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A B S T R A C T

Cables of suspension, cable-stayed and tied-arch bridges, suspended roofs, and power transmission lines are
prone to moderate to large-amplitude vibrations in wind because of their low inherent damping. Structural or
fatigue failure of a cable, due to these vibrations, pose a significant threat to the safety and serviceability of these
structures. Over the past few decades, many studies have investigated the mechanisms that cause different types
of flow-induced vibrations in cables such as rain-wind induced vibration (RWIV), vortex-induced vibration
(VIV), iced cable galloping, wake galloping, and dry-cable galloping that have resulted in an improved under-
standing of the cause of these vibrations. In this study, the parameters governing the turbulence-induced
(buffeting) and motion-induced wind loads (self-excited) for inclined and yawed dry cables have been identified.
These parameters facilitate the prediction of their response in turbulent wind and estimate the incipient con-
dition for onset of dry-cable galloping. Wind tunnel experiments were performed to measure the parameters
governing the aerodynamic and aeroelastic forces on a yawed dry cable. This study mainly focuses on the
prediction of critical reduced velocity RV( )cr as a function of equivalent yaw angle (β*) and Scruton number (Sc)
through measurement of aerodynamic-damping and stiffness. Wind tunnel tests using a section model of a
smooth cable were performed under uniform and smooth/gusty flow conditions in the AABL Wind and Gust
Tunnel located at Iowa State University. Static model tests for equivalent yaw angles of 0–45° indicate that the
mean drag coefficient C( )D and Strouhal number St( ) of a yawed cable decreases with the yaw angle, while the
mean lift coefficient C( )L remains zero in the subcritical Reynolds number (Re) regime. Dynamic one degree-of-
freedom model tests in across-wind and along-wind directions resulted in the identification of buffeting indicial
derivative functions and flutter derivatives of a yawed cable for a range of equivalent yaw angles. Empirical
equations for mean drag coefficient, Strouhal number, buffeting indicial derivative functions and critical reduced
velocity for dry-cable galloping are proposed for yawed cables. The results indicate a critical equivalent yaw
angle of 45° for dry-cable galloping. A simplified design procedure is introduced to estimate the minimum
damping required to arrest dry-cable galloping from occurring below the design wind speed of the cable
structure. Furthermore, the results from this study can be applied to predict the wind load and response of a dry
cable at a specified wind speed for a given yaw angle.

1. Introduction

Cables of suspension, cable-stayed and tied-arch bridges, suspended
roofs and power transmission lines can experience moderate to large-
amplitude motions in windy conditions because of their low inherent
damping. Structural or fatigue failure of a cable, as a result of these
motions, are significant threats to the safety and serviceability of these
structures. There are several different types of wind-induced cable vi-
bration such as rain-wind-induced vibration (RWIV) [1–3], vortex-in-
duced vibration (VIV) [4–6], iced-cable galloping [7–9], wake gal-
loping [10,11], and dry-cable galloping [12–16]. Although there have

been many experimental and numerical studies related to conventional
wind-induced cable vibration, the conditions for onset of dry-cable
galloping have not been consistently determined for inclined/yawed
cables. In fact, the biggest challenge for cables is to determine the ad-
ditional damping required to suppress large-amplitude vibrations
within their design wind speed. Past studies have shown that dry-cable
galloping primarily occurs due to mitigation of Karman vortex shedding
generated from axial flow behind yawed cables. Matsumoto et al. [17]
showed that dry-cable galloping can occur when there is an artificial
axial flow behind the cable. In general, the phenomenon of galloping
can be divided into two types: divergent-type galloping (conventional
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or classical galloping) and unsteady galloping. The first type, explained
using quasi-steady theory, is mainly due to suppression of Karman
vortices under stationary conditions, and the second type occurs when
Karman vortices are not fully mitigated by axial flow and exhibit some
amount of unsteady response with non-stationary amplitude. To specify
the onset of divergent response to dry-cable galloping, the proposed
empirical criterion based on wind tunnel experiments is the critical
reduced velocity, =RV cSccr

p, where c and p are constants, and
=Sc mζ ρD/ 2 is the Scruton number. Honda et al. [18] specified =c 54

and p= 2/3, and Irwin [19] defined the constants as =c 35 and =p 1/2.
Another way to determine the critical reduced velocity is based on
aerodynamic damping expressed in terms of flutter derivatives of a
cable section, particularly ∗H1 that determines the aerodynamic
damping in a vertical plane of vibration. It can be shown that dry-cable
galloping occurs when aerodynamic damping ζaero becomes negative

enough to offset the mechanical damping when = − =∗H Sc4ζ
ρD1

4 aero
2

[17]. Although other instability criteria have been introduced, e.g.
FHWA (Federal Highway Administration of U.S.) [20] and Saito [21],
who previously proposed formulae or instability boundaries, there has
no specification of the criteria corresponding to the yaw and/or in-
clination angle of a cable. In this paper, a criterion for dry-cable vi-
bration is presented through the prediction of critical reduced velocity
(RVcr) as a function of yaw angle β( ) and Scruton number Sc( ) of cables
based on wind-tunnel measurements of their aerodynamic damping and
aerodynamic stiffness.

Aerodynamics of cables have been widely investigated using both
experimental and numerical techniques because significant damage in
cables has been reported in suspension/cable-stayed bridges. Cheng
et al. [22,23] experimentally investigated the effects of some para-
meters, including Reynolds number, surface roughness, and wind speed
on yawed/inclined dry-cable galloping. They indicated that the most
divergent motions occurred when Scruton number and wind speed were
0.88 and 32m/s, respectively. Duy et al. [24] studied dry-cable gal-
loping by conducting experimental tests, and they illustrated the effects
of spiral wire on smooth cable surfaces. Dynamic experiments showed
that divergent galloping occurs only for yawed angles of 30–60°. Mat-
sumoto et al. [25] described the underlying mechanisms of dry-cable
galloping for wind-induced vibration through a series of experimental
tests that employed splitter plates with various perforation (or porosity)
ratios placed behind the cable in its wake to control the Karman vor-
tices. These results illustrated that the intensity of a Karman vortex
decreases and divergent galloping arises when the perforation ratio
decreases. Katsuchi and Yamada [26] carried out wind tunnel experi-
ments to investigate galloping phenomenon of dry-cables along the
vertical direction. They showed that dry galloping occurred for both
indented and smooth surfaces. Benidir et al. [27] conducted a series of
experimental tests to determine influence of roughness and circularity
defects on instability of dry-cable galloping, with Reynolds number in
the subcritical region to study the establishment of bubble on one side
of a cylinder. Flamand and Boujard [28] measured the pressure dis-
tribution around cables at different yawed angles and concluded that
one solution for mitigating the vibration is to increase the surface
roughness. Hence, using helical wires on cables is not only beneficial
with respect to rain-wind induced vibration, but also helpful with re-
spect to dry-cable galloping. Kleissl and Georgakis [29] studied the
effect of helical fillets and pattern-indented surfaces on the aero-
dynamics of yawed cable. They employed oil visualization tests to de-
monstrate the difference between the aerodynamics of yawed cable
with helical fillets and those with pattern-indented surfaces. Ma et al.
[30] investigated the effect of Reynolds number on dry galloping by
modeling cylinders with semi-elliptical cross-sections. They determined
that a semi-elliptical cross section causes instability of aerodynamic
forces, and this explains why dry-cable galloping occurs in yawed/in-
clined cables. Nikitas and Macdonald [31] studied the aerodynamic
characteristics of dry-cable galloping by performing wind tunnel

experiments. They found unsteady behavior in the critical Reynolds
number range, and indicated that inclination angles were the most
important parameters affecting this phenomenon.

