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Abstract—This paper describes the derivation, analysis and
implementation of a new data association method that provides a
tight bound on the risk of incorrect association for LiDAR
feature-based localization. Data association (DA) is the process
of assigning currently-sensed features with ones that were
previously observed. Most DA methods use a nearest-neighbor
criterion based on the normalized innovation squared (NIS).
They require complex algorithms to evaluate the risk of incorrect
association because sensor state prediction, prior observations,
and current measurements are uncertain. In contrast, in this
work, we derive a new DA criterion using projections of the
extended Kalman filter’s innovation vector. The paper shows
that innovation projections (IP) are signed quantities that not
only capture the impact of an incorrect association in terms of its
magnitude, but also of its direction. The IP-based DA criterion
also leverages the fact that incorrect associations are known and
well-defined fault modes. Thus, as compared to NIS, IPs provide
a much tighter bound on the predicted risk of incorrect
association. We analyze and evaluate the new IP method using
simulated and experimental data for autonomous inertial-aided
LiDAR localization in a structured lab environment.

Keywords—data association, innovation vector, inertial, risk,
Kalman filter.

I. INTRODUCTION

GNSS use code division multiple access to unambiguously
identify and track multiple signals. But, landmark-based
localization requires an additional data association (DA) step to
recognize previously observed features, whether these features
were just sensed or found in a map [1]. Wrong associations
(WA) can lead to large navigation errors [2] that can cause
autonomous ground vehicles to collide or crash. In response,
in this paper, we derive a new criterion to determine the correct
association. Our approach not only mitigates occurrences of
WA, but it also provides a tight bound on the risk of
incorrection association.

This work is primarily intended for localization of
automated driving systems (ADS) using LiDAR and inertial
measurement units (IMUs). The focus is on LiDARs for their
prevalence in ADS, their market availability, and our prior
experience. A raw LiDAR scan is made of thousands of data
points, each of which individually does not carry useful
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navigation information. Raw measurements must be pre-
processed before they can be used for navigation [3-6].

A first class of algorithms establishes correlations between
successive scans to estimate sensor changes in ‘pose’ (i.e.,
position and orientation) [6-9]. One of the most widely
implemented approaches is the iterative closest point (ICP) [6].
Such procedures can become inaccurate or cumbersome for
ADSs moving over time without loop closure unless a map is
available. Occupancy grid maps (OGM) [3,10-12] describe the
environment using small cells, each of which either contains an
object (i.e., is occupied) or does not. The environment can
alternatively be interpreted using probability hypothesis
density (PHD), which capture the probability of objects being
present at surrounding locations [13]. Combining PHDs with
random finite set (RFS) theory can help track objects in
cluttered environments [13-16]. In the presence of repetitive
patterns such as regularly spaced lamp poles or parked cars on
a street, correlation-based algorithms using PHD and/or OGM
that aim at minimizing pose estimation errors can converge to
local minima [16], which can hinder localization risk
evaluation.

A second class of algorithms, which is investigated in this
paper, provides sensor localization by tracking recognizable,
static features in the perceived environment. Two steps are
needed: feature extraction (FE) and DA. FE aims at finding
the few most consistently recognizable, viewpoint-invariant
landmarks in the raw sensor data. DA aims at assigning
landmark features to the corresponding feature parameters
stored in a map. Yaakov Bar Shalom’s seminal work on DA
for multi-target tracking [1] has been successfully
implemented, and built upon, in a wide variety of applications
including landmark-based navigation [2,17-19], pedestrian
detection [20], space situational awareness [21-23], air and
land surveillance and collision avoidance [24-26], for example,
in traffic management [27]. DA can be challenging in the
presence of sensor uncertainty. This is why many advanced
DA algorithms were developed in [3,28-30].

