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Abstract— This paper presents a new method to efficiently
monitor localization safety in mobile robots. Localization safety
is quantified by measuring the system’s integrity risk, which
is a well-known aviation performance metric. However, avia-
tion integrity monitoring solutions almost exclusively rely on
the Global Navigation Satellite System (GNSS) while robot
navigation usually needs the additional information provided
by a state evolution model and/or relative positioning sensors,
which makes previously established approaches impractical. In
response, this paper develops an efficient integrity monitoring
methodology applicable to Kalman Filter-based localization.
The work is intended for life- or mission-critical operations
such as co-robot applications where ignoring the impact of
faults can jeopardize human safety.

I. INTRODUCTION

Precise localization is paramount for autonomous navi-

gation applications, especially in life- or mission- critical

applications where localization faults may result in human

endangerment. Most localization algorithms rely on perfor-

mance metrics based on the estimate variance, which only

consider nominal cases, and as such are insufficient when

unmodeled faults occur. In response, this paper applies prior

work evaluating integrity for aviation applications to develop

a new method to effectively monitor localization safety in

mobile robots. Integrity is a quantifiable performance metric

used to set certifiable requirements on individual system

components to achieve and prove a level of safety for the

overall system. More precisely, navigation integrity risk is

the probability that a robot’s pose estimation lies outside

pre-defined acceptable limits while no alarm is triggered.

Multiple GNNS Receiver Integrity Autonomous Monitor-

ing (RAIM) methodologies have been developed to quantify

navigation integrity risk [1]–[4]. Unfortunately most of these

approaches rely on a snapshot least squares solution obtained

entirely from absolute positioning sensor measurements. In

contrast, the Kalman Filter (KF) provides a recursive solution

that also employs information about prior estimates and

the state evolution model and/or other types of relative

positioning sensor information, e.g. inertial measurements or

odometry. Thus, the ability to monitor integrity risk using a

KF can be of great interest, especially for ground robots in

which the additional information added by the state evolution

model may be critical to obtaining an accurate pose estimate.
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There has been some previous work in integrity monitoring

using a recursive filter. For example, [5] presents a solution

separation-based method with a bank of KFs. However, the

number of parallel KFs increases as the number of mea-

surement sources increases over time, which typically makes

the problem intractable outside GNSS-based localization. [6]

and [7] also present a KF integrity monitoring methods,

but the former becomes quickly intractable and the latter is

inneficient in all but short length missions. Other recursive

fault detector methods are presented in [8]–[10], but the

impact of undetected faults is not addressed.

In contrast, this paper introduces an efficient methodology

to evaluate integrity risk when using a KF solution. First,

faults occurring prior to the current time are encapsulated

into an estimate bias. Then, the KF update equations are

reformulated as a least squares fitting problem by including

the previous state estimate as an extra measurement. Given

this formulation, localization integrity is evaluated employing

traditional aviation RAIM algorithms, which allows for effi-

cient monitoring of both current and previous sensor faults

in a common frame. While this method might have signif-

icant disadvantages when applied to missions with limited

measurement sources, it has practical benefits, especially for

systems with low computing power. A more suitable method

for high computing power applications is presented in [11].

The paper is organized as follows. Section II presents the

background and assumptions. Section III extends the defini-

tion of the integrity risk to a format that can be recursively

evaluated. Section IV derives an alternative KF-equivalent

formulation to evaluate the integrity risk as presented in the

prior section. Finally, Section V discuss the results obtained

when simulating a robot self-localizing in a landmark map

and Section VI presents conclusions and future work.

II. BACKGROUND

This section presents the mathematical framework and

states the key assumptions used throughout this paper.

