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Abstract— This paper presents a new methodology to quan-
tify robot localization safety by evaluating integrity risk, a per-
formance metric widely used in open-sky aviation applications
that has been recently extended to mobile ground robots. Here,
a robot is localized by feeding relative measurements to mapped
landmarks into an Extended Kalman Filter while a sequence
of innovations is evaluated for fault detection. The main con-
tribution is the derivation of a sequential chi-squared integrity
monitoring methodology that maintains constant computation
requirements by employing a preceding time window and, at
the same time, is robust against faults occurring prior to the
window. Additionally, no assumptions are made on either the
nature or shape of the faults because safety is evaluated under
the worst possible combination of sensor faults.

I. INTRODUCTION

Robotic localization algorithms traditionally quantify pose

estimation performance with a covariance matrix or particle

spread [1], [2], [3]. However, these only consider non-faulted

cases, making them insufficient for life-critical applications,

such as self-driving cars, where ignoring the probability

that an undetected fault (e.g. Global Navigation Satellite

Systems (GNSS) clock errors, misassociations among ex-

tracted features and database landmarks) occurs can lead to

a localization error with catastrophic consequences.

To account for the probability of an undetected fault

occurring, prior work extended the concept of localization

integrity, the probability that a robot’s pose estimation lies

within pre-defined acceptable limits, from aviation applica-

tions [4], [5] to robotics [6], [7], [8]. This paper builds upon

that work by introducing a new method to monitor local-

ization integrity risk for mobile robots that localize using

feature extraction and data association algorithms, which

may become faulted when incorrectly extracted unmapped

objects are associated to mapped landmarks.

A. Related Work

This paper leverages prior work evaluating localization

integrity for GNSS-based aviation applications, which are

instrumental in ensuring the safety of pilots, crew, and pas-

sengers [9], [10], [11], [12], [13], [14]. Unfortunately, these

methods do not directly apply to mobile robots because they

often operate in GNSS-denied environments. The additional

sensors required to localize ground robots, such as lidar,

introduce new integrity monitoring challenges.
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Two variants of Receiver Autonomous Integrity Monitor-

ing (RAIM) have been the primary techniques to quantify lo-

calization safety in aviation applications: solution separation

and chi-squared RAIM [13]. The former can be employed

for integrity monitoring in sequential implementations [15].

However, it requires banks of Extended Kalman Filters

(EKFs) for each possible fault hypothesis, which become

impractical when applied to even sparse landmark maps.

The latter was developed for snapshot estimators [10], [16]

in which the pose estimate is the least squares solution

computed from the new measurements obtained at each

epoch and previous knowledge of the state is ignored.

Several methods extend chi-squared RAIM to sequential

implementations [17], [18], but they either lack a recursive

computation of the worst-case fault or make assumptions

about the nature of faults that are not applicable to landmark-

based localization.

[6], [19] quantified the risk of data association faults when

the feature extractor correctly extracts all mapped landmarks,

and [8] expanded this technique to cases where only a subset

of the mapped landmarks is detected. [20] quantifies the

risk reduction in data association gained by incorporating

an inertial measurement unit. These methodologies are ex-

panded in [7] and [21] to account for the possibility of a

single landmark being continuously incorrectly associated to

an unmapped object, assuming that the same landmarks are

extracted at all times.

In contrast, the method presented here can monitor multi-

ple faults in multiple landmarks at different times. Thus, to

the best of our knowledge, this paper presents the first fully

recursive integrity monitoring methodology for mobile robot

localization without the need of unrealistic assumptions in

either the nature or the shape of faults.

B. Overview

In this work, we build upon the chi-squared integrity

monitoring methodology presented in [22]. An EKF local-

izes a robot moving in a previously mapped environment,

where a landmark map is assumed, and a sequence of EKF

innovations within a preceding window of time is employed

for fault detection. Although other popular methods, such as

particle filters or graph optimization algorithms [23], may

show better consistency under certain scenarios [24], an

EKF-based localization approach was chosen because it is

widely known and is the most popular localization technique

in aviation applications from which this work is inspired.