Of primary concern in safety-critical autonomous vehicle
navigation is the prediction of the risk of WA. Two of the
most widely-used methods, the Probabilistic Data Association
and the Joint Probabilistic Data Association (JPDA) [31],
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provide the means to evaluate the probability of correct
association. But, these Bayesian approaches evaluate risk
given current sample data. They are not well suited for safety-
critical applications due to the lack of safety risk prediction
capability, and to the problem of bounding the a-posteriori
probability of association (a similar issue is encountered in
[32]). Another insightful approach is followed in [33].
However, it makes approximations that do not necessarily
upper-bound risks, hence, do not guarantee safe operation.
Reference [33] also presents exact solutions that could only be
evaluated using computationally expensive numerical methods,
not adequate for real-time navigation.

To circumvent these issues, in our prior work, we derived
an analytical upper bound on the risk of WA, which was used
to predict navigation integrity [34]. We tested this method in
landmark-based LiDAR localization applications [34,35].
Unfortunately, our ability to predict WA occurrences was
limited, i.e., our WA risk bound was loose. Even in a
structured lab environment with few, sparsely distributed
landmarks, the predicted risk bound was high: we would
predict that the situation was unsafe, when the risk was actually
low. Only when incorporating extra data from inertial
measurement units (IMU) were we able to achieve low risk
bounds [36,37].

Our prior work and most methods cited in the above three
paragraphs are either directly based on Bar Shalom’s DA
criterion, which uses the normalized innovation squared (NIS),
or on some variant also using a weighted norm of residuals.
We describe the innovation vector upfront because it is at the
heart of this paper. The innovation vector appears in the
extended Kalman filter (EKF), the most widely implemented
non-linear sequential estimator.

Let n, be the number of targets in view. From each target
originates a measurement set, for example, the target’s position
coordinates relative to the sensor. The n, measurement sets

are arranged in a measurement vector Z . There are (n,!)

possible ways that the n, measurement sets could be arranged
in Z. The innovation vector, and its normalized expression v,

defined below, compares Z to a predicted version of Z , noted
h(X). Vector h(X) is a non-linear function of prior target
observations and of the sensor state prediction X. Vector X is
typically made of the sensor’s location and orientation in a
frame of interest (e.g., in a navigation frame East-North-Up).
Simply put, vector h(X) is a prediction of Z based on where
the sensor is expected to be relative to mapped targets.
Subscript i in vy, designates a candidate association: because

we do not know the actual ordering of measurements in vector
Z , we must assume that it may be permuted as compared to
h(X). Vector y, can therefore be expressed as:

v, =W, (A,2-h(X)) for i=0,...h (1)

where A, are permutation matrices, W, =Y,"? with Y,

being the innovation vector covariance matrix, and
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h=n.!-1.
association, which is unknown. Vector 7y, is zero mean if and

only if i =0 [34]. Thus, a sensible criterion to find the correct
association is to take the minimum over all values of i of the

norm squared of 7y, , which is the NIS. The NIS-based method
is effective, but has limitations in safety-critical applications.

We use the notation i=0 for the correct

In this paper, we develop a new approach that departs from
traditional NIS methods by using EKF innovation vector
projections (IP). This IP approach improves DA performance
predictions by providing a significantly tighter bound on the
risk of WA as compared to NIS. The IP method relaxes the
need for extra sensor data and for complex risk evaluation
methods to reduce WA risk prediction.

Throughout the paper, we assume a known model of the
measurement and sensor state parameter time-propagation. We
limit the scope of the paper to cases where all sensed targets
have previously been observed. Procedures for dealing with
occluded targets, unwanted objects, and miss-extracted features
can be found in [38-40] for the NIS approach. These cases will
be addressed for [P-based DA in future work. The current IP
approach matches targets as a set, which is sometimes referred
to as a ‘global nearest neighbor’ procedure [23,35,40], as
opposed to local nearest neighbor (LNN) that finds sensed
targets corresponding to mapped targets one at a time [23,40].
The reason for this choice is that LNN requires setting
thresholds, or gates, on local NIS [31,40]. For safety analysis,
we are concerned that worst-case associations occurring at the
threshold would have to be accounted for, and that their impact
on a safety risk bounds (on missed extraction risk) would
accumulate over time. The global nearest neighbor approach
can be computationally more expensive, but can also be more
efficient for safety evaluation than LNN.