Macdonald and Larose [32] derived a theoretical formulation of
dry-cable galloping using quasi-steady theory to simplify the equations
and derive formulae for such a three-dimensional phenomenon. They
provided an equation to calculate aerodynamic damping that was very
useful for determining stability or instability of a yawed/inclined cable
under dry conditions. Raeesi et al. [33] studied theoretically dry-cable
galloping, and they revealed the effect of unstable/turbulent flow on
computing the aerodynamic damping ratio. They applied their method
to evaluate the aerodynamic stability of stay-cables in a cable-stayed
bridge in unsteady wind, where their results satisfactorily predicted
aerodynamic instability. Wu et al. [34] used computational fluid dy-
namics (CFD) methods in a high accuracy model to simulate fluid flow
over a yawed cable. Delayed detached eddy simulation (DDES) yielded
numerical results and experimental data that were in a good agreement.
Yeo and Jones [35] studied the effect of yawed angle on dry-cable
galloping using numerical simulation. They carried out their modeling
for different angles from 0° to 60°, applied a DES model for simulation,
and concluded that the strength of Karman vortices diminishes at in-
creasing yaw angles.

This paper focuses on dry-cable galloping by conducting static and
dynamic wind tunnel experiments on section models of smooth cylin-
ders representing a section of cables under uniform and smooth flow
conditions. The twist or torsional motion of the cable that would be
important to consider for cables with non-circular cross section as in
iced cables [36] is neglected here in the dynamic analysis of smooth
cables. Static data led to proposing empirical equations for drag coef-
ficient and Strouhal number as functions of yaw angle. To define self-
excited and buffeting loads, flutter derivatives and buffeting indicial
derivative functions were extracted for different yaw angles using a free
vibration system and a gust generator, respectively. All experiments
were carried out in one-degree-of-freedom vertical motion (h) of a
section model of a cable at yaw angles ranging from 0° to 45°; since real
cables experience vibration due to dry-cable galloping along an inclined
plane with a significant vertical component that plays a critical role in
their instability. The maximum yaw angle of 45° for the tests was
chosen because it was determined to be the critical yaw angle for dry-
cable galloping of horizontal cables [17]. Since finding the required
damping to prevent dry-cable galloping has been a challenge for many
years, a practical design procedure is introduced based on the experi-
mental results to estimate the required damping at a given design wind
speed. Moreover, these results can be applied to simulate the vibration
of a dry smooth cable in turbulent wind with mean wind speeds outside
the lock-in range of vortex-induced vibration, where the mean wind
speed and mean wind direction change with height in the atmospheric
boundary layer (ABL).

2. Methodology

2.1. Equations of motion

In general, wind loads that act on a structure can be classified as
static and dynamic for the purpose of analysis. Dynamic loads are im-
portant because they can cause structural fatigue or failure over long or
short periods. The dynamic loads are defined either in frequency- or
time-domain. While equations of motion of a structure under wind
loads can be written for all three degrees of freedom of the structure,
two lateral and one torsional directions, only along-wind and across-
wind motions are considered important for a cable because torsional
motion is negligible compared to others. External wind loads on a cable
cross-section can be divided into vortex shedding, buffeting, and self-
excited loads. Fig. 1 shows dynamic wind loads and velocity compo-
nents for a circular section of a cable. The equations of motion for
across-wind or vertical (h) and along-wind or lateral (p) motions can be
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written as follows:

+ + = + +m h ω ζ h ω h F F F( ¨ 2 ̇ )h h h se
h

b
h

vs
h2 (1)

+ + = + +m p ω ζ p ω p F F F( ¨ 2 ̇ )p p p se
p

b
p

vs
p2

(2)

where m is mass per unit length, h and p are vertical and lateral dis-
placements, ωh and ωp are natural frequencies, ζh and ζp are total
damping ratios, and Fse, Fb, and Fvs are self-excited, buffeting, and
vortex shedding-induced loads per unit length of a cable; U is mean
wind speed while u(t) and w(t) are along-wind and across-wind turbu-
lence components, normal to the cable axis. Different system identifi-
cation methods can be applied to extract the parameters of each of the
above wind load components using a section model of a yawed cable
that can then be employed to calculate the dynamic wind loads for the
real cable. Since vortex-induced vibration (VIV) of cables produce low
amplitude motions compared to other types of wind excitation and
occurs over a narrow range of wind speeds, self-excited and buffeting
loads are only considered in this study, as briefly described in the fol-
lowing sections.

In this study, a free vibration test was used to identify the flutter
derivatives (FD) of a cable. Flutter derivatives have been widely used to
find the flutter wind speed of different structures, mainly long-span
bridges, and many studies have been conducted to extract flutter de-
rivatives using section models. Flutter derivatives associated with ver-
tical and lateral motions are listed in Table 1. More descriptions about
self-exited and buffeting loads are presented in Appendices A and B.

3. Experimental setup

According to the literature, dry-cable galloping occurs mostly in
inclined cables above a critical wind speed within a certain range of
yaw angles. The past few studies [17,25] have indicated that the
aerodynamic behavior of a non-inclined (α =0°) cable is equivalent to
an inclined cable based on the definition of an equivalent yaw angle
(β*). The concept of using equivalent yaw angle was verified by other
researchers [14,26,37] to show its reliability in extraction of aero-
dynamic properties of an inclined cable for dry-cable galloping and
rain-induced vibration. Therefore, the concept of equivalent yaw angle
was used in this study to extract the aerodynamic properties a yawed
and/or inclined section model for prediction of load and response.
Hence, the present study was carried out on a non-inclined section
model to determine the aerodynamics of a yawed/inclined cable. In this
study, a horizontal rigid section model with a finite length that re-
presents a section of a cable has been used to predict the critical re-
duced velocity for dry-cable galloping at a given Scruton number of the

cable model. However, a numerical/analytical approach that uses the
aerodynamic properties of a yawed cable as presented here can be used
to simulate the cable response and predict the critical velocity for dry
galloping of an inclined cable or a horizontally suspended cable more
accurately by considering sag due to cable weight, boundary conditions
at both ends of the cable, yaw angle, inclination angle, and variation of
wind speed with elevation in atmospheric boundary layer. The defini-
tions of inclination angle (α), actual yaw angle (β), and equivalent yaw
angle (β*) are shown in Fig. 2a and b. Eq. (3) relates actual yaw angle
and inclination angle to the equivalent yaw angle. Since all experiments
in this study were conducted for a non-inclined cable (α =0), actual
yaw angle and equivalent yaw angle are equal (β = β*), and yaw angle
in this study refers to equivalent yaw angle in all the results presented
here.

=∗ −β β αsin (sin cos )1 (3)

All wind tunnel tests in this paper were carried out in the aerodynamic
test section of the Aerodynamic and Atmospheric Boundary Layer
(AABL) Wind and Gust tunnel located in the Wind Simulation and
Testing Laboratory (WiST Lab) of the Department of Aerospace En-
gineering at Iowa State University. This wind tunnel has two test sec-
tions, an aerodynamic test section of 2.44m (8.0 ft.) width×1.83m
(6.0 ft.) height with a maximum wind speed capability of 53m/s (173.9
ft/s), and an ABL test section of 2.44m (8.0 ft.) width×2.21m (7.25
ft.) height with a maximum wind speed (average) capability of 40m/s
(131 ft/s).

3.1. Data acquisition system

The 1DOF dynamic wind tunnel test rig that was used here includes
two elastic spring systems, one at each end of the section model, con-
sisting of an air bearing connected to four springs that freely slides over
a polished rod and a uniaxial load cell fixed at the end of one spring
(Fig. 3a). The load cell measures the elastic force in the spring that is
converted to displacement using the spring stiffness. For dynamic force
measurements, the sampling frequency and sampling time were
1000 Hz and 60 s, respectively. LabVIEW software was used for data
acquisition from two load cells, one on each side of the section model,
one connected on the top and the other on the bottom. The resultant
model displacement for each of the three data runs of 60 s is computed
from the average of the force data from the two load cells. The place-
ment of diagonally opposite load cells helped to cancel out any spurious
modes of vibration about the horizontal axis along the wind direction.
The average values of the identified load parameters from the three
data runs are computed and presented here. Aerodynamic loads for the
static tests were measured by two six-component force balances (JR3),
fixed at each end of the section model (Fig. 3b). The JR3 has a precision
of± 0.25% of its maximum load capacity of 40 N. Both JR3s were fixed
to the two ends of the model axis to record the forces in X , Y, and Z
directions.

