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1.1 Introduction 

“You can do anything you set your mind to,” goes the old adage.  Of course, we do not always aim toward the 
loftiest goals, sometimes preferring to “just take it easy, man” [1]. These contrasting approaches to life are 
captured by the principles of maximizing and satisficing, in which individuals implement optimal or good-
enough-to-get-by decision strategies, respectively [2].  The use of strategies like these, among others, has been 
broadly studied in a variety of domains across psychology [3–5], yet not as extensively in the domain of 
attention, the target topic of this special issue.   
 
Nevertheless, it is critical that we understand how attentional strategy exerts its influence on performance.  In 
this pursuit, it is prudent to first define it.  Borrowing from several definitions of cognitive strategy [6–8], we 
define attentional strategy as a mental plan, or policy, guiding how individuals prioritize and select sensory 
information.  It can impact multiple stages of task performance, from choosing whether to perform a given 
attentional task (e.g., should I actively search for my car keys or rest my eyes and ask my friend to do it?), to 
choosing which features and locations to prioritize during the task (e.g., search for the red keychain vs. the 
metal key), to deciding when to terminate/update task performance (e.g., should I keep searching this room or 
begin searching another room?).  A comprehensive understanding of strategy thus invites examination of not 
how it dictates a single choice but rather a complete decision tree, guiding steps from start to finish in task 
performance. 
 
To begin to appreciate the impact strategy makes on task performance, consider a seminal contribution from 
Bacon and Egeth, 25 years ago [9]. They questioned a now classic finding in which people searching for shape 
oddball targets suffer response time (RT) interference costs by salient, color oddball distractors [10]. While one 
could presume this distraction to be unavoidable, Bacon and Egeth posited that people were able to ignore the 
color oddball but simply were unmotivated to do so.  Perhaps participants were satisficing, being unwilling to 
invest additional cognitive effort required to ignore the color singleton, especially since the cumulative RT costs 
of distraction across a full experiment only amounted to mere seconds [11]. Bacon and Egeth modified their 
task to discourage such satisficing, predicting that shifts toward a maximizing strategy would reduce the 
observed RT distraction effects.  Results indeed revealed the distraction effects disappeared.  Some debate 
surrounding their work has ensued [12], but we can credit the study with the powerful message that we ignore 
strategy at our peril.  Investigating it is vital for developing complete models of attention, particularly in the real 
world, when strategy use is least constrained (for reviews emphasizing the importance of studying attentional 
strategy, see [13,14]). 
 
2.1 Methods for Investigating Attentional Strategy 

Our aim in this paper is a practical one:  to encourage greater study of attentional strategy.  This prompts 
consideration of roadblocks preventing such work. The overwhelming majority of studies on attention rely on 
the dependent measures of response time (RT) and accuracy.  These metrics serve as gold standard tools in 
investigating attentional abilities, and they have been classically used in investigating some strategy indicators, 
such as the speed-accuracy tradeoff [15,16].  However, any single metric inherently carries limitations. Bacon 
and Egeth (1994) had to infer strategy by computing the difference in RT between distractor present and 
distractor absent conditions (see also [17,18]).  Similar approaches need to be taken with accuracy [19].  More 
broadly, efforts to quantify strategy from RT and accuracy metrics largely rely on the comparison of two or 
more conditions [20–24].  Unfortunately, while producing great insights, difference scores are indirect and 
bring on unwanted statistical noise, especially when employed in individual differences and correlational 
designs [25].  Moreover, when strategy is estimated by comparing different conditions, it is impossible to 
measure strategy on individual trials. The good news is that many methods exist for investigating strategy, some 
more widely used than others, and a number of these are not subject to the same limitations difference scores.   
Therefore, it is prudent to use a diversity of converging methods.   
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Here, we offer a “toolbox” of methods to study attentional strategy.  We have divided them into both 
manipulations and measurements.  The former can be deployed to elicit the use of a variety of strategies, while 
the latter provides ways to assess which strategies are chosen.  The narrative review is accompanied by a 
schematic overview indicating which stages of task completion the methods might influence and/or probe 
(Figure 1), as well as a table summarizing when to use these approaches, along with some considerations to 
keep in mind (Table 1).  No pair of methods is mutually exclusive; indeed, a robust study of strategy might use 
many at once. This list is also not exhaustive, as there are surely additional methods available. 
 