Section II of the paper outlines our prior work, and uses a
one-dimensional two-target ranging example to illustrate the
looseness of the NIS-based WA-risk bound. In Section III, we
derive the new DA criterion using IP. IP are signed quantities
that not only capture the impact of a WA in terms of its
magnitude, as does NIS, but also of its direction. We analyze
the NIS versus IP approaches in Sections IV and V using
simulated and experimental data, respectively, for autonomous
landmark-based inertial-aided LiDAR navigation in a
structured environment.

II. PRIOR WORK ON NAVIGATION INTEGRITY RISK
EVALUATION USING NORMALIZED INNOVATIONS SQUARED

This section describes a DA method for autonomous
landmark-based ~ vehicle  navigation in  challenging
environments, where GNSS is denied. For the NIS DA
criterion, we provide a bound on the probability of correct
association (CA), evaluate the looseness of this bound in an
example two-landmark scenario, and incorporate it in an
analytical integrity risk equation. Throughout the section, we
point out limitations of our previously derived NIS-based
method. We label these limitations (L1) to (L3). They will
motivate the development of the new IP method in Section III.
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A. Data Association Using NIS

To find the most likely CA, which we label i, , we select

the association candidate that satisfies the nearest-neighbor
criterion defined as [1]:

2

i, =arg min ¥/
i=0,...,h

with (€))

In [34], we derived an analytical bound on the probability
of CA, P(CA). By definition of the DA criterion in (2), a

WA occurs if the NIS 7 for any candidate association i # 0
is smaller than 7, . We derived the following P(CA)-bound
in [34]:

P(CA)=1-P(WA)

h
=1—P(U7,~ZS7§] @)
i=1
2
>1_pP qz > Y
4
where Vi = min y; and y =E{)’} %)

In (4), ¢° is a chi squared random variable with (1+m)
degrees of freedom, where n is the number of measurements
(length of Z ) and m is the number of states (length of X). In
The last
two sentences point out two limitations of this approach:

(5), E{} designates the expected value operator.

(L1) Even though vy, is n -dimensional, we had no choice

but to consider a chi squared random variable ¢* with
(n+m) degrees of freedom in order to properly

account for the correlation of 7 with p; in the second
equality in (4) (details can be found in [34]).
L2) y
measure of separation between targets: the larger y; is,
y:
unknown. Our best guess for y” is the sample y’. We

is the mean value of 7. For i>0, y' is a

the better the ability to distinguish targets. is

can use a model of the measurement and state

prediction noise to derive a lower bound on y; that is
guaranteed with a risk allocation drawn from the
overall integrity risk requirement [34]. This extra step
adds complications and contributes to the looseness of
the P(CA) bound. To limit the length of the paper, we
do not include this step in the paper, but interested
readers can find it in [34,39].
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The P(CA) bound in (4) is a compact expression. First,

the factor ‘1/4’ on the right-hand side was derived from the
inverse of the sum squared of the maximum eigenvalues of
two idempotent matrices [34]. Second, the bound accounts for
all potential WA. To achieve this, we had to take the

minimum value of 7 over all possible WA.

(L3) The P(CA) bound does not capture the individual
contributions of each WA. Instead, in (5), it takes the

minimum of yf for i=1,...,h . This limitation stems

from the fact that (4) considers a union of events
involving a chi-squared distributed DA statistic.