For static force measurements, the sampling frequency was 500 Hz,
and the sampling time was 60 s. For pressure measurement, two 64-
channel pressure modules (Scanivalve ZOC 33/64 Px) were utilized to
capture the pressure distribution on the cylindrical model with the
sampling frequency of 250 Hz and the sampling time of 60 s. A Cobra
probe (4-hole velocity probe) was used to record point-wise measure-
ment of the upstream wind velocity with a sampling frequency of
1250 Hz and a sampling time of 60 s.

3.2. Static test setup

A new setup was built to measure the aerodynamic/aeroelastic
loads and pressure distributions for the static and dynamic wind tunnel
tests of the yawed cable models. As shown in Fig. 4, this setup properly
secures the cable model for yaw angles ranging from 0° to 45°. The
setup is also capable of testing two models in tandem for wake

h

p
w(t)

U+u(t)

+

+

Fig. 1. Schematic view of dynamic wind loads and velocity components over a
smooth cable.

Table 1
Flutter derivatives (FDs) associated with vertical and lateral motions of a cable.

Degree of freedom (DOF) FDs

1 1DOF vertical (h) ∗ ∗H H,1 4
2 1DOF lateral (p) ∗ ∗P P,1 4
3 2DOF (h, p) ∗ ∗H H,1 4 ,

∗ ∗H H,5 6
∗ ∗P P,1 4 ,

∗ ∗P P,5 6
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galloping. An aluminum polished tube of diameter (D) 127mm and of
length (L) 1.52m was used to represent a smooth cable. Although the
aspect ratio (L/D=12) was large enough to prevent edge effects, two
circular end plates with diameter of 4D were attached to both sides of
the cable model, parallel to the upstream airflow, to generate the 2D
flow over the cable model. Fig. 4 displays the yawed smooth cable with
two end plates in the setup. As shown in Fig. 5a, the cable model had
108 pressure taps distributed on its surface for measuring local pres-
sures. There were 36 pressure taps at equal angular spacing of 10 de-
grees along each of the three rings located on the cylinder and spaced
4D or 5D distance apart (see Fig. 5a and b). The blockage ratio was less

than 5% for all experiments. The cable model was tested in uniform and
smooth (< 0.2% turbulence) wind flow with wind speeds ranging from
5.9 to 22.6m/s.

3.3. Buffeting test setup

For the buffeting experiments, an aluminum polished tube of dia-
meter (D) 127mm and of length (L) 0.61m was used as the cable
model. Two circular end plates with a diameter of 4D were attached to
both sides of the model, parallel to the upstream airflow, to generate
the 2D flow over the cable model. The aspect ratio (L/D=4.8) of the
cable model was kept larger than the correlation length (L/D ≈ 4) of

(a) (b) 

Wind

Cable

: Yaw Angle
: Inclination Angle

*

Wind

Cable

= *= Equivalent Yaw Angle

*

Fig. 2. Definition of actual yaw angle and equivalent yaw angle, (a) yawed/inclined cable, (b) yawed cable.

)b()a(

JR3 Load Cell 

Spring  
(Typ.) 

Air 
Bearing

Load  
Cell 

Fig. 3. Test setup for measurements, (a) 1DOF dynamic, and (b) static.

Fig. 4. Static test setup of yawed cable with end plates for pressure and force
measurements.

(a) All pressure taps distributed on model.

(b) Taps in ring section.

36 Taps 

Ring L

36 Taps 

Ring R

36 Taps 

Ring M

=10°

Wind
UpwardLeeward

Fig. 5. Pressure tap arrangement on the cable model surface.
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the wind loads along the model length. Fig. 6 shows the cable model
with a gust generator that was fixed upstream of the model to generate
a sinusoidal gust at a fixed frequency and amplitude that is uniform
over the model’s length. The wind upstream of the gust generator was
uniform and smooth. The gust generator (two thin plates in parallel
with a gap) was supported by a frame and connected to a motor by a
rod, enabling it to oscillate at a specific frequency and amplitude. A
load cell (JR3) was fixed on each side of the cable model for measuring
the loads. The upstream wind speed of the cable model was recorded by
a velocity probe (Cobra probe, ®Turbulent Flow Instrumentation) lo-
cated 20 cm downstream of the gust generator. The relative locations of
the gust generator, Cobra probe and cable model are shown as side view
in Fig. 6b. A LabVIEW program was developed to record the fluctuating
aerodynamic loads (lift and drag) on the cable model in the time do-
main where the data was measured at a sampling frequency of 100 Hz.
The power spectral densities (PSDs) of the upstream wind turbulence
and aerodynamic loads were calculated to estimate the aerodynamic
admittance functions at a fixed reduced frequency (K). The tests were
repeated at varying wind speed and different gust frequencies to cover
the range of reduced frequency over which the aerodynamic admittance
functions were desired. The procedure was repeated for several yaw
angles of the cable model, namely, 0°, 15°, 30°, and 45°.

3.4. Dynamic test setup

A new and lighter cable model was used for dynamic tests because a
low Scruton number was required to capture galloping. All details of
the dynamic test setup and the cable section model are summarized in
Table 2 for both 1DOF tests, vertical (h) and lateral motions (p). The
dynamic test rig shown in Fig. 7a has the capability to simulate only
vertical motion whereas the one in Fig. 7b has the capability to simulate
motions in all 3DOF (vertical, lateral and torsional). However, the
3DOF test rig also allows testing of models along any coupled (vertical-
lateral, vertical-torsional, etc.) DOFs or single DOF by arresting the
motion along one or two DOFs as desired. Here only 1DOF tests for
vertical motion (h) or lateral motion (p) are conducted as shown in
Fig. 8a and b, respectively. The test rig and data acquisition have been
described earlier in Section 3.1. These tests were repeated for several
yaw angles of the cable model, namely, 0° and 15° to 45° with incre-
ments of 5°, for the vertical case. The tests for the lateral motion was
carried out only for a yaw angle of 45° since the results from the vertical
motion showed that this yaw angle was the most critical for galloping.

4. Results and discussion

4.1. Static test

The aerodynamic force coefficients were calculated based on surface
pressures on the cable model and validated with those from direct load
measurements. Power spectral densities (PSD) of lift coefficient are
plotted for the yaw angle β =0° against reduced frequency K= fD/U
for a range of Reynolds numbers (Re) in Fig. 8 which shows a single
peak at =K Ks =0.20. These results indicate that the Strouhal number
( = =St K f,f D

U s s
s is von-Karman vortex shedding frequency) for β =0°

does not change in the subcritical regime of Reynolds number, and in
fact it is almost constant ( = ° =St β( 0 ) 0.20). Fig. 9 shows the PSD of drag
coefficient for β =0° case where two peaks are seen with the second
peak frequency twice the first one, confirming past studies. In this
study, Strouhal number of yawed cable was measured to identify the
“lock-in” wind speed for vortex-induced vibration where buffeting re-
sponse equations will not apply for a yawed cable. In Fig. 10, the
Strouhal number, identified from the PSDs of lift coefficient records, is
plotted as a function of yaw angles corresponding to the subcritical
Reynolds number regime where it is almost constant. It shows that the
Strouhal number decreases as yaw angle increases. An empirical
equation (Eq. (4)) was obtained by curve-fitting to predict the Strouhal
number at different yaw angles. Additionally, the results of Strouhal
number for a yawed cable confirm that the normal Strouhal number is

weivediS)b(weivtnorF)a(

Gust 
Generator 

Gust 
Generator Cable Model 

Cobra 
Probe 

Wind 

Fig. 6. Buffeting setup including gust generator system, Cobra probe, and yawed model.

