

OPINION PIECE

Technical pitfalls that bias comparative microbial community analyses of aquatic disease

Ian Hewson*

Department of Microbiology, Cornell University, Ithaca, NY 14853, USA

ABSTRACT: The accessibility of high-throughput DNA sequencing technologies has attracted the application of comparative microbial analyses to study diseases. These studies present a window into host microbiome diversity and composition that can be used to address ecological theory in the context of host biology and behavior. Recently, comparative microbiome studies have been used to study non-vertebrate aquatic diseases to elucidate microorganisms potentially involved in disease processes or in disease prevention. These investigations suffer from many well-described biases, especially prior to sequence analyses, that could lead to misleading conclusions. Microbiome-focused studies of aquatic metazoan diseases provide valuable documentation of microbial ecology, although, they are only a starting point for establishing disease etiology, which demands quantitative validation through targeted approaches. The microbiome approach to understanding disease is most useful after laboratory diagnostics guided by pathology have failed to identify a causative agent. This opinion piece presents several technical pitfalls which may affect wider interpretation of microbe–host interactions through comparative microbial community analyses and provides recommendations, based on studies in non-aquatic systems, for incorporation into future aquatic disease research.

KEY WORDS: Microbiome · Virus · Eukaryotes · Community · Disease

— Resale or republication not permitted without written consent of the publisher —

1. INTRODUCTION

Improvements in sequencing technologies and costs over the last decade have allowed elucidation of the complex interaction between microbial communities and their hosts, known as the host-associated microbiome (Lederberg & McCray 2001). An attractive extension of fundamental microbiome ecology is its relationship to disease (Koren & Rosenberg 2006, Egan & Gardiner 2016). Numerous studies have identified links between microbiome composition (MC) and vertebrate conditions, e.g. obesity (Turnbaugh et al. 2006), susceptibility to infection by commensal microorganisms (Chang et al. 2008) and metabolic and cardiovascular diseases (Ordovas & Mooser 2006, Wen et al. 2008). While most studies focus on human microbiomes, there is increasing interest in their use in studying wildlife

diseases (Galan et al. 2016). In aquatic habitats, metabarcoding and metagenomic approaches are gaining popularity in the study of aquacultured taxa (reviewed in Alavandi & Poornima 2012, Gómez-Chiarri et al. 2015, Munang'andu 2016, Munang'andu et al. 2017).

While studies of the association between MC and aquatic diseases have taken place since the late 1990s (Cooney et al. 2002, Pantos et al. 2003), renewed interest has spawned from greater accessibility of high-throughput sequencing (HTS)-based metagenomic and metabarcoding approaches and bioinformatics/analytical tools (Table 1). These studies extend from earlier fundamental microbial ecological investigations asking: Who is present and why?

Microbial community analyses in the context of disease are, however, subject to many biases, including those imposed by sampling strategy (e.g. Tedjo

*Corresponding author: hewson@cornell.edu

Table 1. Summary of nucleic acid template (NAT) extraction, quantification and standardization in studies of aquatic invertebrate diseases comparing asymptomatic to disease-affected microbial communities in/on tissues. NAT extraction protocols—1: Agen-court DNAAdvance Bead Extraction Kit; 2: bead-beating, freeze–thaw and phenol–chloroform extraction; 3: CTAB extraction and isopropanol extraction; 4: GE Illustra TriplePrep Kit; 5: Macherey-Nagel NucleoSpin Soil Kit; 6: MoBio PowerPlant DNA Extraction Kit; 7: MoBio PowerSoil DNA Kit; 8: MoBio Soil DNA Isolation Kit; 9: MP Biomedicals FastDNA Spin Kit; 10: organic extraction protocol; 11: Proteinase K, guanadinium isothiocyanate and isopropanol extraction; 12: QBiogene FastDNA Kit; 13: QIAmp DNA Stool Mini Kit; 14: Qiagen AllPrep DNA/RNA Mini Kit; 15: Qiagen DNeasy Blood & Tissue Kit; 16: Qiagen DNeasy Plant Kit; 17: Qiagen Mini Kit; 18: Qiagen RNeasy Plus Kit; 19: Roche High Pure Template PCR Preparation Kit; 20: sodium dodecyl sulfate, potassium acetate and isopropanol extraction; 21: Stratec RTP Bacteria Mini Kit; 22: sucrose, sodium dodecyl sulfate, lysozyme, Proteinase K and phenol–chloroform extraction; 23: TRIzol Reagent Kit; 24: Zymo ZR Soil Microbe DNA MicroPrep Kit; 25: Zymo Quick gDNA Kit; 26: Zymo ZR Tissue and Insect Kit; 27: Zymo ZR Viral DNA Kit. NATQ: nucleic acid template quantity (ng if mass or μ l if volume); B: bacteria; C: cyanobacteria; V: viruses; F: fungi; MB: metabarcoding of 16S rRNA; CL: clone libraries of 16S rRNA; LH-PCR: length heterogeneity PCR; LASL: linker-amplified shotgun libraries; ϕ 29: ϕ 29 DNA polymerase; VM: viral metagenome; BM: bacterial metagenome; TRFLP: terminal restriction fragment length polymorphism; F: fluorescence based; UV: spectrophotometer based; M: mass of NAT; V: volume of NAT; NR: not reported

Phylum/host	Disease	Target domain	Approach used	NAT extraction protocol	NAT quantification	Template standardization	NATQ	Reference
Arthropoda								
<i>Litopenaeus vannamei</i>	Early mortality/acute pancreatic necrosis disease	B	MB	24	F	M	200	Cornejo-Granados et al. (2017)
<i>Homarus americanus</i>	Epizootic shell disease	B	LH-PCR	9	NR	NR	NR	Meres (2016)
<i>H. americanus</i>	Epizootic shell disease	B	LH-PCR	NR	NR	NR	NR	Meres et al. (2012)
<i>H. americanus</i>	Shell disease	B	MB	7	NR	V	0.5–2	Feinman et al. (2017)
<i>Litopenaeus vannamei</i>	Unnamed disease event	B	MB	13	NR	M	50	Xiong et al. (2015)
<i>L. vannamei</i>	Unnamed disease event	B	MB	13	NR	M	50	Xiong et al. (2017)
<i>Synisoma nadejda</i>	Acidification impacts	B	MB	25	NR	M	~10	Aires et al. (2018)
Cnidaria								
<i>Gorgia ventalina</i>	Aspergillosis	B	LASL/ ϕ 29-VM	18	NR	V	1	Hewson et al. (2012)
<i>Montastrea annularis</i> and <i>Diploria strigosa</i>	Black band disease	C	TRFLP	2	NR	V	5–30	Frias-Lopez et al. (2004)
<i>Montastrea, Orbicella</i> and <i>Pseudodiploria</i>	Black band disease	B	MB	7	NR	NR	NR	Meyer et al. (2016a)
<i>Montastraea cavernosa</i>	Black band disease	B	MB/BM	7	NR	NR	NR	Meyer et al. (2017)
<i>Favites</i> sp. and <i>Favia</i> sp.	Black band disease	B	CL	7	NR	V	1–2	Barneah et al. (2007)
Coral	Bleaching	V	LASL-VM	3	NR	NR	NR	Marhaver et al. (2008)
<i>Acropora millepora</i>	Bleaching	B	ϕ 29-VM	NR	NR	NR	NR	Littman et al. (2011)
<i>Porites lobata</i>	Bleaching	B	MB	14	UV	M	5–35	Hadaidi et al. (2018)
<i>Porites lutea</i>	Bleaching	B	MB	19	UV	M	50	Pootakham et al. (2018)
<i>Acropora millepora</i>	Bleaching	B	CL	22	UV	NR	NR	Bourne et al. (2008)
<i>Montastraea, Orbicella</i> and <i>Pseudodiploria</i>	Dark spot syndrome	B	MB	7	NR	NR	NR	Meyer et al. (2016b)
<i>Stephanocoenia intersepta</i>	Dark spot syndrome	B/F	DGGE	15	NR	M	20	Sweet et al. (2013)
<i>Pacifigorgia cairnsi</i>	Necrotic patch disease	B	MB	7	UV/F	V	1	Quintanilla et al. (2018)
<i>Eunicea flexuosa</i> and <i>Pseudoplexaura porosa</i>	Physical injury	B	MB	NR	NR	NR	NR	Shirur et al. (2016)
<i>Porites astreoides</i>	Unnamed disease event	B	MB	7	NR	M	~15	Meyer et al. (2014)
<i>Paramuricea clavata</i>	Unnamed disease event	B	MB	19	F	M	10	Vezzulli et al. (2013)
<i>Porites compressa</i>	Various stress impacts	B	ϕ 29-BM	17	NR	M	1	Vega Thurber et al. (2009)
<i>Gorgia ventalina</i> and <i>Orbicella faveolata</i>	Warming impacts	B	MB	7	F	M	14	Tracy et al. (2015)
<i>Acropora darmicornis</i>	White band disease	B	MB	1	NR	NR	NR	Gignoux-Wolfsohn et al. (2017)
<i>A. darmicornis</i>	White band disease	B	MB	1	NR	NR	NR	Gignoux-Wolfsohn & Vollmer (2015)
<i>Acropora hyacinthus</i>	White band disease	B	MB	6	NR	NR	NR	Pollock et al. (2017)
<i>Montastraea faveolata</i>	White band disease	B	CL/PhyloChip	11	NR	M	50	Sunagawa et al. (2009)
<i>Pavona duerdeni</i> and <i>Porites lutea</i>	White band disease	B	Microarray	16	UV/F	NR	0.15–0.5	Roder et al. (2014)
<i>Porites lutea</i>	White patch syndrome	B	MB	5	NR	M	10	Séré et al. (2013)
<i>Montastraea annularis</i>	White plague disease	V	ϕ 29-VM	10	NR	NR	NR	Soffer et al. (2014)
<i>M. annularis</i>	White plague disease	B	DGGE	12	NR	V	1.5	Pantos et al. (2003)
<i>Acropora palmata</i>	White pox disease	B	MB	3	NR	NR	NR	Lesser & Jarett (2014)
<i>Echinopora lamellosa</i>	White syndrome	B	MB	15	NR	M	2	Smith et al. (2015)
<i>Orbicella faveolata</i>	Yellow band disease	B	CL/PhyloChip	6	NR	M	20	Closek et al. (2014)
<i>Montastraea faveolata</i>	Yellow band disease	B	DGGE	15	NR	NR	NR	Cróquer et al. (2013)