B. One-Dimensional Two-Target DA Example Using NIS

To illustrate the looseness of the bound, we use the one-
dimensional (1D) example displayed in Fig. 1. The problem is
to estimate the scalar position x of the sensor (upward pointing
triangle) on a 1D navigation reference axis R, given the
positions p4 and pp of two target landmarks (black circles), and
using a set of noisy scalar measurements z; and z, between
sensor and landmarks. The challenge of DA is, in the presence
of sensor errors, to find the ordering of landmarks {p4, ps}
corresponding the ordering of measurements {zi, z>}.
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Fig. 1. Illustrative one-dimensional example of a sensor (at location x in
reference R) providing observations to two landmarks (at locations p, and p;).
Sensor to landmark measurements are noted z; and z,.
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Fig. 2. Two-dimensional normalized innovation-space representation of the
association process. The ratio of blue-and-cyan samples over the total number
of samples is the actual probability of correct association (CA). Only cyan
samples are accounted for in the NIS lower-bound on the probability of CA.
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In this instance, the number of target landmarks is nr = 2,
and the number of possible permutations is (n7!) = 2, i.e., we

consider two innovation vectors y, and v, . Let us define y,

and y, as the mean vectors of vy, and y,. Because index 0

designates the CA, y, =0,but y, #0.

The DA criterion in (2) is represented in Fig. 2 in
normalized innovation space, which is two-dimensional

(n=2). Vectors y, and y, are represented with black dots,

and y, is at the origin. In addition, 5000 random samples of
innovation vectors are displayed. The innovation vectors are
normalized, which explains the isotropic sample distribution.
The criterion in (2) was directly used to distinguish correctly
associated samples in blue-and-cyan, from incorrectly
associated samples in red. The actual P(CA4) is the ratio of
blue-and-cyan samples over the total number of samples. In
addition, cyan dots represent correctly associated samples as
counted using the bound in (4). We simulated measurement
and state prediction noise with a large variance as compared to
the target separation. In this particular example, the
P(CA) lower-bound bound only counted 26% of samples when

in actuality, 87% were correctly associated. This direct

simulation illustrates observation (L3).

C. Example Application: Integrity Risk Bound Using NIS

In prior work, we used the P(CA) -bound to quantify
landmark-based navigation integrity in automotive applications
[34]. The integrity risk, or probability of hazardously
misleading information (HMI) at time & , is noted P(HMI,),
and is defined in Fig. 3. The safety criterion is:
P(HMI,) < 1y, where I,,, is a predefined integrity risk
requirement set by a certification authority (similar to
requirements set for aviation applications in [41-43]). Values
for 1,,,, that might be used in future autonomous driving

system (ADS) applications can be found in [44-46].
In [34,39], we established an analytical bound on the

integrity risk, which accounts for the risk of any incorrect
association at any time. This bound is expressed as:

Fig. 3. Integrity Risk for Automotive Applications. The integrity risk is the
probability of the car being outside the alert limit requirement box (blue
shaded area) when it was estimated to be inside the box. When lateral
deviation is of primary concern, then the alert limit is the distance ¢ between
edge of car and edge of lane.
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P(HMI,) <1-[1-P(HMI, | CA) | P(CA) (6)
with P(HMI, | C4,)=20{(/o,} (7)
k y2
P(C4) 2] P, {", +m Z’N } (®)
=1
where
k  is an index identifying a time step;

K  designates a range of indices: K ={0,....k}, from filter
initiation to time k ;

CA4, is the correct association hypothesis for all landmarks, at
all times O, ..., & ;

Q{ } is the tail probability function of the standard normal

distribution;

¢ is the specified alert limit that defines a hazardous
situation [44-46] (e.g., see Fig. 3);

o, s the standard deviation of the estimation error for the

vehicle state of interest (or linear combination of states);
P;ﬁ {dof ,T} 1is the probability that a chi-squared-distributed
random variable with “dof” degrees of freedom is lower
than some value T;
is the number of measurements at time step / ;

is the number of estimated state parameters at time / ;

In an EKF, because past-time WA can impact current-time
state estimates, we must account for WA at all time steps from
EKF initialization to current-time. This raises an additional
concern.

Limitations (L1) to (L3) are the motivation for seeking a
new approach, one that is not based on chi-square distributed
random variables.

III. A NEW APPROACH USING INNOVATION VECTOR
PROJECTIONS

In order to address the limitations of the NIS-based method,
we develop a new method that uses innovation projections (IP).

