyi and Yang, et al.

Node Attributes

A 0 50 51 0
B 0 49 52 1
C 48 2 0 51
D 100 3 100 2
E 1 49 50 1
F 1 50 49 0
G 101 2 99 1
H 99 3 100 1
I 50 0 0 49
J 99 1 101 2
K 102 1 100 3
L 41 0 1 50
M 49 0 1 49
N 50 1 0 51
O 51 1 1 49

A B C D

E F G H

I J K L

M N O

(a) Input (Node-attributed Spatial Graph)

Node Attributes

A 0 50 51 0
B 0 49 52 1
E 1 49 50 1
F 1 50 49 0
C 48 2 0 51
D 100 3 100 2
G 101 2 99 1
H 99 3 100 1
J 99 1 101 2
K 102 1 100 3
I 50 0 0 49
L 41 0 1 50
M 49 0 1 49
N 50 1 0 51
O 51 1 1 49

A B C D

E F G H

I J K L

M N O

(b) Output (best in color)

Figure 1: Example of the Input and Output of NSGP (𝑘 = 3, 𝑠 = 4, and 𝜆 = 1)

• a set of nodes 𝑁 and a set of edges 𝐸,

• a set of node attributes𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} for each node𝑛 ∈ 𝑁 ,

• the number of sub-graphs 𝑘 ,

• the minimum number of nodes in a sub-graph (i.e., size con-

straint) 𝑠 , and

• the weight multiplier 𝜆 for 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

Output: 𝑘 homogeneous sub-graphs

Objective:
• Minimize 𝜆 · 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

+ 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 .

Constraints:
• Size Constraint (𝑠): Every sub-graph has at least 𝑠 nodes

The objective of the NSGP problem is minimizing both total

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
and 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 . In this paper, we formulate the objective

of NSGP as a single objective by assigning a weight (i.e., 𝜆) to

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
[18]. The value of 𝜆 is used to control the importance

of homogeneous sub-graphs. The number of partitions (i.e., 𝑘) is

used for the resolution of partitions. The size constraint (i.e., 𝑠) is

used to remove a trivial solution (e.g., a partition with a few nodes).

Definition 1. Rank-one decomposition: Given a matrix 𝑀 , the
rank-one decomposition factorizes 𝑀 into a product of two vectors: 𝑢
and 𝑣 (i.e.,𝑀 = 𝑢 · 𝑣𝑇).

Definition 2. 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
: Given amatrix𝑀 and𝑢·𝑣𝑇 ,𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

is the standard deviation of the difference between𝑀 and 𝑢 · 𝑣𝑇 .
Definition 3. 𝐸𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 : Given a set of sub-graphs, 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 is

the number of edges with endpoints in different sub-graphs.

1.3 Problem Hardness
The NP-hardness of NSGP follows from a well-known result about

the NP-hardness of the balanced min-cut graph partitioning prob-

lem.

Theorem 1. The NSGP problem is NP-hard.

Proof. The NP-hardness of NSGP follows from a well-known

result about the NP-hardness of the following balanced min-cut

graph partitioning (BMGP) problem [3]. Given a graph 𝐺 = (𝑁, 𝐸),

where 𝑁 denotes a set of nodes and 𝐸 a set of edges, the goal

of BMGP is to partition 𝑁 into 𝑘 equal-sized parts 𝑁1, 𝑁2, . . . , 𝑁𝑘

while minimizing 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 . Let 𝑋 = (𝑁, 𝐸, 𝑘) be an instance of

BMGP. Let 𝑌 = (𝑁, 𝐸,𝐴, 𝑘, 𝑠, 𝜆) be an instance of NSGP, where 𝑁 is

a set of nodes, 𝐸 is a set of edges, 𝐴 is a set of node attributes, 𝑘 is

the number of sub-graphs, 𝑠 is the minimum number of nodes in

a sub-graph, and 𝜆 is the weight multiplier for 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
. Then

it is easy to show that the instance of BMGP is a special case of

NSGP, where 𝑠 = |𝑁 |/𝑘 and 𝜆 = 0. Since 𝑋 is constructed from 𝑌 in

polynomial-bounded time, the proof is complete. □

1.4 Our Contributions
In this paper, we propose a novel algorithm, Clustering and Local

Refinement (CLR), that partitions a node-attributed spatial graph

into 𝑘 homogeneous sub-graphs that can minimize both the total

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
and 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 while meeting a size constraint. The

proposed approach consists of three main components: 1) Initial

solution based on a hierarchical clustering strategy, 2) Homogeneity

measurement using 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
, and 3) Local refinement using the

generalized k-way Fiduccia–Mattheyses (FM) algorithm [11]. Our

contributions are as follows:

• We introduce a new spatial graph partitioning problem, namely

the Node-attributed Spatial Graph Partitioning (NSGP) problem.

• We prove that the NSGP problem is NP-hard.

• We propose the Clustering and Local Refinement (CLR) ap-

proach for the NSGP problem.

• We provide a cost model for our proposed approach.

• We experimentally evaluate our proposed approach using U.S.

Census datasets [1] and HP#6 watershed network datasets [16].

Experimental results and a case study demonstrate that the

proposed algorithm outperforms the baseline algorithm and

creates a solution of NSGP.

1.5 Related Work
Approaches to partitioning or clustering node-attributed graphs

range from converting node attributes into edge weights [8, 24],

defining distance functions to apply traditional distance-based clus-

tering techniques [6], random walk distance [29], and statistical

inference [27]. Each edge can be weighted by the similarity be-

tween the attributes of its endpoint nodes. Afterwards, an exist-

ing algorithm for partitioning edge-weighted graphs is applied.

This requires the selection of a similarity function, such as the

extended matching coefficient [24]. Traditional distance-based clus-

tering techniques can be used by defining a distance function that

Node–attributed Spatial Graph Partitioning SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA

combines structural and attribute similarity [6]. A neighborhood

random walk distance on node-attributed graphs can be defined by

counting the number of attributes that two nodes share [29]. How-

ever, this approach is only applicable for categorical attributes.

Statistical inference approaches can be used to partition node-

attributed graphs by treating the input graph and the attributes as

observations and attempting to predict a partition class for each

node using a statistical method. For example, a generative Bayesian

model that produces samples of all possible partitionings of a graph

can be used to find desirable partitionings [27]. Although such

models combine topological features and attributes, they often re-

quire costly parameter optimization and non-trivial expertise to

choose the required a priori distributions [5]. However, no existing

approach incorporates the min-cut objective, the size constraint,

and the group homogeneity measurement into the spatial graph

partitioning problem. The min-cut objective is important for iden-

tifying spatially connected regions. The size constraint is useful

for excluding a trivial solution, where a single node becomes one

partition (i.e. a sub-graph). In addition, the group homogeneity mea-

surement with noise and irrelevant/redundant attributes is critical

for discovering meaningful sub-graphs. In this work, we propose

a novel approach for NSGP that honors the size constraint and

minimizes both the total 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
and 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 .