This work evaluates localization integrity risk when unde-

tected measurement faults occur. The estimate error and fault

detector are analyzed, and their distributions are derived as a
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function of the faults within a preceding horizon (including

the current time) and a prior estimate bias that accounts for

faults occurring previous to the preceding horizon. Faults

are modeled as unknown deterministic shifts in the measure-

ments’ means; the reason is that faults are rarely occurring

events and therefore, cannot be modeled statistically. In-

tegrity monitoring can be then formulated as an optimization

problem: finding the worst-case fault that maximizes the

estimation error while going undetected. The worst-case fault

is computed by efficiently solving this complex optimization

problem.

The paper is organized as follows. Section II introduces the

necessary background, presents the measurement model with

deterministic faults, and mathematically defines integrity

risk. Section III derives the probability of each landmark’s

failure, which is later employed to compute the probability

of the fault hypotheses. Estimate error and fault detector

probabilities are derived in Section IV as a function of the

worst-case fault determined in Section V. Section VI shows

both simulated and experimental results. Finally, Section VII

presents conclusions and future work.

II. BACKGROUND

This section presents the background necessary to evaluate

a robot’s integrity including the state evolution and measure-

ment models, the notation for the Extended Kalman Filter

equations, and the definition of integrity risk.

A. State Evolution and Measurement Models

Given m states, the state vector at time k is denoted as

xk ∈ R
m. The robot’s state evolution is:

xk+1 = g (xk, uk) + wk where wk ∼ N (0,Wk) (1)

is white Gaussian noise with known covariance matrix Wk,

uk are the system inputs (e.g. odometry/IMU readings), and

g(·, ·) is a known function.

The sensor measurements corresponding to each extracted

feature, zk,i ∈ R
mF , are stacked into the measurement

vector, zk ∈ R
nk , which includes a total of nk = nF

k mF

measurements corresponding to the nF
k extracted features at

time k, i.e.: zk =
[

zTk,1 . . . zT
k,nF

k

]T

. The measurements

are thus modeled as:

zk = h (xk) + vk + fk where vk ∼ N (0,Vk) (2)

is white Gaussian noise with known covariance matrix Vk

and h(·) is a known function.

Faults, fk, are modeled as unknown deterministic terms

whose elements are only nonzero when measurements are

faulted. Thus, in the nominal (non-faulted) case, the fault

vector is null and the measurement error only includes

Gaussian noise, vk. Faults, which are rare, are assumed to

occur when wrongly extracted features are associated with

mapped landmarks. Examples include dynamic objects in

front of landmarks or new objects since the map was made.

B. The Extended Kalman Filter (EKF)

The EKF prediction (3) & (4) and update (5) & (6)

equations are given as reference for later derivations.

x̄k = g (x̂k−1, uk−1) (3)

P̄k = ΦΦΦk−1P̂k−1ΦΦΦ
T
k−1 + Wk−1 (4)

x̂k = x̄k + Lkγγγk (5)

P̂k = (I − LkHk)P̄k (6)

where Lk = P̄kHT
k Y−1

k is the Kalman gain, γγγk is the

innovation:

γγγk = zk − h (x̄k) , (7)

Yk = HkP̄kHT
k + Vk is its covariance matrix, and the state

evolution and measurement model function Jacobians are

ΦΦΦk �
∂g

∂x

∣
∣
∣
x̂k−1

and Hk � ∂h
∂x

∣
∣
x̄k

, respectively.

Faults affect the estimate mean resulting in a biased

Gaussian estimate with unknown (nonzero) mean:

δx̂k = x̂k − xk ∼ N
(

f̂xk
, P̂k

)

(8)

where δx̂k is the updated estimate error, xk is the actual

unknown state, and f̂xk
is the unknown estimate bias intro-

duced by the faults. Thus, the estimate variance, which the

fault does not directly affect, is an insufficient safety metric

when faults occur [8], [6].

C. Hazardous Misleading Information

Integrity risk is evaluated as the probability of Hazardous

Misleading Information (HMI). HMI occurs when the error

on the state (or linear combination of states) of interest

exceeds a predefined threshold or alert limit and the fault

detector does not trigger the alarm, i.e.:

HMIk = |δx̂k| > � ∩ qDk
< TDk

(9)

where δx̂k = x̂k − xk is the error in the state of interest

(e.g. lateral positioning error in autonomous vehicles appli-

cations), � is the alert limit, qDk
is the fault detector, and

TDk
is a threshold such that when qDk

≥ TDk
an alarm is

triggered. Vector tk ∈ R
m extracts the state of interest as:

δx̂k = tTk δx̂k ∼ N
(

f̂xk
, σ2

k

)

(10)

where f̂xk
= tTk f̂xk

is the estimate bias in the state of interest,

σ̂2
k = tTk P̂ktk, and tk extracts a linear combination of states.