(Table 1 continued on next page)

Table 1 (continued)

Phylum/host	Disease	Target domain	Approach used	NAT extraction protocol	NAT quantification	Template standardization	NATQ	Reference
Echinodermata								
<i>Tripneustes gratilla</i>	Bald sea urchin disease	B	MB	21	F/qPCR	NR	NR	Brink et al. (2019)
<i>Odontaster validus</i>	Unnamed disease event	B/F	MB	3	NR	V	1.5	Núñez-Pons et al. (2018)
<i>Acanthaster planci</i>	Unnamed disease event	B	MB	26	UV	NR	NR	Hój et al. (2018)
<i>Pisaster ochraceus</i>	Wasting	B	MB	23	UV	V	2	Lloyd & Pespeni (2018)
<i>Asteroids</i>	Wasting	V	φ29-VM	27	NR	V	1	Hewson et al. (2014)
Mollusca								
<i>Pinctada fucata martensi</i>	Akoya oyster disease	B	LASL-BM	NR	NR	NR	NR	Matsuyama et al. (2017)
<i>Saccostrea glomerata</i>	<i>Marteilia sydneyi</i> infection	B	CL	2	NR	M	1–50	Green & Barnes (2010)
<i>Crassostrea gigas</i>	Unnamed disease event	B	MB	15	NR	NR	NR	King et al. (2019)
<i>C. gigas</i>	<i>Vibrio</i> infection	B	MB	4	UV	M	20	Lokmer & Wegner (2015)
Porifera								
<i>Ircinia fasciculata</i>	Unnamed die-off	B	MB	15	UV/F	NR	NR	Blanquer et al. (2016)
<i>Geodia barretti</i>	Unnamed disease event	B	MB	8	NR	V	1	Luter et al. (2017)
<i>Aplysina aerophoba</i>	Unnamed disease event	B	DGGE	21	NR	NR	NR	Webster et al. (2008)
Rhodophyta								
<i>Delisea pulchra</i>	Bleaching	B	MB	NR	NR	V	1	Zozaya-Valdes et al. (2015)

et al. 2015), nucleic acid extraction and processing (Kennedy et al. 2014), PCR biases (see below), sequencing chemistry (Clooney et al. 2016) and bioinformatic analyses of sequence libraries (Allali et al. 2017). This opinion piece focuses on biases introduced by amplification-based protocols, such as PCR (Mullis et al. 1986) and φ29 polymerase-based multiple displacement amplification (Dean et al. 2001). To overcome the extraordinarily small amount of genetic material in individual cells relative to input DNA requirements for HTS sequencing, researchers employ PCR (Mullis et al. 1986) to amplify extracted mixed community DNA (i.e. template). Historically, PCR-amplified material was cloned into competent *E. coli* prior to plasmid-based sequencing (Olsen et al. 1986, Pace et al. 1986). PCR-independent approaches (e.g. λ phage libraries and bacterial artificial chromosomes) (Schmidt et al. 1991, Stein et al. 1996) were applied to study MC for 2 main reasons: (1) to link conserved molecular housekeeping genes to metabolic functional genes and (2) to avoid biases associated with PCR amplification. PCR biases are introduced by primer design (Baker et al. 2003, Wang & Qian 2009, Youssef et al. 2009, Nossa et al. 2010, Gantner et al. 2011, Kumar et al. 2011, Soergel et al. 2012, Klindworth et al. 2013, Hugerth & Andersson 2017), skewed template-to-amplicon amplification ratios (Polz & Cavanaugh 1998), nucleic acid extraction variability (Polz et al. 1999), relative amplicon length (Suzuki et al. 1998) and secondary structure characteristics (Suzuki & Giovannoni 1996), preferential amplification based on G+C:A+T composition of targets and between-species rRNA copy number

(Suzuki et al. 1998, Větrovský & Baldrian 2013) and primer choice biases (e.g. reviewed by Klindworth et al. 2013). Many HTS-based approaches, especially those used in the study of aquatic diseases, employ some type of amplification to reach input thresholds for sequencing.

Relative abundance of microbial taxa in samples of disease-affected tissues over time in comparison to asymptomatic tissues over time is often used to infer—somewhat vaguely—their potential roles in disease processes as either beneficial (relative abundance declining with disease) or potentially pathogenic (relative abundance increasing with disease) taxa (Koren & Rosenberg 2006, Egan & Gardiner 2016). The biological and ecological characteristics of these taxa are further extrapolated from genomic elements (detected in metagenomes or metatranscriptomes), or by linking housekeeping genes to predicted genome elements (Cha-Aim et al. 2012, Langille et al. 2013). While these comparisons generate testable hypotheses regarding the association between microorganisms and disease, they are rarely tested epidemiologically or experimentally. Moreover, few attempts are ever made to link the suspect infectious agent to tissue pathology at the microscopic level (Work & Meteyer 2014). There are underappreciated artifacts and biases introduced during sampling, DNA extraction and HTS library preparation which could affect interpretation of MC surveys. Furthermore, geographical and ecological factors may drive MC (e.g. Schöttner et al. 2012), which may confound differences relating to the disease itself.

2. BACTERIA FOLLOW DISSOLVED ORGANIC CARBON

Quantitative comparison of amplification-generated microbial community profiles—where overall microbial abundance is unknown—potentially leads to problems in downstream interpretation of disease or healthy association. Observations of greater representation of viral (Hewson et al. 2014, Soffer et al. 2014), bacterial (Lloyd & Pespeni 2018) or fungal (Sweet et al. 2013) operational taxonomic units in disease-affected tissues relative to asymptomatic tissues may, in part, be driven by variations in overall microbial abundance.

There have been few studies examining bacterial abundance associated with aquatic metazoans and fewer still comparing the abundance of microorganisms between asymptomatic and disease-associated

states (Tables 1 & 2). This is likely due to the time effectiveness of processing multiple samples or complications in counting DNA-containing particles against a backdrop of autofluorescence when using epifluorescence microscopy (Garren & Azam 2010, Leruste et al. 2012) or flow cytometry (Bettarel et al. 2016). Flow cytometry may be advantageous in estimating the abundance of microorganisms associated with aquatic hosts because of heterogeneity in cell distribution across membrane filters used in epifluorescence microscopy (Muthukrishnan et al. 2016). The abundance of bacteria and viruses in coral mucus and tissues is generally enriched relative to surrounding seawater by 3- to 10-fold (Table 2). Differences in overall microbial abundance are expected between disease-affected and asymptomatic tissues and their immediate overlying waters. Because heterotrophic

Table 2. Microbial abundances reported in association with marine invertebrates. WSS: white spot syndrome; WS: white syndrome; VLP: virus-like particle; -: no disease investigated

Host organism	Disease	Sample location	Result	Abundance	Reference
<i>Acropora digitifera</i>	-	Various	Bacterial abundance significantly lower on white coral skeleton than on natural coral rubbles	$1.08 \pm 0.01 \times 10^3$ cells ml^{-1} in skeleton; $1.82 \pm 0.01 \times 10^6$ cells ml^{-1} on coral rubble	Islam et al. (2016)
<i>Echinopora lamellosa</i>	WSS	Lesions prior to complete tissue loss	Bacterial abundance significantly higher in degrading tissues but no difference with ampicillin treatment	$2.9-3.0 \times 10^7$ cells cm^{-2} in asymptomatic and ampicillin-treated WSS-affected corals; 3.5×10^7 cells cm^{-2} in WSS-affected corals (no significant difference)	Smith et al. (2015)
<i>Alveopora, Favia, Fungia, Heteroxenia, Lobophyllia, Platygryra, Turbinaria</i>	-	Mucus	Viral abundance	$4-11.5 \times 10^7$ VLP ml^{-1}	Leruste et al. (2012)
<i>Fungia rupanda, Acropora formosa</i>	-	Mucus	Viral/ bacterial abundance	$2.3-5.4 \times 10^7$ VLP ml^{-1} and $4.5-9.2 \times 10^6$ cells ml^{-1}	Nguyen-Kim et al. (2015)
<i>Pocillopora damicornis</i>	-	Coral surfaces	Bacterial abundance	1.3×10^5 and 35.9×10^5 cells cm^{-2} when enriched with peptone	Garren & Azam (2012)
<i>Porites lobata</i>	-	Mucus	Bacterial abundance	$5.3-17.9 \times 10^5$ cells ml^{-1}	Garren & Azam (2010)
<i>Seria histrix, Echinopora lamellosa, Echinopora sp.</i>	WS	Not stated	Bacterial and <i>Vibrio</i> abundance in some cases elevated, in cases decreased in WS-affected tissues	$\sim 1 \times 10^6$ to 1.2×10^8 cells cm^{-3} in asymptomatic tissues; 1×10^6 to 6.4×10^8 cells cm^{-3} in WS-affected tissues	Luna et al. (2010)
<i>Oculina patagonica</i>	-	Mucus and tissue	Bacterial abundance	6.2×10^7 cells cm^{-2} in mucus and 8.3×10^8 cells cm^{-2} in tissue	Koren & Rosenberg (2006)

