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1.  INTRODUCTION

Improvements in sequencing technologies and
costs over the last decade have allowed elucidation
of the complex interaction between microbial com-
munities and their hosts, known as the host-
associated microbiome (Lederberg & McCray 2001).
An attractive ex tension of fundamental micro -
biome ecology is its re lationship to disease (Koren &
Rosenberg 2006, Egan & Gardiner 2016). Numerous
studies have identified links between microbiome
composition (MC) and vertebrate conditions, e.g.
obesity (Turnbaugh et al. 2006), susceptibility to
infection by commensal microorganisms (Chang et
al. 2008) and metabolic and cardiovascular diseases
(Ordovas & Mooser 2006, Wen et al. 2008). While
most studies focus on human microbiomes, there is
increasing interest in their use in studying wildlife

diseases (Galan et al. 2016). In aquatic ha bitats,
metabarcoding and meta genomic approaches are
gaining popularity in the study of aquacul tured
taxa (reviewed in Alavandi & Poornima 2012,
Gómez- Chiarri et al. 2015, Munang’andu 2016,
Munang’andu et al. 2017).

While studies of the association between MC and
aquatic diseases have taken place since the late 1990s
(Cooney et al. 2002, Pantos et al. 2003), renewed in -
terest has spawned from greater accessibility of high-
throughput sequencing (HTS)-based metagenomic
and metabarcoding approaches and bioinformatics/
analytical tools (Table 1). These studies extend from
earlier fundamental microbial ecological investigations
asking: Who is present and why?

Microbial community analyses in the context of
disease are, however, subject to many biases, in clu -
ding those imposed by sampling strategy (e.g. Tedjo
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Phylum/host Disease                           Target    Approach      NAT         NAT     Template    NATQ                       Reference
                                         domain        used       extraction  quanti-   standard-
                                                                               protocol    fication     ization

Arthropoda
Litopeneaus vannamei Early mortality/                  B              MB              24              F              M             200                  Cornejo-Granados
  acute pancreatic                                                                                                                                      et al. (2017)
  necrosis disease

Homarus americanus           Epizootic shell disease      B          LH-PCR           9              NR           NR            NR                       Meres (2016)
H. americanus                       Epizootic shell disease      B          LH-PCR          NR            NR           NR            NR                  Meres et al. (2012)
H. americanus                       Shell disease                      B              MB               7              NR             V            0.5−2              Feinman et al. (2017)
Litopenaeus vannamei         Unnamed disease event   B              MB              13             NR            M              50                    Xiong et al. (2015)
L. vannamei                           Unnamed disease event   B              MB              13             NR            M              50                    Xiong et al. (2017)
Synisoma nadejda                Acidification impacts         B              MB              25             NR            M             ~10                   Aires et al. (2018)

Cnidaria
Gorgonia ventalina               Aspergillosis                       B     LASL/φ29-VM     18             NR             V               1                   Hewson et al. (2012)
Montastrea annularis           Black band disease           C           TRFLP             2              NR             V            5−30            Frias-Lopez et al. (2004)
and Diploria strigosa

Montastraea, Orbicella         Black band disease           B              MB               7              NR           NR            NR                 Meyer et al. (2016a)
and Pseudodiploria

Montastraea cavernosa        Black band disease           B          MB/BM            7              NR           NR            NR                  Meyer et al. (2017)
Favites sp. and Favia sp.      Black band disease           B               CL                7              NR             V             1−2                Barneah et al. (2007)
Coral                                       Bleaching                           V        LASL-VM          3              NR           NR            NR               Marhaver et al. (2008)
Acropora millepora               Bleaching                           B          φ29-VM          NR            NR           NR            NR                 Littman et al. (2011)
Porites lobata                         Bleaching                           B              MB              14            UV            M            5−35                Hadaidi et al. (2018)
Porites lutea                           Bleaching                           B              MB              19            UV            M              50               Pootakham et al. (2018)
Acropora millepora               Bleaching                           B               CL               22            UV           NR            NR                  Bourne et al. (2008)
Montastraea, Orbicella         Dark spot syndrome          B              MB               7              NR           NR            NR                 Meyer et al. (2016b)
and Pseudodiploria

Stephanocoenia intersepta  Dark spot syndrome        B/F          DGGE            15             NR            M              20                   Sweet et al. (2013)
Pacifigorgia cairnsi               Necrotic patch disease      B              MB               7            UV/F           V               1                Quintanilla et al. (2018)
Eunicea flexuosa and           Physical injury                   B              MB              NR            NR           NR            NR                   Shirur et al. (2016)
Pseudoplexaura porosa

Porites astreoides                  Unnamed disease event   B              MB               7              NR            M             ~15                  Meyer et al. (2014)
Paramuricea clavata             Unnamed disease event   B              MB              19              F              M              10                  Vezzulli et al. (2013)
Porites compressa                 Various stress impacts       B          φ29-BM           17             NR            M               1              Vega Thurber et al. (2009)
Gorgonia ventalina and       Warming impacts              B              MB               7               F              M              14                    Tracy et al. (2015)
Orbicella faveolata