A. State Evolution Model

In this paper, the state evolution model is assumed to be

linear and disturbed by zero-mean white Gaussian noise as:

xk+1 = ΦΦΦkxk +ΓΓΓkuk +wk where wk ∼ N (0,Wk) (1)

The vector xk ∈ R
m includes the m estimated states of

the system, the matrices ΦΦΦk and ΓΓΓk are assumed known

at all time epochs k, uk is an input to the system and

wk represents the system model’s error. The notation a ∼
N (µµµ,ΣΣΣ) indicates that the random vector a is normally

distributed with mean µµµ and covariance ΣΣΣ.
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B. Measurement Model

The sensor measurement model is also assumed to be

linear and disturbed by zero-mean white Gaussian noise,

but in contrast to the state evolution model, it can also be

disturbed by sensor faults, i.e.:

zk = Hkxk + fz,k + vk where vk ∼ N (0,Vk) (2)

The vector zk ∈ R
nk includes the nk measurements obtained

from absolute positioning sensors at time k, the matrix Hk

is assumed known, and the vector fz,k contains zeros except

for those measurements that are faulted whose components

are unknown.

Note that the linear and normality assumptions can be

relaxed by making use of linearization and noise over-

bounding methods such as the nonlinear extended KF or

the CDF Gaussian over-bounding theorem presented in [12].

However, this paper presents the general algorithm and these

extensions will not be further discussed.

C. Hazardously Misleading Information

Localization safety is quantified as the integrity risk of the

system, which is evaluated as the probability of Hazardously

Misleading Information (HMI). HMI occurs when the error

on the state (or linear combination of states) of interest

exceeds a predefined threshold or alert limit and the fault

detector does not trigger the alarm, i.e.:

HMIk � |ε̂x,k| > l ∩ qD,k < TD,k (3)

where ε̂x,k = x̂k−xk is the error in the state of interest (e.g.

lateral positioning error in autonomous vehicles navigation),

l is the alert limit, qD,k is the fault detector, and TD,k is

a threshold such that if qD,k ≥ TD,k an alarm is triggered.

In this paper, the notations x̄k, x̂k and xk refer to the KF

prediction and measurement update state estimate, and the

actual (unknown) state respectively. The error in the state of

interest, ε̂x,k, is selected by the vector αααk ∈ R
m such that:

ε̂x,k = αααT
k ε̂εεx,k = αααT

k (x̂k − xk) (4)

Note that αααk can be a vector that selects one state of interest.

For example, if m = 3 and the state of interest is the second

component of x, then ααα =
[
0 1 0

]T
.

In this work, localization integrity risk is evaluated under

both faulted and fault-free hypotheses. Fault hypotheses

indicate the faulted components in fk,z that are non-zero

and the time k at which this faults occur. For example,

a fault hypothesis might indicate that two measurements

are faulted at epoch 5 and one measurement is faulted at

epoch 7, while the current time is k = 10. Given a set

of mutually exclusive, jointly exhaustive fault hypotheses,

{H0, . . . , HnH
}, the probability of HMI or integrity risk at

time k can be computed as:

P (HMIk) =

nH∑

h=0

P (HMIk | Hh)P (Hh) (5)

The next two sections will upper bound the right hand side

of (5) to obtain a conservative measure of navigation safety.

III. FAULT HYPOTHESES PROBABILITIES

In this work, hypotheses with prior sensor faults are

distinguished from those without. Denoting as H
p
0 the hy-

pothesis with no faults prior to current time k and H
p
1 as

its complementary event (at least one fault occurring prior

to k), the integrity risk can be expressed as:

P (HMIk) =

nH∑

h=0

P (HMIk | Hh, H
p
0 )P (Hh |Hp

0 )P (Hp
0 )+

P (HMIk | Hh, H
p
1 )P (Hh | Hp

1 )P (Hp
1 ) (6)

Similarly, the probability of a sensor failure at each epoch is

considered independent. Thus, for independent sensors, each

with probability of failure Pi:

P (Hp
0 ) =

k−1∏

j=1

nk∏

i=1

(1− Pi) (7)

which can be recursively evaluated. The complementary

event is the probability of at least one previous fault oc-

curring, i.e. P (Hp
1 ) = 1− P (Hp

0 ).
Faults at previous epochs (before k) are accounted for by

H
p
0 and H

p
1 and thus, in (6), {H0, . . . , HnH

} form a set

of mutually exclusive, jointly exhaustive fault hypotheses

for the current measurements (at k). By the independence

assumption between epochs, P (Hh | Hp
0 ) = P (Hh | Hp

1 ) =
P (Hh). Every Hh depicts a scenario in which a different

subset of measurements is faulted; hence, every Hh occurs

with different probability. For example, hypothesis Hh with

faulted measurements i1, . . . , ir:

