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Abstract— This paper presents a Model Predictive Controller
(MPC) that uses navigation integrity risk as a constraint.
Navigation integrity risk accounts for the presence of faults in
localization sensors and algorithms, an increasingly important
consideration as the number of robots operating in life and
mission-critical situations is expected to increase dramatically
in near future (e.g. a potential influx of self-driving cars).
Specifically, the work uses a local nearest neighbor integrity risk
evaluation methodology that accounts for data association faults
as a constraint in order to guarantee localization safety over a
receding horizon. Moreover, state and control-input constraints
have also been enforced in this work. The proposed MPC design
is tested using real-world mapped environments, showing that
a robot is capable of maintaining a predefined minimum level
of localization safety while operating in an urban environment.

I. INTRODUCTION

Traditionally, pose estimation performance is quantified
using a covariance matrix or particle spread [1], [2]. How-
ever, these methods only take into account non-faulted cases,
and thus may be insufficient for life- and mission-critical
applications, such as self-driving cars or other co-robots [3].
Faults, such as GNSS-clock errors [4] or mis-associating
features extracted from the environment (e.g. from lidar,
radar, or camera data) with the wrong landmark may occur
regularly in mobile robot navigation. While some faults may
be easily detected and removed, others remain undetected,
and not accounting for the impact of those faults can lead to
an increased safety risk.

To address this issue, prior work has taken inspiration from
the aviation industry to evaluate a robot’s integrity risk, or
the probability that a robot’s pose estimate lies outside pre-
defined limits, a safety metric that considers both faulted and
non-faults situations [5], [6], [7], [8], [9], [10], [11]. This
paper builds upon that work to present a Model Predictive
Controller (MPC) that uses navigation integrity risk as a
constraint.

Several methods have been developed to predict the
integrity risk in GNSS-based aviation applications [12],
[13]. However, these methods cannot be directly applied to
mobile robots because ground vehicles operate under sky-
obstructed areas where GNSS signals can be altered or
blocked by buildings and trees. Therefore, additional sensors
are required to localize ground vehicles, such as lidar. An
integrity monitoring algorithm for lidar-based localization
using an Extended Kalman Filter (EKF) coupled with a
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global nearest neighbor data association algorithm has been
developed in prior work [6], [9]. However, the computational
complexity of the global nearest neighbor algorithms restricts
its online applicability. In response, a local nearest neighbor-
based integrity risk evaluation methodology was developed
[8]. This paper uses that implementation and investigates
the use of a local nearest neighbor integrity risk metric as
a constraint for mobile robot based MPC to guarantee a
predefined minimum level of localization safety.

There has been relatively little work in this area. [14], [15],
[16], [17] employ the notion of “safe driving envelope” in
designing MPCs for autonomous vehicles, but the approach
concentrates mostly on collision avoidance, and presents
neither rigorous proof of integrity nor practical safety levels.
[18] uses the concept of “collision risk assessment” in de-
signing a lidar-based predictive safety control algorithm for
excavators. The approach is promising, but does not account
for possible faults. Recently, there has been research on
tube-based model predictive control, which tries to find the
solution that keeps a robot as far as possible from obstacles
or tracks a road’s center line in the presence of disturbances
[19], [20], [21]. But again, the approach assumes that all
disturbances are zero mean random variables (non-faulted).
In fact, most of the previous work uses state estimation error
covariance as the basis for risk assessment, which is proven
to not be sufficient [22], [23]. In contrast, the MPC presented
here generates control actions that guarantee a minimum
level of localization safety during the receding horizon while
taking into account possible faults in feature/landmark data
associations.

The paper is organized as follows. Section II provides a
mathematical background to the problem while Section III
introduces the proposed model predictive controller. Results
based on experimental data collected in an urban campus
are discussed in Section IV. Finally, Section V presents
conclusions and future work.

II. BACKGROUND

This section introduces the necessary mathematical nota-
tion and explains the integrity monitoring algorithm used in
the paper.