Acropora darmicornis          White band disease           B              MB               1              NR           NR            NR        Gignoux-Wolfsohn et al. (2017)
A. darmicornis                       White band disease           B              MB               1              NR           NR            NR   Gignoux-Wolfsohn & Vollmer (2015)
Acropora hyacinthus            White band disease           B              MB               6              NR           NR            NR                  Pollock et al. (2017)
Montastrea faveolata            White band disease           B     CL/PhyloChip     11             NR            M              50                Sunagawa et al. (2009)
Pavona duerdeni and           White band disease           B        Microarray        16           UV/F          NR        0.15−0.5              Roder et al. (2014)
Porites lutea

Porites lutea                           White patch syndrome      B              MB               5              NR            M              10                     Séré et al. (2013)
Montastraea annularis         White plague disease       V          φ29-VM          10             NR           NR            NR                   Soffer et al. (2014)
M. annularis                          White plague disease        B           DGGE            12             NR             V              1.5                   Pantos et al. (2003)
Acropora palmata                 White pox disease             B              MB               3              NR           NR            NR                Lesser & Jarett (2014)
Echinopora lamellosa           White syndrome                B              MB              15             NR            M               2                     Smith et al. 2015)
Orbicella faveolata               Yellow band disease         B     CL/PhyloChip      6              NR            M              20                   Closek et al. 2014)
Montastrea faveolata            Yellow band disease         B           DGGE            15             NR           NR            NR                 Cróquer et al. (2013)

Table 1. Summary of nucleic acid template (NAT) extraction, quantification and standardization in studies of aquatic invertebrate
diseases comparing asymptomatic to disease-affected microbial communities in/on tissues. NAT extraction protocols—1: Agen-
court DNAdvance Bead Extraction Kit; 2: bead-beating, freeze−thaw and phenol−chloroform extraction; 3: CTAB extraction and
isopropanol extraction; 4: GE Illustra TriplePrep Kit; 5: Macherey-Nagel NucleoSpin Soil Kit; 6: MoBio PowerPlant DNA
Extraction Kit; 7: MoBio PowerSoil DNA Kit; 8: MoBio Soil DNA Isolation Kit; 9: MP Biomedicals FastDNA Spin Kit; 10: organic
extraction protocol; 11: Proteinase K, guanadinium isothiocyanate and isopropanol extraction; 12: QBiogene FastDNA Kit; 13: QI-
Amp DNA Stool Mini Kit; 14: Qiagen AllPrep DNA/RNA Mini Kit; 15: Qiagen DNeasy Blood & Tissue Kit; 16: Qiagen DNeasy
Plant Kit; 17: Qiagen Mini Kit; 18: Qiagen RNeasy Plus Kit; 19: Roche High Pure Template PCR Preparation Kit; 20: sodium
dodecyl sulfate, potassium acetate and isopropanol extraction; 21: Stratec RTP Bacteria Mini Kit; 22: sucrose, sodium dodecyl sul-
fate, lysozyme, Proteinase K and phenol−chloroform extraction; 23: TRIzol Reagent Kit; 24: Zymo ZR Soil Microbe DNA
MicroPrep Kit; 25: Zymo Quick gDNA Kit; 26: Zymo ZR Tissue and Insect Kit; 27: Zymo ZR Viral DNA Kit. NATQ: nucleic acid
template quantity (ng if mass or µl if volume); B: bacteria; C: cyanobacteria; V: viruses; F: fungi; MB: metabarcoding of 16S rRNA;
CL: clone libraries of 16S rRNA; LH-PCR: length heterogeneity PCR; LASL: linker-amplified shotgun libraries; φ29: φ29 DNA
polymerase; VM: viral metagenome; BM: bacterial metagenome; TRFLp: terminal restriction fragment length polymorphism;

F: fluorescence based; UV: spectrophotometer based; M: mass of NAT; V: volume of NAT; NR: not reported

(Table 1 continued on next page)



Hewson: Technical bias in comparative microbiome disease studies

et al. 2015), nucleic acid extraction and processing
(Kennedy et al. 2014), PCR biases (see below), se -
quen cing chemistry (Clooney et al. 2016) and bio -
informatic analyses of sequence libraries (Allali et al.
2017). This opinion piece focuses on biases intro-
duced by amplification-based protocols, such as PCR
(Mullis et al. 1986) and φ29 polymerase-based multi-
ple displace ment amplification (Dean et al. 2001).
To overcome the extraordinarily small amount of
genetic material in individual cells relative to input
DNA re quire ments for HTS sequencing, researchers
employ PCR (Mullis et al. 1986) to amplify extracted
mixed community DNA (i.e. template). Historically,
PCR- amplified material was cloned into competent
E. coli prior to plasmid-based sequencing (Olsen et
al. 1986, Pace et al. 1986). PCR-independent ap -
proaches (e.g. λ phage libraries and bacterial artifi-
cial chromosomes) (Schmidt et al. 1991, Stein et al.
1996) were applied to study MC for 2 main reasons:
(1) to link conserved molecular housekeeping genes
to metabolic functional genes and (2) to avoid biases
associated with PCR amplification. PCR biases are
introduced by primer design (Baker et al. 2003, Wang
& Qian 2009, Youssef et al. 2009, Nossa et al. 2010,
Gantner et al. 2011, Kumar et al. 2011, Soergel et al.
2012, Klindworth et al. 2013, Hugerth & Andersson
2017), skewed template-to-amplicon amp lification
ratios (Polz & Cavanaugh 1998), nucleic acid extrac-
tion variability (Polz et al. 1999), relative amplicon
length (Suzuki et al. 1998) and secondary structure
characteristics (Suzuki & Giovannoni 1996), preferen-
tial amplification based on G+C:A+T composition of
targets and between-species rRNA copy number

(Suzuki et al. 1998, Větrovský & Baldrian 2013) and
primer choice biases (e.g. reviewed by Klindworth et
al. 2013). Many HTS-based approaches, especially
those used in the study of aquatic diseases, employ
some type of amplification to reach input thresholds
for sequencing.