2.1.1 Strategy manipulations.   
   
2.1.1.1 Instruction 
Instructions are a fixture in attention experiments, primarily because researchers want to make sure participants 
understand what is expected of them.   However, instructions can also be manipulated in a variety of ways to 
shed light on strategy use. Explicit cues, such as those used by Posner, serve as perhaps the most famous 
example [26], showing that participants can strategically adjust how they process information based on 
expectations [27].  
 
Bacon and Egeth, in a separate study from the one reviewed above, used instructions to mislead participants 
about the ratios of features in a conjunction search task (e.g., search for the red horizontal bar among red 
vertical and green horizontal bars), to determine if expectations about task structure would influence search 
strategy, finding some influence of instructions on strategy use [28].  Manipulations like this can be used to 
establish that a single task can be approached with more than one strategy.   
When multiple strategies are available, and participants use a suboptimal one by default, instructions can also be 
deployed to help determine why.  Participants may not know what the optimal strategy is; alternatively, they 
might know but are unable or unwilling to use the optimal strategy. Proulx found in one experiment that 
participants failed to use the optimal feature to guide a conjunction search [29].  In a second experiment, he 
explained the optimal strategy to participants; yet, about half of the participants still used the suboptimal 
strategy.  For these participants, lack of explicit knowledge of the best strategy did not seem to explain their 
choices (see also [23,30]). 
 
One consideration to keep in mind is that, particularly in studies similar to Proulx’s, instructional manipulations 
can sometimes be subject to carry-over effects. Once instructed, the optimal strategy cannot be unlearned. In 
these cases, between-group designs should be selected. 
 
2.1.1.2 Reward 
Reward has become a widely used tool in modern attention research.  The bulk of such studies have focused on 
value-driven learning, in which a specific stimulus can become behaviorally salient after participants learn to 
associate it with an expected payoff (see [31,32] for recent reviews).  Value-driven learning may be considered 
strategic in nature [33], although in some cases it is viewed to be automatically driven [31,34].  
One way reward can be used to arguably more directly manipulate strategy is to implement performance 
contingencies, also referred to as reward prospect, in which participants are paid more for overall better 
performance [35–38].  That is, if participants are paid more for faster response times, then they should be 
motivated to seek strategies yielding faster target detection.    
This manipulation should be paired with a reliable measure of strategy, to distinguish between generic 
performance improvements (e.g., faster responding) vs. qualitative changes in chosen strategy (e.g., choosing 
the more efficient method to find the target).   
 
2.1.2 Strategy measures 



	

	

      
4 

 

2.1.2.1 Demand selection 
Imagine you can buy your favorite snack at the convenience store steps away for $2.75 or at the market at the 
top of a steep hill for $2.00.  Is the climb worth saving $0.75?  This choice can be referred to as a demand 

selection, in which one weighs the relative physical or cognitive effort of the options in making their decision  
[4,39].  Pauszek and Gibson recently used this measure in an attention task [40].  After previously 
demonstrating that individuals often neglect to use valid spatial cues to facilitate visual target identification 
[21,22,41], they questioned the extent to which individuals would consciously choose valid cue information that 
could both speed performance but incur greater effort to process.  They had participants choose between a 
search task with no spatial cue vs. one that had a 70% valid spatial cue.  Results showed a preference for the no-
cue task, revealing a strategic choice to forego information that could facilitate performance.  
Demand selection, along with target choice and saccadic choice described below, is useful because it can 
measure strategy on each individual trial. One consideration to keep in mind is the potential for asymmetric 
practice effects, in which choosing one task more frequently produces learning improvements, thus making that 
task subjectively easier and more desirable. 
   