Table 2
Properties of model and setup for dynamic tests.

Value (1DOF)

Diameter (D) 102mm
Length (L) 1.52m

Vertical
Total stiffness (Kh) 560 (N/m)
Total mass (Mh) 3.6 kg
meh(Mh/L) 2.36 kg/m
Natural frequency (nh) 1.99 Hz
Damping ratio ζ( )h 0.0041

Scruton number (Sch = mehζh
ρD2 ) 0.77

Lateral
Total stiffness (Kp) 560 (N/m)
Total mass (Mp) 6.8 kg

m M(ep p/L) 4.46 kg/m

Natural frequency (np) 1.44 Hz

Damping ratio (ζ )p 0.0035

Scruton number (Scp =
mepζp

ρD2 )
1.24
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constant (Stn(β)= 0.2) and follows the independence principle [34].
This occurs because the separation point has been proven independent
of yaw angle that means crosswise component of the vortex shedding is
not influenced by spanwise flow [38].

= × = ° ⩽ ⩽ °St β St β β β( ) (0) cos 0.2 cos 0 45 (4)

In Fig. 11, mean drag coefficient =C β( ( ) )D
F

ρU DL

¯

0.5
p
2 is illustrated for

various yaw angles over a range of Reynolds numbers. These results
indicate that drag coefficient is reduced when yaw angle is increased. It
should be noted that cable stiffness or frequency of vibration is pro-
portional to cable tension that depends on the pre-tension in the cable,
cable weight and aerodynamic drag. Thus, as drag diminishes at higher
yaw angles, the cable stiffness will reduce making yawed cables vul-
nerable at higher wind speeds. Since the drag coefficient of a yawed
circular cylinder for 0° ≤ β ≤ 30° is almost constant in a subcritical
Reynolds number (Re) range, the average drag coefficient is depicted in
Fig. 12 for this range of yaw angles. In this figure, the highest value of
drag coefficient is plotted for β =45° case for the range of Re in-
vestigated. An empirical equation (Eq. (5)) has been proposed using
curve-fitting to predict the mean drag coefficient as a function of yaw
angle while the factor of F Re β( , ) is applied to consider the effect of
yaw angle and Reynolds number for yaw angles larger than 30° due to
variation in drag coefficient. It was assumed that the effect of yaw angle
from 30° to 45° is linear on drag coefficient. The results show that the
drag coefficient decreases with increasing yaw angle that occurs be-
cause the cross section of yawed cable changes from circular to ellip-
tical with increasing yaw angle. Since an elliptical cross section is a
streamlined body with smaller wake region, it has a smaller drag
coefficient compared to a circular section. Additionally, it can be seen

that the drag coefficient reduction occurs for yaw angle of 45° at a
lower Reynolds number because the elliptical section has a lower cri-
tical Reynolds number compared to a circular one, and it depends on
the aspect ratio of the ellipse. The mean lift coefficient

=C β( ( ) )L
F

ρU DL

¯

0.5
h
2 was measured to be zero for all the yawed cables

tested for 0° ≤β ≤ 45° in the subcritical Reynolds number (Re) range.
Past studies have shown that inclined cables with non-circular cross
section have non-zero mean lift coefficient and are especially vulner-
able to dry galloping near its critical Reynolds number; negative aero-
dynamic damping is generated as shown by quasi-steady theory.
However, it is also shown that yawed cables with smooth surface,
which has zero mean lift coefficient in subcritical range of Reynolds
number, can experience dry galloping in this range [24].

= × + × = +

× °

C β C β β F β β
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4.2. Buffeting test

The buffeting indicial derivative functions (Eq. (B.5)) are required
for calculation of across-wind (lift) and along-wind (drag) buffeting

(a) Vertical motion )b( Lateral motion 

Wind 

Wind 

Fig. 7. Dynamic test setup (1DOF) for extracting self-excited loads (flutter derivatives) of a yawed cable.

Fig. 8. Power spectral density of lift coefficient for different Reynolds numbers at β =0°.

M. Jafari, P.P. Sarkar Engineering Structures 180 (2019) 685–699

690



loads in the time domain. The procedure explained in Section 2 for
extracting these functions was used where the aerodynamic admittance
functions associated with lift and drag of the cable (Eqs. (B.3)–(B.4)) for
yaw angles (β) of 0°, 15°, 30°, and 45° were first identified, and then the
constants A1 to A4 in Eq. (B.5) were calculated using Eq. (B.6). The
frequency of the gust (ω) and mean wind speed (U) were changed to

cover a range of reduced frequency =K ωD U( / )varying approximately
from 0.2 to 0.7. Since the mean lift coefficient was zero for all yawed
cable models in the subcritical Reynolds number regime, the first term
in Eq. (B.3) and the second term in Eq. (B.4) are zeroes. Fig. 13 shows
that the aerodynamic admittance function in the along-wind direction
(χ )p

2 has a lower value at higher yaw angles whereas the aerodynamic
admittance function in the across-wind direction (χ )h

2 has a higher
value at higher yaw angles. In Fig. 13, buffeting indicial derivative
functions ϕh

' for across-wind direction and ϕp
' for along-wind direction.

The aerodynamic admittance functions are often fitted by a curve with
an equation in the form + CK1/(1 ), and therefore the constant coeffi-
cient (C) for each of the fitted curves is identified and plotted for the
across and along-wind directions in Fig. 14 based on equations pre-
sented in Fig. 13. Two empirical equations, Eqs. (6) and (7), are pro-
posed for predicting the aerodynamic admittance functions for different
yaw angles, so these equations can be used to calculate the derivatives
of indicial functions for yaw angles ranging from 0° to 45°.

° =
+

= − × ° + ° ⩽ ⩽ °χ K β
C K

C β β( , ) 1
1

, 7.11 316.9 0 45h
h

h
2

(6)

° =
+

= × ° + ° ⩽ ⩽ °χ K β
C K

C β β( , ) 1
1

, 0.061 12.21 0 45p
p

p
2

(7)

4.3. Dynamic test

As described in Section 2, displacement time history of the section
model in free vibration was calculated from the recorded load mea-
surements by two load cells attached to the elastic springs, and then a
low-pass filter “Butterworth” was used to filter the noise from the ori-
ginal data. Fig. 15 displays a typical time history comparison between
the original displacement data and the filtered displacement data.
Vertical DOF (h) flutter derivatives ( ∗ ∗H H, )1 4 of the cable were extracted
for different yaw angles using the ILS method, and plotted with respect
to the reduced velocity (RV=U/nD) in Fig. 16. The trend of ∗H1 shows
that it starts increasing (less negative) for the yaw angles greater than
zero after a certain reduced velocity. Therefore, positive aerodynamic
damping that is proportional to the negative of ∗H1 will potentially
become negative after a critical reduced velocity. Fig. 16a shows that
the flutter derivative ∗H1 becomes positive beyond a specific reduced
velocity that is influenced by the interaction of axial flow and vortex
shedding of a yawed cable. The strength of vortex shedding becomes
less as the velocity of axial flow behind the yawed cable increases, and
this complex interaction between two flows has a direct effect on var-
iation of aerodynamic damping. Amongst all the yaw angles explored
here, β=45° was found to have the lowest critical reduced velocity.

Fig. 9. Power spectral density of drag coef-
ficient for different Reynolds numbers at
β =0°.

Fig. 10. Strouhal number as a function of yaw angle for smooth cable.

Fig. 11. Drag coefficient vs. Reynolds number of cable for different yaw angles.

Fig. 12. Drag coefficient as a function of yaw angle for smooth cable.
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Fig. 13. Aerodynamic admittance and buffeting indicial derivative functions in across-wind (ϕh
' ) and along-wind (ϕp

' ) directions of a circular cylinder.