Relative abundance of microbial taxa in samples of
disease-affected tissues over time in comparison to
asymptomatic tissues over time is often used to
infer — somewhat vaguely — their potential roles in
disease processes as either beneficial (relative abun-
dance declining with disease) or potentially patho-
genic (relative abundance increasing with disease)
taxa (Koren & Rosenberg 2006, Egan & Gardiner
2016). The biological and ecological characteristics of
these taxa are further extrapolated from genomic
elements (detected in metagenomes or metatran-
scriptomes), or by linking housekeeping genes to
predicted genome elements (Cha-Aim et al. 2012,
Langille et al. 2013). While these comparisons gene -
rate testable hypotheses regarding the association
between microorganisms and disease, they are
rarely tested epidemiologically or experimentally.
Moreover, few attempts are ever made to link the
suspect infectious agent to tissue pathology at the
microscopic level (Work & Meteyer 2014). There are
underappreciated artifacts and biases introduced
during sampling, DNA extraction and HTS library
preparation which could affect in terpretation of MC
surveys. Furthermore, geographical and ecological
factors may drive MC (e.g. Schöttner et al. 2012),
which may confound differences re lating to the
 disease itself.
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Phylum/host Disease                                   Target   Approach      NAT         NAT     Template   NATQ                 Reference
                             domain       used      extraction   quanti-   standard-
                                                                protocol    fication     ization

Echinodermata
Tripneustes gratilla              Bald sea urchin disease            B             MB             21         F/qPCR        NR           NR             Brink et al. (2019)
Odontaster validus               Unnamed disease event          B/F           MB              3             NR             V             1.5        Núñez-Pons et al. (2018)
Acanthaster planci               Unnamed disease event           B             MB             26            UV            NR           NR               Hój et al. (2018)
Pisaster ochraceus               Wasting                                      B             MB             23            UV             V              2           Lloyd & Pespeni (2018)
Asteroids                               Wasting                                      V         φ29-VM          27            NR             V              1             Hewson et al. (2014)

Mollusca
Pinctada fucata martensii    Akoya oyster disease                B        LASL-BM       NR            NR            NR           NR        Matsuyama et al. (2017)
Saccostrea glomerata          Marteilia sydneyi infection       B              CL               2             NR             M          1−50        Green & Barnes (2010)
Crassostrea gigas                 Unnamed disease event           B             MB             15            NR            NR           NR              King et al. (2019)
C. gigas                                 Vibrio infection                          B             MB              4             UV            M             20        Lokmer & Wegner (2015)

Porifera
Ircinia fasciculata                 Unnamed die-off                       B             MB             15           UV/F          NR           NR          Blanquer et al. (2016)
Geodia barretti                     Unnamed disease event           B             MB              8             NR             V              1               Luter et al. (2017)
Aplysina aerophoba             Unnamed disease event           B          DGGE           21            NR            NR           NR           Webster et al. (2008)

Rhodophyta
Delisea pulchra                    Bleaching                                   B             MB             NR            NR             V              1       Zozaya-Valdes et al. (2015)

Table 1 (continued)
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2.  BACTERIA FOLLOW DISSOLVED
ORGANIC CARBON

Quantitative comparison of amplification-generated
microbial community profiles — where overall micro-
bial abundance is unknown — potentially leads to
problems in downstream interpretation of disease or
healthy association. Observations of greater represen-
tation of viral (Hewson et al. 2014, Soffer et al. 2014),
bacterial (Lloyd & Pespeni 2018) or fungal (Sweet et al.
2013) operational taxonomic units in disease-affected
tissues relative to asymptomatic tissues may, in part, be
driven by variations in overall microbial abundance.

There have been few studies examining bacterial
abundance associated with aquatic metazoans and
fewer still comparing the abundance of microorgan-
isms between asymptomatic and disease-associated

states (Tables 1 & 2). This is likely due to the time ef-
fectiveness of processing multiple samples or compli -
cations in counting DNA-containing particles against
a backdrop of autofluorescence when using epifluo-
rescence microscopy (Garren & Azam 2010, Leruste
et al. 2012) or flow cytometry (Bettarel et al. 2016).
Flow cytometry may be advantageous in estimating
the abundance of microorganisms associated with
aquatic hosts because of heterogeneity in cell distri-
bution across membrane filters used in epifluores-
cence microscopy (Muthukrishnan et al. 2016). The
abundance of bacteria and viruses in coral mucus and
tissues is generally enriched relative to surrounding
seawater by 3- to 10-fold (Table 2). Differences in
overall microbial abundance are expected between
disease-affected and asymptomatic tissues and their
immediate overlying waters. Because heterotrophic
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Host organism Disease  Sample location       Result                                     Abundance Reference

Acropora digitifera −              Various              Bacterial abundance            1.08 ± 0.01 × 103 cells ml−1 Islam et al.
                                          significantly lower              in skeleton; 1.82 ± 0.01 × (2016)
                                          on white coral skeleton      106 cells ml−1 on coral rubble
                                          than on natural
                                          coral rubbles