1.6 Basic Concepts
1.6.1 Node-attributed spatial graph. Anode-attributed spatial graph

is a graph where each node represents a location in geographic

space, each edge represents the topological connectivity between

two nodes, and each node has a set of numerical attributes that

can characterize the aspects of the spatial location. Consider a net-

work representing houses in a neighborhood. Each node represents

a spatial location (e.g. a house) and each edge represents a road

segment. Assume that the property value of a house is affected by

its age and square footage. We can collect datasets regarding the

property values of houses (in thousands of dollars), their ages (in

years), and their square footage (in thousands of square feet). Let

𝑎 = ⟨ property value, age, square footage ⟩. Then we can represent

the network as a node-attributed spatial graph.

A
〈105, 20, 1.20〉

B
〈122, 22, 1.35〉

C
〈259, 61, 1.60〉

D
〈301, 70, 1.75〉

E
〈133, 15, 1.40〉

F
〈120, 17, 1.30〉

G
〈270, 63, 1.80〉

H
〈285, 59, 1.65〉

(a) Input (𝑘 = 2, 𝑠 = 4, and 𝜆 = 1)

A
〈105, 20, 1.20〉

B
〈122, 22, 1.35〉

C
〈259, 61, 1.60〉

D
〈301, 70, 1.75〉

E
〈133, 15, 1.40〉

F
〈120, 17, 1.30〉

G
〈270, 63, 1.80〉

H
〈285, 59, 1.65〉

(b) Output

Figure 2: Example of the Input and Output of NSGP

Figure 2(a) shows an example of a node-attributed graph with

8 nodes, 10 edges, and 3 attributes for each node. The attributes

associated with each node are indicated by the vector displayed

above or below the node. The objective of NSGP is to partition the

spatial graph into 𝑘 sub-graphs such that 𝜆 ·𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
+𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠

is minimized. This means each sub-graph should be topologically

well-connected and the set of attributes within a sub-graph should

be close to one another in terms of homogeneity (i.e. 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
).

Let 𝑘 = 2, 𝑠 = 4, and 𝜆 = 1. Figure 2(b) shows an example output of

NSGP. The graph is partitioned into two sub-graphs, separated by

the dashed line. The left sub-graph contains the nodes 𝐴, 𝐵, 𝐸, and

𝐹 and the right sub-graph contains the nodes 𝐶 , 𝐷 , 𝐺 , and 𝐻 . The

value of the objective function 𝜆 · 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
+ 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 for this

partitioning is 1 · 4 + 2 = 6. The computation of 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
will be

explained in the following subsection.

1.6.2 Rank-one decomposition. Given a sub-graph 𝐺𝑠𝑢𝑏 , the at-

tribute matrix of 𝐺𝑠𝑢𝑏 is defined as a matrix where each row is the

attributes of one of the nodes in 𝐺𝑠𝑢𝑏 . Figure 3 shows an example

attribute matrix for a given sub-graph of nodes in a partition. Note

that the order of the rows in the attribute matrix is not impor-

tant [25].

A
〈105, 20, 1.20〉

B
〈122, 22, 1.35〉

E
〈133, 15, 1.40〉

F
〈120, 17, 1.30〉




105 20 1.20
122 22 1.35
133 15 1.40
120 17 1.30




Figure 3: A node-attributed sub-graph and a
corresponding attribute matrix

The Root Mean Square Error (RMSE) measures the difference

between two matrices [28]. Given two matrices 𝐴𝑛×𝑚 and 𝐵𝑛×𝑚 ,

the RMSE between 𝐴 and 𝐵 is defined as:

𝑅𝑀𝑆𝐸(𝐴𝑛×𝑚, 𝐵𝑛×𝑚) =

√√
1

𝑛𝑚

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(𝑎𝑖 𝑗 − 𝑏𝑖 𝑗)2, (1)

where 𝑎𝑖 𝑗 is the element of 𝐴 at the 𝑖th row and 𝑗 th column and 𝑏𝑖 𝑗
is the element of 𝐵 at the 𝑖th row and 𝑗th column.

Given a matrix𝑀 , the rank-one decomposition factorizes𝑀 into

a product of two vectors:𝑢 and 𝑣 (i.e.,𝑀 = 𝑢 ·𝑣𝑇). 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑀) is

defined as 𝑅𝑀𝑆𝐸(𝑀,𝑢 · 𝑣𝑇). 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑀) can be used to measure

the similarity of the row vectors in𝑀 (see Lemma 2.1). Furthermore,

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑀) can efficiently identify homogeneous groups even

with the presence of irrelevant, redundant, and noisy attributes [25].

As the value of 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑀) decreases, the homogeneity of the

row vectors in𝑀 increases. This is because𝑀 can be decomposed

into 𝑢 and 𝑣 with a lower 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
when the row vectors (or

column vectors) in𝑀 are similar to one another.

2 PROPOSED APPROACH
In this section, we introduce our novel approach, Clustering and

Local Refinement (CLR), to the NSGP problem. CLR consists of three

main components: (1) Construction of an initial solution based on

a hierarchical clustering strategy, (2) Homogeneity measurement

using 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
, and (3) Local refinement using the generalized

k-way Fiduccia–Mattheyses (FM) algorithm.

2.1 Initial solution based on hierarchical
clustering strategy

CLR starts by constructing an initial solution based on a hierarchi-

cal clustering strategy. Consider the example node-attributed graph

shown in Figure 4 (reproduced from Figure 1(a)). The nodes and

edges are illustrated on the right-hand side while the correspond-

ing attributes for each node are listed on the left-hand side. For

SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Bereznyi and Yang, et al.

instance, node𝐴 is adjacent to nodes 𝐵 and 𝐸 and has the attributes

⟨0, 50, 51, 0⟩.

Node Attributes

A 0 50 51 0
B 0 49 52 1
C 48 2 0 51
D 100 3 100 2
E 1 49 50 1
F 1 50 49 0
G 101 2 99 1
H 99 3 100 1
I 50 0 0 49
J 99 1 101 2
K 102 1 100 3
L 41 0 1 50
M 49 0 1 49
N 50 1 0 51
O 51 1 1 49

A B C D

E F G H

I J K L

M N O

Figure 4: An example input graph with
corresponding node attributes

Let the number of sub-graphs be 3 (i.e., 𝑘 = 3) and let the size

constraint 𝑠 be 4. First, CLR converts the node-attributed graph

into an edge-weighted graph where the weight of each edge is the

cosine similarity between the attributes of its two nodes. Cosine

similarity is defined as

𝑐𝑜𝑠𝑖𝑛𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) =

𝑎 · 𝑏
∥𝑎∥∥𝑏∥ , (2)

where 𝑎 and 𝑏 are vectors.