A. New Data Association Criterion Using IP
To avoid dealing with chi-squared variables, we project
vectors y, to obtain a DA test statistic that is a linear

combination of normally distributed random variables. Given
that projections are signed quantities and that WA are well-
structured sources of error, we will be able to leverage the
direction of these errors to help identify them.

The first question is: what vector should y, be projected
on? In innovation space, e.g., in Fig. 2, the obvious direction is

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on December 01,2020 at 20:55:50 UTC from IEEE Xplore. Restrictions apply.



along y,. Vector y, is unknown, but our best a-priori guess

ony,,ory, ingeneral, is given by:

T,=W,(A,~Dh(X) for j=1,..h 9)

where I is the nxn identity matrix and where we introduced
the index j. We consider projections along all characteristic

WA directions y,, or along our best guess, ¥, . The idea is to
increase our chances of identifying WA by projecting y, along
a direction that maximizes the projection’s magnitude, i.e.,
ideally along y,. In contrast, for the CA, projections of the
zero-mean Yy, along any direction should be small. It is worth
noticing that index j, for j=1,...,/, is known because we can
generate the permutation matrices A ;. But, which of index i

is i=0 remains unknown because the sample innovation
vector is affected by measurement and state prediction error.

(We can generate a comprehensive set of permutations to v, ’s,
for i =0,...,4, but we do not know which of these is the CA).

The second question is: how to choose a criterion that
combines all projections along v, , for j=1,...,h. After first
considering the maximum projection, we settled on the sum of

projections because it would help us evaluate a P(CA) -bound.

Therefore, the IP-based DA approach identifies the CA i,
using the following criterion:

(10)

This expression involves more terms than the NIS criterion in
(2): we compute vectors v, , for i=0,...,h as well as y,, for

j=1L,..,h. But the effectiveness of the resulting approach is

worth the computational cost if P(CA) -evaluation is of

interest. The next subsection provides an analytical lower
bound on P(CA) using IP.

B. Analytical Bound on the Probability of CA Using IP

The starting point of the derivation is the following. A
WA-event using the IP criterion in (10) occurs when the
following inequality is always satisfied:

By, <B’y, foranyi,i=1,..,h (11)

In order to evaluate the probability of occurrence of the
WA event, we respectively define the actual measurement and
predicted measurement vectors as:

Zz=z+v and h(X)=h(x)+Hs

(12)
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dh(x)
ox |-

X

where z=E{z}, h(x)=E{h(X)}, H= (13)

with E{ } being the expectation operator. The measurement
noise vector v is assumed normally distributed with zero mean
and covariance V. We use the notation: v~ N(0, V). We
assume that the state prediction error vector &€=X-E{X}
satisfies: €~ N(0, P). We can use these notations to express

the innovation covariance matrix as: Y, = A, VA’ + HPH .

The following inequalities are equivalent to (11):

B [y, —7,1<0
B"[W, (A,2—h(X))- W, (A,v-He)|<0

B"[W, (A,z+A,v—h(x)-He)-W,(A,v—Hz) |<0  (14)

By definition of a CA (subscript i =0), E{y,} =0, which
is equivalent to:

A,z=h(x), or z=A/h(x) (15)
Substituting (15) into (14) gives the following inequality:

B"[ W, (A, AJh(x)—h(x)+A,v—He)- W, (A,v—Hg) |<0 (16)

After re-arranging terms, (16) becomes:

¢ =T, (17
where ¢, =B"[(W, A, ~W,A,)v—(W, - W, )Hz |
T =—§'W, (A,A] ~Dh(x)
The distribution of ¢, is known:
¢, ~N(0 ,07) (18)

where
o] =B (W, A, =W, A V(W A, ~W,A,)"B
+B" (W, —W,)HPH" (W, - W,)"B

Equation (17) can be used to evaluate the probability of the
WA event occurring for a given i, for example for comparison
with the expressions in (4) and (5).