(a) )b(dniw-ssorcA Along-wind  

Fig. 14. The constant (C) appearing in the generalized form of the aerodynamic admittance function, + CK1/(1 ), of a circular cylinder as a function of yaw angle.
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The wind tunnel tests to extract the flutter derivative ∗H1 were limited
up to a certain reduced velocity because the cable model started dis-
playing large amplitude motions at higher reduced velocities. To verify
the extracted flutter derivatives based on measurements, the time his-
tory of the measured displacement and simulated displacement based
on the extracted flutter derivatives are compared. One typical com-
parison is plotted in Fig. 17, showing a good agreement with one an-
other. As explained before, it has been theoretically proven that the
critical velocity for divergent motion or galloping of the cable in the
vertical direction occurs at =∗H Sc41 when the aerodynamic damping
offsets the mechanical damping producing zero net damping. The re-
sults of ∗H1 (Fig. 16a) for different yaw angles were fitted by a curve as a
function of reduced velocity ( =∗H f RV( )1 ), after which the equation of

= =∗H f RV Sc( ) 41 was solved for a range of Scruton numbers (0.5–6) to
determine the critical reduced velocity (RV )cr for galloping. After
finding the critical reduced velocity as a function of Scruton number,

=RV f Sc( )cr , for a fixed yaw angle, it was fitted with the curve whose
form is given in Eq. (8), and the constants (a–c) in this equation are
found. The results showing these constants of Eq. (8) for various yaw
angles are summarized in Table 3. To validate RVcr as a function of Sc
given by Eq. (8) and Table 3, the plot corresponding to the critical yaw
angle of 45° was compared with those from previous studies [20,25]
(see Fig. 18), revealing good agreement with Saito’s and Irwin’s in-
stability lines. Thus, these significant empirical equations (Table 3) can
be used to predict the critical wind speed for dry-cable galloping of
cables with different yaw/inclination angles. As explained before, gal-
loping can be classified into unsteady galloping and classical galloping.
The first type that is identified in wind-excited dynamic systems has an
unsteady response with nonstationary amplitude. The second type that
is a divergent-type galloping can be described by classical quasi-steady
theory (Den-Hartog). This type of galloping normally occurs beyond the
critical Reynolds number range of the cable where the lift coefficient is
not zero and it occurs at a higher critical reduced velocity than the one
corresponding to divergent-type galloping. In this study, free vibration
test was used to determine the aerodynamic damping in a range of wind
speeds below the critical wind speed of classical galloping where the
unsteady galloping usually occurs. The physical free-vibration system

used here did not allow testing the model at or beyond the critical wind
speed. However, the aerodynamic damping curves of ∗H1 , as obtained
from the free vibration tests of the yawed cables, were extrapolated to
predict the critical reduced velocity of classical galloping by using

=∗H Sc41 criterion when the total damping in the system goes to zero
and divergent response occurs. Thus, the predicted critical reduced
velocity based on our data corresponds to classical galloping and not
unsteady galloping. Fig. 19 displays the critical reduced velocity vs
Scruton number for various yaw angles 15°, 20°, 25°, 30°, 35°, 40°, and
45°.

Fig. 15. Displaying the original and filtered displacement.

Fig. 16. Vertical flutter derivatives (1DOF) of yawed cable for different yaw angles, (a) ∗H1 , (b)
∗H4 .

Fig. 17. Comparison of vertical displacement time history for = °β 45 at velo-
city of 5.9 m/s.

Table 3
Constants of Eq. (8) to predict reduced velocity.

β° a b c

45° 7.03 0.6 46.07
°40 4.42 0.78 72.32
°35 5.95 0.79 86.33
°30 2.17 0.79 78.21
°25 3.32 0.78 70.71
°20 4.41 0.78 78.51
°15 1.23 0.8 81.94

Fig. 18. Comparison of present result with other criteria for unstable and stable
regions of dry-cable galloping.
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= ∗ + ° ⩽ = ⩽ °∗RV a Sc c β β0 45cr
b (8)

where constants a, b, and c are listed in Table 3.
Following a similar procedure, the flutter derivatives ( ∗P1 ,

∗P4 ) for
lateral motion (p) of the cable at a critical yaw angle of 45° were ex-
tracted for different reduced velocities (see Fig. 20). Fig. 21 shows a
comparison of measured and simulated displacements (p) for = °β 45
case at a velocity of 5.9 m/s, revealing a good match between them. The

∗P1 in Fig. 20a shows that it becomes increasingly negative with in-
creasing RV which implies that the aerodynamic damping will become
increasingly positive in the along-wind direction with increasing wind
speed, ruling out any possibility of damping driven galloping or flutter
in this lateral mode of vibration. Thus, the participation of the along-
wind motion, which is generally true for cables that vibrate along in-
clined planes with elliptical trajectories, will add stability to the cable
motion and thereby increase the critical reduced velocity for dry-cable
galloping as predicted purely by vertical motion only (Eq. (8)).

5. Predicting minimum damping required

Finding the minimum additional damping required to stabilize the
cables has always been a challenge for designing cables vulnerable to
dry-cable galloping. Therefore, a simple and practical design procedure
is introduced here in this section based on the obtained experimental
data to estimate the required damping, which keeps cables stable. For
any stay-cable in a cable-stayed bridge with a fixed inclination angle
(α), for example, extreme wind is probable to come from a fixed di-
rection at the given site where the bridge is located, yielding yaw an-
gleβ for a plane of cables or individual cables as shown in Fig. 22. The
procedure that is described here to calculate the additional damping
required to mitigate dry-cable galloping in individual cables with re-
latively smooth surfaces can be applied to cables in other structures
such as suspension bridges, suspended roofs, and low-voltage power
transmission lines.

5.1. Design procedure

Design procedure of finding the required minimum damping is
summarized in the following three steps.

Step 1
The equivalent yaw angle ∗β( ) can be calculated by Eq. (3) using the

actual yaw angle β( ) and inclination angle α( ) of the cable.
Step 2
Since the profile of wind speed is a function of height and terrain

type, these two parameters need to be specified. Mean wind speed
profile can be estimated by the power law relationship as shown in Eq.
(9). Using this equation, the mean hourly wind speed at any elevation z
from the ground can be calculated based on the mean hourly wind
speed at a height of 10m (33 ft). In Eq. (9), α is the power-law exponent
that depends on the terrain type.

= ⎛
⎝

⎞
⎠

U z
U

z( )
(10) 10

MH

design
MH

α

(9)

Since wind tunnel measurements are based on the mean hourly wind
speed, all calculations should be based on mean hourly wind speed for
cables in the field. Furthermore, since the wind speed is changing with

Fig. 19. Critical reduced velocity for dry-cable galloping vs. Scruton number for
different yaw angles.

Fig. 20. Lateral flutter derivatives (1DOF) of yawed cable at = °β 45 , (a) ∗P1 , (b)
∗P4 .

Fig. 21. Comparison of lateral displacement time history for = °β 45 at velocity
of 5.9 m/s.

= - Wind,
Wind 
Profile

Fig. 22. Schematic view of inclined cables in cable-stayed bridge structure
subject to ABL wind at a given yaw angle (β).
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increasing height (z) over the height of an inclined cable, the average
wind speed should be calculated. The average mean hourly (MH) design
wind speed ( =U Ūdesign

MH
design) can be estimated by Eq. (10). This equation

is based on the 3-sec design speed, −U (10),design
sec3 for the terrain over which

the wind approaches the cable that can be estimated from −U (10)design
sec OT3 , ,

specified in ASCE 7-16 [39], as 3-sec gust in open terrain (OT) at 10m
(33 ft) height for various MRIs (mean recurrence intervals) at a given
location where the cable is located using Eq. (11).