2.1.2.2 Target choice 
Demand selection features an explicit choice that is made prospectively.  One might compare it to a New Year’s 
resolution, in which someone announces their commitment before they are required to execute it.  An individual 
might exhibit different behavior when strategy choices are made on the fly, during effortful task performance.  
We introduced a task called the adaptive choice visual search [42–44], in which participants view a large-scale 
display containing about a dozen items in one color (small subset) and about two-dozen in another color (large 
subset).  One target is included in each subset, and participants can choose to report either target.  The optimal 
strategy is to identify the smaller subset, configure an attentional template for that subset color (i.e., enter a state 
of control that prioritizes the chosen feature for selection), and then search within that subset for the associated 
target.  Such a strategy yields substantially faster RTs than searching for the target in the larger subset or 
searching randomly.  Critically, the size of each color subset changes dynamically over time, such that 
participants wishing to perform optimally must complete the effortful steps of waiting for the trial stimuli to 
appear, appraise the color information, determine which is the smaller subset, and occasionally update their 
search template to find the optimal target.  Only some participants demonstrate optimal behavior in this task, 
and broad, stable individual differences have been observed [43].   
 
2.1.2.3 Saccadic choice   
Because stimulus perceptibility varies dramatically with eccentricity, where someone chooses to fixate their 
eyes greatly determines how profitably they can harvest information from the visual scene.  Thus, the choice of 
saccade destinations represents a critical strategy component in attentional control [45–47].   
Morvan and Maloney provided an elegant demonstration of this point [48].  They displayed three horizontally 
aligned boxes and presented a small target inside either the leftmost or rightmost box.  Participants, who began 
the trial by fixating above or below the array, were allowed to saccade to one of the boxes.  By measuring each 
participant’s retinal sensitivity and then varying the spacing between the boxes, the researchers could predict an 
optimal saccade strategy.  That is, if the boxes were spaced closely enough that a saccade to the center would 
allow accurate target discrimination in both adjacent boxes, the participant should fixate the center.  If not, a 
center strategy would fail to acquire either target and lead to 0% accuracy, so the participant should choose 
either the left or right box for a 50% chance at successful identification. Results showed generally nonoptimal 
saccade choices, providing important insights into the strategic use of overt attention. 
More recently, Nowakowska, Clarke, and Hunt presented an oriented bar target on either the left or right side of 
a large-scale display [49].  One side was filled with heterogeneously oriented distractors while the other was 
filled with homogeneously oriented distractors that were distinct from the target.  This caused targets in the 
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heterogeneous side to demand a serial search, while those on the homogeneous side popped out.  For the latter, 
peripheral detection was possible, rendering a saccade to that side inefficient.  Nevertheless, saccadic choice 
results revealed a striking tendency of observers to direct their first saccade on each trial to the homogeneous 
side, resulting in suboptimal performance. 
 
2.1.2.4 RT and accuracy differences 
As highlighted in the introduction, comparisons of RT and/or accuracy across multiple conditions have been a 
mainstay of attention research, such as comparing valid vs. invalid cues [21,26], the presence or absence of 
distractors [9,10,20], or across different display set sizes [28].   
 
Rajsic and colleagues analyzed relative display set sizes to reveal a “confirmation bias” in visual search [23,24].  
In displays comprised of items in two color subsets, in which a target (e.g., “p”) was always present in one of 
these colors, participants had to test a rule on each trial:  e.g., does the “p” appear in blue?  The optimal strategy 
is to search through the smaller subset and then infer the color of the target (if the “p” is absent in the smaller 
red subset, then it must be in the larger blue subset).  However, comparing RT across different color ratios 
revealed that participants largely searched within the subset matching the color named in the instruction.  That 
is, participants attempted to directly confirm the rule (e.g., find a blue “p”), regardless if it was the fastest way 
to solve the search task (i.e., through inference). 
 