A. State Evolution Model

This work is motivated by its potential benefit and appli-
cability to self-driving cars. As such, a no-slip kinematic
bicycle model is used to model the robot (see Fig. 1).
However, the work is general enough to be applied to any



Fig. 1.

Bicycle model schematic

mobile robot motion model. The model is given as:
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where X and Y represent the center of mass position in the
inertial frame, V' is the rear wheel velocity, and L, is the
distance between the rear wheel and the center of mass. The
vehicle state is given as x = [X, Y, 6]", and the control input
as u = [V, 6] where 4 is the steering angle.

The state evolution for the kinematic bicycle model is
modeled as a non-linear function of the prior states, X; €
R™, and control-inputs, u; € R™, with additive noise:

Xpi1 = (X, ug) + Wi where wr ~ N (0,W)  (2)

where g(-,-) is the discretized version of (1), uy is the
control-input vector (determined by the MPC), and wy, is
white Gaussian noise with known covariance Wy,.

B. Measurement Model

In feature-based navigation, raw sensor data is reduced
to a number of distinguishable features. This work assumes
access to a map consisting of ny, landmarks from which nf
features are extracted at time k, such that nkF < ny,, where
each feature is assumed to provide the same number of mea-
surements, mp. Measurements belonging to each extracted
feature zj, € R™F are concatenated into the measurement
vector z; € R™, which comprises a total of nj = nfmp
measurements at time k. The feature extracted from landmark
t is denoted 7;, whereas the landmark from which feature ¢
has been extracted is denoted ¢;. The measurement model
for a single extracted feature ¢ is:

z;, = hy (xi) + v, A3)

where hy, (-) is the measurement function of landmark ¢; and
v} is the white Gaussian noise with known covariance matrix
such that vi, ~ N (0, V},).

C. Innovation Vector

The discrepancy between a feature’s measurements and the
expected measurements from a landmark is the innovation.
The innovation vector of feature ¢ and landmark ¢ is:

vyt =17i —hy(X) 4)

where X;; is the pose estimate mean after the EKF prediction
step. Joerger et. al [6] proved that the innovations are
normally distributed as:

v~ N (7Y Q)

where Y} £ Hfjl_’kajT + Vi is the innovation covariance
matrix. The innovation mean measures the separation be-
tween the expected measurements of landmark ¢ and the ex-
pected measurements of the actual landmark corresponding
to extracted feature i, which is unknown:

¥t = hy, (%) — hy (%) (6)

Thus, the innovation is only zero mean when the correct
association between feature and landmark is selected, i.e.
t = t;, in which case the r.h.s. of (6) becomes zero.

The next section briefly presents the local nearest neigh-
bor data association process, which employs the innovation
vectors as criteria to select correct associations.

D. Data Association

Given a set of np extracted features and nj previously
mapped landmarks, each feature ¢ is associated to landmark
t* if the following criteria is met:

Viexlly— < T where ¢* = argmin |vi¢lly-1  (7)
i " P

Threshold T is a user defined parameter and ||7y;¢|y-1 =

,/'y;{tYi_ 1’)‘1‘,1: is the weighted norm of the individual inno-
vation vector of extracted feature ¢ and landmark ¢. Note that
an incorrect association occurs when the criteria in (7) is met
for t* # t;, which means that feature 7 will be associated to
a landmark, ¢*, other than ¢;.

In the next section, the integrity risk of the system is
evaluated when incorrect associations occur.

E. Hazardous Misleading Information

In this work, the system’s integrity risk is evaluated as
the probability of Hazardous Misleading Information (HMI).
HMI occurs when the estimate error in the state of interest
exceeds a predefined alert limit (see Fig. 2), i.e.:

HMI), = |a"¢&| > 1 (8)

where o € R™ is a vector selects the state of interest, [ is
the permissible error limit, and €, = X; — X is the EKF
update estimate error.