For example, if m = 3 and the state of interest is the second

component of xk, then tk =
[
0 1 0

]T
.

The probability of HMI, P (HMI), is evaluated under

different fault hypotheses (Hh). Since both the estimate error

and detector at time k are affected by previous and current

faults, these hypotheses include faults occurring at epochs

up to and including epoch k. For example, a hypothesis at

k = 5 might indicate that z3,2 (epoch 3, feature 2) was

faulted. Then, given a set of mutually exclusive, jointly

exhaustive fault hypotheses, {H0, . . . , HnH
}, the P (HMI),

or integrity risk, at epoch k is computed as:

P (HMIk) =

nH∑

h=0

P (HMIk | Hh)P (Hh) (11)
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Preceding Horizon

Past Future

Time

Fig. 1. Preceding horizon. An example depicts two faults occurring within
the preceding horizon and one fault at some previous time < k −M .

The remainder of the paper will derive an upper bound

on the right hand side of (11) to obtain a conservative

measure of localization safety. The next section determines

the hypotheses probabilities, P (Hh).

III. HYPOTHESES PROBABILITIES

This section computes the probability of occurrence of

every fault hypothesis, P (Hh). To do this, we need the indi-

vidual probability of failure of every landmark association,

Pt, which is the probability that the measurements associated

to a specific landmark are faulted—this may occur when a

feature that has not been extracted from such landmark is

associated to it. We assume that Pt is obtained from limited

experimentation and that it is usually low (≈ 10−3).

Given the fault probability of all landmarks associated

until time k, the probability of hypothesis Hh with the set

of faulted landmark associations t1, . . . , tr at epochs up to

and including k is [12]:

P (Hh) = P (H0)
r∏

s=1

Pts

1− Pts

where P (H0) =

nL
1:k∏

t=1

(1−Pt)

(12)

is the fault-free hypothesis probability and nL
1:k =

∑k
j=1 n

L
j .

Note, it is assumed that each landmark fault occurs indepen-

dently, i.e. one faulted landmark association does not affect

the probability of others being faulted.

A. Preceding Horizon

Monitoring all faults occurring at any time ≤ k is gen-

erally intractable. Thus, a preceding horizon of M epochs

reduces complexity such that only faults occurring from

k −M to k (see Fig. 1), both included, are monitored; the

effect of faults prior to k −M are addressed in Section IV.

Then, hypotheses 1, . . . , nH only contain faults occurring

within the preceding horizon and the second part of (12)

becomes:

P (H0) =

nL(M)

k∏

t=1

(1− Pt) where nL(M)

k =
k∑

j=k−M

nL
j

(13)

is the number of associated landmarks within the preceding

horizon. The first part of (12) remains the same, but ts only

indexes landmark associations within the preceding horizon.

The preceding horizon size is user-defined; larger horizons

will obtain a better (lower) upper bound on the system’s

integrity risk, but are computationally more expensive.

B. Hypotheses Reduction

Even for small M , the number of hypotheses can be

computationally intractable. Thus, the number of hypotheses,

nH , can be reduced by only monitoring those hypotheses

with a probability higher than a predefined threshold, IH .

The maximum number of simultaneous faults that need to

be monitored, nmax, such that the probability of more than

nmax simultaneous landmark faults is less than IH is obtained

from Appendix C in [12] as the maximum integer r for

which the next expression holds:

(
∑nL(M)

k

t=1 Pt

)r

/r! ≤ IH .

Finally, given a set of mutually exclusive, jointly exhaustive

hypotheses, {H0, . . . , HnH
}, each of which consists of at

most nmax simultaneous feature faults, and their probabilities

from (12) and (13), the integrity risk is upper bounded as:

P (HMIk) ≤
nH∑

h=0

P (HMIk | Hh)P (Hh) + IH (14)

where IH is added to account for the risk of unmonitored

failure modes that are not included in the summation.