P (Hh) = P (H0)

r∏

s=1

Pis

1− Pis

(8)

where H0 is the current-time fault-free hypothesis, i.e. no

measurement is faulted at the current time; it is computed as

P (H0) =
∏nk

i=1(1− Pi).
Monitoring all possible hypotheses would be impractical

because hypotheses with a large number of faulted mea-

surements are very rare. Thus, we determine the maximum

number of simultaneous sensor faults that need to be mon-

itored, nmax, such that the probability of more than nmax

simultaneous sensor faults is less than IH . Blanch et al. [4]

(Appendix C) shows that nmax is obtained as the maximum

integer r for which the next expression holds:

(
∑nk

i=1 Pi)
r

r!
≤ IH (9)

Thus, the risk of failures due to unmonitored faulted subsets

will be accounted for by adding IH in (6). One important

limitation of integrity monitoring methods in general is that

the number of measurements impacted by faults cannot be

larger than the number of redundant measurements (n−m);
otherwise the fault might be undetectable. Therefore, the

inequality nmax ≤ n−m must hold or some fault hypotheses

with P (Hh) > IH will not be monitored. We will assume

that this condition holds for the rest of the paper.
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Finally, summing over the nH hypotheses with at most

nmax simultaneous sensor faults and accounting for the

unmonitored subsets with IH , the integrity risk can be upper-

bounded as:

P (HMIk) ≤
nH∑

h=0

P (Hh)

[

P
(

HMIk | Hp
h,0

)

P (Hp
0 )+

P
(

HMIk | Hp
h,1

)

P (Hp
1 )

]

+ IH (10)

where the simplified notation H
p
h,0 ≡ {Hh, H

p
0} and H

p
h,1 ≡

{Hh, H
p
1} has been employed.

This section showed how to compute the fault hypotheses

prior probabilities. The next section presents a KF-equivalent

formulation that enables the computation of (10).

IV. KALMAN FILTER-LEAST SQUARES RAIM

In this section, efficient expressions for P (HMIk | Hp
h,0)

and P (HMIk | Hp
h,1) in (10) are derived. First, an alterna-

tive formulation that includes the state evolution information

into the measurement model is presented and the least

squares solution to this formulation is proven to be equivalent

to the KF update. Second, the residual vector and the fault

detector in (3) are defined, and the distribution of both the

estimate error and the detector are specified for a given

fault hypothesis. Then, the integrity risk is evaluated for the

worst-case fault, which is derived in Section IV-E. Finally, a

summary of equations is given for ease of implementation.

A. Kalman Filtering as Least Squares

Given the linear state evolution and measurement models

presented in (1) and (2), the KF prediction estimate has mean

and covariance matrix:

x̄k+1 = ΦΦΦkx̂k +ΓΓΓkuk and P̄k+1 = ΦΦΦkP̂kΦΦΦ
T
k + Wk

(11)

respectively. Previous sensor faults result in a unknown

estimate fault, f̄x, that increases the estimate error, ε̄x:

ε̄εεx � x̄ − x = f̄x + ε̄εε (12)

where ε̄εε ∼ N
(
0, P̄

)
is the error arising from the sensor and

system model’s Gaussian errors. Note that the time index has

been removed to lighten notation.