The system’s integrity risk must be evaluated under both
faulted and fault-free hypotheses. This work focus on data as-
sociation faults, which occur when extracted features are as-
sociated to the incorrect landmarks as explained in Section II-
D. An incorrect association event, I Ay, at time k& occurs as
soon as one feature is incorrectly associated while a correct
association, C' Ay, indicates that all extracted features at time
k are correctly associated. Similarly, situations where at least
one incorrect association has occurred up to and including
the current time are considered faulted while only when all
features have been correctly associated, it is considered a
fault-free condition. Then, denoting the fault free condition



Fig. 2. Integrity risk representation for autonomous vehicle applications.
The integrity risk is the probability of the car being outside the alert limit
requirement box (blue shaded area) when it was estimated to be inside the
box. If the primary concern is the lateral deviation, then the alert limit is
the distance / between the edge of the car and the edge of the lane.

as CAxg = {CA,,...,CA;} and its complementary event
as T Ag, the integrity risk is:

P(HMI,) = P(HMI,,CAg) + P(HMI;,, IAx) (9)

where an uppercase time subscript /K denotes all time up to
and including time k. Rewriting (9) using the total probability
theorem and bounding P(HM1} | IAk) by one, we define
an upper bound on the integrity risk as:

P(HMI) < 14 (P(HMI,, | CAx) — 1) P(CAx) (10)

The first term in the right hand side of (10) is the
integrity risk under fault-free conditions, which is evaluated
by integrating the tails of the pose estimate distribution in
the state of interest as:

PHMI, | CAk) = P (la"é| > 1| CAg) =20 [—UL]
(D
where @[] is the standard normal CDF and &), = v a”Pa
is the standard deviation in the state of interest.

The second term in (10) evaluates the probability of every
landmark up to and including & being correctly associated,

which can be recursively computed as:
P(CAk) = P(CAy, | CAg_1)P(CAk 1) (12)

where P(C'Ap) = 1. A lower bound on the probability of
correct associations at time k is presented in [8]:

—

(13)
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where X2[] is the chi-squared CDF with a degrees of
freedom and:

. =ti,t
._1 = min ||
Y t£t; Yk

_ti
Is: (14
evaluates the minimum separation between landmark ¢; and
the rest of the map.

The next section develops a model predictive controller
that uses integrity risk as a constraint to guarantee localiza-

tion safety.

III. CONTROLLER DESIGN

Model predictive control has become increasingly popular
in robotics [24], [25], [26], and a detailed description of
the technique can be found in [27]. In mobile robotics,
most model predictive controllers predict future system states
using a linear kinematic model [24]. Model predictive con-
trollers based on a linear time varying representation of the
system have been applied to trajectory tracking in [28], [29].
Nonlinear formulations for trajectory tracking have been
shown in [30], [31].

A. Cost Function

In this work, the model predictive controller is designed
to find the control input sequence that minimizes a quadratic
cost function with a finite Receding Horizon N:

N

IO = > (%L RO,
1=1

T re o=
) Q R(9k+fz‘) OXk 14|k

+ 5u;€+i—1|k R 5“k+z‘—1\k) (15)

where 0Xp ik = Xpi|k — xZifZ is the difference between the
predicted state given X, (estimated state at time & using EKF)
and the reference state (predicted tracking error) expressed
in the inertial frame; dWj;_1jx = Weqi1)k — uZifi_l is the
difference between the predicted optimal control given Xy
and the reference control determined by the path (predicted
control error); R(GZifZ) is a rotation matrix that transforms
the predicted tracking error from the inertial frame to the
path reference frame (x-axis is aligned with the tangent of
the path); and R € R™*" and Q € R™*"™ are positive semi-
definite weighting matrices.

MPC formulation requires converting the optimal control
problem to a static optimization problem expressed as a
function of the receding horizon control sequence. Therefore,
every variable in the optimal control problem needs to be
written in terms of the predicted control error over the
horizon. The receding horizon predicted control and tracking
error, respectively, are defined as:

T
SUk = [ Sy, Sup gy - Sy ] (16)
< - — — T
X = [ 0%y g O o -+ 0%y w1 | (17)

where dUy, € R™N and 06X, € R™V. It can be proven that
06X, can be expressed as a function of 0Uy and dx;;, using
the state evolution model (2):

where T, € R™VX?N and &, € R™V*™ are defined in
[24]. By defining ¥ € R*"NV*"N and ;. € R™NXmN a5 3

