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Strategy is a crucial determinant for how attention is controlled. In recent years, researchers have
deployed a growing variety of manipulations and dependent measures in service of understanding
strategy. This work has revealed a striking degree of diversity and suboptimality in the use of attention,
and it prompts the realization that more research on strategy is needed in order to fully understand and
explain how attention works. Here, we highlight several approaches to investigate strategy, in what can
be considered a “methodological toolbox™ for researchers. These methods can be customized and
combined flexibly in what we hope will be a continued expansion of inquiry into this important domain.
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1.1 Introduction

“You can do anything you set your mind to,” goes the old adage. Of course, we do not always aim toward the
loftiest goals, sometimes preferring to “just take it easy, man” [1]. These contrasting approaches to life are
captured by the principles of maximizing and satisficing, in which individuals implement optimal or good-
enough-to-get-by decision strategies, respectively [2]. The use of strategies like these, among others, has been
broadly studied in a variety of domains across psychology [3—5], yet not as extensively in the domain of
attention, the target topic of this special issue.

Nevertheless, it is critical that we understand how attentional strategy exerts its influence on performance. In
this pursuit, it is prudent to first define it. Borrowing from several definitions of cognitive strategy [6—8], we
define attentional strategy as a mental plan, or policy, guiding how individuals prioritize and select sensory
information. It can impact multiple stages of task performance, from choosing whether to perform a given
attentional task (e.g., should I actively search for my car keys or rest my eyes and ask my friend to do it?), to
choosing which features and locations to prioritize during the task (e.g., search for the red keychain vs. the
metal key), to deciding when to terminate/update task performance (e.g., should I keep searching this room or
begin searching another room?). A comprehensive understanding of strategy thus invites examination of not
how it dictates a single choice but rather a complete decision tree, guiding steps from start to finish in task
performance.

To begin to appreciate the impact strategy makes on task performance, consider a seminal contribution from
Bacon and Egeth, 25 years ago [9]. They questioned a now classic finding in which people searching for shape
oddball targets suffer response time (RT) interference costs by salient, color oddball distractors [10]. While one
could presume this distraction to be unavoidable, Bacon and Egeth posited that people were able to ignore the
color oddball but simply were unmotivated to do so. Perhaps participants were satisficing, being unwilling to
invest additional cognitive effort required to ignore the color singleton, especially since the cumulative RT costs
of distraction across a full experiment only amounted to mere seconds [11]. Bacon and Egeth modified their
task to discourage such satisficing, predicting that shifts toward a maximizing strategy would reduce the
observed RT distraction effects. Results indeed revealed the distraction effects disappeared. Some debate
surrounding their work has ensued [12], but we can credit the study with the powerful message that we ignore
strategy at our peril. Investigating it is vital for developing complete models of attention, particularly in the real
world, when strategy use is least constrained (for reviews emphasizing the importance of studying attentional
strategy, see [13,14]).

2.1 Methods for Investigating Attentional Strategy

Our aim in this paper is a practical one: to encourage greater study of attentional strategy. This prompts
consideration of roadblocks preventing such work. The overwhelming majority of studies on attention rely on
the dependent measures of response time (RT) and accuracy. These metrics serve as gold standard tools in
investigating attentional abilities, and they have been classically used in investigating some strategy indicators,
such as the speed-accuracy tradeoff [15,16]. However, any single metric inherently carries limitations. Bacon
and Egeth (1994) had to infer strategy by computing the difference in RT between distractor present and
distractor absent conditions (see also [17,18]). Similar approaches need to be taken with accuracy [19]. More
broadly, efforts to quantify strategy from RT and accuracy metrics largely rely on the comparison of two or
more conditions [20-24]. Unfortunately, while producing great insights, difference scores are indirect and
bring on unwanted statistical noise, especially when employed in individual differences and correlational
designs [25]. Moreover, when strategy is estimated by comparing different conditions, it is impossible to
measure strategy on individual trials. The good news is that many methods exist for investigating strategy, some
more widely used than others, and a number of these are not subject to the same limitations difference scores.
Therefore, it is prudent to use a diversity of converging methods.