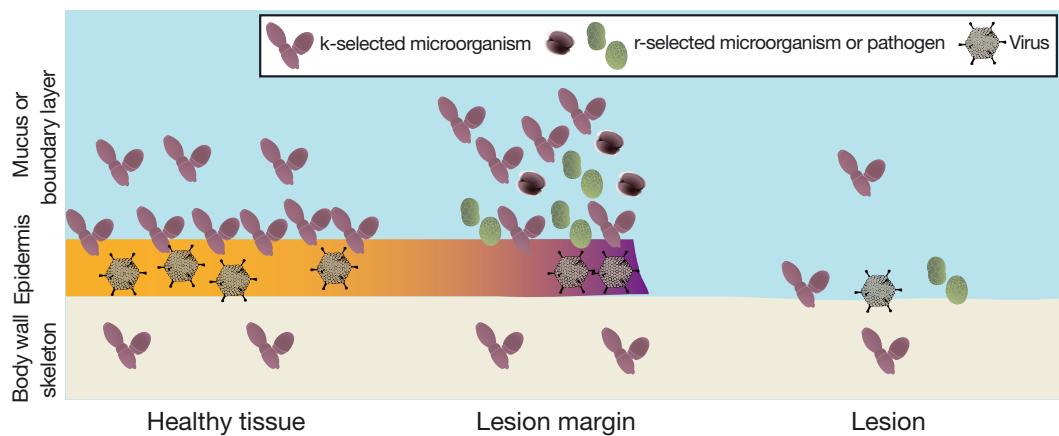


Fig. 1. Conceptualization of bacterial abundance on or near apparently healthy and lesion surfaces of hard skeleton-bearing metazoa (e.g. cnidarian). Healthy tissues include the basal and surface body wall with epidermis which may exude organic matter (mucus), which in turn supports bacterial proliferation. At lesion margins, decomposing tissues support bacterial growth (saprophytes and opportunists, in addition to pathogens). In the center of lesions, epidermal tissues may be lost, and the underlying skeleton may support fewer bacteria since organic matter is in lower quantity. Conversely, the bare skeleton may support the growth of opportunist, surface-associated microorganisms

bacterioplankton consume organic carbon (Ducklow 1983), they likely thrive on surfaces on which there is high dissolved organic carbon (DOC) availability (Fig. 1). These may include both unaffected tissues of metazoa which exchange DOC with overlying waters through excretion or exudation of mucus (Ducklow & Mitchell 1979) and disease-affected tissues which undergo degradation to DOC. Cooney et al. (2002) noted that DNA extracts were more consistently amplifiable using universal 16S rRNA primers from black band disease-affected than asymptomatic coral tissues, suggesting a greater abundance of bacteria in disease-affected tissues. Microscope counts of bacteria by Luna et al. (2010) demonstrated significantly higher bacterial abundance in white syndrome-affected corals compared to asymptomatic tissues in 15 comparisons but also observed 2 species in which bacterial abundance was lower in lesions compared to healthy tissues (the location of samples around or within lesions was not reported). Likewise, abundance of bacteria was higher in white spot-affected *Echinopora lamellosa* tissues compared to controls, but disease-affected corals that were treated with the antibiotic ampicillin were no different from healthy tissues (Smith et al. 2015). It is clear that bacteria on aquatic animal surfaces have a very large capacity to respond to nutrient inputs. For example, Garren & Azam (2012) noted a 10-fold change in bacterial abundance in peptone-enriched coral mucus relative to controls, a finding which corresponds with observations of coral mucus as an important source of bacterial nutrition in coral reef ecosystems (Wild et al. 2004a,b,

2005, Huettel et al. 2006). On the other hand, in areas of low metazoan cell abundance such as proteinaceous or mineralized matrices which are characteristic of lesions in many invertebrate taxa (e.g. tissue loss in corals; Work & Aeby 2006), the abundance of bacteria may be lower than that in surrounding tissues because of minimal DOC on which they depend. For instance, Islam et al. (2016) reported that overall bacterial abundances were 3 orders of magnitude lower in clean coral skeletons than in natural rubbles.

A wide range of template DNA quantities are used in analyses of aquatic invertebrate disease (Table 1). Variation in nucleic acid extraction protocol also has significant impacts on observed bacterial composition (Kennedy et al. 2014, Sinha et al. 2017). Among 50 studies comparing disease-affected and asymptomatic tissues of aquatic invertebrates, 27 different nucleic acid protocols were used (in 5 studies, the nucleic acid extraction protocol was not reported) (Table 1). These observed variations in MC structure urge caution in interstudy comparisons. Extraction kits utilizing mechanical lysis (e.g. bead beating) are recommended since they lead to higher DNA yield (e.g. Henderson et al. 2013), higher bacterial diversity (e.g. Maukonen et al. 2012) and better extraction from bacteria with more chemically resistant cell walls (e.g. gram-positive and spore-forming bacteria) (e.g. Salonen et al. 2010, reviewed in Pollock et al. 2018).

Assuming an average of 25 ng per reaction (Table 1) and average bacterial DNA quantity per cell of 2 fg (Vrede et al. 2002), an estimate of total bacterial load in DNA templates is $\sim 1 \times 10^7$ cells. In

contrast, studies standardizing by volume of extracted DNA typically use 1 to 2 μ l of extracted DNA. Most commercially available DNA extraction kits demand <200 mg of tissue and result in 30 to 100 μ l of DNA extract. Based on average abundances of bacteria in coral tissues or mucus ($\sim 10^5$ cells ml^{-1}) and assuming that microbial DNA comprises only $\sim 10\%$ of total DNA extraction quantity, PCR templates therefore effectively target ~ 2000 microbial cells. Considering that extraction efficiencies of DNA are rarely close to 100%, it is likely that the total number of individual microbial particles captured in HTS surveys is considerably less than reported. Hence, microbial DNA assayed by PCR may be only a tiny fraction of overall microbial community DNA. While capturing abundant constituents of microbial communities, comparisons with lower effective sampling depth (before PCR) may result in skewed proportions of rarer constituents, which in turn may lead to spurious identification of candidate disease-associated taxa.

We recently compared the total extracted DNA quantity of 34 body wall biopsy punch samples (5 mm diameter) collected from asteroids during a temporal study of sea star wasting. After 14 d in an aquarium system, individual asteroids began to show signs of wasting, and by 19 d, all individuals ($n = 12$) had died. Initially, we sampled grossly normal tissues, but after 14 and 19 d, we collected tissue from the center of lesions. The overall quantity of DNA extracted from each sample decreased from 0 to 19 d (Fig. 2). No-

table, 5 of 12 total samples collected at 19 d had DNA quantities below the detection threshold (determined by PicoGreen fluorescence). Studies which standardize DNA template based on extracted volume, particularly for samples in which DNA concentration is below detection thresholds, will suffer from inherent biases associated with variable template amounts discussed in Section 3. This may be exacerbated by inaccurate DNA quantification. Quantification of DNA with UV spectroscopy, for example, which is widely used in studies of microbial communities associated with diseases, has well-known inaccuracies in tissue settings as a result of co-extracted organic molecules (Holden et al. 2009). For this reason, it is recommended that binding dye fluorescence-based approaches over UV spectroscopy-based approaches be used to quantify template DNA. It is worth noting that the current version of the NanoDrop spectrophotometer (One/OneC; part number ND-ONE-W; Thermo Fisher Scientific) includes a new 1 sample contaminant identification protocol (Acclaro) which may provide utility to microbiome research.

3. ASSUMPTIONS OF EQUAL SAMPLING

Sampling with equal depth is a key assumption in any β diversity analyses comparing the similarity of biological communities quantitatively (i.e. through analysis of relative abundance patterns). On average, more unique taxa will be present in samples sequenced in greater depth than in samples with shallow depths (Hughes & Bohannan 2004). Because of this, when comparing different sizes, it is advised to use similarity indices that place greater importance on richness (i.e. presence/absence; qualitative) than on entirely quantitative metrics (Hughes & Bohannan 2004, Cardoso et al. 2009). Quantitative interpretation of microbial community patterns based on PCR is achieved by normalizing input (template) nucleic acid quantities between samples (Borneman & Triplett 1997, Hewson & Fuhrman 2004, Brown et al. 2005). Reducing PCR biases in contemporary HTS-based approaches is achieved by normalizing overall template DNA quantity in PCR by either volume or mass of DNA, normalizing PCR amplicon quantity between samples during library preparation, manipulating PCR cycling conditions and combining replicate PCR products. Equal sampling of PCR amplicons is achieved by rarifying library sizes to the same number of sequences (Aird et al. 2010, Kennedy et al. 2014), where resampled rarefaction analyses show complete coverage. There can be concerns with false

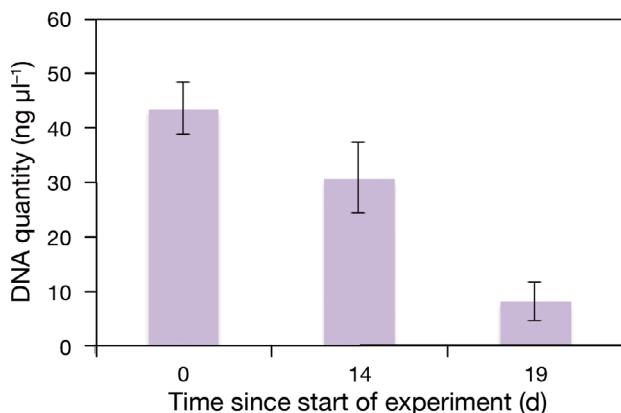


Fig. 2. Quantity of DNA extracted from tissue samples (5 mm biopsy punch of body wall tissues) of *Pisaster ochraceus* (Asteroidea, Echinodermata) during an experiment in August 2018. After 14 d individuals began to waste, and by 19 d animals experienced widespread lesions. Punches were taken from clinically normal tissues before the appearance of lesions or from lesion margins after the appearance of sea star wasting at 14 and 19 d. Error bars = SE. Decrease in DNA quantity was only significant ($p < 0.05$, Student's t -test) between 0 and 19 d

positives in rarified library comparisons (McMurdie & Holmes 2014). Additionally, rarifying DNA sequence libraries does not account for potentially unequal microbial abundances between samples (i.e. sampling that occurs at the PCR stage as template material) and may be best examined by qualitative over quantitative metrics. Kennedy et al. (2014) evaluated the effects of template mass variation on taxonomic profiles of bacterial communities and deduced that DNA template quantity had significant impacts on profile variability across a variety of samples. This study also emphasized optimization of template concentration to minimize variability in studies comparing microbial communities. Seashols-Williams et al. (2018) found that varying template amounts did not affect the relative abundances of major bacterial genera in libraries but caused significant variation in the relative abundance of rarer genera.