This section derived the upper bounds on the hypotheses

probabilities, P (Hh). The next section determines the dis-

tributions of the estimate error and the fault detector in the

presence of faults needed to compute P (HMIk | Hh).

IV. ESTIMATE ERROR AND DETECTOR DISTRIBUTIONS

IN THE PRESENCE OF FAULTS

This section analyzes the estimate error and the fault detec-

tor in the presence of faults. The terms in (14) are calculated

under faulted, Hh �=0, and fault-free, H0, conditions as:

P (HMIk | Hh) = P (|δx̂k| > l, qDk
< TDk

| Hh) (15)

Recall that faults occurring prior to the preceding horizon

are not explicitly monitored and thus faults are separated

between those occurring prior to the preceding horizon and

those within the horizon. This section determines the statis-

tical distributions’ parameters of δx̂k and qDk
as an explicit

function of the faults occurring within the preceding horizon

and as a function of a prior estimate bias, which encompasses

the faults occurring prior to the preceding horizon.

A. Estimate Error Distribution

The estimate error is defined in (8) as the difference

between the estimated and actual state. In the presence of

faults, the estimate error is Gaussian with unknown mean f̂xk
,

which is the estimate bias induced by the faults. Appendix I

shows that the estimate bias at k can be linearized as a

function of the faults occurring within the preceding horizon

and the estimate bias at time k −M − 1 as:

f̂xk
= A

(M)
k f

(M)
k (16)

where A
(M)
k is defined in (35) and:

f
(M)
k =

[

fTk fTk−1 . . . fTk−M f̂
T

xk−M−1

]T

(17)

Note that f
(M)
k includes all faults occurring within the pre-

ceding horizon plus the estimate bias prior to it. A recursive
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computation of A
(M)
k is presented in Appendix I. Finally, the

state of interest’s estimate error’s distribution in (15) is:

δx̂k ∼ N
(

f̂xk
, σ̂2

k

)

where f̂xk
= tTk A

(M)
k f

(M)
k (18)

and σ̂2
k = tTk P̂ktk.

B. Fault Detector

The fault detector, which peaks when a fault occurs, is the

innovation norm sequence within the preceding horizon:

qDk
=

k∑

j=k−M

‖γγγj‖
2
Y

−1
j

(19)

where ‖a‖2A = aT Aa. Innovations measure the difference

between the actual sensor measurements and the EKF-

predicted measurements [25], [26].

Innovations defined in (7) at different epochs are inde-

pendent [22]. Additionally, each innovation norm in the

summation of (19) is non-central chi-squared distributed with

nk degrees of freedom (DOF). Thus, the detector, qDk
,

follows a non-central chi-squared distribution with n
(M)
k

DOF and non-centrality parameter λ
(M)
k , i.e.:

qDk
∼ χ2

n
(M)
k

,λ
(M)
k

(20)

where n
(M)
k =

∑k
j=k−M nj and nk = mFn

F
k [22].

Appendix II shows that the non-centrality parameter is a

function of the faults occurring within the preceding horizon

and the estimate bias prior to the horizon is:

λ
(M)
k = f

(M)
k

T
M

(M)
k f

(M)
k (21)

where M
(M)
k is defined in (44) and can be efficiently com-

puted using Algorithms 2 & 3 in Appendix II.

C. Evaluation of P (HMIk)

One advantage of selecting an innovation-based detector

is that the random elements of the estimate error and fault

detector are independent [13]. Thus, eq. (15) becomes:

P (HMIk |Hh) = P (|δx̂k| > l | Hh)P (qDk
< TDk

| Hh)
(22)

The next section obtains a conservative bound on integrity

risk by finding the fault that maximizes integrity risk or

worst-case fault which will be applied to both estimate error

and detector distributions.

V. WORST-CASE FAULT

A bound on the integrity risk is guaranteed by calculating

P (HMI) under the worst-case fault, f
(M)
k,hworst

. The worst-case

fault is applied to (18) and (21) to determine the estimate

error and detector distributions needed to compute (22). The

time index k is removed in this section to lighten notation.