Here, we offer a “toolbox” of methods to study attentional strategy. We have divided them into both
manipulations and measurements. The former can be deployed to elicit the use of a variety of strategies, while
the latter provides ways to assess which strategies are chosen. The narrative review is accompanied by a
schematic overview indicating which stages of task completion the methods might influence and/or probe
(Figure 1), as well as a table summarizing when to use these approaches, along with some considerations to
keep in mind (Table 1). No pair of methods is mutually exclusive; indeed, a robust study of strategy might use
many at once. This list is also not exhaustive, as there are surely additional methods available.

2.1.1 Strategy manipulations.

2.1.1.1 Instruction

Instructions are a fixture in attention experiments, primarily because researchers want to make sure participants
understand what is expected of them. However, instructions can also be manipulated in a variety of ways to
shed light on strategy use. Explicit cues, such as those used by Posner, serve as perhaps the most famous
example [26], showing that participants can strategically adjust how they process information based on
expectations [27].

Bacon and Egeth, in a separate study from the one reviewed above, used instructions to mislead participants
about the ratios of features in a conjunction search task (e.g., search for the red horizontal bar among red
vertical and green horizontal bars), to determine if expectations about task structure would influence search
strategy, finding some influence of instructions on strategy use [28]. Manipulations like this can be used to
establish that a single task can be approached with more than one strategy.

When multiple strategies are available, and participants use a suboptimal one by default, instructions can also be
deployed to help determine why. Participants may not know what the optimal strategy is; alternatively, they
might know but are unable or unwilling to use the optimal strategy. Proulx found in one experiment that
participants failed to use the optimal feature to guide a conjunction search [29]. In a second experiment, he
explained the optimal strategy to participants; yet, about half of the participants still used the suboptimal
strategy. For these participants, lack of explicit knowledge of the best strategy did not seem to explain their
choices (see also [23,30]).

One consideration to keep in mind is that, particularly in studies similar to Proulx’s, instructional manipulations
can sometimes be subject to carry-over effects. Once instructed, the optimal strategy cannot be unlearned. In
these cases, between-group designs should be selected.

2.1.1.2 Reward

Reward has become a widely used tool in modern attention research. The bulk of such studies have focused on
value-driven learning, in which a specific stimulus can become behaviorally salient after participants learn to
associate it with an expected payoff (see [31,32] for recent reviews). Value-driven learning may be considered
strategic in nature [33], although in some cases it is viewed to be automatically driven [31,34].

One way reward can be used to arguably more directly manipulate strategy is to implement performance
contingencies, also referred to as reward prospect, in which participants are paid more for overall better
performance [35-38]. That is, if participants are paid more for faster response times, then they should be
motivated to seek strategies yielding faster target detection.

This manipulation should be paired with a reliable measure of strategy, to distinguish between generic
performance improvements (e.g., faster responding) vs. qualitative changes in chosen strategy (e.g., choosing
the more efficient method to find the target).

2.1.2 Strategy measures




2.1.2.1 Demand selection

Imagine you can buy your favorite snack at the convenience store steps away for $2.75 or at the market at the
top of a steep hill for $2.00. Is the climb worth saving $0.75? This choice can be referred to as a demand
selection, in which one weighs the relative physical or cognitive effort of the options in making their decision
[4,39]. Pauszek and Gibson recently used this measure in an attention task [40]. After previously
demonstrating that individuals often neglect to use valid spatial cues to facilitate visual target identification
[21,22,41], they questioned the extent to which individuals would consciously choose valid cue information that
could both speed performance but incur greater effort to process. They had participants choose between a
search task with no spatial cue vs. one that had a 70% valid spatial cue. Results showed a preference for the no-
cue task, revealing a strategic choice to forego information that could facilitate performance.

Demand selection, along with target choice and saccadic choice described below, is useful because it can
measure strategy on each individual trial. One consideration to keep in mind is the potential for asymmetric
practice effects, in which choosing one task more frequently produces learning improvements, thus making that
task subjectively easier and more desirable.

2.1.2.2 Target choice

Demand selection features an explicit choice that is made prospectively. One might compare it to a New Year’s
resolution, in which someone announces their commitment before they are required to execute it. An individual
might exhibit different behavior when strategy choices are made on the fly, during effortful task performance.
We introduced a task called the adaptive choice visual search [42—44], in which participants view a large-scale
display containing about a dozen items in one color (small subset) and about two-dozen in another color (large
subset). One target is included in each subset, and participants can choose to report either target. The optimal
strategy is to identify the smaller subset, configure an attentional template for that subset color (i.e., enter a state
of control that prioritizes the chosen feature for selection), and then search within that subset for the associated
target. Such a strategy yields substantially faster RTs than searching for the target in the larger subset or
searching randomly. Critically, the size of each color subset changes dynamically over time, such that
participants wishing to perform optimally must complete the effortful steps of waiting for the trial stimuli to
appear, appraise the color information, determine which is the smaller subset, and occasionally update their
search template to find the optimal target. Only some participants demonstrate optimal behavior in this task,
and broad, stable individual differences have been observed [43].