Biases in the amplification of templates prior to HTS are not limited to PCR-based approaches. Rolling circle amplification (also referred to as strand displacement amplification and multiple displacement amplification [MDA]; Dean et al. 2001) uses ϕ 29 DNA polymerase to generate large quantities of amplified material from extremely small (<1 ng) template quantities. Pinard et al. (2006) found that MDA generated biases that were 119 to 165 times greater than unamplified controls, while Yilmaz et al. (2010) showed pronounced unidirectional skewing in 16S rRNA libraries when templates were MDA amplified. For example, while systematic biases in overrepresentation of single-stranded DNA (ssDNA) genomes in virome libraries prepared from standardized template quantity do not impact β diversity analyses (Yilmaz et al. 2010, Parras-Moltó et al. 2018), the overrepresentation of ssDNA genomes (especially circularized templates, like plasmids) in low-template libraries (Kim et al. 2008) is cause for concern when comparing samples of variable template amounts. Other genomic approaches demanding HTS sample preparation (e.g. linker-amplified shotgun libraries; Breitbart et al. 2002) rely on at least 1 PCR step and experience the same biases as noted above.

Standardizing template quantities (~equal sample sizes) is rarely performed in studies of aquatic animal diseases. In a survey of 50 studies comparing MC in aquatic disease-affected and asymptomatic tissues, 21 did not specify PCR template amounts, and a further 12 studies standardized PCR templates by volume of extracted material or lysate (Table 1). While standardization of template DNA mass is appropriate when the majority of template DNA originates from targets, this approach poses problems when the pro-

portion of microbial target nucleic acids to non-target nucleic acids (i.e. from host) is unknown. This is further exacerbated by the potentially large contribution of host DNA relative to microorganisms in studies of host-associated microorganisms (i.e. microbiomes).

One approach to overcoming the problem of sampling variation in MC studies proposed by Seashols-Williams et al. (2018) employs quantitative PCR (qPCR) using universal 16S rRNA PCR primers to standardize bacterial genome equivalents prior to HTS library preparation. It is, however, worthwhile noting that apparently universal primer sets rarely encompass all known bacterial 16S rRNAs. For example, Wang & Qian (2009) found that in 30 primer sets used in community analyses, most had >90% coverage of known 16S rRNAs in the Ribosomal Database Project. However, 30% had <90% coverage (Wang & Qian 2009). Hence, even when using qPCR to standardize genome equivalents, care must be taken to select primer sets targeting the phylogeny of bacteria expected as constituents of the microbiome. Because viruses lack universally conserved genes, this approach is not viable in studies of viral composition. However, quantifying total viral load in tissues by microscopy (Leruste et al. 2012), especially after purification of isolated viruses (Marhaver et al. 2008, Thurber et al. 2009, Soffer et al. 2014), and standardizing quantities between metaviromes offers an alternate approach. While these approaches may lead to truly quantitative comparisons between disease-affected and asymptomatic MC, they are also subject to contamination issues noted below.

4. REAGENT CONTAMINANTS ARE EVERYWHERE

Another critical source of error in comparative microbial community analyses is the presence of contaminating DNA in molecular biology reagents or laboratories. Our knowledge of such contaminants comes from research areas where low abundance of target genes is expected. Zehr et al. (2003) reported the widespread occurrence of diverse nitrogenase (*nifH*) genes in PCR reagents, several of which were also recovered from a broad range of low-abundance studies, including arthropod microbiomes. Contamination has been noted in 16S rRNA surveys of low-biomass environments (Tanner et al. 1998, Grahn et al. 2003, Salter et al. 2014, Glassing et al. 2016, Lauder et al. 2016, Kim et al. 2017, Karstens et al. 2018, Velásquez-Mejía et al. 2018, Stinson et al.

2019, Weyrich et al. 2019) including ancient, human-built environmental, geomicrobial or forensic DNA (Willerslev et al. 2004, Fierer et al. 2008, Witt et al. 2009, Dunn et al. 2013, Weyrich et al. 2017). Many of these contaminants originate from ultrapure water (McFeters et al. 1993, Nogami et al. 1998, McAlister et al. 2002) or PCR reagents (Shen et al. 2006). Alarming, many of the contaminants share similarity with normal inhabitants of the environments targeted in sampling strategies (Salter et al. 2014, Glassing et al. 2016, Sheik et al. 2018). Because of the relatively high cost of sequencing (even with the advent of HTS), negative or positive controls, including blank samples, are rarely included in HTS microbial surveys. Yet, these are critical for understanding the diversity of potential contaminants specific to reagents and laboratory settings and are highly recommended for all community-level studies. For example, Naccache et al. (2013) identified a parvovirus-circovirus hybrid associated with seronegative hepatitis (A-E). This discovery led to further epidemiological investigation until it was resolved that the virus did not originate from template material but rather was present in spin columns used in DNA extraction. Optimal strategies for accounting for reagent or laboratory contaminants are not yet fully resolved; however, subtracting sequences matching negative control contaminants (Sheik et al. 2018), cleaning PCR reagents prior to use (reviewed in Eisenhofer et al. 2019) or identifying contaminant sequences in sequencing libraries upon reporting of results (Glassing et al. 2016) are recommended. Considering variability in template quantities used to amplify communities, it is possible that disease-affected tissue microbiomes could contain disproportionate numbers of contaminant sequences. When comparing disease-associated microbial communities to those from asymptomatic tissues, the inclusion of negative controls and accounting for detected sequences in those controls is a significant consideration. The use of positive controls (e.g. mock communities) is also recommended to identify systematically overrepresented operational taxonomic units in microbiome analyses and to assess extraction biases (Eisenhofer et al. 2019).

5. NEGATIVE CONTROLS MAY NOT ALWAYS BE NEGATIVE

The presence of non-microbial DNA in microbial community surveys may also artifactually increase amplification of contaminants. Carrier DNA (i.e. non-

template DNA) is frequently used in DNA extraction protocols and in PCR-based approaches when targeting rare template DNA, in particular when trying to avoid overexpression artifacts in expression vectors (Ellison et al. 2006). The addition of carrier DNA improves the efficiency of template amplification (Handt et al. 1994, Köhler et al. 1997). This effect is thought to be a result of lower adsorption of low-quantity templates to plasticware in the presence of higher overall DNA quantities or reduction in encounters between templates and degrading enzyme activities (Handt et al. 1994), especially when using degraded DNA. In studies of host-associated microbiomes, the presence of non-template DNA may act as a carrier in PCR amplification of low-level targets (Handt et al. 1994, Köhler et al. 1997) but at the same time cause efficient amplification of contaminating DNA. This effect would not be observed in deionized water negative controls at the PCR stage. Hence, the use of carrier DNA (e.g. non-microbial purified DNA) is recommended in 16S rRNA library preparation. Unfortunately, there is no way to account for the carrier DNA effect in metagenomic surveys, since all nucleic acids are amplified during this approach.

6. MISLEADING RESULTS IN COMPARATIVE AQUATIC DISEASE MICROBIAL SURVEYS

To illustrate the difficulties of unequal sample sizes and contaminants, I present here an example of a promising candidate pathogen which turned out to be a red herring. Viral metagenomics was used to explore viruses associated with lesions of a sea fan wasting disease, which affected the gorgonian octocoral *Gorgonia ventalina* in Puerto Rico from 2012 to 2013. Gorgonians comprise a skeleton of proteinaceous material (gorgonin) over which lie 3 cell layers. Samples from asymptomatic tissues and from the center of lesions were homogenized separately and viral metagenomes prepared following standard protocols (Thurber et al. 2009) where MDA was applied to equal volumes of extracted viral DNA. Quantitative comparative analyses of metagenome read recruitment revealed a number of contiguous sequences (contigs) that were present in lesions and absent in apparently healthy tissue, and a number of these were annotated viral based on translated nucleotide-protein BLAST (BLASTx) comparison to the non-redundant database at NCBI (Fig. 3). Based on read coverage, a promising, highly represented CRESS DNA virus-like disease-associated contig was chosen