1.000

1.000

0.030

0.999

0.495

0.495

1.000

1.000

0.020

0.510

0.515

1.000

1.000

0.462

0.510

1.000

1.000

0.500

0.480

0.515

0.993

1.000 0.999

A B C D

E F G H

I J K L

M N O

(a) Step 1: Edge-weighted Spatial Graph

1.000

0
.0

2
0

0.
03

0

0.510

0
.5

1
5

0
.4

9
5

1
.0

0
0

0.480

0
.5
1
5

0
.9
9
30.510

0.999

A B C D

E F G H

I J K L

M N O

(b) Step 2: 1st-level matching

Figure 5: Initial Solution Construction (Steps 1-2)

Consider the example input in Figure 4. Figure 5(a) shows the

edge-weighted graph that results from assigning each edge the

cosine similarity between its two nodes as a weight. Cosine simi-

larity is a measure of similarity between two non-zero vectors of

an inner product space [26]. However, it is important to note that

cosine similarity cannot directly measure the similarity between

groups because it compares only two non-zero vectors. To remedy

this, CLR groups similar nodes and measures similarities between

groups in a hierarchical fashion.

CLR groups pairs of nodes into a single node by using the highest-

weighted edge between them.We refer to this single node as a super-

node. This grouping process can be generalized to the maximal

matching problem [17]. Figure 5(b) shows the output of the first-

level matching. Every node can be matched with at most one node

to form a super-node (represented as dashed ovals). If a node has

0.0
30

0
.0

2
0

0.510

0
.5

1
5

0.4
80

0
.9

9
3

0
.5

1
5

0.510

A B C D

E F G H

I J K L

M N O

(a) Step 3: 2nd-level matching

0.030

0.020

0.515

A B C D

E F G H

I J K L

M N O

(b) Step 4: 3rd-level matching (Output)

Figure 6: Initial Solution Construction (Steps 3-4)

no other node to match with, then it becomes a super-node with a

single node (see node 𝑂).

After the first-level matching, CLR defines the similarity between

two super-nodes as the smallest-weighted edge between them and

continues to group super-nodes based on the maximal matching.

The size of every super-node should be bounded and approximately

balanced. Figure 6(a) shows the second-level matching. In this ex-

ample, {𝐴, 𝐸} is merged with {𝐵, 𝐹 }, {𝐶, 𝐷} is merged with {𝐻, 𝐿},
and {𝐽 , 𝑁 } is merged with {𝑂}. Figure 6(b) shows the output of
the third-level matching. {𝐶, 𝐷,𝐻, 𝐿} is merged with {𝐺,𝐾}, and
{𝐼 , 𝑀} is merged with {𝐽 , 𝑁 ,𝑂}. Since the number of groups is now

3 (i.e., 𝑘 = 3), which is the desired number of partitions, the initial

solution is complete.

2.2 Homogeneity measurement with 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

Cosine similarity can only compare two non-zero vectors. In addi-

tion, it has a limited ability to measure the homogeneity of groups

that consist of more than two vectors. The core idea of CLR is to

utilize the rank-one decomposition to measure group homogeneity.

The rank-one decomposition factorizes a matrix 𝑀 into two

vectors (i.e., 𝑢 and 𝑣), aiming to minimize 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
. 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

is used as a measure of homogeneity of the attributes in a sub-

graph (Lemma 2.1). When the attributes of a sub-graph are close

in value or follow similar patterns, the rank-one decomposition

of the attribute matrix is able to better approximate the original

attribute matrix and so the 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
will be lower, indicating

higher homogeneity. Consider the following example of a rank-one

decomposition.

𝑀 =

[
2 2 2

3 3 3

4 4 4

]
→

[
2

3

4

] [
1 1 1

]
=

[
2 2 2

3 3 3

4 4 4

]
In this example, the matrix𝑀 can be decomposed into two vec-

tors such that 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
= 0. Since 𝑀 can be completely repre-

sented by the product of two vectors, all vectors in𝑀 are considered

homogeneous in terms of 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
.

The Singular Value Decomposition (SVD) with the highest sin-

gular value can be used to find the rank-one decomposition [25].

However, since computing the SVD is expensive, CLR utilizes the

Coordinate Descent (CD) optimization technique to factorize a ma-

trix𝑀 into two vectors (i.e., 𝑢 and 𝑣). The CD method starts with

Node–attributed Spatial Graph Partitioning SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA

an initial decomposition where the elements of the column vector

and row vector are randomly chosen [7]. Then, it alternatingly and

iteratively estimates the value of each element in the two vectors to

minimize 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
. Consider the following example of the CD

method for the rank-one decomposition.

𝑀 =

[
2 4 7

3 6 9

4 8 12

]
→

[
1

1

1

] [
1 1 1

]
Here, the elements of 𝑢 and 𝑣 are each set to 1. The Coordinate

Descent (CD) method estimates the value of each element in the two

vectors (i.e., 𝑢 and 𝑣) using the following equations (see Lemma 2.2

and 2.3).

𝑢𝑖 =

𝑣𝑇 · 𝑟𝑖
𝑣𝑇 · 𝑣

, (3)

where 𝑢𝑖 is the 𝑖th element of vector 𝑢 and 𝑟𝑖 is the 𝑖th row vector

of matrix𝑀 .

𝑣 𝑗 =

𝑢𝑇 · 𝑐 𝑗
𝑢𝑇 · 𝑢

, (4)

where 𝑣 𝑗 is the 𝑗th element of vector 𝑣 and 𝑐 𝑗 is the 𝑗th column

vector of matrix𝑀 .

First, CD estimates the value of the first element of the column

vector (i.e., 𝑢1). 
2 4 7

3 6 9

4 8 12

 →

𝛼

1

1


[
1 1 1

]
,

𝛼 = 𝑢1 =

𝑣𝑇 · 𝑟1
𝑣𝑇 · 𝑣

=

(1, 1, 1) · (2, 4, 7)

(1, 1, 1) · (1, 1, 1)

= 4.33

Next, CD estimates the value of the first element of the row

vector (i.e., 𝑣1). 
2 4 7

3 6 9

4 8 12

 →

4.33

1

1


[
𝛼 1 1

]
,

𝛼 = 𝑣1 =

𝑢𝑇 · 𝑐1

𝑢𝑇 · 𝑢
=

(4.33, 1, 1) · (2, 3, 4)

(4.33, 1, 1) · (4.33, 1, 1)

= 0.75

Then, CD estimates the value of the second element of the col-

umn vector (i.e., 𝑢2).


2 4 7

3 6 9

4 8 12

 →

4.33

𝛼

1


[
0.75 1 1

]
,

𝛼 = 𝑢2 =

𝑣𝑇 · 𝑟2
𝑣𝑇 · 𝑣

=

(0.75, 1, 1) · (3, 6, 9)

(0.75, 1, 1) · (0.75, 1, 1)

= 6.73

This alternating estimation process continues until the value of

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
no longer decreases. The final decomposition for this

example is shown below.[
2 4 7

3 6 9

4 8 12

]
→

[
4.75

6.43

8.57

] [
0.46 0.92 1.41

]
=

[
2.19 4.37 6.70

2.96 5.92 9.07

3.94 7.88 12.08

]

This decomposition produces a matrix similar to the original

matrix with 𝑅𝑀𝑆𝐸 = 0.18.