Echinopora lamellosa WSS     Lesions prior to        Bacterial abundance            2.9−3.0 × 107 cells cm−2 Smith et al.
         complete tissue        significantly higher            in asymptomatic (2015)
                   loss                  in degrading tissues           and ampicillin-treated 
                                          but no difference with        WSS-affected corals; 
                                          ampicillin treatment           3.5 × 107 cells cm−2 in
                                                                                                                                      WSS-affected corals
                                                                                         (no significant difference)
                                                                                         

Alveopora, Favia, −               Mucus               Viral abundance                   4−11.5 × 107 VLP ml−1 Leruste et al.
Fungia, Heteroxenia,                                                                                          (2012)
Lobophyllia, Platygyra,
Turbinaria

                      
Fungia rupanda, −               Mucus               Viral/ bacterial                      2.3−5.4 × 107 VLP ml−1 and Nguyen-Kim et al.
Acropora formosa                                           abundance                          4.5−9.2 × 106 cells ml−1 (2015)

Pocillopora damicornis −         Coral surfaces         Bacterial abundance            1.3 × 105 and 35.9 × 105 cells Garren & Azam
                                                                                                                                      cm−2 when enriched with (2012)
                                                                                         peptone

Porites lobata −               Mucus               Bacterial abundance            5.3−17.9 × 105 cells ml−1 Garren & Azam
                                                                                         (2010)

Seria histrix, WS           Not stated            Bacterial and Vibrio             ~1 × 106 to 1.2 × 108 cells cm−3 Luna et al.
Echinopora lamellosa,                                           abundance in some            in asymptomatic tissues; (2010)
Echinopora sp.                                           cases elevated, in               1 × 106 to 6.4 × 108 cells cm−3

                                          cases decreased in              in WS-affected tissues
                                          WS-affected tissues

Oculina patagonica −      Mucus and tissue      Bacterial abundance            6.2 × 107 cells cm−2 in mucus Koren & Rosenberg
                                                                                         and 8.3 × 108 cells cm−2 (2006)
                                                                                         in tissue

Table 2. Microbial abundances reported in association with marine invertebrates. WSS: white spot syndrome; WS: white 
syndrome; VLP: virus-like particle; –: no disease investigated
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bacterioplankton consume organic carbon (Ducklow
1983), they likely thrive on surfaces on which there
is high dissolved organic carbon (DOC) availability
(Fig. 1). These may include both unaffected tissues of
metazoa which exchange DOC with overlying waters
through excretion or exudation of mucus (Ducklow &
Mitchell 1979) and disease-affected tissues which un-
dergo degradation to DOC. Cooney et al. (2002) noted
that DNA extracts were more consistently amplifiable
using universal 16S rRNA primers from black band
disease-affected than asymptomatic coral tissues, sug -
gesting a greater abundance of bacteria in disease-
affected tissues. Microscope counts of bacteria by
Luna et al. (2010) demonstrated significantly higher
bacterial abundance in white syndrome-affected corals
compared to asymptomatic tissues in 15 comparisons
but also ob served 2 species in which bac terial abun-
dance was lower in lesions compared to healthy tis-
sues (the location of samples around or within lesions
was not reported). Likewise, abundance of bacteria
was higher in white spot-affected Echinopora lamel-
losa tissues compared to controls, but disease-
affected corals that were treated with the antibiotic
ampicillin were no different from healthy tissues
(Smith et al. 2015). It is clear that bacteria on aquatic
animal surfaces have a very large capacity to respond
to nutrient inputs. For example, Garren & Azam
(2012) noted a 10-fold change in bacterial abundance
in peptone-enriched coral mucus relative to controls,
a finding which corresponds with observations of
coral mucus as an important source of bacterial nutri-
tion in coral reef ecosystems (Wild et al. 2004a,b,

2005, Huettel et al. 2006). On the other hand, in areas
of low metazoan cell abundance such as proteina-
ceous or mineralized matrices which are characteristic
of lesions in many invertebrate taxa (e.g. tissue loss
in corals; Work & Aeby 2006), the abun dance of bac-
teria may be lower than that in surrounding tissues
because of minimal DOC on which they depend. For
instance, Islam et al. (2016) re ported that overall bac-
terial abundances were 3 orders of magnitude lower
in clean coral skeletons than in natural rubbles.

A wide range of template DNA quantities are used
in analyses of aquatic invertebrate disease (Table 1).
Variation in nucleic acid extraction protocol also has
significant impacts on observed bacterial composition
(Kennedy et al. 2014, Sinha et al. 2017). Among 50
studies comparing disease-affected and asympto-
matic tissues of aquatic invertebrates, 27 different nu-
cleic protocols were used (in 5 studies, the nucleic
acid extraction protocol was not reported) (Table 1).
These observed variations in MC structure urge cau-
tion in interstudy comparisons. Extraction kits utiliz-
ing mechanical lysis (e.g. bead beating) are recom-
mended since they lead to higher DNA yield (e.g.
Henderson et al. 2013), higher bacterial diversity (e.g.
Maukonen et al. 2012) and better extraction from
bacteria with more chemically resistant cell walls
(e.g. gram-positive and spore-forming bacteria) (e.g.
Salonen et al. 2010, reviewed in Pollock et al. 2018).