2.1.2.5 Speed-accuracy tradeoff   
As highlighted above, the speed-accuracy tradeoff is a longstanding method for probing attentional strategy 
[15,16]. It has classically been shown that participants can be incentivized with reward to prioritize either speed 
or accuracy [50].  More recently, Manohar and colleages showed that reward prospect does not just move 
someone along a speed vs. accuracy tradeoff curve but also enhances their overall performance [38]. 
 
Continuous performance tasks can expose tradeoffs in which prolonged performance leads to faster and more 
error-prone responding.  Fortenbaugh and colleagues recently analyzed a massive sample of 10,000 participants, 
finding that this tradeoff function varies considerably with age, with a gradual shift toward prioritizing accuracy 
with advancing age [51].  This contrasted with their measures of ability, which showed peak performance in the 
early 40s, followed by a gradual decline.   
 
There exist several ways to quantify the speed-accuracy tradeoff.  One such approach, as implemented in 
sequential sampling models [52], derives from the logic that evidence toward choice thresholds, or boundaries, 
accumulates over time.  Here, variation in speed-accuracy tradeoff is determined by how far alternative decision 
boundaries are separated from each other; greater separations represent a higher evidence threshold, which 
result in slower RTs and higher accuracy.  In models like this, a robust analysis of strategy can be carried out on 
parameters relating to boundary separation. Recent work along these lines has suggested that boundary 
separation can be adjusted strategically over time [53,54].  This was recently exemplified by Palestro et al. [55], 
who had participants attend a field of moving dots and judge whether its global coherence was moving left vs. 
right.  Here, an individual might initially aim for a high level of accuracy; but after a few moments, they might 
realize the task difficulty exceeds their ability such that continued time on the task would produce diminishing 
returns. Thus, it would make sense to “collapse” the separation between boundaries to reach a quick, albeit 
inaccurate, response [54].  Palestro et al.’s model results supported collapsing boundaries.  Note that the optimal 
boundary separation by time function need not always collapse; it could remain constant or even diverge, 
depending on the specific task conditions [56].  Overall, analysis of boundary separation provides support that 
individuals strategically and dynamically adapt their speed-accuracy tradeoff over time.   
 
2.1.2.6 Response criterion  
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Response criterion, or bias, is a classic metric of signal detection theory that is typically associated with strategy 
[57] (but see [58] for evidence that criterion can reflect perceptual biases in addition to strategy).  Response 
criterion manifests when a decision is made about the information that has been gathered.  Was the target 
present or absent?  Where or what was it?  Such decisional processes are an important component of many 
attention-related tasks and can be integrated into a task completion process, such as deciding whether to 
continue or quit a visual search [59].   
 
Wolfe and Van Wert manipulated the rate of target prevalence across trials, and found that participants 
dynamically adjusted their response criteria to track prevalence (e.g., biasing toward target present responses 
when target prevalence is high) [60].  Suboptimal decision criteria have been revealed in other contexts, such as 
deciding which of two locations contains a target [61]. 
 
 
2.1.2.7 Patch leaving   
This metric relates to both speed-accuracy tradeoff and signal detection theory, but as applied to the more 
complex domain of foraging, in which individuals search for an undefined number of targets (e.g., finding and 
collecting quarters for laundry). This contrasts with many visual search tasks that are satisfied upon finding one 
target (the car keys or any hair clip). In the foraging scenario, deciding when to stop searching a particular scene 
is a critical strategy component. Foraging behavior has classically been explained by Charnov’s marginal value 

theorem, which holds that an organism will quit searching one local “patch” for food when it determines that 
the expected yield of switching to a new patch – while accounting for the cost of travel – will exceed that of the 
present patch [62]. This theorem has recently been applied to foraging behavior in visual search [63–65].  
Cain et al. had participants search for a variable number of targets in each display and measured when people 
switched to the next display (i.e., patch leaving), as a function of how long it had been since the last target was 
found and of how many total targets had been collected [64].  The researchers were interested in how 
individuals updated their expectations, or Bayesian priors, based on target prevalence, which they manipulated 
between 25-75%.  Results showed reasonably optimal updating of patch leaving time based on prevalence, 
albeit with participants underestimating how variable a given display could be.   
 