Hewitson et al. [8], [9] proposes a least squares formula-

tion for the KF update step. First, equations (2) and (12) are

combined as:
[

z

x̄

]

︸︷︷︸
y

=

[
H

I

]

︸︷︷︸

D

x +

[
fz
f̄x

]

︸︷︷︸

fy

+

[
v

ε̄εε

]

︸︷︷︸

δδδ

(13)

where I denotes the identity matrix. Definitions for each term

are underbraced such that:

y = Dx + fy + δδδ (14)

where the noise term is zero mean normally distributed as:

δδδ ∼ N (0,∆∆∆) where ∆∆∆ =

[
V 0

0 P̄

]

(15)

Assuming fy = 0 in (14), the least squares solution provides

the best unbiased estimate whose mean and variance are:

x̂ = Sy and P̂ = S∆∆∆ST (16)

respectively, and S =
(
DT∆∆∆−1D

)
−1

DT∆∆∆−1. The appendix

shows that the estimate in (16) is equivalent to the one

obtained employing the KF measurement update equations.

B. Residual and Fault Detector

The residual vector measures the discrepancy between the

actual, y, and the estimated measurements using the least

squares solution, Dx̂, i.e.:

r = y − Dx̂ (17)

This augmented residual vector is a good indicator of pos-

sible system faults because it provides a direct (independent

of the current state) measure of the system’s error—it can be

proven that r = (I − DS) (fy + δδδ) [13]. As in most residual-

based RAIM snapshot solutions, the weighted norm of the

residual is employed as fault detector:

q2D � ‖r‖2∆∆∆−1 = rT∆∆∆−1r (18)

Garcia-Crespillo [14] proves that this augmented residual

norm is in fact the weighted norm of the KF measurement

update innovation vector, z − Hx̄, which is computed when

employing the KF equations. Thus, the detector can be

computed without the need of the updated estimate in (17).

The next section specifies the distributions of the two

random variables required to calculate the integrity risk: the

fault detector, qD, and state of interest estimate error, ε̂x.

C. Distribution of fault detector and estimate error

The weighted norm squared of the residual vector is

proven to be non-central chi-square distributed with n de-

grees of freedom and non-centrality parameter λ2
D:

‖r‖2∆∆∆−1 ∼ χ2
n,λ2

D
where λ2

D = fTy∆∆∆
−1 (I − DS) fy (19)

and the estimate error in (4) is normally distributed as:

ε̂x ∼ N
(

f̂x, σ̂
2
)

where f̂x = αααT f̂x = αααT Sfy (20)

and σ̂2 = αααT P̂ααα. Because of the least squares solution

of the KF-equivalent alternative formulation, Joerger et al.

[13] showed that the random parts of ε̂x and ‖r‖∆∆∆−1 are

independent. A detailed derivation of (19) and (20) for non-

recursive integrity monitoring (snapshot RAIM) can also be

found in [13].

D. Evaluation of P (HMI)

The independence between the random parts of ε̂x and

‖r‖∆∆∆−1 is employed to separately evaluate the probability of

the two events in (3) as:

P (HMI|Hp
h,b) = P (|ε̂x| > l|Hp

h,b)P (‖r‖∆∆∆−1 < TD|Hp
h,b)
(21)

where b can be either 0 or 1. The detector threshold (TD)

is set to limit the probability of false alarms to a predefined

continuity risk allocation, IC . False alarms occur when the
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alarm is triggered (qD > TD), but no faults have occurred.

Then, given the distribution of the detector in (19) with λD =
0, the detector threshold is set as:

TD =

√

X−2
n [1− IC ] (22)

where X−2
n [·] is the inverse chi-squared CDF with n degrees

of freedom.

At this point, the only unknown in (10) is the augmented

measurement fault, fy , which appears in both (19) and (20).

The next section finds the fault that maximizes integrity risk.

E. Worst-case Fault

In this work, faults are modeled as an unknown determin-

istic quantities. Thus, the augmented fault vector is chosen to

maximize the integrity risk in (10) to obtain a conservative

bound on the system’s safety. This section presents a method

to compute such worst-case fault. Unlike previous methods

[5], [6] where a subset of past-time measurements could

be assumed fault-free, the proposed method imposes that

all past-time measurements can be faulted. In addition,

this proposed method can be implemented using small-size

matrices, it does not require a bank of KFs as in [5], nor

does it require batch-type matrix operations as in [6].