2.3 Local refinement using the generalized
k-way FM algorithm

In this subsection, we describe the generalized k-way FM algorithm

for the NSGP problem. CLR uses the following objective function

to measure the cost of a partitioning:

𝑐𝑜𝑠𝑡 = 𝜆 ·
𝑘∑︁
𝑖=1

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑖) + 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠, (5)

where𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑖) is the𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

of the 𝑖th partition, 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠

is the number of edge cuts, and 𝜆 is a user-specified parameter that

controls the importance of homogeneity over edge cuts. CLR begins

with an initial partitioning of a node-attributed graph that meets

the size constraint and iteratively moves nodes between partitions

in order to minimize the cost of the partitioning. To reduce the

potential increase in edge cuts, CLR moves only boundary nodes,

i.e. nodes adjacent to nodes in a different partition. The gain of a

move is defined as the amount of decrease in the objective function

after the move is made:

𝑔𝑎𝑖𝑛 = 𝑐𝑜𝑠𝑡𝑜𝑙𝑑 − 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 , (6)

where 𝑐𝑜𝑠𝑡𝑜𝑙𝑑 and 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 are the costs before and after, respec-

tively, the move.

Figure 7 shows an initial partitioning based on a hierarchical

clustering strategy. Let the number of sub-graphs be 3 (i.e., 𝑘 = 3),

let the size constraint 𝑠 be 4, and let the weight multiplier 𝜆 be 1.

The Moves table shows all possible moves of a boundary node to

an adjacent partition along with the gain of each move. The gain

is computed as −1 · (𝜆 · ∆𝑅𝑀𝑆𝐸 + ∆𝐶𝑢𝑡𝑠), so that the decreases in

the objective function result in positive gains. The History table is

used to record moves that have been made as well as the running

net gain. The Locked table records nodes that have already been

moved during this iteration, and so cannot be moved again until

the next iteration [11, 14, 17].

After all gains have been computed, CLR makes the move with

the highest gain. Moves that violate the size constraint are not

considered. Figure 8 shows that node 𝐽 was moved into 𝑃1 (i.e.,

partition 1). After the move, node 𝐽 is considered 𝑙𝑜𝑐𝑘𝑒𝑑 , and so

it cannot be moved again for the remainder of the iteration [14].

Locked nodes are illustrated as gray instead of white. After the

move, all nodes incident to the moved node must have their gains

recomputed. The Moves table shows the updated available moves

and their respective gains, and the History table records that node

𝐽 has been moved to 𝑃1 for a net gain of 21.

Next, CLR makes the move with the highest gain. Figure 9 shows

that the move with the highest gain is moving node 𝐿 to 𝑃2, which

has a gain of +3. Node 𝐿 is then locked and the gains for incidents

of node 𝐿 are recomputed. The move is recorded in the History

table, bringing the running net gain to 24.

This process repeats until no possible moves are left. Figure 10(a)

shows the History table after the last possible move has been made.

CLR uses the History table to identify that the net gain was highest

SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Bereznyi and Yang, et al.

Node Attributes

A 0 50 51 0
B 0 49 52 1
C 48 2 0 51
D 100 3 100 2
E 1 49 50 1
F 1 50 49 0
G 101 2 99 1
H 99 3 100 1
I 50 0 0 49
J 99 1 101 2
K 102 1 100 3
L 41 0 1 50
M 49 0 1 49
N 50 1 0 51
O 51 1 1 49

(a) Attributes

A B C D

E F G H

I J K L

M N O

P0 P1

P2

(b) Sub-graphs

Attributes

Node Target ∆RMSE ∆Cuts Gain
B P1 +2 +1 -3
C P0 +10 +1 -11
E P2 +2 +1 -3
F P1 +2 +1 -3
F P2 +2 +1 -3
G P0 +22 +2 -24
I P0 +15 +1 -16
J P0 0 +1 -1
J P1 -22 +1 +21
K P2 +2 0 -2
L P2 -4 +1 +3
N P1 +2 +2 -4
O P1 +2 0 -2

(c) Moves Table

History Locked
Move Net Gain

(d) History & Locked Tables

Figure 7: Initial solution (𝑘 = 3, 𝑠 = 4, and 𝜆 = 1)

Node Attributes

A 0 50 51 0
B 0 49 52 1
C 48 2 0 51
D 100 3 100 2
E 1 49 50 1
F 1 50 49 0
G 101 2 99 1
H 99 3 100 1
I 50 0 0 49
J 99 1 101 2
K 102 1 100 3
L 41 0 1 50
M 49 0 1 49
N 50 1 0 51
O 51 1 1 49

(a) Attributes

A B C D

E F G H

I J K L

M N O

P0 P1

P2

(b) Sub-graphs

Attributes

Node Target ∆RMSE ∆Cuts Gain
B P1 +2 +1 -3
C P0 +10 +1 -11
E P2 +2 +1 -3
F P1 +2 +1 -3
F P2 +2 0 -2
G P0 +22 +2 -24
I P0 +15 0 -15
I P1 +2 0 -2
K P2 +22 +2 -24
L P2 -4 +1 +3
N P1 +2 0 -2
O P1 +2 0 -2

(c) Moves Table

History Locked
Move Net Gain J

J −→ P1 21

(d) History & Locked Tables

Figure 8: After 1st move (𝑘 = 3, 𝑠 = 4, and 𝜆 = 1)

Node Attributes

A 0 50 51 0
B 0 49 52 1
C 48 2 0 51
D 100 3 100 2
E 1 49 50 1
F 1 50 49 0
G 101 2 99 1
H 99 3 100 1
I 50 0 0 49
J 99 1 101 2
K 102 1 100 3
L 41 0 1 50
M 49 0 1 49
N 50 1 0 51
O 51 1 1 49

(a) Attributes

A B C D

E F G H

I J K L

M N O

P0 P1

P2

(b) Sub-graphs

Attributes

Node Target ∆RMSE ∆Cuts Gain
B P1 +2 +1 -3
C P0 +10 +1 -11
E P2 +2 +1 -3
F P1 +2 +1 -3
F P2 +2 0 -2
G P0 +22 +2 -24
H P2 +20 +1 -21
I P0 +15 0 -15
I P1 +2 0 -2
K P2 +20 0 -20
N P1 +2 0 -2

(c) Moves Table

History Locked
Move Net Gain J

J −→ P1 21 L
L −→ P2 24

(d) History & Locked Tables

Figure 9: After 2nd move (𝑘 = 3, 𝑠 = 4, and 𝜆 = 1)

after node 𝐿 was moved to 𝑃2, highlighted in red [14]. The par-

titioning after this move is chosen as the output of the iteration,

shown in Figure 10(b).