In practice, h(x) is unknown; our best guess of h(x) is
h(X). A similar problem appeared for NIS, which was pointed
out in (L2). Fortunately, the IP method offers a
straightforward and efficient way to address the loose bound

described in (L2). Substituting the equation h(x) =h(X)—He
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in 7, , substituting the result into (17), and rearranging terms,
we obtain the following inequality:

S <y, (19)

where £, =B [(W, A, =W, A,)v—(W, A, A] - W, Hz |

Ty, =—B"W, (A, Al ~Dh(X)

The distribution of ¢, is {y, ~N(0 ,0} ), where:

0-1%/,1' = ﬁT (W, A, =W, A )V(W, A, - W, AO)T B
+B" (W, A,A] ~W,)HPH" (W, A,A] - W, )"

For clarity of explanation and to limit the length of the
paper, we use equations (1) to (5) for NIS and the inequality in
(17) rather than (19) for the IP approach. We are able to do so
in the “Testing and Experimental Evaluation” because
reference truth is available. Even though this extra benefit of
the IP method’s ability to address (L.2) is not be leveraged, it
will still outperform NIS.

By definition of a WA in (11), we can write the following
expression:

P(CA)=1- P(WA)

=1—P(Uw ss%]

(20)

In (20), the probability of a union of events is upper-bounded
by the sum of probabilities of each individual event. This will
cause a loose bound in cluttered environment when
measurements and state predictions are highly uncertain, i.e.,
when the actual WA risk is high. The bound will be tight when
it matters, i.e., when the actual risk is low enough to approach
or meet safety-critical requirements.

C. One-Dimensional Two-Target DA Example Using IP

We evaluated the IP method by direct simulation for the 1D
example in Fig. 1. For each association hypothesis, the IP
criterion in (10) separates the innovation hyperspace, which is
a plane in Fig. 2, in a half space for CA and the other half
space for WA. In contrast, the NIS criterion in (2) identifies
CA within a hypersphere (a circle in Fig. 2) of radius the half-
magnitude of the smallest mean innovation vector. The IP
criterion produced the same WA red samples in Fig. 2 as NIS,
which means that the actual WA risk is the same using both
methods. However, the IP CA bound in (20) gave 86.9%,
which accurately estimated the actual sample CA probability
of 87% (ratio of blue-&-cyan samples over all samples), much
more so than the 26% NIS bound obtained using (4).
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Fig. 4. Three-dimensional normalized innovation-space representation of the
association process. The ratio of blue-and-cyan samples over the total number
of samples is the actual probability of correct association (CA). Only cyan
samples are accounted for in the NIS lower-bound on the probability of CA,
whereas both blue and cyan samples are accounted for using IP. Few maroon
data points (bottom left of the sample ball) are double counted using the IP
bound.

The 1D example in Fig. 1 was extended to include a third
landmark. The separation between pairs of adjacent landmarks
was taken to be the same. Values of the actual distance
between landmarks, measurement error and state prediction
variance, are inconsequential in this preliminary discussion.
Thus, in Fig. 4, the innovation space is three-dimensional (nr =
3) and the number of innovation permutations is nr ! = 6. The
6 mean innovation vectors are represented with black dots.
Red samples represent incorrectly associated cases, which
again match for the NIS and IP approaches. Cyan dots
representing the NIS CA bound are not easy to distinguish, but
they are within a sphere centered at the origin. In contrast, the
IP CA bound is more accurate because it can be represented as
including both cyan and blue samples. Six maroon data points
at the bottom left of the sample-ball are double or triple
counted using the IP bound because they lay in overlapping
half-spaces as defined in (17) for i =1,....,4 . In this example,
the actual CA probability was 88.2%, well approximated by the
IP bound with 88%, whereas the NIS bound gave 35.5%.