2.1.2.3 Saccadic choice

Because stimulus perceptibility varies dramatically with eccentricity, where someone chooses to fixate their
eyes greatly determines how profitably they can harvest information from the visual scene. Thus, the choice of
saccade destinations represents a critical strategy component in attentional control [45—47].

Morvan and Maloney provided an elegant demonstration of this point [48]. They displayed three horizontally
aligned boxes and presented a small target inside either the leftmost or rightmost box. Participants, who began
the trial by fixating above or below the array, were allowed to saccade to one of the boxes. By measuring each
participant’s retinal sensitivity and then varying the spacing between the boxes, the researchers could predict an
optimal saccade strategy. That is, if the boxes were spaced closely enough that a saccade to the center would
allow accurate target discrimination in both adjacent boxes, the participant should fixate the center. If not, a
center strategy would fail to acquire either target and lead to 0% accuracy, so the participant should choose
either the left or right box for a 50% chance at successful identification. Results showed generally nonoptimal
saccade choices, providing important insights into the strategic use of overt attention.

More recently, Nowakowska, Clarke, and Hunt presented an oriented bar target on either the left or right side of
a large-scale display [49]. One side was filled with heterogeneously oriented distractors while the other was
filled with homogeneously oriented distractors that were distinct from the target. This caused targets in the




heterogeneous side to demand a serial search, while those on the homogeneous side popped out. For the latter,
peripheral detection was possible, rendering a saccade to that side inefficient. Nevertheless, saccadic choice
results revealed a striking tendency of observers to direct their first saccade on each trial to the homogeneous
side, resulting in suboptimal performance.

2.1.2.4 RT and accuracy differences

As highlighted in the introduction, comparisons of RT and/or accuracy across multiple conditions have been a
mainstay of attention research, such as comparing valid vs. invalid cues [21,26], the presence or absence of
distractors [9,10,20], or across different display set sizes [28].

Rajsic and colleagues analyzed relative display set sizes to reveal a “confirmation bias” in visual search [23,24].
In displays comprised of items in two color subsets, in which a target (e.g., “p”) was always present in one of
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these colors, participants had to test a rule on each trial: e.g., does the “p” appear in blue? The optimal strategy
is to search through the smaller subset and then infer the color of the target (if the “p” is absent in the smaller
red subset, then it must be in the larger blue subset). However, comparing RT across different color ratios
revealed that participants largely searched within the subset matching the color named in the instruction. That
is, participants attempted to directly confirm the rule (e.g., find a blue “p”), regardless if it was the fastest way

to solve the search task (i.e., through inference).

2.1.2.5 Speed-accuracy tradeoff

As highlighted above, the speed-accuracy tradeoff is a longstanding method for probing attentional strategy
[15,16]. It has classically been shown that participants can be incentivized with reward to prioritize either speed
or accuracy [50]. More recently, Manohar and colleages showed that reward prospect does not just move
someone along a speed vs. accuracy tradeoff curve but also enhances their overall performance [38].

Continuous performance tasks can expose tradeoffs in which prolonged performance leads to faster and more
error-prone responding. Fortenbaugh and colleagues recently analyzed a massive sample of 10,000 participants,
finding that this tradeoff function varies considerably with age, with a gradual shift toward prioritizing accuracy
with advancing age [51]. This contrasted with their measures of ability, which showed peak performance in the
early 40s, followed by a gradual decline.