Algorithm 1 shows the pseudocode for CLR. Line 1 starts by

computing an initial solution using the hierarchical clustering strat-

egy described in Section 2.1. Lines 2-11 improve the solution using

the generalized k-way FM algorithm. Line 3 creates a copy of the

current solution. Line 4 checks that there are unlocked boundary

nodes to move. Line 5 examines all possible moves of an unlocked

boundary node to an adjacent partition. Lines 6-7 make the best

move and add the moved node to the History and Locked tables.

Line 9 finds the point at which the net gain was maximum. Line 10

applies the moves up to the maximum point to the current solution.

After 𝑡 iterations of the local improvement, Line 12 returns the

solution.

2.4 Analysis of CLR
In this section, we prove that CLR is correct, i.e., CLR creates a

solution of NSGP.

Node–attributed Spatial Graph Partitioning SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA

History Locked
Move Net Gain J

J −→ P1 21 L
L −→ P2 24 N
N −→ P1 22 E
E −→ P2 19 C
C −→ P0 8 F
F −→ P1 3 G
G −→ P0 -5 H
H −→ P0 -5 D
D −→ P0 -3 K
K −→ P0 -4 B
B −→ P1 -6 A
A −→ P1 -1 M
M −→ P1 -4 I
I −→ P1 -6

(a) History & Locked Tables

A B C D

E F G H

I J K L

M N O

P0 P1

P2

(b) Output

Figure 10: After last move (𝑘 = 3, 𝑠 = 4, and 𝜆 = 1)

Algorithm 1: CLR Algorithm (Pseudocode)

Input:
- A spatial graph𝐺 with a set of graph-nodes 𝑁 and a set of edges 𝐸.,

- A set of node attributes𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚 } for each node 𝑛 ∈ 𝑁 ,

- The number of sub-graphs 𝑘 ,

- The size constraint 𝑠 ,

- The maximum number of iterations, 𝑡

Output: 𝑘 homogeneous, complete, and non-overlapping sub-graphs

Step:
1 Compute an initial solution, Π, using the hierarchical clustering strategy.

2 for up to 𝑡 iterations do
3 Create a copy of the current solution (i.e., Π𝑐𝑜𝑝𝑦 ← Π).

4 while there are unlocked boundary nodes do
5 Compute the gain of each possible move of an unlocked boundary

node to an adjacent partition.

6 In Π𝑐𝑜𝑝𝑦 , move the boundary node with the highest gain.

7 Add the moved node to the History and Locked tables.

8 end
9 Identify the point at which the net gain was maximum in the History

table.

10 Apply all moves up to the maximum point to the current solution Π.

11 end
12 return Π (i.e., NSGP).

Lemma 2.1. When all row vectors in a matrix 𝑀 have the same
direction but different magnitudes, 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

(𝑀) becomes 0.

Proof. Let 𝑟𝑖 be the 𝑖th row vector of𝑀 . Assume that 𝑟𝑖 = 𝑐𝑖 · 𝑣
and 𝑐𝑖 is a constant. Then the rank-one decomposition of 𝑀 is

(𝑐1, 𝑐2, . . . , 𝑐𝑛) · 𝑣 . Therefore, 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑀) is 0. □

Lemma 2.2. Given amatrix𝑀 and two vectors𝑢 and 𝑣 ,𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

can be minimized when 𝑢𝑖 =
𝑣𝑇 𝑟𝑖
𝑣𝑇 𝑣

, where 𝑟𝑖 is the 𝑖th row vector of
𝑀 .

Proof. Let 𝑎𝑖 𝑗 be the element of matrix 𝑀𝑛×𝑚 from the 𝑖th

row and 𝑗th column, let 𝑢𝑖 be the 𝑖th element of vector 𝑢, and

let 𝑣 𝑗 be the 𝑗th element of vector 𝑣 . According to Equation 1,

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑀,𝑢 ·𝑣𝑇) =

√︃
1

𝑛𝑚

∑𝑛
𝑖=1

∑𝑚
𝑗=1

(𝑎𝑖 𝑗 − 𝑢𝑖 · 𝑣 𝑗)2. Minimizing

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
is equivalent to minimizing

∑𝑛
𝑖=1

∑𝑚
𝑗=1

(𝑎𝑖 𝑗 − 𝑢𝑖 · 𝑣 𝑗)2.
Assume that 𝑢𝑖 is unknown. Since the function becomes strictly

convex, 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
can be minimized if the first derivative of the

function becomes 0 (i.e.,
𝑑
𝑑𝑢𝑖

((

∑𝑛
𝑖=1

∑𝑚
𝑗=1

(𝑎𝑖 𝑗 − 𝑢𝑖 · 𝑣 𝑗)2) = 0). Then

we see that

∑𝑚
𝑗=1

(𝑎𝑖 𝑗 − 𝑢𝑖 · 𝑣 𝑗) · 𝑣 𝑗 = 𝑣𝑇 𝑟𝑖 − 𝑢𝑖𝑣𝑇 𝑣 = 0. Therefore,

𝑢𝑖 =
𝑣𝑇 𝑟𝑖
𝑣𝑇 𝑣

can minimize 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
(𝑀,𝑢 · 𝑣𝑇). □

Lemma 2.3. Given amatrix𝑀 and two vectors𝑢 and 𝑣 ,𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

can be minimized when 𝑣 𝑗 =

𝑢𝑇 𝑐 𝑗

𝑢𝑇𝑢
, where 𝑐 𝑗 is the 𝑗 th column vector

of𝑀𝑛×𝑚 .

Proof. Let 𝑎𝑖 𝑗 be the element of matrix𝑀𝑛×𝑚 from the 𝑖th row

and 𝑗th column, let 𝑢𝑖 be the 𝑖th element of vector 𝑢, and let 𝑣 𝑗 be

the 𝑗th element of vector 𝑣 . Minimizing 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
is equivalent

to minimizing

∑𝑛
𝑖=1

∑𝑚
𝑗=1

(𝑎𝑖 𝑗 −𝑢𝑖 · 𝑣 𝑗)2. Assume that 𝑣 𝑗 is unknown.

Then, 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
can be minimized if

𝑑
𝑑𝑣𝑗

((

∑𝑛
𝑖=1

∑𝑚
𝑗=1

(𝑎𝑖 𝑗 − 𝑢𝑖 ·
𝑣 𝑗)

2
) = 0. We see that

∑𝑛
𝑖=1

(𝑎𝑖 𝑗 − 𝑢𝑖 · 𝑣 𝑗) · 𝑢𝑖 = 𝑢𝑇 𝑐 𝑗 − 𝑣 𝑗𝑢𝑇𝑢 = 0.

Therefore, 𝑣 𝑗 =

𝑢𝑇 𝑐 𝑗

𝑢𝑇𝑢
can minimize 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

(𝑀,𝑢 · 𝑣𝑇). □

2.4.1 Computational Complexity of CLR. Let 𝑛 be the number of

nodes, let 𝑚 be the number of edges, let 𝑎 be the number of at-

tributes, let 𝑘 be the number of partitions, let 𝑖 be the number of

iterations of the Coordinate Descent (CD) method, and let 𝑡 be the

number of passes (or iterations) for the k-way FM algorithm. Since

a spatial graph is a sparse graph, m = 𝑂(𝑛) [4, 13]. First, CLR con-

structs an initial solution based on a hierarchical clustering strategy.