∫ ∫
= = =

−( ) ( )
U U

U dz

H

U dz

λ H
¯ ¯

(10) (10)

.design design
MH Z

Z
design
MH z α

design
sec

Z
Z z α

10
3

10min
max

min
max

(10)

where = −H Z Zmax min, Zmin and Zmax are the minimum and maximum
elevation, respectively, of the inclined cable (Fig. 22) or suspended
cable with a sag, and λ can be defined by Eq. (12), which relates the
mean hourly wind speed and 3-sec gust speed at a height of 10m for a
particular terrain.

=
−

−
∗

∗

U
U

u
u ln

(10)
(10)

lndesign
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z
3

3 ,

10

10
0.07

0
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where ∗u and ∗u OT are friction velocity for the given terrain of the ap-
proaching flow and open terrain, respectively, z0 is roughness length in
meters of the terrain of the approaching flow. ∗

∗

u
u OT can be estimated

from Table 4 [40].
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10
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wherec (3) = 2.85, z0 is roughness length in meters of the terrain of the
approaching flow, γ is a constant that depends on the roughness length,
as shown in Table 4 [40]. Thus, the average of mean hourly design wind
speed (Ū )design can be estimated based on above-mentioned equations
(Eqs. (10)–(12)) by defining terrain type and configuration of the
cables.

Step 3
The relationship between critical reduced velocity and Scruton

number, =RV fn Sc( ),cr that is defined in Eq. (8), and Table 3 for dif-
ferent yaw angles β is used where β in these empirical equations is the
same as the equivalent yaw angle ∗β estimated for the cable. Since it is
theoretically proven that dimensionless numbers are equivalent,

= = =RV RV fn Sc( )design
U

fD cr
¯design , it can be shown that design reduced

velocity is a function of a design Scruton number (Scdesign). Thus, the
desired or design Scruton number (Scdesign) for a cable with natural
frequency (f) and cable diameter (D) should be calculated to estimate
the required damping in a cable to avoid dry-cable galloping in a given
dynamic mode up to the design wind speed. The design Scruton number
to prevent dry-cable galloping can be extracted (see Fig. 23) by
knowing average design wind speed, equivalent yaw angle, cable dia-
meter, and cable natural frequencies. For different equivalent yaw an-
gles, the relationship between Scruton number (log scale) and average
design wind speed (mean hourly) is shown in Fig. 23 for a constant
parameter of fD varying in the range of 0.1–1.1. It is worth mentioning
that the range of average design wind speed (Ū )design and fD were se-
lected to cover most of the cables vibrating in the first three dynamic
modes. Subsequently, the minimum required damping (ζ )m can be

predicted by finding the design Scruton number =Sc( ( )design m ζ
ρD
e m

2 ) from
Fig. 23, where me is generalized mass per unit length of the cable based
on the dynamic mode of excitation considered, ζ m is minimum damping
required, ρ is air density, and D is cable diameter. Fig. 24 illustrates the
flow chart, which summarizes the mentioned design procedure to
predict the required damping. Additional damping that is required to
prevent large amplitude vibration due to dry-cable galloping can be
provided through either mechanical damper or aerodynamic damper or
a combination thereof. It can be estimated by subtracting the inherent
mechanical damping in the cable from the required damping.

6. Conclusions

Inclined cables of long-span bridges have frequently experienced
moderate to large-amplitude motions during the past few decades be-
cause of phenomena such as rain-wind induced vibration, vortex-in-
duced vibration, iced-cable galloping, wake galloping, and dry-cable
galloping. In this paper, dry-cable galloping was studied by conducting
wind tunnel tests to measure the aerodynamic and aeroelastic loads of a
yawed dry cable. A series of static and dynamic experiments were
performed to extract flutter derivatives and buffeting indicial derivative
functions associated with self-excited and buffeting loads, respectively.
For this purpose, all experiments were conducted on a section model of
a smooth cable under uniform and smooth/gusty flow conditions in the
AABL Wind and Gust Tunnel. According to the literature, the aero-
dynamic behavior of an inclined and/or yawed cable can be found from
that of a yawed cable only using the definition of equivalent yaw angle.
For the sake of simplicity, all wind tunnel experiments were conducted
only for a yawed cable, and the results can be applied to find the
aerodynamic properties of an inclined and/or yawed cable. Static wind
tunnel tests of surface pressure distribution and load measurements on
a cable model resulted in proposing an empirical equation for pre-
dicting the mean drag coefficient and Strouhal number for yaw angles
ranging from 0° to 45° while the mean lift coefficient was found to be
zero in the subcritical Reynolds number regime. Results indicate that
the mean drag coefficient decreases with increasing yaw angles, which
would increase the vulnerability of the dry-cable galloping following
the Den-Hartog criterion. For buffeting tests, aerodynamic admittance
functions and buffeting indicial derivative functions for the yawed
cables were extracted for various yaw angles in the range of 0–45° and
empirical equations were proposed for the same, which would be useful
for computing buffeting loads at various yaw angles. The results show
that the aerodynamic admittance function at a given reduced velocity
has a lower value in the along-wind direction (χ )p

2 and has a higher
value in the across-wind direction (χ )h

2 for cables at higher yaw angles.
For dynamic 1DOF tests, vertical and lateral flutter derivatives
( ∗ ∗ ∗H H P, ,1 4 1 ,

∗P4 ) of a yawed cable were identified from a measured re-
sponse of a section model in free vibration for yaw angles ranging from
0° to 45°. Empirical equations were extracted to predict the critical
wind speed for dry-cable galloping of a cable at a specific yaw angle
based on its Scruton number. Results showed that the critical equivalent
yaw angle is 45° for dry-cable galloping in vertical motion.
Additionally, a strong agreement between the present instability cri-
terion for dry-cable galloping based on the critical equivalent yaw angle
and those from two other well-known studies was found. In the present
study, separate instability criterion was found for cables with different
equivalent yaw angles. Finally, a simplified design procedure was in-
troduced to estimate the minimum damping required to prevent the
dry-cable galloping up to the design wind speed of the cable structure,
which will help to estimate the additional damping required for an
individual cable based on its orientation and site characteristics of the
cable structure’s location. Furthermore, the aerodynamic and aero-
elastic cable load parameters obtained here are significantly helpful in
predicting the response of inclined/yawed cables at a specific wind
speed and in predicting the critical wind speed for dry-cable galloping.

Table 4
Variable γ corresponding to various roughness lengths [40].

Z (m)0 0.005 0.07 0.30 1.00 2.50

γ 6.50 6.00 5.25 4.85 4.00
∗

∗

u
u OT

0.83 1.00 1.15 1.33 1.46
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Appendix A. Self-excited force

Self-excited loads are motion-induced loads that are proportional to displacements and velocities of the cable motion and mean speed of the
incoming wind. Parameters describing these loads can be extracted using two methods: direct measurement of aerodynamic force using strain
gauges, or indirect measurement using a free vibration or forced vibration wind tunnel test [41]. The following equation describes the extraction of

∗ ∗H Hand1 4 for 1 degree of freedom (DOF) tests. The general equation of motion for a structure due to self-excited loads of vertical motion is defined
as follows:

+ + =− − −h M Ch M kh M F¨ ̇ se
1 1 1 (A.1)

Fig. 23. Design Scruton number (Sc )design vs. average design wind speed (mean hourly, Ūdesign) for cables with different cable parameter (fD) and equivalent yaw angle
( ∗β ).
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where =M mh, =−M C ζ ω2 h h
1 , =−M k ωh

1 2

and the aeroelastic force (F )se is given in Eq. (A.2).