The worst-case fault vector elements are the sensor faults

within the preceding horizon and the estimate bias at k −
M − 1, computed by optimizing (22), i.e.:

f
(M)
hworst

= argmax
f(M)

P (|δx̂| > l |Hh)P (qD < TD |Hh) (23)

The terms on the right hand side depend on the faults through

the distributions of δx̂k in (18), and qDk
in (20) & (21).

Only a subset of the landmark associations is faulted under

each hypothesis, Hh. Thus, we extract the faulted elements

using an extraction matrix as Ehf(M) where Eh’s elements

are zeros and ones. For example, given three associations in

the preceding horizon where the 1st and 3rd are faulted in

Hh yields:

Eh =

⎡

⎣

ImF
0mF

0mF
0mF×m

0mF
0mF

ImF
0mF×m

0m×mF
0m×mF

0m×mF
Im

⎤

⎦ (24)

Note that the estimate bias at k − M − 1 is extracted as

faulted under every hypothesis (lower right identity matrix).

Next, we determine the worst-case fault direction, f̆
(M)

hworst
,

and magnitude,

∥
∥
∥f

(M)
hworst

∥
∥
∥, such that:

f
(M)
hworst

= f̆
(M)

hworst

∥
∥
∥f

(M)
hworst

∥
∥
∥ (25)

A. Worst-Case Fault Direction & Magnitude

[27] showed that the fault direction that maximizes (23)

also maximizes the failure mode slope, the ratio between

the estimated error mean squared and the fault detector non-

centrality parameter, f̂2
xk
/λ

(M)
k . [13] proved that the fault

vector that maximizes the fault slope under Hh is:

f̆
(M)

hworst
= ET

h

[

EhM(M)ET
h

]−1

Eh A(M) T t (26)

which defines the worst-case fault direction.

Given the worst-case fault direction, its magnitude is

numerically determined from (22) as:

∥
∥
∥f

h
(M)
worst

∥
∥
∥ = argmax

y
P
(

|Z
yf̆xh

,σ̂
| > l

)(

X2

n(M),y2λ̆
(M)
h

[TD]
)

(27)

where Za,b is a Gaussian random variable with mean a and

standard deviation b, X2
a,b[·] is the CDF of a chi-square with

a degrees of freedom and non-centrality parameter b, and

f̆xh
= αααT A(M) f̆

(M)

hworst
and λ̆

(M)
h = f̆

(M)

hworst

T

M(M) f̆
(M)

hworst
are the

estimate error mean and the non-centrality parameter of the

fault detector distribution given the worst-case fault direction.

Substituting (26) and (27) into (25), we obtain the worst-case

fault, which is used in (22) to calculate an upper bound on

P (HMIk | Hh) and thus, to fully determine (14).

VI. RESULTS

In this section, localization safety is evaluated in both

simulated (Fig. 2) and experimentally mapped (Fig. 3) en-

vironments. In the simulation, a robot moving from left

to right is localized in a landmark map with two defined

sections: one with landmarks laterally spaced 30m apart and

another with the spacing reduced to 8m. Fig. 2, bottom,

shows the lateral error integrity risk for three preceding

horizon sizes. The smallest preceding horizon has the largest

integrity risk, since larger horizons reduce the impact of

the conservative assumption that unmonitored previous faults

result in the worst possible estimate bias at k − M − 1.
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Fig. 2. Simulation environment (above) and integrity risk results for
different preceding horizon sizes (below). The standard deviation on lidar
range and bearing are 0.3m and 2

◦. The lidar range is 25m, the sampling
interval is 0.1 s, and the alert limit is 1m.

Fig. 3. Landmark map, estimated path (bottom) and integrity risk with
M = 2 when the lidar range is limited to 20 or 25m (top).

Moreover, note that the integrity risk peaks when the robot

transitions between the two sections, (epochs ≈100–120), as

the relative landmark geometry is not good enough to ensure

the robot lateral position with high confidence in that region.

The experimental map is generated using an EKF-SLAM

algorithm that fuses IMU, RTK DGPS, and lidar data from a

mobile platform. Tree trunks are used as landmarks (Fig. 3).