Assuming an average of 25 ng per reaction
(Table 1) and average bacterial DNA quantity per
cell of 2 fg (Vrede et al. 2002), an estimate of total
bacterial load in DNA templates is ~1 × 107 cells. In
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Fig. 1. Conceptualization of bacterial abundance on or near apparently healthy and lesion surfaces of hard skeleton-bearing
metazoa (e.g. cnidarian). Healthy tissues include the basal and surface body wall with epidermis which may exude organic
matter (mucus), which in turn supports bacterial proliferation. At lesion margins, decomposing tissues support bacterial
growth (saprophytes and opportunists, in addition to pathogens). In the center of lesions, epidermal tissues may be lost, and
the underlying skeleton may support fewer bacteria since organic matter is in lower quantity. Conversely, the bare skeleton

may support the growth of opportunist, surface-associated microorganisms
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contrast, studies standardizing by volume of ex -
tracted DNA typically use 1 to 2 µl of extracted DNA.
Most commercially available DNA extraction kits de-
mand <200 mg of tissue and result in 30 to 100 µl of
DNA extract. Based on average abundances of bac-
teria in coral tissues or mucus (~105 cells ml−1) and as-
suming that microbial DNA comprises only ~10% of
total DNA extraction quantity, PCR templates there-
fore effectively target ~2000 microbial cells. Consid-
ering that extraction efficiencies of DNA are rarely
close to 100%, it is likely that the total number of in-
dividual microbial particles captured in HTS surveys
is considerably less than reported. Hence, microbial
DNA assayed by PCR may be only a tiny fraction of
overall microbial community DNA. While capturing
abundant constituents of microbial communities, com -
parisons with lower effective sampling depth (before
PCR) may result in skewed proportions of rarer con-
stituents, which in turn may lead to spurious identifi-
cation of candidate disease- associated taxa.

We recently compared the total extracted DNA
quantity of 34 body wall biopsy punch samples (5 mm
diameter) collected from asteroids during a temporal
study of sea star wasting. After 14 d in an aquarium
system, individual asteroids began to show signs of
wasting, and by 19 d, all individuals (n = 12) had died.
Initially, we sampled grossly normal tissues, but after
14 and 19 d, we collected tissue from the center of le-
sions. The overall quantity of DNA extracted from
each sample decreased from 0 to 19 d (Fig. 2). No-

tably, 5 of 12 total samples collected at 19 d had DNA
quantities below the detection threshold (determined
by PicoGreen fluorescence). Studies which standard-
ize DNA template based on extracted volume, partic-
ularly for samples in which DNA concentration is be-
low detection thresholds, will suffer from inherent
biases associated with variable template amounts dis-
cussed in Section 3. This may be exacerbated by inac-
curate DNA quantification. Quantification of DNA
with UV spectroscopy, for example, which is widely
used in studies of microbial communities associated
with diseases, has well-known inaccuracies in tissue
settings as a result of co-extracted organic molecules
(Holden et al. 2009). For this reason, it is recom-
mended that binding dye fluorescence-based ap -
proaches over UV spectroscopy-based approaches
be used to quantify template DNA. It is worth noting
that the current version of the NanoDrop spectro -
photometer (One/OneC; part number ND-ONE-W;
Thermo Fisher Scientific) includes a new 1 sample
contaminant identification protocol (Acclaro) which
may provide utility to microbiome research.

3.  ASSUMPTIONS OF EQUAL SAMPLING

Sampling with equal depth is a key assumption in
any β diversity analyses comparing the similarity of
biological communities quantitatively (i.e. through
analysis of relative abundance patterns). On aver-
age, more unique taxa will be present in samples
sequenced in greater depth than in samples with
shallow depths (Hughes & Bohannan 2004). Because
of this, when comparing different sizes, it is advised
to use similarity indices that place greater importance
on richness (i.e. presence/absence; qualitative) than
on entirely quantitative metrics (Hughes & Bohannan
2004, Cardoso et al. 2009). Quantitative interpreta-
tion of microbial community patterns based on PCR
is achieved by normalizing input (template) nuc leic
acid quantities between samples (Borneman & Triplett
1997, Hewson & Fuhrman 2004, Brown et al. 2005).
Reducing PCR biases in contemporary HTS- based
approaches is achieved by normalizing overall tem-
plate DNA quantity in PCR by either volume or mass
of DNA, normalizing PCR amplicon quantity be -
tween samples during library preparation, manipu-
lating PCR cycling conditions and combining repli-
cate PCR products. Equal sampling of PCR amplicons
is achieved by rarifying library sizes to the same
number of sequences (Aird et al. 2010, Kennedy et al.
2014), where resampled rarefaction analyses show
complete coverage. There can be concerns with false

Fig. 2. Quantity of DNA extracted from tissue samples (5 mm
biopsy punch of body wall tissues) of Pisaster ochraceus
(Aste roidea, Echinodermata) during an experiment in Au-
gust 2018. After 14 d individuals began to waste, and by 19 d
animals experienced widespread lesions. Punches were
taken from clinically normal tissues before the appearance
of lesions or from lesion margins after the appearance of sea
star wasting at 14 and 19 d. Error bars = SE. Decrease in
DNA quantity was only significant (p < 0.05, Student’s t-test)

between 0 and 19 d
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positives in rarified library comparisons (McMurdie &
Holmes 2014). Additionally, rarifying DNA sequence
libraries does not account for potentially unequal
microbial abundances between samples (i.e. sam-
pling that occurs at the PCR stage as template mate-
rial) and may be best examined by qualitative over
quantitative metrics. Kennedy et al. (2014) evaluated
the effects of template mass variation on taxonomic
profiles of bacterial communities and deduced that
DNA template quantity had significant impacts on
profile variability across a variety of samples. This
study also emphasized optimization of template con-
centration to minimize variability in studies compar-
ing microbial communities. Seashols-Williams et al.
(2018) found that varying template amounts did not
affect the relative abundances of major bacterial
genera in libraries but caused significant variation in
the relative abundance of rarer genera.