IV. RISK BOUND ANALYSIS USING SIMULATED DATA

This section compares NIS versus IP DA criteria in an
example application of landmark-based LiDAR/IMU
navigation, for a vehicle roving between landmarks. We
assume that the initial rover position is known, and that a map
is available. The EKF-based algorithm is detailed in [37]. We
use this simulation to illustrate how the IP method addresses
the NIS limitations. A two-landmark scenario illustrates the
difference in NIS versus IP DA risk bounds and assesses the
looseness of the NIS bound as pointed out in (L1) to (L3).
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In Fig. 5, a rover whose location over time is shown with
black triangles drives by two point-feature landmarks
represented with black circles. The vehicle is equipped with a
LiDAR/IMU system with specifications given in Table I. We
picked error model parameter values, in particular a large
LiDAR range error standard deviation, in order to facilitate risk
evaluation by direct simulations using a tractable number of
random samples. The red ellipses in Fig. 5 are inflated by a
factor 75 to facilitate visualization. They represent the rover’s
positioning errors. The ellipses’ shape and dimensions vary as
the LiDAR-to-landmark geometry changes due to rover
motion. The impact of geometry changes on lateral positioning
deviations, which are of primary concern in this paper, are
analyzed in detail in [2].

TABLE L. LIDAR AND IMU SIMULATION PARAMETERS
System Parameters Values
Standard deviation of LiDAR feature range data 0.3 m
Standard deviation of LIDAR feature angular data 0.5 deg
LiDAR data sampling interval 05s
Accelerometer velocity random walk 0.022 m/s*/~/Hz
Gyroscope angle random walk 0.15 deg/ \/E
Accelerometer time constant 3600 s
Gyroscope time constant 3600 s
Standard deviation of accelerometer GMRP bias 0.1 m/s’
Standard deviation of Gyroscope GMRP bias 0.2 deg
Vehicle speed 1 m/s
Alert limit £ 0.25m
Vehicle Covariance
35 (Inflation Factor = 75)
Landmark
30} A Vehicle
2571
E20}
=
E=
215}
101
51
ol— . : . .
15 -10 -5 0 5 10 15
East (m)

Fig. 5. Vehicle and Landmark Positioning Covariance Analysis Using
LiDAR/IMU in EKF-Based Simultaneous Localization And Mapping
(SLAM) for the Two-Landmark Scenario.

324

NIS-Bound
IP-Bound
O NIS-MC

® _ IP-MC

P(HMI)

107"
0 5 10 15 20 25

Distance Travelled North (m)

30 35

Fig. 6. Integrity Risk Bounds Using NIS Versus IP-Based Data Association
for the Two-Landmark Scenario.

The covariance ellipses in Fig. 5 assume that CA is always
achieved. In contrast, the integrity risk accounts for P(CA).

Fig. 6 shows P(HMI,) curves evaluated by direct simulation

of random state prediction and measurement errors over 10,000
Monte Carlo (MC) trials. The actual risk curve for the IP
method (red cross markers) matches that of the NIS approach
(black circles). In parallel, P(HMI, ) -bounds are derived

using (6) and (4) for NIS, and using (6) and (20) for IP, and are
respectively shown in black and red. The two curves overlap
for rover travel distances smaller than 15 meters and larger
than 30 meters because over these two ranges, the
P(HMI, | CA,) term dominates in (6). For IP, the P(HMI,) -
bound approaches the actual risk over most of the trajectory.
For travel distances 15-to-30 meters, the conservative P(CA)

bound dominates the NIS bound, but this is not the case for the
IP approach that achieves orders of magnitude lower

P(HMI,) -bound values.

V. TESTING AND PERFORMANCE EVALUATION

In this section, we test the new DA [P-based method using
actual data in a landmark-based navigation application using
LiDAR/IMU. The LiDAR/IMU estimation methods was
derived in [36].