. . ref T ref
block matrices with R and R(0,7;,) Q R(6,;) (arranged

from ¢ = 1,...,N) as a diagonal elements, respectively, the
cost function can be expressed as:

J(k) = 6X; 96X, + SUL WU,
= (‘Pkéf(k‘k + I‘k(sUk)TQk(’I)k(Sf(k‘k + I'0U)

+ 6UL @ 60U,
(19)



The cost function can be written in its standard form by
expanding (19) then removing the terms that do not contain
0Uy, (as they don’t affect the optimal solution):

J(k) = %w;fckwk + 10U, (20)

where Gj, € R*"M*"N and £, € R™V are defined as:
Gy = 2(TL QT + ) (21)
£, = 207 Q) B, 0%; (22)

B. Control input and State constraints

In this work, inequality constraints on control input and
state have been enforced, expressed in terms of the optimiza-
tion variable 0Uy:

Upnin — Uy <UL, < Uppow — UL (23)

where Uzef is the reference control input over the horizon,
at which the state evolution model is linearized.

A covariance propagation model over the receding horizon
needs to be specified, in order to build a probabilistically
valid state inequality constraints. EKF covariance propaga-
tion equations can be used to propagate uncertainty over
the horizon (without measurements) by using the linearized
state and measurement matrices around the reference path.
The linearized state and measurement matrices at time & and
prediction step r is:

r 8Xk+r “;ifwaifr
Oh(Xp+r)
Hy = ——= 25
k+ 8Xk+r x;if. ( )

where the size of h(xy;,) € R™+" is determined by the
predicted number of landmarks in the field of view (FoV) at
time k and prediction step r. Extended Kalman Filter-based
covariance propagation during the receding horizon can be
written as:

Piirk = Akrr—1Prir 1 kA1 + Wiror (26)
Yiir = Hier o Hi o+ Vigr 27)
P = (1= P Hi L, YL Hi ) Py (28)

where IA’,H_T‘ , is the predicted covariance matrix at time &
and prediction step r, given the covariance at k and assuming
that all FoV landmarks are detected from k to k + r. In
this work, the state inequality constraints are applied on the
positioning part of the state. Due to the fact that rotational
states generally have smaller uncertainty than positioning
states, a tight probabilistic bound on positioning state can
be derived by solving the eigenvalue problem for f’k+T| P

D T
Ptk = Qg r Ditr Qg

where Dy, is the eigenvalues (diagonal) matrix, and Q..
is a matrix its columns are the normalized eigenvectors. The

(29)

w-sigma probabilistic bound on positioning state at time &
and prediction step r is defined as:

Chty = wMax [diag (D,lc/fT)] 1 (30)
where ¢y, € R™=v=, mg,. is the number of positioning
states (Mg, = 2 for bicycle model), and 1 € R™=v= is a
vector of 1 as elements. The probabilistic bound vector at
time k over the receding horizon is defined as:

T

Ci=[Ci41 Chyo - Chyn ] (3D

By defining T € RN™May=XNm a5 3 block matrix with the
positioning states extraction matrix L € R™=v=*™ ag a
diagonal elements, the positioning state inequality constraints
can be written as a linear combination of the optimization
variable U}, using (18) as follows:

T (Xoin = X7 ) +Ch < Tk < T (Xonar — X5 ) —Cy

(32)

T (Xin — X} — @10%1) + € < TTRIUy <

(33)

T (Xaw = Xp7 = ®1b%4s) - Ci

where Xzef is the reference state over the receding horizon,

at which the state evolution model is linearized, and 6Xy;

is the difference between EKF state estimate and reference
state at the beginning of the horizon.

C. Integrity Risk Constraint

Unlike control input and state constraints, integrity risk
constraints cannot be expressed as a linear combination of the
optimization variable 6Uy. Therefore, a proper formulation
must be defined in order to relate this complex metric to the
control variation over the receding horizon. To this end, the
integrity risk constraint is defined as:

P(HMIyyi) < Lreg Vr=1,2,..N (34

where P(H M I}, ;) is the predicted integrity risk at time &
and prediction step r given the state estimate and covariance
at k, and I, is the integrity risk requirement. This require-
ment is intended to be determined by some regulating agency.
For example, the Federal Aviation Administrations (FAA)
navigation integrity requirement for an aircraft precision
approach is between 1077 to 10~ [5].