Biases in the amplification of templates prior to
HTS are not limited to PCR-based approaches.
Rolling circle amplification (also referred to as strand
displacement amplification and multiple displace-
ment amplification [MDA]; Dean et al. 2001) uses
φ29 DNA polymerase to generate large quantities of
amplified material from extremely small (<1 ng) tem-
plate quantities. Pinard et al. (2006) found that MDA
generated biases that were 119 to 165 times greater
than unamplified controls, while Yilmaz et al. (2010)
showed pronounced unidirectional skewing in 16S
rRNA libraries when templates were MDA amplified.
For example, while systematic biases in overrepre-
sentation of single-stranded DNA (ssDNA) genomes
in virome libraries prepared from standardized tem-
plate quantity do not impact β diversity analyses (Yil-
maz et al. 2010, Parras-Moltó et al. 2018), the overrep-
resentation of ssDNA genomes (especially cir cularized
templates, like plasmids) in low-template libraries
(Kim et al. 2008) is cause for concern when compar-
ing samples of variable template amounts. Other
genomic approaches demanding HTS sample prepa-
ration (e.g. linker-amplified shotgun libraries; Breit-
bart et al. 2002) rely on at least 1 PCR step and expe-
rience the same biases as noted above.

Standardizing template quantities (∼equal sample
sizes) is rarely performed in studies of aquatic animal
diseases. In a survey of 50 studies comparing MC in
aquatic disease-affected and asymptomatic tissues,
21 did not specify PCR template amounts, and a fur-
ther 12 studies standardized PCR templates by vol-
ume of extracted material or lysate (Table 1). While
standardization of template DNA mass is appropriate
when the majority of template DNA originates from
targets, this approach poses problems when the pro-

portion of microbial target nucleic acids to non-target
nucleic acids (i.e. from host) is unknown. This is further
exacerbated by the potentially large contribution of
host DNA relative to microorganisms in studies of
host-associated microorganisms (i.e. microbiomes).

One approach to overcoming the problem of sam-
pling variation in MC studies proposed by Seashols-
Williams et al. (2018) employs quantitative PCR
(qPCR) using universal 16S rRNA PCR primers to
standardize bacterial genome equivalents prior to
HTS library preparation. It is, however, worthwhile
noting that apparently universal primer sets rarely
encompass all known bacterial 16S rRNAs. For
example, Wang & Qian (2009) found that in 30
primer sets used in community analyses, most had
>90% coverage of known 16S rRNAs in the Riboso-
mal Database Project. However, 30% had <90%
coverage (Wang & Qian 2009). Hence, even when
using qPCR to standardize genome equivalents,
care must be taken to select primer sets targeting
the phylogeny of bacteria expected as constituents
of the microbiome. Because viruses lack universally
conserved genes, this approach is not viable in stud-
ies of viral composition. However, quantifying total
viral load in tissues by microscopy (Leruste et al.
2012), especially after purification of isolated viruses
(Marhaver et al. 2008, Thurber et al. 2009, Soffer et
al. 2014), and standardizing quantities between
metaviromes offers an alternate approach. While
these approaches may lead to truly quantitative
comparisons between disease- affected and asymp-
tomatic MC, they are also subject to contamination
issues noted below.