Fougnie et al. adjusted target prevalence rate in cyclical fashion over the course of trial blocks, to measure 
individuals’ sensitivity to recent prevalence vs. global temporal structure of prevalence (i.e., “seasons”) [66].  
They found slower patch leaving during periods in which prevalence was on the rise compared to when it was 
falling, confirming sensitivity to global structure.  
 
2.1.2.8 Metacognitive report   
How much explicit knowledge do people have regarding their strategy use, and does this knowledge predict 
chosen strategy?  Asking participants about their strategies can address these questions.   
Kawahara presented a visual search task with no instructions; rather, he used an operant conditioning procedure 
to shape search performance to gain insight into people’s ‘default’ strategy without any contamination of 
demand characteristics [67].  In particular, he wished to see if people naturally avoided salient singleton 
distractors.  Overwhelmingly, they did not. After task performance, he asked participants to report the strategy 
they used, and the vast majority reported the strategy consistent with avoiding distraction; this revealed a 
striking lack of metacognition with respect to attentional strategy (see also [29]). 
 
Some researchers have found impressively high metacognition.  In our adaptive choice visual search, described 
above, we found correlations as high as r=0.77 between the self-reported rates of optimal strategy use and 
actual optimal strategy use [43]. 
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2.1.2.9 Subjective effort ratings   
Much of the work we have described here identifies the avoidance of cognitive effort as a key motivating factor 
in the choice of suboptimal strategies.  To better understand the relationship between effort and strategy, effort 
costs must be quantified.  Subjective ratings are a valuable place to begin [68,69]. 
We used a manipulation to require our participants to use an optimal visual search strategy and subsequently 
collected subjective effort ratings; then participants all performed our adaptive choice task in which they were 
free to use an optimal or suboptimal strategy [43].   We found that people who reported the required-optimal 
task to be more effortful were less likely to choose the optimal strategy when given the option.  These results 
show that subjective ratings can help characterize the relationship between effort and strategy use. 
Subjective rating scales carry some potential limitations; participants may vary in how they match the rating 
scale to their subjective state, and their reports after task completion may not accurately reflect the subjective 
effort they experienced during performance. 

 
3.1 Conclusions 

We started by acknowledging that there is no single way to live our lives, and we focused this notion within the 
domain of attention:  there is no single way to make use of our attentional abilities.  Given the wide variation in 
strategy that people use in the lab – which is likely even more variable in the real world – it is incumbent upon 
attention researchers to carry out systematic, thorough investigations of attentional strategy, particularly if we 
wish to form a complete understanding of how attention works.  We used this brief review format to offer a 
methodological toolbox to manipulate and measure strategy, which we view as a starting point rather than an 
exhaustive list.  We hope that this work prompts researchers to consider new and productive ways to better 
understand the strategic use of attention control. 
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Table	1.		Manipulations	and	measures	of	attentional	strategy.			