The integrity risk constraint formulation as a function of
the optimization variable, JUy, is illustrated in Algorithm
1. At the first prediction step, the non-linear state evolution
model is used to predict the next states X1 as a function
of the estimated states X, = X) (EKF state estimate with
real measurement) and the optimization variable duy, o)k Then,
the predicted (EKF) next state covariance matrix Py q; is
found by propagating the estimated (EKF) state covariance
matrix I_’k‘k = P, using (26). Afterwards, the predicted
measurements for every FoV landmark are computed. Sub-
sequently, the predicted innovation mean between every pair
of FoV landmarks is evaluated followed by the predicted
minimum innovation mean norm for every FoV landmark.



Thereafter, the upper-bound on the correct association proba-
bility P(C' A 41)x) is evaluated followed by EKF covariance
update IA’;,H_” & (without measurements) using (28). After that,
the predicted integrity risk in the first prediction step is
evaluated as a function of the optimization variable duyy,
and augmented in the non-linear constraint vector c. Finally,
the process repeats by propagating the predicted state X 1|
and covariance matrix f’k+1| & in the second prediction step,
and so on (N times).

Algorithm 1 Integrity risk constraint formulation
1: Given
- Landmark map
- Correct Association probability at k P(C'A)
- Predefined integrity risk requirement I,
- State estimate and covariance matrix at k& ( Xy, , P, )
- Linearized state matrices over the receding horizon
{Ak, ., Apsn -1}
7: - Linearized control matrices over the receding horizon
{Bi,....Bryn_1}
8: - Optimization variables {0uyx, ..., S N—1]% }
9: - Reference control inputs over the receding horizon

AN A~

ref ref
{u, ™, ow iy )
10: for every prediction step r do
11: State prediction Xj,(x = &(Xptr— 1)k, 1|k +
ref
w.l ) _ L _
12: EKF covariance prediction Py_,.;, using (26)
13: Calculate the predicted measurements for every FoV
landmark
14: Evaluate the predicted innovation mean between ev-

ery pair of FoV landmarks yf;j; (t; # t; Vij) using
(6)

15: Find the predicted minimum innovation mean norm
for every FoV landmark ||§";~C +T| yi -1 using (14)

k+r

16: Calculate P(CAg4rik) by evaluating
P(CApyr|k|CAg4r—1)x) using (13) then substituting
the result in (12)

17: EKF covarience update f’kw‘k (without measure-
ments) using (28)
18: Compute the non-faulted integrity  risk

PHMIyrx | CAgirr) using (11)

19: Find the integrity risk P(H M I}, ,;;) by substituting
P(HMIyyrix | CAgqr) and P(CAg 1) in (10)

20: Augment P(H M I}, ;) — I eq into the non-linear
constraints vector ¢

21: end for

22: Return ¢

IV. RESULTS

This section presents the results of applying the proposed
MPC to a simulated mobile robot (modeled using eq. (1))
navigating in an experimentally mapped urban environment
(see Fig. 3). A feature extractor, based on [32], is imple-
mented to extract tree trunks and light posts. For life-critical

Fig. 3. The experimentally mapped environment used for testing. Note the
two landmarks highlighted by the red rectangle on the right side.