4.  REAGENT CONTAMINANTS ARE
EVERYWHERE

Another critical source of error in comparative
microbial community analyses is the presence of con-
taminating DNA in molecular biology reagents or
laboratories. Our knowledge of such contaminants
comes from research areas where low abundance of
target genes is expected. Zehr et al. (2003) reported
the widespread occurrence of diverse nitrogenase
(nifH) genes in PCR reagents, several of which were
also recovered from a broad range of low-abundance
studies, including arthropod microbiomes. Contami-
nation has been noted in 16S rRNA surveys of low-
biomass environments (Tanner et al. 1998, Grahn et
al. 2003, Salter et al. 2014, Glassing et al. 2016,
Lauder et al. 2016, Kim et al. 2017, Karstens et al.
2018, Velásquez-Mejía et al. 2018, Stinson et al.
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2019, Weyrich et al. 2019) including ancient, human-
built environmental, geomicrobial or forensic DNA
(Willerslev et al. 2004, Fierer et al. 2008, Witt et al.
2009, Dunn et al. 2013, Weyrich et al. 2017). Many of
these contaminants originate from ultrapure water
(McFeters et al. 1993, Nogami et al. 1998, McAlister
et al. 2002) or PCR reagents (Shen et al. 2006).
Alarmingly, many of the contaminants share similar-
ity with normal inhabitants of the environments tar-
geted in sampling strategies (Salter et al. 2014,
Glassing et al. 2016, Sheik et al. 2018). Because of the
relatively high cost of sequencing (even with the
advent of HTS), negative or positive controls, includ-
ing blank samples, are rarely included in HTS micro-
bial surveys. Yet, these are critical for understanding
the diversity of potential contaminants specific to
reagents and laboratory settings and are highly re -
commended for all community-level studies. For
example, Naccache et al. (2013) identified a par-
vovirus−circovirus hybrid associated with seronega-
tive hepatitis (A-E). This discovery led to further epi-
demiological investigation until it was resolved that
the virus did not originate from template material but
rather was present in spin columns used in DNA
extraction. Optimal strategies for accounting for
reagent or laboratory contaminants are not yet fully
resolved; however, subtracting sequences matching
negative control contaminants (Sheik et al. 2018),
cleaning PCR reagents prior to use (reviewed in
Eisenhofer et al. 2019) or identifying contaminant
sequences in sequencing libraries upon reporting of
results (Glassing et al. 2016) are recommended. Con-
sidering variability in template quantities used to
amplify communities, it is possible that disease-af -
fected tissue microbiomes could contain dispropor-
tionate numbers of contaminant sequences. When
comparing disease-associated microbial communi-
ties to those from asymptomatic tissues, the inclusion
of negative controls and accounting for detected se -
quences in those controls is a significant considera-
tion. The use of positive controls (e.g. mock commu-
nities) is also recommended to identify systematically
overrepresented operational taxonomic units in micro -
biome analyses and to assess extraction biases
(Eisenhofer et al. 2019).

5.  NEGATIVE CONTROLS MAY NOT ALWAYS
BE NEGATIVE

The presence of non-microbial DNA in microbial
community surveys may also artifactually increase
amplification of contaminants. Carrier DNA (i.e. non-

template DNA) is frequently used in DNA extraction
protocols and in PCR-based approaches when target-
ing rare template DNA, in particular when trying to
avoid overexpression artifacts in expression vectors
(Ellison et al. 2006). The addition of carrier DNA
improves the efficiency of template amplification
(Handt et al. 1994, Köhler et al. 1997). This effect is
thought to be a result of lower adsorption of low-
quantity templates to plasticware in the presence of
higher overall DNA quantities or reduction in en -
counters between templates and degrading enzyme
activities (Handt et al. 1994), especially when using
degraded DNA. In studies of host-associated micro-
biomes, the presence of non-template DNA may
act as a carrier in PCR amplification of low-level tar-
gets (Handt et al. 1994, Köhler et al. 1997) but at the
same time cause efficient amplification of contami-
nating DNA. This effect would not be observed in
deionized water negative controls at the PCR stage.
Hence, the use of carrier DNA (e.g. non-microbial
purified DNA) is recommended in 16S rRNA library
preparation. Unfortunately, there is no way to ac -
count for the carrier DNA effect in metagenomic sur-
veys, since all nucleic acids are amplified during this
approach.

6.  MISLEADING RESULTS IN COMPARATIVE
AQUATIC DISEASE MICROBIAL SURVEYS

To illustrate the difficulties of unequal sample sizes
and contaminants, I present here an example of a
promising candidate pathogen which turned out to
be a red herring. Viral metagenomics was used to
explore viruses associated with lesions of a sea fan
wasting disease, which affected the gorgonian octo-
coral Gorgonia ventalina in Puerto Rico from 2012 to
2013. Gorgonians comprise a skeleton of proteina-
ceous material (gorgonin) over which lie 3 cell layers.
Samples from asymptomatic tissues and from the
center of lesions were homogenized separately and
viral metagenomes prepared following standard pro-
tocols (Thurber et al. 2009) where MDA was applied
to equal volumes of extracted viral DNA. Quantita-
tive comparative analyses of metagenome read re -
cruitment revealed a number of contiguous sequences
(contigs) that were present in lesions and absent in
apparently healthy tissue, and a number of these
were annotated viral based on translated nucleotide−
protein BLAST (BLASTx) comparison to the non-
redundant database at NCBI (Fig. 3). Based on read
coverage, a promising, highly represented CRESS
DNA virus-like disease-associated contig was chosen
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for a wider survey comparing lesions (n = 20) and
apparently healthy tissues (n = 20) by quantitative
PCR. However, the candidate disease-associated
contig could not be detected in any sample, including
those used as templates for metavirome construction.
The origin of the disease-associated contig sequence
was never determined; however, it may represent a
reagent contaminant or very rare genotype that
became well represented in libraries after amplifica-
tion with MDA. I have observed this phenomenon in
several other studies of aquatic diseases, which em -
phasizes the importance of post-genomic confirma-
tion of putative pathogen detection by complemen-
tary approaches.