Under hypothesis {Hh, H
p
b }, only certain measurements in

y are faulted; therefore, the matrix Eh,b composed of zeros

and ones in specified locations, can be employed to extract

only the faulted measurements. For example, if n = 6, m =
2 and measurements 2 and 5 are faulted in hypothesis Hh:

Eh,by and Eh,bfy (23)

where:

Eh,0 =

[
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

]

under H
p
0 (24)

Eh,1 =

⎡

⎢
⎢
⎣

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎦

under H
p
1 (25)

extract the corresponding faulted measurements and nonzero

fault components respectively. Note that under H
p
1 the m

terms in y corresponding to the prediction estimate mean, x̄,

are extracted as faulted (see the lower right 2 × 2 identity

matrix in (25)).

Angun [15] showed that the fault direction that maximizes

(21) is the one that results in the highest slope defined as the

rate between the estimate error mean squared and the fault

detector non-centrality parameter, i.e.:

g2F =
f̂2
x

λ2
D

(26)

Therefore, given the estimate error mean in (20), the non-

centrality parameter in (19) and the extraction matrix in (23),

the worst-case fault direction under hypothesis {Hh, H
p
b } is:

f̆yh
= argmax

fy

fTy ET
h,bEh,bSTααααααT SET

h,bEh,bfy

fTy ET
h,bEh,b∆∆∆−1 (I − DS)ET

h,bEh,bfy
(27)

which has been proven in [13] to be:

f̆yh
= ET

h,b

[
Eh,b∆∆∆

−1 (I − DS)ET
h,b

]
−1

Eh,bSTααα (28)

Finally, the worst-case fault magnitude is numerically ob-

tained by a linear search in (21) as:

|fyh
| = argmax

q
P
(

|Z
f̂x(q),σ̂

| > l
)

X2
n,λ2

D
(q) [TD] (29)

where Zµ,σ is a Gaussian random variable with mean µ and

standard deviation σ, and X2
a,b[·] is the CDF of the non-

central chi-squared distribution with a degrees of freedom

and non-centrality parameter b. The state of interest error

mean and the non-centrality parameter are functions of the

fault magnitude as:

f̂x(q) = q αααT S̆fyh
and λ2

D(q) = q2 f̆
T

yh
∆∆∆−1 (I − DS) f̆yh

(30)

Finally the worst-case fault is obtained as: fyh
= |fyh

|̆fyh
.

F. Summary

This section presents an step by step implementation of

the proposed KF integrity monitoring. At each epoch:

1) Recursively evaluate the probability of previous faults,

P (Hp
b ) for b = 1, 2, using (7).

2) Obtain the maximum number of simultaneous sensor

faults, nmax, using (9).

3) Form the nH hypotheses and compute their probabil-

ities, P (Hh), using (8).

4) Calculate the detector threshold, TD, using (22).

5) Obtain the worst-case fault, fyh
, for each hypothesis

using (28) and (29).

6) Compute P (HMI | H
p
h,b) for b = 1, 2 and h =

1, . . . , nH using (21).

7) Substitute P (HMI | Hp
h,b), P (Hh) and P (Hp

b ) into

(10) to obtain an upper bound on the integrity risk.

8) Repeat for the next time epoch.

This section has derived the KF residual-based integrity

monitoring in detail. The next section implements this

methodology to monitor navigation integrity risk in a simple

ground robot and discusses the differences between the

proposed methodology and a snapshot solution where the

state evolution model information is not employed; thus

relying only on absolute positioning sensors.

V. SIMULATION RESULTS

This section simulates a robot navigating in a planar

environment (see Fig. 1). The robot’s state evolution and

sensor measurement model are linear and given by (1)

and (2) respectively where both process and sensor noise

covariance matrices are diagonal with equal variances, i.e.:

W = σ2
wI and V = σ2

vI where I is the identity matrix.

The state vector includes the robot’s x and y coordinates

(m = 2), the measurement vector is composed of the relative

distance in both x and y directions to six unevenly spaced

landmarks (n = 12), and the input to the system in (1) is

the robot’s instant velocity. Note that this simple linear mea-

surement model is chosen to validate the methodology, more
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Fig. 1: On the left, the simulation environment. Black marks

denote landmark locations and the robot path is in blue. Axis

are in meters. On the right, the simulation parameters.