= ⎡
⎣⎢

⎤
⎦⎥

∗ ∗F ρU D KH UK H D h
h

0.5 [ / / ]
̇

se
2

1
2

4
(A.2)

where K is reduced frequency (K=ωD/U), ω is angular frequency, D is a typical across-wind dimension of the cross-section of the structure or cable
diameter here, and U is mean wind speed. By substituting Eq. (A.2) into Eq. (A.1) and gathering all terms to the left hand side, the modified free-
vibration equation including aeroelastic effects is

+ + =h C h K h¨ ̇ 0eff eff (A.3)

where Ceff and Keff are the aeroelastically modified effective damping and stiffness, respectively. In addition, if Cmech and K mech are mechanical
damping and stiffness under zero-wind conditions, the flutter derivatives ∗ ∗H Hand1 4 can be derived as follows:

= − −∗H K m
ρD ω

C C( ) 2 ( )h eff mech
1 2 (A.4)

= − −∗H K m
ρD ω

K K( ) 2 ( )h eff mech
4 2 2 (A.5)

An iterative least-squares (ILS) method was used for the extraction of flutter derivatives. This system identification method was successfully used to
extract 2 flutter derivatives associated with 1DOF, 8 flutter derivatives associated with 2DOF, and 18 flutter derivatives associated with 3DOF section
model of a bridge [41]. To apply this method, the displacement response of a section model that is released from a fixed state of rest with an initial
displacement, measured in free vibration, is filtered digitally and used as an input to this method. A MATLAB code was used in which a “Butter-
worth” filter was employed as a low-pass filter to remove all noises from the recorded displacement time history with frequencies higher than the
natural frequency of the section model. In the ILS method, a state-space model is used as given by Eq. (A.6).

=X A Ẋ ·
_ _ _ (A.6)

where

= ⎡
⎣

⎤
⎦

= ⎡
⎣− −

⎤
⎦

X h
h

A
K Ċ , 0 1

eff eff_ _

A
_

is a 2× 2 square matrix. After calculating the filtered displacement time history from the measured time history displacement and calculating the

velocity, h ̇, and acceleration, ḧ, time histories of the section model, A or Ceff and Keff can be identified using the ILS method at a given wind speed
and by subtracting their zero wind values Cmech and K ,mech respectively, ∗H1 and ∗H4 can be extracted at a given wind speed using Eqs. (A.4) and (A.5).
Full description of the ILS method can be obtained in [41]. For maintaining accuracy, all initial displacements and sampling time of the time history
records were kept the same for all wind speeds. Similarly, flutter derivatives for lateral motion (p), ∗P1 and ∗P4 , can be extracted by conducting free
vibration tests along the lateral motion.

Appendix B. Buffeting load

This type of wind load that originates due to wind turbulence can be calculated in time domain for both vertical and lateral DOFs, as given by Eqs.
(B.1) and (B.2).

Input:

, , Terrain type  

Calculations:

1- Finding  by Eq. (3). 

2- Calculating  by Eqs. (9-12), and Table 4. 

3- Extracting  at a given   ,  by Fig. (23)

Output:

Fig. 24. Flow chart of estimating the minimum damping (ζ )m required to
prevent dry-cable galloping.
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∫= − + + −F s ρUD C u σ ϕ s σ C C w σ ϕ s σ dσ( ) 0.5 [ 2 ( ) ( ) ( ) ( ) ( )]b
h s

L h D L h0
' ' '

(B.1)

∫= − − −F s ρUD C u σ ϕ s σ C w σ ϕ s σ dσ( ) 0.5 [2 ( ) ( ) ( ) ( )]b
p s

D p L p0
' '

(B.2)

where =ρ air density, =U mean wind speed, CD =drag coefficient, D =cable diameter, =CL
dC
dα

' L , u σ( ) andw σ( ) =zero mean wind turbulence

components in along and across-wind directions, respectively, =s Ut D/ =non-dimensional time, ϕ s( )h
' and ϕ s( )p

' are derivatives of buffeting indicial
functions ϕ s( )h and ϕ s( )p with respect to ‘s’, respectively, referred here as buffeting indicial derivative functions that can be extracted using the
aerodynamic admittance functions χ K( )h

2 and χ K( )p
2 (Eqs. (B.3)–(B.4)). Aerodynamic admittance functions, χ K( )h

2 and χ K( )p
2 , are functions of

reduced frequency (K) that relate turbulence in upstream wind flow to the fluctuating wind load in the frequency domain [42]. To extract the
aerodynamic admittance functions of a cable in the frequency domain, Eqs. (B.3) and (B.4) can be used.

= ⎡⎣ + + ⎤⎦( )S K ρU D C C C χ K( ) (2 ) ( ) ( )F F L
S K

U D L
S K

U h
1
2

2 2 2 ( ) ' 2 ( ) 2
b
h

b
h uu ww

2 2 (B.3)
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(B.4)

where S K( )F Fb
h

b
h and S K( )F Fb

p
b
p are power spectral densities of the buffeting load in across- and along-wind directions, respectively, S K( )uu and S K( )ww

are power spectral densities of wind turbulence in along- and across-wind directions, respectively, and χ K( )h
2 and χ K( )p

2 are aerodynamic ad-
mittance functions in vertical and lateral directions. The buffeting indicial derivative function takes the form given in Eq. (B.5). In this study, only
two terms are used to model the buffeting indicial derivative functions (Eq. (B.5)) because a past study [42] has demonstrated that two terms are
enough to accurately model these functions and the addition of the third term does not improve the accuracy of the predicted buffeting loads using
these functions.

= +− −ϕ s A e A e( ) A s A s'
1 32 4 (B.5)

where Ai, =i 1.4, are constants that can be computed for each of the two DOFs using Eq. (B.6) that is derived from the Fourier transform relationship
between the aerodynamic admittance function, as identified from wind tunnel tests, and buffeting indicial derivative function.
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(B.6)

Finally, buffeting loads in time domain can be computed for both vertical and lateral DOFs by applying Eqs. (B.1) and (B.2) after identifying the
buffeting indicial derivative functions.

References

[1] Cheng P, Li WJ, Chen WL, Gao DL, Xu Y, Li H. Computer vision-based recognition of
rainwater rivulet morphology evolution during rain–wind-induced vibration of a 3D
aeroelastic stay cable. J Wind Eng Ind Aerodyn 2018;172:367–78.

[2] Jing H, Xia Y, Li H, Xu Y, Li Y. Excitation mechanism of rain–wind induced cable
vibration in a wind tunnel. J Fluids Struct 2017;68:32–47.

[3] Ge Y, Chang Y, Xu L, Zhao L. Experimental investigation on spatial attitudes, dy-
namic characteristics and environmental conditions of rain–wind-induced vibration
of stay cables with high-precision raining simulator. J Fluids Struct 2018;76:60–83.

[4] Chen WL, Zhang QQ, Li H, Hu H. An experimental investigation on vortex induced
vibration of a flexible inclined cable under a shear flow. J Fluids Struct
2015;54:297–311.

[5] Wang J, Fu S, Baarholm R, Wu J, Larsen CM. Fatigue damage induced by vortex-
induced vibrations in oscillatory flow. Marine Struct 2015;40:73–91.

[6] Park J, Kim S, Kim HK. Effect of gap distance on vortex-induced vibration in two
parallel cable-stayed bridges. J Wind Eng Ind Aerodyn 2017;162:35–44.

[7] Foti F, Martinelli L. Finite element modeling of cable galloping vibrations. Part II:
Application to an iced cable in 1: 2 multiple internal resonance. J Vib Control
2018;24(7):1322–40.

[8] Yan Z, Li Z, Savory E, Lin WE. Galloping of a single iced conductor based on curved-
beam theory. J Wind Eng Ind Aerodyn 2013;123:77–87.

[9] Gurung CB, Yamaguchi H, Yukino T. Identification of large amplitude wind-induced
vibration of ice-accreted transmission lines based on field observed data. Eng Struct
2002;24(2):179–88.

[10] Tokoro S, Komatsu H, Nakasu M, Mizuguchi K, Kasuga A. A study on wake-gal-
loping employing full aeroelastic twin cable model. J Wind Eng Ind Aerodyn
2000;88(2–3):247–61.

[11] He X, Cai C, Wang Z, Jing H, Qin C. Experimental verification of the effectiveness of
elastic cross-ties in suppressing wake-induced vibrations of staggered stay cables.
Eng Struct 2018;167:151–65.