First element of
PC receding horizon
minimize cost function | control sequence | Environment
over receding horizon \L 7 5 &b ‘
> subject to state, - 0,\0
control input LRIl
! of correct
and integrity risk association
constraints J,
Integrity
monitor
Map obtained a priori EKF <<'_ F:s:juk::fi[rfge
using EKF-SLAM -
g T measurements

Fig. 4. The proposed Control Scheme

co-robotics applications, ignoring the impact of misassocia-
tions may result in an unpredictable positioning errors that
are unbounded by the 30 covariance envelope (bounds the
estimate error with 0.997 probability). For example, if the
mobile robot were a self-driving car, the state estimate may
be in the wrong lane, which is extremely dangerous. In the
testing environment, landmarks are well-spaced (which leads
to low P (HMTI)) except for a light post and a column,
as shown enclosed in red rectangle in the lower right side
of Fig. 3. Mapping is done by fusing GPS positioning
measurements, Inertial Measurement Unit (IMU), and lidar
features using EKF-SLLAM in a loose coupling fashion [33].
The experimental setup is comprised of two Velodyne VLP-
16 lidars, a STIM-300 IMU, and a Novatel SPAN-CPT GPS
reciever.

The control scheme is illustrated in Fig. 4. A simu-
lated lidar provides range and bearing measurements to the
mapped landmarks (mp = 2). Lidar measurements are
disturbed by Gaussian white noise (see Table I). Constant
velocity is assumed, thus creating a path tracking problem
(the penalization of longitudinal error in the path reference
frame is set to zero). The path planner specifies the path to



TABLE I
SIMULATION PARAMETERS

0.1m, 2°
[(10,80) (—2.5,2.5) (—45, 45)]
[(—45,45)(4, 4)]

Std. dev. lidar range, bearing
[X(m)’ Y(m)7 9(0)}min,mam
[6(o)y V(m/s)]min,maz

Goal states [X (m),Y(m),0(°)] [0 —1.5 0]
5 0
R 0 5}
0 0 0'|
Q 0 20 O
0 0 2OJ
[0.05 0 0
w 0 0.05 0
0 0 0.002
lidar range 15m
Sampling time 0.1s
Prediction horizon 20 steps
Alert limit 1m
Ireq 108

201
w/o integrity risk constraint
15 . L X
w/ integrity risk constraint
10 A Mapped landmarks using EKF-SLAM

A

A
S I N NN
E
NG Start Goal
AL AA A A
5+
A A
A
A A
A0t a
A
A5t A A
2 | . | | . |
-100 -80 -60 -40 -20 0 20
X (m)

Fig. 5. Mobile Robot trajectory

be a straight line from the current estimated state to the goal
state. Therefore, the linearization, during the horizon, will be
based on the path specified at the beginning of the horizon.

A comparison study between MPC with and without the
integrity risk constraint has been conducted to investigate its
impact on localization safety. Fig. 5 shows the robot’s trajec-
tory for MPC with and without the integrity risk constraint.
With the integrity risk constraint, the mobile robot turns to
the left when it reaches X =~ —50m, because the MPC
predicts that staying on the original course would lead to an
integrity risk that exceeds I, after 2s (prediction horizon
Ndt) due to the chance of mis-associating the lamppost and
column shown in Fig. 3 .

Specifically, the model predictive controller increases the
distance between the two landmarks in the measurement
space (range and bearing). Consequently, the probability of
correct associations drops more for the case of MPC without
the integrity-risk constraint than with the integrity risk con-
straint (= 0.9999994 vs ~ 0.9999999975 after passing the
critical region), which is two orders of magnitude smaller.
Therefore, the integrity risk exceeds the localization safety

10° ¢
10%
=
=
L
o
10710 E
w/o integrity risk constraint
w/ integrity risk constraint
10_12 L L L L I L |
0 2 4 6 8 10 12 14
Time (s)
Fig. 6. Integrity Risk P(HM1I})

threshold without constraining the integrity (=~ 6 x 1077 >
1I,.cq), whereas constraining integrity preserves the integrity
risk below the localization safety threshold (= 2.5 x 1072 <
I,cq), as shown in Fig. 6.

V. CONCLUSION AND FUTURE WORK

This paper investigates the application of integrity risk
as a constraint in a model predictive controller for mobile
robot tracking problems. The results show that the MPC is
able to perform maneuvers needed to maintain a minimum
level of localization safety. The work has implications in
life- and mission-critical mobile robot applications, where
not accounting for the probability of undetected faults can
have a significant impact on safety. In future work, we will
investigate the derivation of the integrity risk for obstacle
avoidance problems.
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