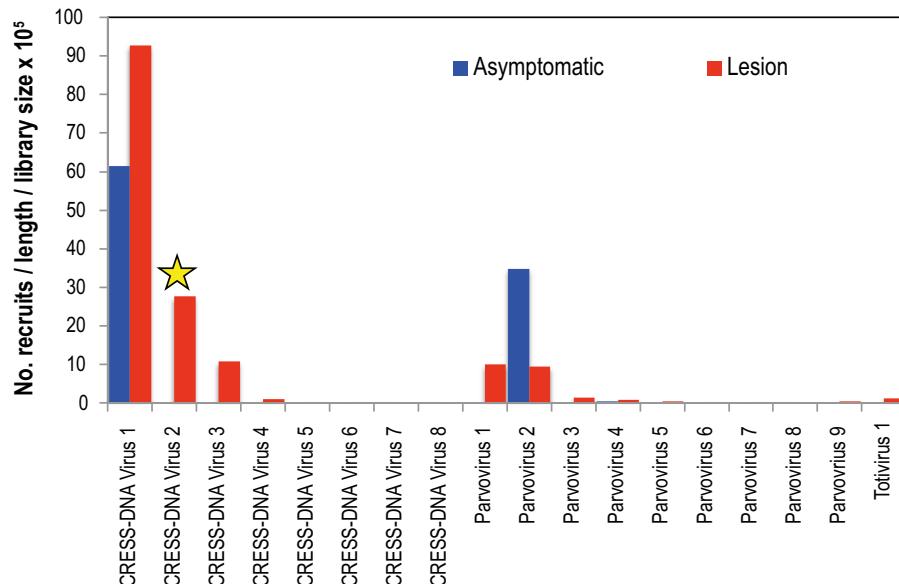


Fig. 3. Contig length and library size normalized read recruitment against 18 viral genome sequence bins. Binning was performed by pairwise BLASTn analysis with a cut-off of $e < 10^{-20}$. Annotation of contigs was performed based on comparison by BLASTx against the non-redundant database at NCBI. CRESS DNA Virus 2 was selected for downstream quantitative analyses since it had the greatest recruitment of any viral sequence bin that was absent in asymptomatic tissues

for a wider survey comparing lesions ($n = 20$) and apparently healthy tissues ($n = 20$) by quantitative PCR. However, the candidate disease-associated contig could not be detected in any sample, including those used as templates for metavirome construction. The origin of the disease-associated contig sequence was never determined; however, it may represent a reagent contaminant or very rare genotype that became well represented in libraries after amplification with MDA. I have observed this phenomenon in several other studies of aquatic diseases, which emphasizes the importance of post-genomic confirmation of putative pathogen detection by complementary approaches.

7. CAN WE REALLY INFER PATHOGENICITY BASED ON OBSERVED OR PREDICTED GENES?

Most HTS studies to date annotate microbial communities at lowest to genus level based on percent similarity across sequence cover or by phylogenetic clustering patterns (Huson et al. 2007). However, the identification of pathogens based solely on phylogeny is extremely problematic since closely related bacteria—even at the genus level—share disparate traits (Perna et al. 2001, Denef et al. 2010, Soto et al. 2014). For example, identification of known pathogenic and known beneficial bacterial genera is weak and may lead to spurious interpreta-

tions (Lamb et al. 2017). Another mechanism by which the ability of bacteria to generate pathology is inferred is through genomic analyses or by connecting predicted metabolic genes with housekeeping genes in metabarcoding surveys (Langille et al. 2013, reviewed in aquaculture settings by Ortiz-Estrada et al. 2019). The gene ontology most consistently used to ascribe pathogenicity is virulence factors (VFs), which most commonly allow bacteria to attach to surfaces, evade or suppress host immune systems, enter/exit cells, or obtain nutrients from hosts. While many VFs are specific to pathogens, homologs of VFs occur widely in non-pathogenic bacteria (Holden et al. 2004, Pallen & Wren 2007, Niu et al. 2013) and environmental bacteria (Persson et al. 2009), where they play a role in nutrient acquisition, are present on genomic islands (possibly indicating horizontal gene transfer) or may represent loose annotations to known clinical strains of poorly resolved function. Among 1901 *Vibrio* spp. genomes available in the Integrated Microbial Genomes database as of March 2019 (Joint Genome Institute), all but 13 bear genes annotated as VFs within clusters of orthologous groups. Such VFs include many that may have variable expression depending on environmental conditions, and not all VFs generate pathology exclusively (Kimes et al. 2012). An analysis by Niu et al. (2013) identified a greater number of orthologous VFs in apathogenic genomes of bacteria than in pathogens. Hence,

assigning the trait of pathogenicity based solely on taxonomic identification or the presence of VFs, especially those based on loose similarity to sequenced representatives, is extremely problematic.

8. MATCHING SEQUENCING-BASED APPROACHES WITH PATHOLOGY

It is clear that biases in comparative community analyses to highlight disease-associated microorganisms prohibit direct implication of pathogenicity. However, these approaches may provide important targets for further comparisons and classical pathology investigations. For example, the identification of the bacterial pathogen *Xenohaliotis californiensis* (a *Rickettsia*-like organism; Friedman et al. 2000), which causes withering syndrome in *Haliotis cracherodii*, was only possible after inclusion of molecular approaches (Antonio et al. 2000, Friedman et al. 2000). Histopathology and field observations alone suggested starvation or high water temperatures (Tissot 1988), or association with a coccidian parasite (Friedman et al. 1993), and it was not until these were complemented by ecological and molecular approaches that the etiology was established (Friedman et al. 2000, reviewed in Burge et al. 2016). In a similar way, agents identified in comparative disease/asymptomatic surveys require classical pathological approaches to facilitate understanding of pathology but are to date rarely matched in marine disease investigations.

9. RECOMMENDATIONS

Koch's postulates represent the gold standard for surveys of disease-causing microorganisms yet remain difficult to demonstrate for many marine microorganisms that cannot be cultured or manipulated experimentally, demanding the use of alternate approaches in uncultivated settings (Fredricks & Relman 1996, Byrd & Segre 2016). For example, disease in Atlantic salmon *Salmo salar* caused by *Tenacibaculum dicentrarchi* was diagnosed only when sequence-based approaches identified the bacterium, which then facilitated challenge experiments (Klakegg et al. 2019). HTS surveys of housekeeping genes and metagenomes provide valuable insight into the identity

of microbial consortia associated with metazoans and their lesions. However, amplification-based surveys with unknown template input may not accurately or quantitatively represent microbial communities and cannot differentiate organisms that may be causing lesions from organisms that are contaminants. Microbial community surveys implicating disease-associated taxa must be followed by quantitative validation, and inference of disease should not rest only on predicted or observed genomic features. Furthermore, they should be used as a supplement to the standard suite of tools used to investigate animal diseases and localize the presence of the suspect agent to the lesion at the cellular level (Work & Meteyer 2014, Work 2015) (Fig. 4). Several strategies exist for reducing bias in microbial community surveys as they relate to disease investigation: normalizing microbial DNA templates through microscopic counts or quantitative PCR; reducing the use of quantitative statistics for comparing communities and focusing instead on qualitative statistics; using statistics to address the compositionality of microbiome data (i.e. Gniess; Morton et al. 2017); standardizing reporting of sample location (lesion center, lesion margin, asymptomatic tissues), nucleic acid extraction protocol and DNA quantification protocol; performing negative controls parallel with each HTS run and reporting those sequences in concert with

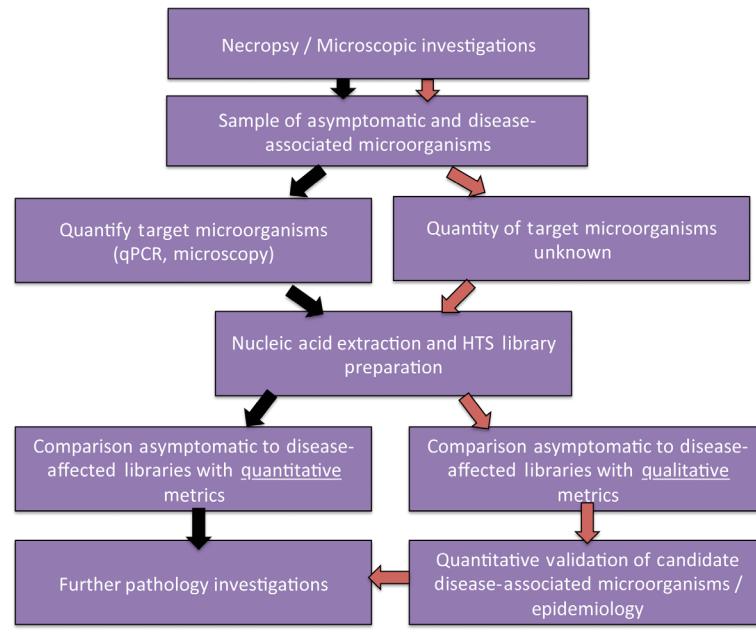


Fig. 4. Conceptualized workflow for using amplified material to elucidate potential pathogens as targets for pathology investigations. Red arrows denote predominately qualitative strategies; black arrows denote potential quantitative strategies

survey results; and performing negative controls with non-target template (carrier nucleic acids) in amplification-based surveys. Finally, comparative surveys should avoid implication of etiology or causation based on taxonomic affiliation or inferred (or observed) genome elements alone. A union of classical microbiological and modern molecular approaches (Burge et al. 2016) along with attempts to localize the agent to host cells, host pathology and host cell pathogenesis may be more appropriate in distinguishing the roles of microbiome constituents in aquatic invertebrate diseases.

Acknowledgements. The author is grateful to Thierry Work (USGS) and James Casey, Esther Angert, Elliot Jackson and Kalia Bistolas (Cornell University) for feedback on this opinion piece. The author is also grateful to Ernesto Weil (University of Puerto Rico) for samples of wasting sea fans and Christopher DeRito and Citlalli Aquino for wasting sea star DNA extraction quantities. This work was supported by NSF Grants OCE-1537111, OCE-1401727 and OCE-1356964 awarded to I.H.