To calculate integrity risk, DGPS is removed and the lidar

range is artificially reduced. The integrity risk for a preceding

horizon of M = 2 epochs and a 25m range-limited lidar is

shown in red in the bottom figure, where the high integrity

risk between 40 and 50 s can be explained by the lack of

visible landmarks at the left-most region of the path. In

addition, the integrity risk for a 20m range-limited lidar is

shown in blue. This decreases the number of landmarks in

the view resulting in a significant increase in localization

risk.

VII. CONCLUSIONS AND FUTURE WORK

This paper derives the first constant-time localization

integrity risk evaluation methodology without assumptions

on the form or nature of the faults. The work becomes

particularly important in safety-critical applications where

undetected faults may have catastrophic consequences, such

as mobile robots operating among humans. Simulated and

experimental results show the evaluation of localization

safety in two different scenarios. Future work entails extend-

ing this methodology to graph optimization techniques.

APPENDIX I

ESTIMATE BIAS AS A FUNCTION OF FAULTS

This appendix shows that the estimate bias at k can be

expressed as a function of prior faults from time k−M to k
and the estimate bias at time k −M − 1. First, the estimate

error at k is expanded as a function of the estimate bias at

k − 1 and the faults at k. Then, this relation is generalized

for some preceding horizon of M epochs.

First, we substitute (2) and (7) into (5):

x̂k = x̄k + Lk (h (xk) + vk + fk − h (x̄k)) (28)

Then, function h (·) is linearized using a first order Taylor

expansion as: h (xk) ≈ h (x̄k) + Hk (xk − x̄k), and substi-

tuted into (28), which is rewritten as:

x̂k = (I − LkHk)
︸ ︷︷ ︸

L′

k

x̄k + LkHkxk + Lk (vk + fk) (29)

The estimate error is obtained subtracting the unknown true

state, xk, from both sides:

δx̂k = L′
k (x̄k − xk) + Lk (vk + fk) (30)

Substituting (1) and (3) and again linearizing g(·, ·) using a

first order Taylor expansion as:

g (xk−1, uk−1) ≈ g (x̂k−1, uk−1) +ΦΦΦk−1 (xk−1 − x̂k−1)
(31)

the estimate error becomes:

δx̂k = L′
kΦΦΦk−1

︸ ︷︷ ︸

L′′

k

δx̂k−1 − L′
kwk−1 + Lk (vk + fk)

(32)

Finally, taking the expected value of both sides:

f̂xk
= L′′

k f̂xk−1
+ Lkfk (33)

Expanding (33) as a function of previous faults until any

desired preceding horizon time k −M :

f̂xk
= Lkfk + L′′

kLk−1fk−1 + L′′
kL′′

k−1Lk−2fk−2 + . . .

. . .+ L′′
k . . .L′′

k−(M−1)Lk−M fk−M + . . .

. . .+ L′′
k . . .L′′

k−(M−1)L
′′
k−M f̂xk−M−1

(34)

and expressing the previous equation in matrix form we

arrive at (16), where f
(M)
k and A

(M)
k are defined in (17)

and (35). Additionally, given a fixed preceding horizon of

M epochs, A
(M)
k is recursively computed from A

(M)
k−1 using

Algorithm 1. Note that subindexes end and end-1 refer to the

last and second to last block matrices in A
(M)
k respectively.
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Algorithm 1 Recursive evaluation of matrix A
(M)
k

1: function A EVALUATION (A
(M)
k−1,Lk,L′′

k ,L′′
k−M−1)

2: A
(M)
k =

[

Lk L′′
kA

(M)
k−1

]

3:

(

A
(M)
k

)

end−1
= [ ] // remove block matrix

4:

(

A
(M)
k

)

end
=

(

A
(M)
k

)

end

(
L′′
k−M−1

)−1

5: end function

APPENDIX II

NON-CENTRALITY PARAMETER AS A FUNCTION OF

FAULTS

This appendix shows that the non-centrality parameter of

the fault detector distribution at k can be expressed as a

function of prior measurement faults from time k −M to k
and the estimate bias at time k −M − 1. First, the detector

non-centrality parameter in (20) is rewritten in matrix form:

λ
(M)
k � E

[

γγγ
(M)
k

]T

Y
(M)
k

−1
E

[

γγγ
(M)
k

]

(36)

where:

γγγ
(M)
k =

⎡

⎣

γγγk

. . .
γγγk−M

⎤

⎦ and Y
(M)
k =

⎡

⎣

Yk
. . .