TABLE I: Kalman Filter (KF) and snapshot (SN) root mean

squared errors (RMSE) and 3σ envelopes on the state of

interest. On the left, the table corresponding to Section V-A

and on the right the ones corresponding to Section V-B.

KF (σw = 0.3) SN
σv RMSE 3σ̂ RMSE 3σ̂

0.10 0.045 0.004 0.045 0.005
0.20 0.087 0.018 0.090 0.020
0.25 0.106 0.028 0.113 0.031
0.30 0.124 0.039 0.136 0.045
0.40 0.156 0.064 0.181 0.080

KF (σv = 0.3)
σw RMSE 3σ̂

0.1 0.112 0.024
0.2 0.117 0.034
0.3 0.124 0.039
0.4 0.128 0.041
∞ 0.136 0.045

realistic sensor models involve non-linearities which are not

considered in this paper. In this simulation, a sensor failure is

considered to be a spurious measurement wrongly associated

to a landmark and thus, two components—corresponding to

the x and y distances to such landmark—in the measurement

vector are simultaneously faulted, resulting in the ones in

(24) and (25) being substituted by 2×2 identity matrices. No

faults are injected in the simulation and associations between

measurements and the map of landmarks is assumed known;

incorrect association faults are covered in [16].

The proposed methodology is compared to a snapshot

integrity monitoring solution [17], [18] in which the esti-

mate at each epoch is obtained by exclusively using the

sensor measurements at such epoch; prior estimates are

not exploited. This is the traditional approach in aviation,

where the measurement vector is not augmented as in (13)

and thus, faults occurring at time prior to k do not affect

the current estimate. The following subsections analyze the

algorithms’ response to changes in both sensor and process

noise separately. Simulation parameters are given in Fig 1.

A. Effect of Sensor Noise

To quantify the effect of sensor noise, the process noise

standard deviation is kept constant (σw = 0.3m) as the sensor

noise varies (σv = 0.1m–0.4m). Table I shows the estimate

error and 3σ estimate variance on the state of interest. Fig. 2

shows the integrity risk bound for the recursive KF and the

snapshot solutions. Note that the KF’s integrity risk increases

over time while the snapshot’s stays constant throughout the

simulation. This occurs because the probability of previous

faults employed in the proposed KF solution, H
p
1 , increases

as more measurements are obtained over time; in practice

1

1.4 10
-10

x

0 20 40 60 80 100

0 20 40 60 80 100

10
-10

10
-8

10
-6

10
-4

Fig. 2: Integrity risk comparison between the proposed KF

(solid) and the snapshot (dashed) solutions with sensor noise

standard deviation, σv , as indicated in the figure in meters.

The bottom figure zooms into the low integrity risk region.

Note that for σv ≤ 0.2 the risk equals IH .

only a window of time must be considered to compute

P (Hp
1 ) or it will increase without bound.

Two conclusions can be inferred from the results: 1)

both the proposed KF and snapshot solutions variances and

integrity risk bounds rapidly increase with the sensor noise as

expected and, 2) the KF solution presents a lower error and

variance in this unfaulted scenario; however, the integrity risk

tends to be higher, especially after a few epochs (this point

is further developed in the next section). Similar responses

are obtained when decreasing the number of landmarks or

increasing the probability of sensor faults.

B. Effect of Process Noise

In this simulation the sensor and process noise are gen-

erated with σv = 0.3m and σw = 0.1m respectively.

However, while the sensor data is filtered using the nominal

σv = 0.1m, the state evolution data is filtered with increasing

σw = 0.1–∞. This means that the trust in the state evolution

model is deliberately decreased to evaluate the algorithm

response to the same data inputs.