There exist several ways to quantify the speed-accuracy tradeoff. One such approach, as implemented in
sequential sampling models [52], derives from the logic that evidence toward choice thresholds, or boundaries,
accumulates over time. Here, variation in speed-accuracy tradeoff is determined by how far alternative decision
boundaries are separated from each other; greater separations represent a higher evidence threshold, which
result in slower RTs and higher accuracy. In models like this, a robust analysis of strategy can be carried out on
parameters relating to boundary separation. Recent work along these lines has suggested that boundary
separation can be adjusted strategically over time [53,54]. This was recently exemplified by Palestro et al. [55],
who had participants attend a field of moving dots and judge whether its global coherence was moving left vs.
right. Here, an individual might initially aim for a high level of accuracy; but after a few moments, they might
realize the task difficulty exceeds their ability such that continued time on the task would produce diminishing
returns. Thus, it would make sense to “collapse” the separation between boundaries to reach a quick, albeit
inaccurate, response [54]. Palestro et al.’s model results supported collapsing boundaries. Note that the optimal
boundary separation by time function need not always collapse; it could remain constant or even diverge,
depending on the specific task conditions [56]. Overall, analysis of boundary separation provides support that
individuals strategically and dynamically adapt their speed-accuracy tradeoff over time.

2.1.2.6 Response criterion




Response criterion, or bias, is a classic metric of signal detection theory that is typically associated with strategy
[57] (but see [58] for evidence that criterion can reflect perceptual biases in addition to strategy). Response
criterion manifests when a decision is made about the information that has been gathered. Was the target
present or absent? Where or what was it? Such decisional processes are an important component of many
attention-related tasks and can be integrated into a task completion process, such as deciding whether to
continue or quit a visual search [59].

Wolfe and Van Wert manipulated the rate of target prevalence across trials, and found that participants
dynamically adjusted their response criteria to track prevalence (e.g., biasing toward target present responses
when target prevalence is high) [60]. Suboptimal decision criteria have been revealed in other contexts, such as
deciding which of two locations contains a target [61].

2.1.2.7 Patch leaving

This metric relates to both speed-accuracy tradeoff and signal detection theory, but as applied to the more
complex domain of foraging, in which individuals search for an undefined number of targets (e.g., finding and
collecting quarters for laundry). This contrasts with many visual search tasks that are satisfied upon finding one
target (the car keys or any hair clip). In the foraging scenario, deciding when to stop searching a particular scene
is a critical strategy component. Foraging behavior has classically been explained by Charnov’s marginal value
theorem, which holds that an organism will quit searching one local “patch” for food when it determines that
the expected yield of switching to a new patch — while accounting for the cost of travel — will exceed that of the
present patch [62]. This theorem has recently been applied to foraging behavior in visual search [63—65].

Cain et al. had participants search for a variable number of targets in each display and measured when people
switched to the next display (i.e., patch leaving), as a function of how long it had been since the last target was
found and of how many total targets had been collected [64]. The researchers were interested in how
individuals updated their expectations, or Bayesian priors, based on target prevalence, which they manipulated
between 25-75%. Results showed reasonably optimal updating of patch leaving time based on prevalence,
albeit with participants underestimating how variable a given display could be.

Fougnie et al. adjusted target prevalence rate in cyclical fashion over the course of trial blocks, to measure
individuals’ sensitivity to recent prevalence vs. global temporal structure of prevalence (i.e., “seasons’) [66].
They found slower patch leaving during periods in which prevalence was on the rise compared to when it was
falling, confirming sensitivity to global structure.

2.1.2.8 Metacognitive report

How much explicit knowledge do people have regarding their strategy use, and does this knowledge predict
chosen strategy? Asking participants about their strategies can address these questions.

Kawahara presented a visual search task with no instructions; rather, he used an operant conditioning procedure
to shape search performance to gain insight into people’s ‘default’ strategy without any contamination of
demand characteristics [67]. In particular, he wished to see if people naturally avoided salient singleton
distractors. Overwhelmingly, they did not. After task performance, he asked participants to report the strategy
they used, and the vast majority reported the strategy consistent with avoiding distraction; this revealed a
striking lack of metacognition with respect to attentional strategy (see also [29]).

Some researchers have found impressively high metacognition. In our adaptive choice visual search, described
above, we found correlations as high as »=0.77 between the self-reported rates of optimal strategy use and
actual optimal strategy use [43].



2.1.2.9 Subjective effort ratings

Much of the work we have described here identifies the avoidance of cognitive effort as a key motivating factor
in the choice of suboptimal strategies. To better understand the relationship between effort and strategy, effort
costs must be quantified. Subjective ratings are a valuable place to begin [68,69].

We used a manipulation to require our participants to use an optimal visual search strategy and subsequently
collected subjective effort ratings; then participants all performed our adaptive choice task in which they were
free to use an optimal or suboptimal strategy [43]. We found that people who reported the required-optimal
task to be more effortful were less likely to choose the optimal strategy when given the option. These results
show that subjective ratings can help characterize the relationship between effort and strategy use.