7.  CAN WE REALLY INFER PATHOGENICITY
BASED ON OBSERVED OR PREDICTED GENES?

Most HTS studies to date annotate microbial com-
munities at lowest to genus level based on percent
similarity across sequence cover or by phylogenetic
clustering patterns (Huson et al. 2007). However,
the identification of pathogens based solely on phy-
logeny is extremely problematic since closely re -
lated bacteria — even at the genus level — share dis-
parate traits (Perna et al. 2001, Denef et al. 2010,
Soto et al. 2014). For example, identification of
known pathogenic and known beneficial bacterial
genera is weak and may lead to spurious interpreta-

tions (Lamb et al. 2017). Another mechanism by
which the ability of bacteria to generate pathology
is inferred is through genomic analyses or by con-
necting predicted metabolic genes with housekeep-
ing genes in metabarcoding surveys (Langille et al.
2013, reviewed in aquaculture settings by Ortiz-
Estrada et al. 2019). The gene ontology most consis-
tently used to ascribe pathogenicity is virulence fac-
tors (VFs), which most commonly allow bacteria to
attach to surfaces, evade or suppress host immune
systems, enter/exit cells, or obtain nutrients from
hosts. While many VFs are specific to pathogens,
homologs of VFs occur widely in non-pathogenic
bacteria (Holden et al. 2004, Pallen & Wren 2007,
Niu et al. 2013) and environmental bacteria (Persson
et al. 2009), where they play a role in nutrient ac -
quisition, are present on genomic islands (possibly
indicating horizontal gene transfer) or may repre-
sent loose annotations to known clinical strains of
poorly resolved function. Among 1901 Vibrio spp.
ge nomes available in the Integrated Microbial
Genomes database as of March 2019 (Joint Genome
Institute), all but 13 bear genes annotated as VFs
within clusters of orthologous groups. Such VFs in -
clude many that may have variable expression de -
pending on environmental conditions, and not all
VFs generate pathology exclusively (Kimes et al.
2012). An analysis by Niu et al. (2013) identified a
greater number of orthologous VFs in apathogenic
genomes of bacteria than in pathogens. Hence,
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assigning the trait of pathogenicity based solely on
tax o  nomic identification or the presence of VFs, es -
pecially those based on loose similarity to se quenced
representatives, is extremely problematic.

8.  MATCHING SEQUENCING-BASED
APPROACHES WITH PATHOLOGY

It is clear that biases in comparative community
analyses to highlight disease-associated microorgan-
isms prohibit direct implication of pathogenicity. How -
ever, these approaches may provide important targets
for further comparisons and classical pathology inves-
tigations. For example, the identification of the bacte-
rial pathogen Xenohaliotis californiensis (a Rickettsia-
like organism; Friedman et al. 2000), which causes
withering syndrome in Haliotis cracherodii, was only
possible after inclusion of molecular approaches (An-
tonio et al. 2000, Friedman et al. 2000). Histopathology
and field observations alone suggested starvation or
high water temperatures (Tissot 1988), or association
with a coccidian parasite (Friedman et al. 1993), and it
was not until these were complemented by ecological
and molecular approaches that the etiology was es-
tablished (Friedman et al. 2000, reviewed in Burge et
al. 2016). In a similar way, agents identified in com-
parative disease/asymptomatic surveys require clas-
sical pathological approaches to facilitate
understanding of pathology but are to
date rarely matched in marine disease 
investigations.

9.  RECOMMENDATIONS

Koch’s postulates represent the gold
standard for surveys of disease-causing
microorganisms yet remain difficult to
demonstrate for many marine microor-
ganisms that cannot be cultured or mani -
pulated experimentally, demanding the
use of alternate approaches in unculti-
vated settings (Fredricks & Relman 1996,
Byrd & Segre 2016). For example, disease
in Atlantic salmon Salmo salar caused
by Tenacibaculum dicentrarchi was di -
agnosed only when sequence-based ap -
proaches identified the bacterium, which
then facilitated challenge experiments
(Klakegg et al. 2019). HTS surveys of
housekeeping genes and meta genomes
provide valuable insight into the identity

of microbial consortia associated with meta zoans
and their lesions. However, ampli fication-based sur-
veys with unknown template input may not accu-
rately or quantitatively represent microbial commu-
nities and cannot differentiate organisms that may be
causing lesions from organisms that are contami-
nants. Microbial community surveys implicating dis-
ease-associated taxa must be followed by quantita-
tive validation, and inference of disease should not
rest only on predicted or observed genomic features.
Furthermore, they should be used as a supplement to
the standard suite of tools used to investigate animal
diseases and localize the presence of the suspect
agent to the lesion at the cellular level (Work &
Meteyer 2014, Work 2015) (Fig. 4). Several strategies
exist for reducing bias in microbial community sur-
veys as they relate to disease investigation: normaliz-
ing microbial DNA templates through microscopic
counts or quantitative PCR; reducing the use of
quantitative statistics for comparing communities
and focusing instead on qualitative statistics; using
statistics to address the compositionality of micro-
biome data (i.e. Gniess; Morton et al. 2017); standard-
izing reporting of sample location (lesion center,
lesion margin, asymptomatic tissues), nucleic acid
extraction protocol and DNA quantification protocol;
performing negative controls parallel with each HTS
run and reporting those se quences in concert with

Fig. 4. Conceptualized workflow for using amplified material to elucidate
potential pathogens as targets for pathology inves tigations. Red arrows de -
note predominately qualitative strategies; black arrows de note potential

quantitative strategies
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survey results; and performing negative controls
with non-target template (carrier nucleic acids) in
amplification-based surveys. Finally, comparative
surveys should avoid implication of etiology or cau-
sation based on taxonomic affiliation or inferred (or
observed) genome elements alone. A union of clas -
sical microbiological and modern molecular ap -
proaches (Burge et al. 2016) along with attempts to
localize the agent to host cells, host pathology and
host cell pathogenesis may be more appropriate in
distinguishing the roles of microbiome constituents
in aquatic invertebrate diseases.
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