The construction of the edge-weighted graph takes 𝑂(𝑛 · 𝑎). The

hierarchical grouping process takes 𝑂(𝑛2
). Then, CLR computes

𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
to measure the homogeneity of all groups. This takes

𝑂(𝑛 · 𝑎 · 𝑖). Afterwards, CLR uses the k-way Fiduccia-Mattheyses

(FM) algorithm to re-optimize the partitions. This requires multiple

passes (i.e., 𝑡) to identify the near-optimal solution. In each pass,

CLR identifies the best boundary node and moves it to an adjacent

partition to reduce the cost of the objective function. Next, it recom-

putes 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
for the updated group. This takes𝑂(𝑛2

+ 𝑛 · 𝑎 · 𝑖).
Since the number of boundary nodes is bounded by 𝑂(𝑛), each

pass takes 𝑂(𝑛3
+ 𝑛2 · 𝑎 · 𝑖). Therefore, the cost model of CLR is

𝑂((𝑛3
+ 𝑛2 · 𝑎 · 𝑖) · 𝑡). In practice, the number of iterations of both

CD and FM is small, so we can set the two parameters (i.e., 𝑖 and 𝑡)

as constants.

3 EXPERIMENTAL EVALUATION
We conducted experiments to evaluate the performance of CLR.

The experiments set out to answer: (1) What is the effect of the

number of nodes? (2) What is the effect of the number of attributes?

(3) What is the effect of the number of partitions, 𝑘? (4) What is the

effect of the weight parameter, 𝜆? (5) Is solution quality preserved?

(6) Is CLR scalable?

3.1 Experiment Layout
Figure 11(a) shows our experimental setup. We used ACS 2016

data (see Figure 11(b)) and constructed the nearest neighbor spatial

graph [1]. We fixed the size constraint to 30% less than the balanced

partition size across all experiments.

Ideally, we would test our proposed algorithm against compa-

rable algorithms from related work. Unfortunately, we found no

algorithms in the literature that handle multiple numeric attributes,

enforce a size constraint, and incorporate the min-cut objective.

Instead, we provide a rough baseline comparison by applying hierar-

chical clustering using cosine similarity as the distance metric with

SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Bereznyi and Yang, et al.

the single linkage criterion [20, 26]. We enforce a size constraint

by disallowing merges that would result in clusters that violate

the maximum allowed size. After all clusters have been formed,

we incrementally move nodes from excess clusters (clusters whose

sizes are greater than the minimum allowed size) to deficit clusters

(clusters whose sizes are less than the minimum allowed size) [11].

When choosing a deficit cluster to move a node to, we choose the

cluster with the closest centroid to the excess cluster’s centroid.

This results in a size-constrained hierarchical clustering (SCHC),

which we used as a baseline comparison against CLR.

Node-attributed Spatial Graph

Number of Nodes Number of Attributes

Comparative Analysis

ACS

CLRSCHC

Solution quality

Run time

Solution quality

Run time

(a) Experiment Layout

Area
No. of
Nodes
(|N |)

No. of
Edges
(|E|)

Miami 682 2175
West
Florida

1254 4004

Southeast
Florida

3395 11260

(b) Datasets (Source: ACS 2016)[1]

Figure 11: Experiment Setup

We evaluated CLR by comparing the impact on performance

and solution cost of (1) the number of nodes, (2) the number of

attributes, (3) the number of partitions, and (4) the value of the

weight parameter 𝜆. The algorithms were implemented in Java 1.8

with a 1 GB memory runtime environment. All experiments were

performed on an Intel i5-6600K CPU machine running Windows

10 with 16 GB of RAM.

3.2 Experiment Results and Analysis
3.2.1 Effect of the number of nodes. The first set of experiments

evaluated the effect of the number of nodes on the performance

of CLR compared to SCHC. We used the three datasets described

in Section 3.1 which had node counts of 682, 1, 254, and 3, 395,

respectively. Parameters 𝑘 , 𝜆, and the number of attributes (i.e.,

𝑎) were fixed to 25, 100, and 30, respectively. Figure 12 shows the

execution times and solution costs for the different network sizes.

CLR outperforms SCHC in both execution time and solution quality.

SCHC starts with each node in its own cluster and incrementally

merges similar clusters. SCHC considers all possible merges to find

the optimal one whereas CLR moves only boundary nodes. SCHC

is unaware of graph edges, so its partitionings have high numbers

of edge cuts, leading to degradation of solution quality.

3.2.2 Effect of the number of attributes. The second set of experi-

ments evaluated the effect of the number of attributes on the per-

formance of CLR compared to SCHC. We varied the number of

attributes (i.e., 𝑎) from 10 to 50. We used the West Florida dataset

(|𝑁 |= 1, 254) and fixed 𝑘 and 𝜆 to 25 and 1, 000, respectively. Fig-

ure 13 shows that CLR outperforms SCHC in both execution time

and solution quality. As the number of attributes increases, the exe-

cution time of CLR increases because the attribute matrix will have

more columns, making the computation of 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
more expen-

sive. SCHC only needs to compute the cosine distance between each

pair of node attributes, which does not take substantially longer

from 10 attributes to 50 attributes.

(a) Effect on Execution Time (b) Effect on Solution Quality

Figure 12: Effect of the number of graph-nodes (𝑘 = 25, 𝜆 =

100, 𝑎 = 30)

(a) Run-time Comparison (b) Comparison of Solution Quality

Figure 13: Effect of the number of attributes (|𝑁 |= 1, 254, 𝑘 =

25, 𝜆 = 1, 000)

3.2.3 Effect of the number of partitions. The third set of experi-

ments evaluated the effect of the number of partitions, 𝑘 , on the

performance of CLR compared to SCHC. We varied the number of

partitions (i.e., 𝑘) from 10 to 250. We used the West Florida dataset

(|𝑁 |= 1, 254) and fixed 𝜆 and the number of attributes (i.e., 𝑎) to

100 and 30, respectively. Figure 14 shows that CLR outperforms

SCHC in both execution time and solution quality. As the number

of partitions increases, the execution time of CLR decreases. This is

because the size of the attribute matrices decreases as the number

of partitions increases. The solution quality degrades as 𝑘 increases

because the number of 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠 increases.

(a) Run-time Comparison (b) Comparison of Solution Quality

Figure 14: Effect of the number of partitions (|𝑁 |= 1, 254, 𝜆 =

100, 𝑎 = 30)

Node–attributed Spatial Graph Partitioning SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA

3.2.4 Effect of the weight parameter. The fourth set of experiments

evaluated the effect of the weight parameter, 𝜆, on the performance

of CLR compared to SCHC. We varied the weight parameter from

100 to 1000. We used theWest Florida dataset (|𝑁 |= 1, 254) and fixed

𝑘 and the number of attributes (i.e., 𝑎) to 25 and 30, respectively.