LITERATURE CITED

- Aird D, Chen WS, Ross M, Connolly K and others (2010) Analyzing and minimizing bias in Illumina sequencing libraries. *Genome Biol* 11:P3
- Aires T, Serebryakova A, Viard F, Serrao EA, Engelen AH (2018) Acidification increases abundances of *Vibrionales* and *Planctomycetia* associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency. *PeerJ* 6:e4377
- Alavandi SV, Poornima M (2012) Viral metagenomics: a tool for virus discovery and diversity in aquaculture. *Indian J Virol* 23:88–98
- Allali I, Arnold JW, Roach J, Cadenas MB and others (2017) A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. *BMC Microbiol* 17:194
- Antonio DB, Andree KB, Moore JD, Friedman CS, Hendrick RP (2000) Detection of Rickettsiales-like prokaryotes by *in situ* hybridization in black abalone, *Haliotis cracherodii*, with withering syndrome. *J Invertebr Pathol* 75: 180–182
- Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. *J Microbiol Methods* 55:541–555
- Barneah O, Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2007) Characterization of black band disease in Red Sea stony corals. *Environ Microbiol* 9:1995–2006
- Bettarel Y, Thanh MC, Patrice G, Antoinette A, Nadège KN, Bui VN, Bouvier T (2016) Flow cytometric enumeration of bacterial [sic] in the coral surface microlayer. *J Microbiol Methods* 128:16–19
- Blanquer A, Uriz MJ, Cebrian E, Galand PE (2016) Snapshot of a bacterial microbiome shift during the early symptoms of a massive sponge die-off in the western Mediterranean. *Front Microbiol* 7:752
- Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. *Appl Environ Microbiol* 63: 2647–2653
- Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. *ISME J* 2:350–363
- Breitbart M, Salamon P, Andresen B, Mahaffy J and others (2002) Genomic analysis of uncultured marine viral communities. *Proc Natl Acad Sci USA* 99:14250–14255
- Brink M, Rhode C, Macey BM, Christison KW, Roodt-Wilding R (2019) Metagenomic assessment of body surface bacterial communities of the sea urchin, *Tripneustes gratilla*. *Mar Genomics* 47:100675
- Brown MV, Schwalbach MS, Hewson I, Fuhrman JA (2005) Coupling 16S-ITS rDNA clone libraries and ARISA to show marine microbial diversity: development and application to a time series. *Environ Microbiol* 7:1466–1479
- Burge CA, Friedman CS, Getchell R, House M and others (2016) Complementary approaches to diagnosing marine diseases: a union of the modern and the classic. *Philos Trans R Soc B* 371:20150207
- Byrd AL, Segre JA (2016) Adapting Koch's postulates. *Science* 351:224–226
- Cardoso P, Borges PAV, Veech JA (2009) Testing the performance of beta diversity measures on incidence data: the robustness to undersampling. *Divers Distrib* 15:1081–1090
- Cha-Aim K, Hoshida H, Fukunaga T, Akada R (2012) Fusion PCR via novel overlap sequences. *Methods Mol Biol* 852: 97–110
- Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB (2008) Decreased diversity of the fecal microbiome in recurrent *Clostridium difficile*-associated diarrhea. *J Infect Dis* 197:435–438
- Clooney AG, Fouhy F, Sleator RD, O'Driscoll A, Stanton C, Cotter PD, Claesson MJ (2016) Comparing apples to oranges?: Next generation sequencing and its impact on microbiome analyses. *PLOS ONE* 11:e0148028
- Closek CJ, Sunagawa S, DeSalvo MK, Piceno YM and others (2014) Coral transcriptome and bacterial community profiles reveal distinct yellow band disease states in *Orbicella faveolata*. *ISME J* 8:2411–2422
- Cooney RP, Pantos O, Le Tissier MD, Barer MR, O'Donnell AG, Bythell JC (2002) Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. *Environ Microbiol* 4:401–413
- Cornejo-Granados F, Lopez-Zavala AA, Gallardo-Becerra L, Mendoza-Vargas A and others (2017) Microbiome of Pacific whiteleg shrimp reveals differential bacterial community composition between wild, aquacultured and AHPND/EMS outbreak conditions. *Sci Rep* 7:11783
- Cróquer A, Bastidas C, Elliott A, Sweet M (2013) Bacterial assemblages shifts from healthy to yellow band disease states in the dominant reef coral *Montastraea faveolata*. *Environ Microbiol Rep* 5:90–96
- Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. *Genome Res* 11:1095–1099
- Denef VJ, Kalnejais LH, Mueller RS, Wilmes P and others (2010) Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. *Proc Natl Acad Sci USA* 107:2383–2390

➤ Ducklow HW (1983) Production and fate of bacteria in the oceans. *Bioscience* 33:494–501

➤ Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers of living corals. *Limnol Oceanogr* 24:715–725

➤ Dunn RR, Fierer N, Henley JB, Leff JW, Menninger HL (2013) Home life: factors structuring the bacterial diversity found within and between homes. *PLOS ONE* 8:e64133

➤ Egan S, Gardiner M (2016) Microbial dysbiosis: rethinking disease in marine ecosystems. *Front Microbiol* 7:991

➤ Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS (2019) Contamination in low microbial biomass microbiome studies: issues and recommendations. *Trends Microbiol* 27:105–117

➤ Ellison SLR, English CA, Burns MJ, Keer JT (2006) Routes to improving the reliability of low level DNA analysis using real-time PCR. *BMC Biotechnol* 6:33

➤ Feinman SG, Unzueta Martínez A, Bowen JL, Tlusty MF (2017) Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster. *Dis Aquat Org* 124:41–54

➤ Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. *Proc Natl Acad Sci USA* 105: 17994–17999

➤ Fredricks DN, Relman DA (1996) Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. *Clin Microbiol Rev* 9:18–33

➤ Frias-Lopez J, Klaus JS, Bonhoyo GT, Fouke BW (2004) Bacterial community associated with black band disease in corals. *Appl Environ Microbiol* 70:5955–5962

Friedman CS, Roberts W, Kismohandaka K, Hendrick RP (1993) Transmissibility of a coccidian parasite of abalone, *Haliotis* spp. *J Shellfish Res* 12:201–205

➤ Friedman CS, Andree KB, Beauchamp KA, Moore JD, Robbins TT, Shield JD, Hendrick RP (2000) 'Candidatus Xenohaliotis californiensis', a newly described pathogen of abalone, *Haliotis* spp., along the west coast of North America. *Int J Syst Evol Microbiol* 50:847–855

➤ Galan M, Razzauti M, Bard E, Bernard M and others (2016) 16S rRNA amplicon sequencing for epidemiological surveys of bacteria in wildlife. *mSystems* 1:e00032-16

➤ Gantner S, Andersson AF, Alonso-Saez L, Bertilsson S (2011) Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. *J Microbiol Methods* 84:12–18

➤ Garren M, Azam F (2010) New method for counting bacteria associated with coral mucus. *Appl Environ Microbiol* 76: 6128–6133

➤ Garren M, Azam F (2012) Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment. *ISME J* 6:1159–1165

➤ Gignoux-Wolfsohn SA, Vollmer SV (2015) Identification of candidate coral pathogens on white band disease-infected staghorn coral. *PLOS ONE* 10:e0134416

➤ Gignoux-Wolfsohn SA, Aronson FM, Vollmer SV (2017) Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral. *FEMS Microbiol Ecol* 93:fix080

➤ Glassing A, Dowd SE, Galandik S, Davis B, Chiodini RJ (2016) Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. *Gut Pathog* 8:24

➤ Gómez-Chiarri M, Guo XM, Tanguy A, He Y, Proestou D (2015) The use of -omic tools in the study of disease processes in marine bivalve mollusks. *J Invertebr Pathol* 131:137–154

➤ Grahn N, Olofsson M, Ellnebo-Svedlund K, Monstein HJ, Jonasson J (2003) Identification of mixed bacterial DNA contamination in broad-range PCR amplification of 16S rDNA V1 and V3 variable regions by pyrosequencing of cloned amplicons. *FEMS Microbiol Lett* 219:87–91

➤ Green TJ, Barnes AC (2010) Bacterial diversity of the digestive gland of Sydney rock oysters, *Saccostrea glomerata* infected with the paramyxean parasite, *Marteilia sydneyi*. *J Appl Microbiol* 109:613–622

➤ Hadaidi G, Ziegler M, Shore-Maggio A, Jensen T, Aeby G, Voolstra CR (2018) Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. *PeerJ* 6:e5169

➤ Handt O, Höss M, Krings M, Pääbo S (1994) Ancient DNA: methodological challenges. *Experientia* 50:524–529

➤ Henderson G, Cox F, Kittelman S, Miri VH and others (2013) Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. *PLOS ONE* 8:e74787

➤ Hewson I, Fuhrman JA (2004) Bacterioplankton species richness and diversity along an estuarine gradient in Moreton Bay, Australia. *Appl Environ Microbiol* 70: 3425–3433

➤ Hewson I, Brown JM, Burge CA, Couch CS and others (2012) Description of viral assemblages associated with the *Gorgonia ventalina* holobiont. *Coral Reefs* 31:487–491

➤ Hewson I, Button JB, Gudenkauf BM, Miner B and others (2014) Densovirus associated with sea-star wasting disease and mass mortality. *Proc Natl Acad Sci USA* 111: 17278–17283

➤ Høj L, Levy N, Baillie BK, Clode PL and others (2018) Crown-of-thorns sea star *Acanthaster cf. solaris* has tissue-characteristic microbiomes with potential roles in health and reproduction. *Appl Environ Microbiol* 84:e00181-18

➤ Holden M, Crossman L, Cerdeno-Tarraga A (2004) Pathogenomics of non-pathogens. *Nat Rev Microbiol* 2:91

➤ Holden MJ, Haynes RJ, Rabb SA, Satija N, Yang K, Blasic JR Jr (2009) Factors affecting quantification of total DNA by UV spectroscopy and PicoGreen fluorescence. *J Agric Food Chem* 57:7221–7226

➤ Huettel M, Wild C, Gonelli S (2006) Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. *Mar Ecol Prog Ser* 307:69–84

➤ Huggerth LW, Andersson AF (2017) Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. *Front Microbiol* 8:1561