Fig. 3 shows that, initially, the integrity risk reduces as

the trust in the model is decreased (σw increased) and then,

as σw is further increased, the integrity risk asymptotically

approaches the constant value resulting from the KF ap-

proach with σw = ∞. This an interesting result because,

in a fault-free scenario like the one simulated, the estimate

error is minimal when the state evolution model information

is filtered with its nominal σw = 0.1 (see Table I). However,

the higher the trust on the state evolution, the larger the

impact of prior faults on the current estimate; this, after some

time, makes the KF’s integrity risk surpass the snapshot’s.

Note that the constant snapshot integrity risk is lower than

the KF risk with σw = ∞ even when they both compute the
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Fig. 3: Integrity risk for the same data employing the σw

parameter indicated in meters (solid) in the proposed KF

method and for the snapshot solution, which is independent

of process noise.

same estimate. The reason for this increment in the integrity

risk is the greater number of degrees of freedom in the KF

detector (n in KF vs. n − m in snapshot), which makes it

less effective when prior information is not employed.

C. Discussion

The KF offers a smaller variance estimate than the snap-

shot’s by recursively including the previous state information.

Unfortunately, including prior state information also entails

accounting for previously occurring faults. The simulations

showed that the impact of those previous faults greatly

affect the integrity risk when the process noise is small

relative to the sensor noise. This occurs because of the

conservative approach taken in this work—prior faults result

in the worst-case fault in the estimate. One possible solution

is to increase the process noise variance used in the KF until

a satisfactory trade-off between safety (integrity risk) and

accuracy (variance) is reached. In addition, if a window of

time is employed to calculate P (Hp
1 ), an optimal process

noise value can be found such that the proposed method

continuously provides lower integrity risk and variance than

the snapshot solution.

There are at least two possible applications for the pro-

posed methodology: 1) find the optimal process noise value

for which the KF’s integrity risk falls below the snapshot’s,

or 2) if the KF integrity risk is lower than a predefined safety

requirement (e.g. 10−7 in aviation), use the nominal process

noise to obtain the optimal filter.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new Kalman Filter integrity mon-

itoring method that effectively evaluates localization safety

for a mobile robot with minimal computation requirements.

The methodology is derived and validated in simulation.

Simulation results show that the method offers a trade-off

between safety (integrity risk) and accuracy (variance) that

can be exploited by varying the filter parameters.

Quantifying safety will be critical as more robots operate

near and among humans. Future work will reduce the im-

pact of previous faults on integrity risk by evaluating fault

hypotheses in a window of time; thus, introducing a trade-off

between computational complexity and performance.

APPENDIX

EQUIVALENCE BETWEEN LEAST SQUARES AND KALMAN

FILTER UPDATE EQUATIONS

This appendix proves that the least squares solution to the

alternative formulation presented in (16) is equivalent to the

KF update step. The KF update equations are:

x̂ = x̄ + L (z − Hx̄) and P̂ =
(

P̄
−1

+ HT V−1H
)
−1

(31)

where the Kalman gain is:

L = P̂HT V−1 (32)

To prove the equivalence of the covariance matrix expres-

sions, we expand (16) using the definition of S and simplify:

P̂ = S∆∆∆ST =
(
DT∆∆∆−1D

)
−1

(33)

Using D and ∆∆∆ from (13), the matrix inside the inverse is:

DT∆∆∆−1D =

[
HT I

]
[

V−1 0

0 P̄
−1

] [
H

I

]

= P̄
−1

+ HT V−1H (34)

Substituting (34) into (33) proves the covariance update (31).

The mean update equivalence is similarly proven by

expanding (16) and substituting (33):

x̂ = Sy = P̂DT∆∆∆−1y (35)

Substituting the definitions of each term again:

x̂ = P̂
[
HT I

]
[

V−1 0

0 P̄
−1

] [
z

x̄

]

= P̂HT V−1z + P̂P̄
−1

x̄

(36)

The first term in the right hand side of this expression

contains the Kalman gain definition in (32) and substituting

P̄
−1

from the proven KF covariance update in (31):

x̂ = Lz + P̂
(

P̂
−1

− HT V−1H
)

x̄ = Lz + x̄ − P̂HT V−1Hx̄

(37)

Recognizing the Kalman gain definition from the third term

and grouping terms we obtain the KF update equation (31).
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