Figure 15 shows CLR outperforms SCHC in both execution time

and solution quality. The execution times of both algorithms were

not affected by the value of 𝜆. The solution qualities of both algo-

rithms degrade slightly as the value of 𝜆 increases. This is because

increasing the value of 𝜆 causes the value of the objective function

to increase as well.

(a) Run-time Comparison (b) Comparison of Solution Quality

Figure 15: Effect of the weight parameter (|𝑁 |= 1, 254, 𝑘 = 25,
𝑎 = 30)

3.3 Case Study
In our case study, we look at how NSGP partitions a watershed into

homogenous sub-graphs to delineate hydrological response units

(HRUs). A node-attributed spatial graph can efficiently represent a

watershed. The watershed area can be decomposed into cells. Each

edge signifies the direction of flow movement betwen two cells (i.e.,

nodes) (see Figure 16(a) and 16(b)). Each cell has multiple spatial

attributes, such as land use and land cover (LULC), soil, and slope

(see Figure 16(c)).

M N O

I J K L

E F G H

A B C D

ElementFlow Direction

(a) Grid Cells

A

B

C

DE

F

G

HI

J

K

LM N

O

EdgeNode

(b) Spatial Graph

Node ID
Node Attribute

To LULC Soil Slope

A E 41 SL 5
B C 41 SL 6
C G 41 SL 7
D H 41 SL 8
E F 41 SL 6
F J 82 SL 3
G K 82 SL 4
H G 41 SL 6
I J 82 SIL 4
J K 82 SIL 2
K N 81 SIL 2
L O 22 CL 3
M N 81 CL 3
N O 90 SIC 1
O - 90 SIC 0

(c) Node Attributes

Figure 16: Graph representation of a watershed

A hydrological response unit (HRU) is the smallest spatial unit

that has “common land use and pedo-topo-geological associations

generating and controlling their homogeneous hydrological dy-

namics” [12]. An HRU is often described as a group of individual

cells that have the same or similar hydrological characteristics (or

attributes). The HRU delineation is important for understanding

the spatial heterogeneity and complexity of a watershed as well as

for improving the hydrological modeling efficiency [12, 15].

The traditional way of delineating HRUs is to find common ar-

eas of overlap for LULC and soil layers [12]. Since the overlapping

method does not consider the topological relationships between

cells, the nodes in the sub-graph may not be hydrologically con-

nected to each other. Thus, no interaction betweenHRUs is assumed,

which is not the case in reality [10, 22].

(a) Overlapping Method (b) NSGP

Figure 17: Delineating hydrological response units (HRUs)
using the traditional overlapping method and NSGP.

In our case study, we compared the results of the overlapping

method and CLR. We used the geospatial layers of the HP#6 wa-

tershed in South Korea [16]. The spatial graph of the watershed

landscape consists of 4, 201 nodes, 4, 209 edges, and 3 attributes.

The 30-m resolution digital elevation model (DEM) was rasterized

from 1 : 5000 vector maps developed from the National Geographic

Information Institute [21]. The DEM was used to derive slope, de-

fine stream flows, and delineate the watershed boundary. The soil

texture was rasterized from 1 : 25, 000 vector maps and the dataset

was provided by the Rural Development Administration [23]. The

land use information was obtained from the Ministry of Environ-

ment [19]. The number of HRUs (i.e., 𝑘) was set to 42 derived from

the number of unique combinations of LULC and soil classes. The

slope values were considered in CLR but not in the overlapping

method because we wanted to test if CLR can remove noisy or

redundant information for identifying homogeneous sub-graphs.

We set the size constraint 𝑠 to 0.90 to accommodate the variations

found in the sizes of HRUs based on the overlapping method. We

set the weight multiplier 𝜆 for 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
to 1, 000.

Figure 17 shows the output of the overlapping method and NSGP.

The overlapping method created HRUs that were often divided by

the ridge lines (the subwatershed boundary lines in black in Fig-

ure 17(a)), which violates the fundamental assumption of similar

hydrological behavior. Surface runoff generated in an HRU is as-

sumed to be transported to common downstream areas, but HRU

parts divided by the ridge are connected to different downstream

areas. On the other hand, NSGP delineated HRUs along the wa-

ter flows (or paths) and identified homogeneous sub-graphs even

though the node attributes included noisy information (i.e., slope).

The result clearly demonstrates that CLR can effectively identify

HRUs based on the homogeneity of sub-graphs and topological

connectivity.

3.4 Discussion
CLR achieves a significant computational performance gain over

SCHC. This improvement was obtained by three key components:

(1) Initial Solution based on hierarchical clustering strategy, (2) ho-

mogeneity measurement using 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
, (3) Local refinement

SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Bereznyi and Yang, et al.

using the generalized k-way FM algorithm. Since the problem is

a discrete optimization problem and is not convex, we limit the

number of iterations to a threshold (𝑡) that can minimize the objec-

tive function sufficiently. The parameter 𝜆 is crucial to achieving a

tradeoff between connectivity (or contiguity) and homogeneity. The

correct choice of 𝜆 is not trivial because the best output depends

on shape (i.e., 𝑒𝑑𝑔𝑒-𝑐𝑢𝑡𝑠), homogeneity (i.e., 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1
), desired

partition resolution (i.e, 𝑘), and size (i.e., 𝑠) for the users. CLR is an

exploratory method for the Node-attributed Spatial Graph Partition-

ing problem. If we have no prior information (e.g., domain expert

opinions), we can perform sensitivity analysis to identify the best

parameters. In our experiments, we see that 100 or 1, 000 are the

best choices for 𝜆 to clearly show the contiguous and homogeneous

sub-graphs using ACS datasets. The case study demonstrates that

CLR produces partitions with semantic value, i.e. they identify HRU

boundaries present in the input spatial network. When the datasets

contain null or missing attributes, we can use mean imputation

to estimate the values. A better approach is to modify 𝑅𝑀𝑆𝐸𝑟𝑎𝑛𝑘1

to account for only available attributes [2]. The CLR method uses

node-attributes to identify homogeneous sub-graphs. For edge-

attributes, we can convert the graph to a line graph and construct

a node-attributed graph. For both node and edge attributes, we can

split a node (or edge) into two nodes (or two edges) and create a

virtual edge (or node) between the two nodes (edges) to construct

a node-attributed graph [9]. These approaches do not lose infor-

mation regarding topological connectivity. However, the graph

transformation increases the size of the input spatial graph.

4 CONCLUSION AND FUTUREWORK
We presented the problem of Node-attributed Spatial Graph Par-

titioning (NSGP). An important potential application of NSGP is

identifying well-connected homogeneous groups in spatial net-

works by identifying partitions where the nodes have similar at-

tributes and are spatially close to one another. NSGP is challenging

because of the large size of spatial graphs and the constraint that

the sub-graphs must be homogeneous, i.e. similar in terms of node

attributes. In this paper, we proposed the Clustering and Local Re-

finement (CLR) approach to the NSGP problem, which partitions

a node-attributed spatial graph such that the attribute similarity

between nodes in the same partition is maximized and the number

of edge cuts is minimized. We presented experiments and a case

study using real-world spatial network datasets.