Hughes JB, Bohannan BJM (2004) Application of ecological diversity statistics in microbial ecology. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) *Molecular microbial ecology manual*, 2nd edn. Kluwer, Dordrecht, p 1321–1344

➤ Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. *Genome Res* 17:377–386

➤ Islam MN, Casareto BE, Suzuki Y (2016) Eutrophication accelerates carbonate dissolution under high pCO_2 condition in coral reef ecosystems. *Bangladesh J Sci Res* 8: 427–438

➤ Karstens L, Asquith M, Caruso V, Rosenbaum JT and others (2018) Community profiling of the urinary microbiota: considerations for low-biomass samples. *Nat Rev Urol* 15: 735–749

➤ Kennedy K, Hall MW, Lynch MDJ, Moreno-Hagelsieb G, Neufeld JD (2014) Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. *Appl Environ Microbiol* 80:5717–5722

➤ Kim KH, Chang HW, Nam YD, Roh SW and others (2008) Amplification of uncultured single-stranded DNA viruses from rice paddy soil. *Appl Environ Microbiol* 74: 5975–5985

➤ Kim D, Hofstaedter CE, Zhao CY, Mattei L and others (2017) Optimizing methods and dodging pitfalls in microbiome research. *Microbiome* 5:52

➤ Kimes NE, Grim CJ, Johnson WR, Hasan NA and others (2012) Temperature regulation of virulence factors in the pathogen *Vibrio coralliilyticus*. *ISME J* 6:835–846

➤ King WL, Siboni N, Williams NLR, Kahlke T and others (2019) Variability in the composition of Pacific oyster microbiomes across oyster families exhibiting different levels of susceptibility to OsHV-1 muvar disease. *Front Microbiol* 10:473

➤ Klakegg Ø, Abayneh T, Fauske AK, Füllerth M, Sørum H (2019) A outbreak of acute disease and mortality in Atlantic salmon (*Salmo salar*) post-smolts in Norway caused by *Tenacibaculum dicentrarchi*. *J Fish Dis* 42:789–807

➤ Klindworth A, Pruesse E, Schwerer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. *Nucleic Acids Res* 41:e1

➤ Köhler T, Rost AK, Remke H (1997) Calibration and storage of DNA competitors used for contamination-protected competitive PCR. *Biotechniques* 23:722–726

➤ Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral *Oculina patagonica* in summer and winter. *Appl Environ Microbiol* 72:5254–5259

➤ Kumar PS, Brooker MR, Dowd SE, Camerlengo T (2011) Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. *PLOS ONE* 6:e20956

➤ Lamb JB, van de Water J, Bourne DG, Altier C and others (2017) Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. *Science* 355:731

➤ Langille MGI, Zaneveld J, Caporaso JG, McDonald D and others (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. *Nat Biotechnol* 31:814

➤ Lauder AP, Roche AM, Sherrill-Mix S, Bailey A and others (2016) Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. *Microbiome* 4:29

Lederberg J, McCray AT (2001) 'Ome sweet 'omics—a genealogical treasury of words. *Scientist* 15:8

➤ Leruste A, Bouvier T, Bettarel Y (2012) Enumerating viruses in coral mucus. *Appl Environ Microbiol* 78:6377–6379

➤ Lesser MP, Jarett JK (2014) Culture-dependent and culture-independent analyses reveal no prokaryotic community shifts or recovery of *Serratia marcescens* in *Acropora palmata* with white pox disease. *FEMS Microbiol Ecol* 88:457–467

➤ Littman R, Willis BL, Bourne DG (2011) Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. *Environ Microbiol Rep* 3:651–660

➤ Lloyd MM, Pespeni MH (2018) Microbiome shifts with onset and progression of sea star wasting disease revealed through time course sampling. *Sci Rep* 8:16476

➤ Lokmer A, Wegner KM (2015) Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. *ISME J* 9:670–682

➤ Luna GM, Bongiorni L, Gili C, Biavasco F, Danovaro R (2010) *Vibrio harveyi* as a causative agent of the white syndrome in tropical stony corals. *Environ Microbiol Rep* 2:120–127

➤ Luter HM, Bannister RJ, Whalan S, Kutti T, Pineda MC, Webster NS (2017) Microbiome analysis of a disease affecting the deep-sea sponge *Geodia barretti*. *FEMS Microbiol Ecol* 93:fix074

➤ Marhaver KL, Edwards RA, Rohwer F (2008) Viral communities associated with healthy and bleaching corals. *Environ Microbiol* 10:2277–2286

➤ Matsuyama T, Yasuike M, Fujiwara A, Nakamura Y and others (2017) A spirochaete is suggested as the causative agent of Akoya oyster disease by metagenomic analysis. *PLOS ONE* 12:e0182280

➤ Maukonen J, Simoes C, Saarela M (2012) The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. *FEMS Microbiol Ecol* 79:697–708

➤ McAlister MB, Kulakov LA, O'Hanlon JF, Larkin MJ, Ogden KL (2002) Survival and nutritional requirements of three bacteria isolated from ultrapure water. *J Ind Microbiol Biotechnol* 29:75–82

➤ McFeters GA, Broadaway SC, Pyle BH, Egozy Y (1993) Distribution of bacteria within operating laboratory water purification systems. *Appl Environ Microbiol* 59:1410–1415

➤ McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. *PLOS Comput Biol* 10:e1003531

➤ Meres NJ (2016) Surface biofilm interactions in epizootic shell disease of the American lobster (*Homarus americanus*). In: Dhanasekaran, Tajjudin N (eds) *Microbial biofilms—importance and applications*. IntechOpen, doi: 10.5772/63498

➤ Meres NJ, Ajuzie CC, Sikaroodi M, Vemulapalli M, Shields JD, Gillevet PM (2012) Dysbiosis in epizootic shell disease of the American lobster (*Homarus americanus*). *J Shellfish Res* 31:463–472

➤ Meyer JL, Paul VJ, Teplitski M (2014) Community shifts in the surface microbiomes of the coral *Porites astreoides* with unusual lesions. *PLOS ONE* 9:e100316

➤ Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M (2016a) Microbiome shifts and the inhibition of quorum sensing by black band disease cyanobacteria. *ISME J* 10: 1204–1216

➤ Meyer JL, Rodgers JM, Dillard BA, Paul VJ, Teplitski M (2016b) Epimicrobiota associated with the decay and recovery of *Orbicella* corals exhibiting dark spot syndrome. *Front Microbiol* 7:893

➤ Meyer JL, Paul VJ, Raymundo LJ, Teplitski M (2017) Comparative metagenomics of the polymicrobial black band disease of corals. *Front Microbiol* 8:618

➤ Morton JT, Sanders J, Quinn RA, McDonald D and others (2017) Balance trees reveal microbial niche differentiation. *mSystems* 2:e00162-16

➤ Mullis K, Faloona F, Scharf S, Saki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA *in vitro*: the polymerase chain reaction. *Cold Spring Harb Symp Quant Biol* 51:263

➤ Munang'andu HM (2016) Environmental viral metagenomics analyses in aquaculture: applications in epi-

demiology and disease control. *Front Microbiol* 7: 1986

➤ Munang'andu HM, Mugimba KK, Byarugaba DK, Mutoloki S, Evensen O (2017) Current advances on virus discovery and diagnostic role of viral metagenomics in aquatic organisms. *Front Microbiol* 8:406

➤ Muthukrishnan T, Govender A, Dobretsov S, Abed RMM (2016) Evaluating the reliability of counting bacteria using epifluorescence microscopy. *J Mar Sci Eng* 5:4

➤ Naccache SN, Greninger AL, Lee D, Coffey LL and others (2013) The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. *J Virol* 87:11966–11977

➤ Nguyen-Kim H, Bettarel Y, Bouvier T, Bouvier C and others (2015) Coral mucus is a hot spot for viral infections. *Appl Environ Microbiol* 81:5773–5783

➤ Niu C, Yu D, Wang YL, Ren HG and others (2013) Common and pathogen-specific virulence factors are different in function and structure. *Virulence* 4:473–482

➤ Nogami T, Ohto T, Kawaguchi O, Zaitsu Y, Sasaki S (1998) Estimation of bacterial contamination in ultrapure water: application of the anti-DNA antibody. *Anal Chem* 70: 5296–5301

➤ Nossa CW, Oberdorf WE, Yang LY, Aas JA and others (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. *World J Gastroenterol* 16:4135–4144

➤ Núñez-Pons L, Work TM, Angulo-Preckler C, Moles J, Avila C (2018) Exploring the pathology of an epidermal disease affecting a circum-Antarctic sea star. *Sci Rep* 8:11353

➤ Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR (1986) Microbial ecology and evolution: a ribosomal RNA approach. *Annu Rev Microbiol* 40:337–365

➤ Ordovas JM, Mooser V (2006) Metagenomics: the role of the microbiome in cardiovascular diseases. *Curr Opin Lipidol* 17:157–161

➤ Ortiz-Estrada AM, Gollas-Galvan T, Martinez-Cordova LR, Martinez-Porchas M (2019) Predictive functional profiles using metagenomic 16S rRNA data: a novel approach to understanding the microbial ecology of aquaculture systems. *Rev Aquacult* 11:234–245

➤ Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. *Adv Microb Ecol* 9:1–55

➤ Pallen MJ, Wren BW (2007) Bacterial pathogenomics. *Nature* 449:835–842

➤ Pantos O, Cooney RP, Le Tissier MD, Barer MR, O'Donnell AG, Bythell JC (2003) The bacterial ecology of a plague-like disease affecting the Caribbean coral *Montastrea annularis*. *Environ Microbiol* 5:370–382

➤ Parras-Moltó M, Rodriguez-Galet A, Suarez-Rodriguez P, Lopez-Bueno A (2018) Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. *Microbiome* 6:119