Yk−M

⎤

⎦

(37)

are the augmented innovation and its covariance matrix.

To find E

[

γγγ
(M)
k

]

as a function of f
(M)
k , the innovation

mean at time k is expanded as a function of the estimate

bias at k − 1 and the faults at k. Substituting (2) into (7),

and approximating h (xk) as in (29):

γγγk = −Hk (xk − x̄k) + vk + fk (38)

Substituting (3) and (1) into (38), linearizing g(xk−1, uk−1)
using (31) and taking the expected value of both sides:

E [γγγk] = fk − HkΦΦΦk−1 f̂xk−1
(39)

Substituting (16) with a preceding horizon of (M−1) epochs

into (39) and using matrix notation:

E [γγγk] =
[

Ink
− HkΦΦΦk−1A

(M−1)
k−1

︸ ︷︷ ︸

B
(M)
k

]
[

fk

f
(M−1)
k−1

]

︸ ︷︷ ︸

f
(M)
k

(40)

Eq. (40) shows that the innovation mean at k is again a

function of the faults occurring within the preceding horizon

and the estimate bias at k − M − 1. Following a similar

process for 1 ≤ i ≤ M :

E [γγγk−i] =
[
0
nk−i×n

(i−1)
k

B
(M−i)
k−i

]
[

fk:k−i

f
(M−i−1)
k−i−1

]

︸ ︷︷ ︸

f
(M)
k

(41)

where b : a for b ≥ a include all subindexes from b to a,

and B
(M−i)
k−i ∈ R

nk−i×
[

n
(M−i)
k−i

+m
]

is defined as:

B
(M−i)
k−i =

[

Ink−i
−Hk−iΦΦΦk−i−1A

(M−i−1)
k−i−1

]

(42)

Algorithm 2 presents recursive method to evaluate

A
(M−i−1)
k−i−1 given A

(M−i)
k−i and L′′

k−i. Note that subindex 1

Algorithm 2 Recursive evaluation of matrix A
(M−i−1)
k−i−1

1: function A PREVIOUS (A
(M−i)
k−i ,L′′

k−i)

2: A
(M−i−1)
k−i−1 =

(
L′′
k−i

)−1
A

(M−i)
k−i

3:

(

A
(M−i−1)
k−i−1

)

1
= [ ] // remove block matrix

4: return: A
(M−i−1)
k−i−1

5: end function

in line 3 refers to the first block matrix in A
(M)
k . From (40)

and (41), the mean of the augmented innovation vector can

be expressed in matrix notation as:

E

[

γγγ
(M)
k

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B
(M)
k

B
(M−1)
k−1

. . .

B
(0)
k−M

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

B̄
(M)
k

f
(M)
k (43)

where B̄
(M)
k ∈ R

n
(M)
k

×
[

n
(M)
k

+m
]

is an upper triangular

matrix that can be recursively computed using Algorithm 3.

Finally, substituting (43) into (36):

Algorithm 3 Recursive evaluation of matrix B̄
(M)
k

1: function B̄ EVAL(A
(M)
k ,Hk−M :k,ΦΦΦk−M−1:k−1,L′′

k−M :k)

2: for j = M to 0 do

3: A
(M−j−1)
k−j−1 = A PREVIOUS (A

(M−j)
k−j ,L′′

k−j)

4: B
(M−j)
k−j =

[

Ink−j
−Hk−jΦΦΦk−j−1A

(M−j−1)
k−j−1

]

5: B̄
(M)
k =

[

B̄
(M)
k

[
0
nk−j×n

(j−1)
k

B
(M−j)
k−j

]

]

6: end for

7: end function

λ
(M)
k = f

(M)
k

T
B̄
(M)
k

T

Y
(M)
k

−1
B̄
(M)
k

︸ ︷︷ ︸

M
(M)
k

f
(M)
k (44)

where M
(M)
k is a

[

n
(M)
k +m

]

square matrix of rank n
(M)
k .

A
(M)
k =

[
Lk L′′

kLk−1 [. . .] L′′
k . . .L′′

k−(M−1)Lk−M L′′
k . . .L′′

k−M

]
(35)
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