In future work, we will explore new initialization methods for

various spatial graphs to improve the performance of CLR. We will

also study the effect of adding a contiguity constraint to the output

partitioning. Lastly, we will investigate parallel formulations of

the CLR algorithm. The rank-one decomposition can be parallelly

executed using multiple threads or big data processing platforms

(e.g., Hadoop and Spark). Multi-level graph partitioning techniques

can be utilized to reduce the size of a spatial-graph. We plan to

study scalable techniques for CLR to efficiently handle big spatial

graph datasets.

ACKNOWLEDGMENTS
We would like to thank the National Science Foundation under

Grant No. 1844565.We are particularly thankful to the ACMSIGSPA-

TIAL reviewers for their helpful comments.

REFERENCES
[1] ACS. 2016. “American Community Survey (ACS)”. https://www.census.gov.

Online; accessed Dec. 2019.

[2] Charu C Aggarwal. 2020. Linear Algebra and Optimization for Machine Learning:
A Textbook. Springer Nature.

[3] Konstantin Andreev and Harald Racke. 2006. Balanced graph partitioning. Theory
of Computing Systems 39, 6 (2006), 929–939.

[4] Marc Barthélemy. 2011. Spatial networks. Physics Reports 499, 1-3 (2011), 1–101.
[5] Cécile Bothorel, Juan David Cruz, Matteo Magnani, and Barbora Micenkova. 2015.

Clustering attributed graphs: models, measures and methods. Network Science 3,
3 (2015), 408–444.

[6] David Combe, Christine Largeron, Elöd Egyed-Zsigmond, and Mathias Géry.

2012. Combining relations and text in scientific network clustering. In 2012
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining. IEEE, 1248–1253.

[7] Pierre Comon, Xavier Luciani, and André LF De Almeida. 2009. Tensor decom-

positions, alternating least squares and other tales. Journal of Chemometrics: A
Journal of the Chemometrics Society 23, 7-8 (2009), 393–405.

[8] Juan David Cruz, Cécile Bothorel, and François Poulet. 2014. Community detec-

tion and visualization in social networks: Integrating structural and semantic

information. ACM Transactions on Intelligent Systems and Technology (TIST) 5, 1
(2014), 1–26.

[9] Reinhard Diestel. 2017. Graph Theory. Springer-Verlag Berlin Heidelberg.

[10] Zachary M Easton, M Todd Walter, Daniel R Fuka, Eric D White, and Tammo S

Steenhuis. 2011. A simple concept for calibrating runoff thresholds in quasi-

distributed variable source area watershed models. Hydrological Processes 25, 20
(2011), 3131–3143.

[11] Charles M Fiduccia and Robert M Mattheyses. 1982. A linear-time heuristic

for improving network partitions. In 19th Design Automation Conference. IEEE,
175–181.

[12] Wolfgan-Albert Flügel. 1997. Combining GIS with regional hydrological mod-

elling using hydrological response units (HRUs): An application from Germany.

Mathematics and Computers in Simulation 43, 3-6 (1997), 297–304.

[13] Michael T Gastner and Mark EJ Newman. 2006. The spatial structure of networks.

The European Physical Journal B-Condensed Matter and Complex Systems 49, 2
(2006), 247–252.

[14] Fred Glover. 1990. Tabu search: A tutorial. Interfaces 20, 4 (1990), 74–94.
[15] Younggu Her, Jane Frankenberger, Indrajeet Chaubey, and Raghavan Srinivasan.

2015. Threshold effects in HRU definition of the soil and water assessment tool.

Transactions of the ASABE 58, 2 (2015), 367–378.

[16] MS Kang, SWPark, JJ Lee, and KHYoo. 2006. Applying SWAT for TMDL programs

to a small watershed containing rice paddy fields. Agricultural Water Management
79, 1 (2006), 72–92.

[17] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Multi-

level hypergraph partitioning: applications in VLSI domain. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 7, 1 (1999), 69–79.

[18] R TimothyMarler and Jasbir S Arora. 2004. Survey ofmulti-objective optimization

methods for engineering. Structural and multidisciplinary optimization 26, 6

(2004), 369–395.

[19] MOE. 2019. “Ministry of Environment (MOE)”. https://eng.me.go.kr/eng/web/

main.do. Online; accessed Dec. 2019.

[20] Fionn Murtagh. 1983. A survey of recent advances in hierarchical clustering

algorithms. The computer journal 26, 4 (1983), 354–359.
[21] NGII. 2019. “National Geographic Information Institute (NGII)”. https://www.

ngii.go.kr/eng/main.do. Online; accessed Dec. 2019.

[22] H Rathjens, K Bieger, I Chaubey, JG Arnold, PM Allen, R Srinivasan, DD Bosch,

and M Volk. 2016. Delineating floodplain and upland areas for hydrologic models:

a comparison of methods. Hydrological Processes 30, 23 (2016), 4367–4383.
[23] RDA. 2019. “Rural Development Administration (RDA)”. http://www.rda.go.kr/

foreign/ten/. Online; accessed Dec. 2019.

[24] Karsten Steinhaeuser and Nitesh V Chawla. 2008. Community detection in a

large real-world social network. In Social computing, behavioral modeling, and
prediction. Springer, 168–175.

[25] Gilbert Strang. 2019. Linear algebra and learning from data. Wellesley-Cambridge

Press.

[26] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2016. Introduction to data
mining. Pearson Education India.

[27] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2012. A

model-based approach to attributed graph clustering. In Proceedings of the 2012
ACM SIGMOD international conference on management of data. 505–516.

[28] Jieping Ye. 2005. Generalized low rank approximations of matrices. Machine
Learning 61, 1-3 (2005), 167–191.

[29] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph clustering based on

structural/attribute similarities. Proceedings of the VLDB Endowment 2, 1 (2009),
718–729.

https://www.census.gov
https://eng.me.go.kr/eng/web/main.do
https://eng.me.go.kr/eng/web/main.do
https://www.ngii.go.kr/eng/main.do
https://www.ngii.go.kr/eng/main.do
http://www.rda.go.kr/foreign/ten/
http://www.rda.go.kr/foreign/ten/

	Abstract
	1 Introduction
	1.1 Application Domain
	1.2 Problem Definition
	1.3 Problem Hardness
	1.4 Our Contributions
	1.5 Related Work
	1.6 Basic Concepts

	2 Proposed Approach
	2.1 Initial solution based on hierarchical clustering strategy
	2.2 Homogeneity measurement with RMSE_rank1
	2.3 Local refinement using the generalized k-way FM algorithm
	2.4 Analysis of CLR

	3 Experimental Evaluation
	3.1 Experiment Layout
	3.2 Experiment Results and Analysis
	3.3 Case Study
	3.4 Discussion

	4 Conclusion and Future Work
	Acknowledgments
	References