Fig. 9 shows the experimental testbed that we designed to
quantify P(HMI,) [36]. The testbed comprises a sensor-

equipped rover moving on a figure-eight track, and an infrared
(IR) camera motion capture system providing truth reference
trajectory. The rover can operate for hours unattended to
collect LiDAR and IMU data over repeated trajectory passes.
We use a Velodyne’s VLP-16 Puck LTE LiDAR and a
NovAtel’s IMU-IGM-A1 coupled with NovAtel’s ProPaké6.
The IMU is set to record at 100 Hz sampling rate. The motion
capture system includes twelve cameras, four VICON MX-
T20s and eight Vantage 5s, which record the locations of small
retro-reflective markers placed on the sensors and landmarks,
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thus providing sub-centimeter level positioning and mapping at
up to 200 Hz update rates. Data from all three sensors, IR
cameras, LiDAR, and IMU, are time-tagged on a common
computer clock and post-processed.

The landmarks used for navigation are four cylindrical
landmarks.  This simplistic test setup facilitates feature
extraction and was chosen to avoid obscuring the analysis with
extraction errors. In this case, the features are the coordinates
in navigation frame of the intersection between a cylinder’ axis
and an arbitrary horizontal plane (e.g., the ground plane). In
this implementation, we use a preset map of the cylinders. Our
current feature extraction routine was evaluated in [36]. The
test setup parameter values are listed in Table II.

We evaluate the localization performance of an IMU-aided
LiDAR localization system. The IMU helps maintain an
accurate measurement prediction h(X) .

In Fig. 10, the true and estimated trajectories are
respectively represented with a thin black line and a thick blue
line. They are overlapping. Rover positioning uncertainty is
represented with red covariance ellipses. An inflation factor of
5 is used to facilitate visualization. Background shades of gray
are used consistently across figures to identify segments of the
rover trajectory: the dark gray area designates straight
segments while light-gray and white areas respectively
designate the top and bottom loops of the trajectory.

Fig. 11 displays P(HMI,) -bounds using the NIS-based

DA criterion in black, and using IP in red. The P(HMI,)
bound is our safest estimate of the risk that the cross-track
positioning error exceeds a 0.25 m alert limit. The NIS curve
suggests that the term capturing the risk of WA quickly
becomes prevalent in the NIS P(HMI, ) -bound, which thus
increases monotonically and reaches 107 within the first 3
seconds. The bound stays at that level because P(CA) in (8) is

computed as a product of contributions over time: this risk
contribution can only increase. In contrast, the IP-based bound
remains lower than 10°. The red curve’s variations reflect
changes in positioning variance due to changes in the vehicle-
to-landmark geometry as the rover moves.
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Landmarks LiIDAR/IMU Rover

o
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Fig. 7. Testbed Setup (VICON cameras at the ceiling are not shown)

TABLE IIL TEST SETTINGS AND PARAMETERS
System Parameters Values

Standard deviation of feature extraction ranging 0.15m
measurement .
Standard deviation of feature extraction angular 3 de
measurement g
Laser data sampling interval 0.ls
Accelerometer velocity random walk 4.739 m/s*/\/Hz
Gyroscope angle random walk 17.244 deg/\/E
Accelerometer bias GMRP correlation time constant 3600 s
Gyroscope bias GMRP correlation time constant 3600 s
standard deviation of accelerometer GMRP bias 0.67 m/s>
The standard deviation of Gyroscope GMRP bias 10 deg
IMU sampling time 0.0ls
Vehicle speed 0.6 m/s
Alert limit £ 0.25
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Fig. 9. Integrity Risk Bounds for the NIS Versus IP Data Association
Criteria Using LIDAR/IMU

VI. CONCLUSION

In this paper, we develop a new approach to data
association for multi-target tracking in autonomous vehicle
landmark-based navigation using LiDAR/IMU. The new
method determines correspondences between currently and
previously observed targets using innovation projections (IP),
as opposed to the more conventional criterion based on
normalized innovation squared (NIS). The IP-based method
provides a significant improvement in our ability to evaluate
the risk of wrong associations (WA). We evaluated the new
method using simulation and testing. The IP-based method
demonstrated integrity risk levels orders of magnitude lower
than the NIS method. Whereas the NIS risk bound inevitably
increased as potential exposures to WA accumulated, the IP
method stayed low.
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