➤ Perna NT, Plunkett G III, Burland V, Mau B and others (2001) Genome sequence of enterohaemorrhagic *Escherichia coli* O157:H7. *Nature* 409:529–533

➤ Persson OP, Pinhassi J, Riemann L, Marklund BI and others (2009) High abundance of virulence gene homologues in marine bacteria. *Environ Microbiol* 11:1348–1357

➤ Pinard R, de Winter A, Sarkis GJ, Gerstein MB and others (2006) Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. *BMC Genomics* 7:216

➤ Pollock FJ, Wada N, Torda G, Willis BL, Bourne DG (2017) White syndrome-affected corals have a distinct microbiome at disease lesion fronts. *Appl Environ Microbiol* 83:e02799-16

➤ Pollock J, Glendinning L, Wisenchanwet T, Watson M (2018) The madness of microbiome: attempting to find consensus 'best practice' for 16S microbiome studies. *Appl Environ Microbiol* 84:e02627-e17

➤ Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. *Appl Environ Microbiol* 64: 3724–3730

➤ Polz MF, Harbison C, Cavanaugh CM (1999) Diversity and heterogeneity of epibiotic bacterial communities on the marine nematode *Euboschistus dianae*. *Appl Environ Microbiol* 65:4271–4275

➤ Pootakham W, Mhantong W, Putchim L, Yoocha T and others (2018) Dynamics of coral-associated microbiomes during a thermal bleaching event. *Microbiolgyopen* 7:e00604

➤ Quintanilla E, Ramirez-Portilla C, Adu-Oppong B, Walljasper G and others (2018) Local confinement of disease-related microbiome facilitates recovery of gorgonian sea fans from necrotic-patch disease. *Sci Rep* 8:14636

➤ Roder C, Arif C, Bayer T, Aranda M and others (2014) Bacterial profiling of white plague disease in a comparative coral species framework. *ISME J* 8:31–39

➤ Salonen A, Nikkilä J, Jalanka-Tuovinen J, Immonen O and others (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. *J Microb Meth* 81:127–134

➤ Salter SJ, Cox MJ, Turek EM, Calus ST and others (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. *BMC Biol* 12:87

➤ Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S ribosomal RNA gene cloning and sequencing. *J Bacteriol* 173: 4371–4378

➤ Schöttner S, Wild C, Hoffmann F, Boettius A, Ramette A (2012) Spatial scales of bacterial diversity in cold-water coral reef ecosystems. *PLOS ONE* 7:e32093

➤ Seashols-Williams S, Green R, Wohlfahrt D, Brand A and others (2018) An accurate bacterial DNA quantification assay for HTS library preparation of human biological samples. *Electrophoresis* 39:2824–2832

➤ Séré MG, Tortosa P, Chabanet P, Turquet J, Quod JP, Schleyer MH (2013) Bacterial communities associated with *Porites* white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs. *PLOS ONE* 8: e83746

➤ Sheik CS, Reese BK, Twing KI, Sylvan JB and others (2018) Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the census of deep life. *Front Microbiol* 9:840

➤ Shen H, Rogelj S, Kieft TL (2006) Sensitive, real-time PCR detects low-levels of contamination by *Legionella pneumophila* in commercial reagents. *Mol Cell Probes* 20: 147–153

➤ Shirur KP, Jackson CR, Goulet TL (2016) Lesion recovery and the bacterial microbiome in two Caribbean gorgonian corals. *Mar Biol* 163:238

➤ Sinha R, Abu-Ali G, Vogtmann E, Fodor AA and others (2017) Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. *Nat Biotechnol* 35: 1077

Smith D, Leary P, Craggs J, Bythell J, Sweet M (2015) Microbial communities associated with healthy and white syndrome-affected *Echinopora lamellosa* in aquaria and experimental treatment with the antibiotic ampicillin. *PLOS ONE* 10:e0121780

Soergel DAW, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. *ISME J* 6:1440–1444

Soffer N, Brandt ME, Correa AMS, Smith TB, Thurber RV (2014) Potential role of viruses in white plague coral disease. *ISME J* 8:271–283

Soto W, Rivera FM, Nishiguchi MK (2014) Ecological diversification of *Vibrio fischeri* serially passaged for 500 generations in novel squid host *Euprymna tasmanica*. *Microb Ecol* 67:700–721

Stein JL, Marsh TL, Wu KY, Shizuya H, DeLong EF (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. *J Bacteriol* 178:591–599

Stinson LF, Keelan JA, Payne MS (2019) Identification and removal of contaminating microbial DNA from PCR reagents: impact on low-biomass microbiome analyses. *Lett Appl Microbiol* 68:2–8

Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL and others (2009) Bacterial diversity and white plague disease-associated community changes in the Caribbean coral *Montastraea faveolata*. *ISME J* 3:512–521

Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 18S rRNA genes by PCR. *Appl Environ Microbiol* 62:625–630

Suzuki M, Rappé MS, Giovannoni SJ (1998) Kinetic bias in estimates of picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. *Appl Environ Microbiol* 64:4522–4529

Sweet M, Burn D, Croquer A, Leary P (2013) Characterisation of the bacterial and fungal communities associated with different lesion sizes of dark spot syndrome occurring in the coral *Stephanocoenia intersepta*. *PLOS ONE* 8:e62580

Tanner MA, Goebel BM, Dojka MA, Pace NR (1998) Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. *Appl Environ Microbiol* 64:3110–3113

Tedjo DI, Daisy MA, Jonkers AE, Savelkoul PH and others (2015) The effects of sampling strategy and storage on the fecal microbiota composition in healthy and diseased subjects. *PLOS ONE* 10:e0126685

Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F (2009) Laboratory procedures to generate viral metagenomes. *Nat Protoc* 4:470–483

Tissot BN (1988) Mass mortality of black abalone in southern California. *Am Zool* 28:A69

Tracy AM, Koren O, Douglas N, Weil E, Harvell CD (2015) Persistent shifts in Caribbean coral microbiota are linked to the 2010 warm thermal anomaly. *Environ Microbiol Rep* 7:471–479

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature* 444:1027–1031

Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C and others (2009) Metagenomic analysis of stressed coral holobionts. *Environ Microbiol* 11:2148–2163

Velásquez-Mejía EP, de la Cuesta-Zuluaga J, Escobar JS (2018) Impact of DNA extraction, sample dilution, and reagent contamination on 16S rRNA gene sequencing of human feces. *Appl Microbiol Biotechnol* 102:403–411

Větrovský T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. *PLOS ONE* 8:e57923

Vezzulli L, Pezzati E, Huete-Stauffer C, Pruzzo C, Cerrano C (2013) 16SrDNA pyrosequencing of the Mediterranean gorgonian *Paramuricea clavata* reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks. *PLOS ONE* 8:e67745

Vrede K, Heldal M, Norland S, Bratbak G (2002) Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. *Appl Environ Microbiol* 68:2965–2971

Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. *PLOS ONE* 4:e7401

Webster NS, Xavier JR, Freckleton M, Motti CA, Cobb R (2008) Shifts in microbial and chemical patterns within the marine sponge *Aplysina aerophoba* during a disease outbreak. *Environ Microbiol* 10:3366–3376

Wen L, Ley RE, Volchkov PY, Stranges PB and others (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. *Nature* 455:1109–1113

Weyrich LS, Duchene S, Soubrier J, Arriola L and others (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. *Nature* 544:357

Weyrich LS, Farrer AG, Eisenhofer R, Arriola LA and others (2019) Laboratory contamination over time during low-biomass sample analysis. *Mol Ecol Resour* 19:982–996

Wild C, Huettel M, Klueter A, Kremb S, Rasheed M, Jorgensen B (2004a) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. *Nature* 428:66–70

Wild C, Rasheed M, Werner U, Franke U, Johnstone R, Huettel M (2004b) Degradation and mineralization of coral mucus in reef environments. *Mar Ecol Prog Ser* 267:159–171

Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. *Mar Ecol Prog Ser* 287:87–98

Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. *Trends Ecol Evol* 19:141–147

Witt N, Rodger G, Vandesompele J, Benes V, Zumla A, Rook GA, Huggett JF (2009) An assessment of air as a source of DNA contamination encountered when performing PCR. *J Biomol Tech* 20:236–240

Work TM (2015) Mortality investigation. In: Franson JC, Friend M, Gibbs SEJ, Wild MA (eds) *Field manual of wildlife diseases. US Geological Survey Techniques and Methods* 15-B3

Work TM, Aeby GS (2006) Systematically describing gross lesions in corals. *Dis Aquat Org* 70:155–160

Work T, Meteyer C (2014) To understand coral disease, look at coral cells. *EcoHealth* 11:610–618

Xiong J, Wang K, Wu J, Qiuqian L, Yang K, Qian Y, Zhang D (2015) Changes in intestinal bacterial communities are closely associated with shrimp disease severity. *Appl Microbiol Biotechnol* 99:6911–6919

✉ Xiong J, Zhu J, Dai W, Dong C, Qiu Q, Li C (2017) Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. *Environ Microbiol* 19:1490–1501

✉ Yilmaz S, Allgaier M, Hugenholtz P (2010) Multiple displacement amplification compromises quantitative analysis of metagenomes. *Nat Methods* 7:943–944

✉ Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. *Appl Environ Microbiol* 75:5227–5236

✉ Zehr JP, Crumbliss LL, Church MJ, Omoregie EO, Jenkins BD (2003) Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes. *Biotechniques* 35:996

✉ Zozaya-Valdes E, Egan S, Thomas T (2015) A comprehensive analysis of the microbial communities of healthy and diseased marine macroalgae and the detection of known and potential bacterial pathogens. *Front Microbiol* 6:146

*Editorial responsibility: Stephen Feist,
Weymouth, UK*

*Submitted: May 20, 2019; Accepted: October 11, 2019
Proofs received from author(s): December 10, 2019*