Manipulations	

Name	 Processing	stage	

targeted	

Description	 When	to	use	 Considerations	

Instruction	 Depends	on	

strategy	component	

of	interest	

Manipulated	across	groups	or	

conditions	to	elicit	divergent	strategies	

To	verify	whether	divergent	strategies	can	

impact	task	performance;	examine	role	of	

explicit	task	knowledge	

Cannot	always	ensure	compliance;	susceptible	to	carry-

over	effects	in	within-subject	design	

Reward	 Depends	on	

strategy	component	

of	interest	

Performance-contingent	reward	(i.e.,	

reward	prospect)	used	to	incentivize	

optimal	strategy		

To	verify	whether	divergent	strategies	can	

impact	task	performance;	used	when	strategy	

might	be	linked	to	effort	or	motivation	

Generic	improvements	(i.e.,	overall	speeding)	should	be	

distinguished	from	qualitative	changes	in	strategy	(i.e.,	

choose	the	more	efficient	search)	

Measures	

Name		 Processing	stage	

targeted	

Description	 When	to	use	 Considerations	

Demand	

selection	

Before	task	

performance	

Participants	choose	in	advance	one	of	

two	possible	tasks	they	would	prefer	to	

perform	

To	assess	prospective	strategy	choices	prior	

to	task	performance	

Consistently	choosing	one	task	may	produce	

asymmetric	practice	effects		

Target	choice	 Stimulus	selection	 Multiple	targets	are	present	in	a	visual	

search,	of	which	participants	need	only	

identify	just	one		

To	assess	strategy	choices	during	task	

performance;	when	seeking	strategy	

indicators	on	single	trials	

To	prevent	participant	tendencies	to	always	choose	the	

same	target,	task	contingencies	or	environmental	

properties	can	be	varied	over	time		

Saccadic	

choice	

Stimulus	selection	 Measures	which	items/locations	are	

fixated	

When	eye	movements	are	a	critical	

component	of	task	performance;	when	

seeking	strategy	indicators	on	single	trials	

No	manual	response	required;	does	not	measure	covert	

shifts	of	attention	(i.e.,	those	occurring	without	eye	

movements)	

RT/Accuracy	

difference	

scores	

Stimulus	selection	 Compares	response	metrics	across	

multiple	conditions	to	infer	strategy	

When	task	measures	of	interest,	such	as	

distraction	effects,	are	calculated	across	

multiple	conditions	

Cannot	reveal	strategy	on	single	trials;	difference	scores	

can	have	poor	test/re-test	reliability	

Speed-

accuracy	

tradeoff	

Target	decision	 Indicates	the	degree	to	which	speed	or	

accuracy	is	prioritized	

To	probe	the	target	decision	stage,	which	is	

reached	based	on	target	information	that	is	

accumulated	over	time	

Model	parameters	relating	to	boundary	separation	can	

reveal	dynamic	changes	in	the	tradeoff	function	over	

time;	cannot	reveal	strategy	on	single	trials	

Response	

criterion	

Target	decision	 A	metric	from	Signal	Detection	Theory	

that	reflects	biases	in	reporting	target	

properties	

To	probe	target	decision-related	processes	 Less	about	how	attention	is	allocated	during	task	

performance	than	about	strategic	responding	under	

uncertainty	about	target	properties	

Patch	leaving	 Stay/leave	decision	 Specific	to	foraging	tasks,	measuring	

decision	to	abandon	search	and	move	

to	the	next	display	

To	understand	strategic	factors	in	foraging	

regarding	staying	vs.	leaving	

Can	compare	search	strategy	to	well-developed	models	

of	“optimal	foraging”	

Metacognitive	

report	

Depends	on	

strategy	component	

of	interest	

Collects	explicit	reports	regarding	which	

strategy	the	participant	believes	they	

used	

To	compare	beliefs	about	chosen	strategy	vs.	

actual	strategy	used	

	

Should	be	combined	with	additional	strategy	metrics	to	

enable	comparison	between	reports	and	strategy	used	

Subjective	

effort	ratings	

Depends	on	

strategy	component	

of	interest	

Collects	explicit	ratings	indicating	how	

demanding	a	task	is	perceived	to	be	

To	understand	the	role	of	effort	in	strategy	

choice	

Should	be	combined	with	additional	strategy	metrics;	

rating	scales	may	suffer	some	degree	of	unreliability			