Subjective rating scales carry some potential limitations; participants may vary in how they match the rating
scale to their subjective state, and their reports after task completion may not accurately reflect the subjective
effort they experienced during performance.

3.1 Conclusions

We started by acknowledging that there is no single way to live our lives, and we focused this notion within the
domain of attention: there is no single way to make use of our attentional abilities. Given the wide variation in
strategy that people use in the lab — which is likely even more variable in the real world — it is incumbent upon
attention researchers to carry out systematic, thorough investigations of attentional strategy, particularly if we
wish to form a complete understanding of how attention works. We used this brief review format to offer a
methodological toolbox to manipulate and measure strategy, which we view as a starting point rather than an
exhaustive list. We hope that this work prompts researchers to consider new and productive ways to better
understand the strategic use of attention control.
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Figure 1. Schematic overview of the strategy manipulations and measures reviewed here, labeled at various
points in time during a generic attention task. Descriptions of each are provided in Table 1 and in the text.
Reward can be used at multiple stages; notice of reward structure can be provided at the start of the task, and
performance-contingent delivery of reward can be provided upon response. Note that not all metrics are
applicable to all tasks; for instance, tasks with a target choice are generally incompatible with foraging tasks
that contain many potential targets.
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Table 1. Manipulations and measures of attentional strategy.

Manipulations

Name Processing stage Description When to use Considerations
targeted

Instruction Depends on Manipulated across groups or To verify whether divergent strategies can Cannot always ensure compliance; susceptible to carry-
strategy component | conditions to elicit divergent strategies impact task performance; examine role of over effects in within-subject design
of interest explicit task knowledge

Reward Depends on Performance-contingent reward (i.e., To verify whether divergent strategies can Generic improvements (i.e., overall speeding) should be
strategy component | reward prospect) used to incentivize impact task performance; used when strategy distinguished from qualitative changes in strategy (i.e.,
of interest optimal strategy might be linked to effort or motivation choose the more efficient search)

Measures

Name Processing stage Description When to use Considerations
targeted

Demand Before task Participants choose in advance one of To assess prospective strategy choices prior Consistently choosing one task may produce

selection performance two possible tasks they would prefer to | to task performance asymmetric practice effects

perform

Target choice

Stimulus selection

Multiple targets are present in a visual
search, of which participants need only
identify just one

To assess strategy choices during task
performance; when seeking strategy
indicators on single trials

To prevent participant tendencies to always choose the
same target, task contingencies or environmental
properties can be varied over time

Saccadic Stimulus selection Measures which items/locations are When eye movements are a critical No manual response required; does not measure covert

choice fixated component of task performance; when shifts of attention (i.e., those occurring without eye
seeking strategy indicators on single trials movements)

RT/Accuracy Stimulus selection Compares response metrics across When task measures of interest, such as Cannot reveal strategy on single trials; difference scores

difference multiple conditions to infer strategy distraction effects, are calculated across can have poor test/re-test reliability

scores multiple conditions

Speed- Target decision Indicates the degree to which speed or To probe the target decision stage, which is Model parameters relating to boundary separation can

accuracy accuracy is prioritized reached based on target information that is reveal dynamic changes in the tradeoff function over

tradeoff accumulated over time time; cannot reveal strategy on single trials

Response Target decision A metric from Signal Detection Theory To probe target decision-related processes Less about how attention is allocated during task

criterion that reflects biases in reporting target performance than about strategic responding under

properties

uncertainty about target properties

Patch leaving

Stay/leave decision

Specific to foraging tasks, measuring
decision to abandon search and move
to the next display

To understand strategic factors in foraging
regarding staying vs. leaving

Can compare search strategy to well-developed models
of “optimal foraging”

Metacognitive | Depends on Collects explicit reports regarding which | To compare beliefs about chosen strategy vs. Should be combined with additional strategy metrics to

report strategy component | strategy the participant believes they actual strategy used enable comparison between reports and strategy used
of interest used

Subjective Depends on Collects explicit ratings indicating how To understand the role of effort in strategy Should be combined with additional strategy metrics;

effort ratings

strategy component
of interest

demanding a task is perceived to be

choice

rating scales may suffer some degree of unreliability