[12] Tanaka T, Matsumoto M, Ishizaki H, Kibe H. Dry galloping characteristic and vi-
bration control of inclined stay cable. In: Proceedings of the 1st international
symposium on flutter and its application; 2017. p. 639.

[13] Demartino C, Ricciardelli F. Assessment of the structural damping required to
prevent galloping of dry HDPE stay cables using the quasi-steady approach. J Bridge
Eng 2018;23(4):04018004.

[14] Vo DH, Katsuchi H, Yamada H. Dry galloping of surface modification cable in low
Scruton number range. In: Proceedings of the 1st international symposium on

flutter and its application; 2017. p. 629–38.
[15] Piccardo G, Zulli D, Luongo A. Dry galloping in inclined cables: linear stability

analysis. Procedia Eng 2017;199:3164–9.
[16] Benidir A, Flamand O, Dimitriadis G. The impact of circularity defects on bridge

stay cable dry galloping stability. J Wind Eng Ind Aerodyn 2018;181:14–26.
[17] Matsumoto M. Effects of axial flow and Karman vortex interference on dry-state

galloping of inclined stay-cables. In: Proceedings of the 6th international sympo-
sium on cable dynamics; 2005.

[18] Honda A, Yamanaka T, Fujiwara T, Saito T. Wind tunnel test on rain-induced vi-
bration of the stay-cable. In: Proceedings of the international symposium on cable
dynamics; 1995. p. 255–62.

[19] Irwin P. Wind vibrations of cables on cable-stayed bridges. Struct Cong 1997:383–7.
[20] Kumarasena S, Jones NP, Irwin P, Taylor P. Wind-induced vibration of stay cables.

FHWA-HRT-05-083. U.S. Department of Transportation, Federal Highway
Administration; 2007.

[21] Saito T, Matsumoto M, Kitazawa M. Rain-wind excitation of cables on cable-stayed
Higashi-Kobe Bridge and cable vibration control. In: Proceedings of the interna-
tional conference on cable-stayed and suspension bridges; 1994. p. 507–14.

[22] Cheng S, Larose GL, Savage MG, Tanaka H, Irwin PA. Experimental study on the
wind-induced vibration of a dry inclined cable—Part I: Phenomena. J Wind Eng Ind
Aerodyn 2008;96(12):2231–53.

[23] Cheng S, Irwin PA, Tanaka H. Experimental study on the wind-induced vibration of
a dry inclined cable—Part II: Proposed mechanisms. J Wind Eng Ind Aerodyn
2008;96(12):2254–72.

[24] Duy HV, Katsuchi H, Yamada H, Nishio M. Experimental study on dry-state gal-
loping with various wind relative angles and its countermeasures. J Struct Eng
2014;60A:428–36.

[25] Matsumoto M, Yagi T, Hatsuda H, Shima T, Tanaka M, Naito H. Dry galloping
characteristics and its mechanism of inclined/yawed cables. J Wind Eng Ind
Aerodyn 2010;98(6–7):317–27.

[26] Katsuchi H, Yamada H. Wind-tunnel study on dry-galloping of indented-surface stay
cable. In: Proceedings of the 11th Americas conference on wind engineering; 2009,
p. 22–6.

[27] Benidir A, Flamand O, Gaillet L, Dimitriadis G. Impact of roughness and circularity-
defect on bridge cables stability. J Wind Eng Ind Aerodyn 2015;137:1–3.

[28] Flamand O, Boujard O. A comparison between dry cylinder galloping and rain-wind
induced excitation. In: Proceedings of the 5th European & African conference on
wind engineering (EACWE5); 2009. p. 5.

[29] Kleissl K, Georgakis CT. Aerodynamic control of bridge cables through shape
modification: a preliminary study. J Fluids Struct 2011;27(7):1006–20.

M. Jafari, P.P. Sarkar Engineering Structures 180 (2019) 685–699

698

http://refhub.elsevier.com/S0141-0296(18)32245-4/h0005
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0005
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0005
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0010
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0010
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0015
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0015
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0015
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0020
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0020
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0020
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0025
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0025
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0030
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0030
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0035
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0035
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0035
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0040
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0040
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0045
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0045
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0045
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0050
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0050
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0050
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0055
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0055
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0055
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0065
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0065
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0065
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0075
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0075
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0080
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0080
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0095
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0110
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0110
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0110
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0115
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0115
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0115
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0120
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0120
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0120
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0125
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0125
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0125
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0135
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0135
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0145
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0145


[30] Ma WY, Liu QK, Du XQ, Wei YY. Effect of the Reynolds number on the aerodynamic
forces and galloping instability of a cylinder with semi-elliptical cross sections. J
Wind Eng Ind Aerodyn 2015;146:71–80.

[31] Nikitas N, Macdonald JH. Aerodynamic forcing characteristics of dry cable gal-
loping at critical Reynolds numbers. Eur J Mech B Fluids 2015;49:243–9.

[32] Macdonald JH, Larose GL. A unified approach to aerodynamic damping and drag/
lift instabilities, and its application to dry inclined cable galloping. J Fluids Struct
2006;22(2):229–52.

[33] Raeesi A, Cheng S, Ting DS. Aerodynamic damping of an inclined circular cylinder
in unsteady flow and its application to the prediction of dry inclined cable gal-
loping. J Wind Eng Ind Aerodyn 2013;113:12–28.

[34] Wu X, Sharma A, Jafari M, Sarkar P. Towards predicting dry cable galloping using
detached eddy simulations. In: 55th AIAA Aerospace Sciences Meeting; 2017, p.
1483.

[35] Yeo D, Jones NP. A mechanism for large amplitude, wind-induced vibrations of stay
cables. In: Proceedings of the 11th Americas Conference on Wind Engineering, San
Juan; 2009.

[36] Luongo A, Zulli D, Piccardo G. On the effect of twist angle on nonlinear galloping of
suspended cables. Comput Struct 2009;87(15–16):1003–14.

[37] Phelan RS, Sarkar PP, Mehta KC. Full-scale measurements to investigate rain–wind
induced cable-stay vibration and its mitigation. J Bridge Eng 2006;11(3):293–304.

[38] Chiu WS, Lienhard JH. On real fluid flow over yawed circular cylinders. J Basic Eng
1967;89(4):851–7.

[39] ASCE/SEI 7-16. Minimum design loads and associated criteria for buildings and
other structures. American Society of Civil Engineers (ASCE)/Structural
Engineering Institute (SEI); 2017.

[40] Simiu E, Scanlan RH. Wind effects on structures: fundamentals and applications to
design. 3rd ed. New York (USA): John Wiley and Sons; 1996.

[41] Chowdhury AG, Sarkar PP. A new technique for identification of eighteen flutter
derivatives using a three-degree-of-freedom section model. Eng Struct
2003;25(14):1763–72.

[42] Chang B, Sarkar P, Phares B. Time-domain model for predicting aerodynamic loads
on a slender support structure for fatigue design. J Eng Mech 2009;136(6):736–46.

M. Jafari, P.P. Sarkar Engineering Structures 180 (2019) 685–699

699

http://refhub.elsevier.com/S0141-0296(18)32245-4/h0150
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0150
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0150
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0155
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0155
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0160
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0160
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0160
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0165
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0165
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0165
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0180
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0180
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0185
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0185
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0190
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0190
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0200
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0200
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0205
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0205
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0205
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0210
http://refhub.elsevier.com/S0141-0296(18)32245-4/h0210

	Parameter identification of wind-induced buffeting loads and onset criteria for dry-cable galloping of yawed/inclined cables
	Introduction
	Methodology
	Equations of motion

	Experimental setup
	Data acquisition system
	Static test setup
	Buffeting test setup
	Dynamic test setup

	Results and discussion
	Static test
	Buffeting test
	Dynamic test

	Predicting minimum damping required
	Design procedure

	Conclusions
	Acknowledgement
	Self-excited force
	Buffeting load
	References




