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Abstract—This paper describes the derivation, analysis and 

implementation of a new data association method that provides a 

tight bound on the risk of incorrect association for LiDAR 

feature-based localization.  Data association (DA) is the process 

of assigning currently-sensed features with ones that were 

previously observed.  Most DA methods use a nearest-neighbor 

criterion based on the normalized innovation squared (NIS). 

They require complex algorithms to evaluate the risk of incorrect 

association because sensor state prediction, prior observations, 

and current measurements are uncertain.  In contrast, in this 

work, we derive a new DA criterion using projections of the 

extended Kalman filter’s innovation vector.  The paper shows 

that innovation projections (IP) are signed quantities that not 

only capture the impact of an incorrect association in terms of its 

magnitude, but also of its direction.  The IP-based DA criterion 

also leverages the fact that incorrect associations are known and 

well-defined fault modes.  Thus, as compared to NIS, IPs provide 

a much tighter bound on the predicted risk of incorrect 

association. We analyze and evaluate the new IP method using 

simulated and experimental data for autonomous inertial-aided 

LiDAR localization in a structured lab environment. 

Keywords—data association, innovation vector, inertial, risk, 

Kalman filter. 

I. INTRODUCTION

GNSS use code division multiple access to unambiguously 
identify and track multiple signals.  But, landmark-based 
localization requires an additional data association (DA) step to 
recognize previously observed features, whether these features 
were just sensed or found in a map [1].  Wrong associations 
(WA) can lead to large navigation errors [2] that can cause 
autonomous ground vehicles to collide or crash.  In response, 
in this paper, we derive a new criterion to determine the correct 
association.  Our approach not only mitigates occurrences of 
WA, but it also provides a tight bound on the risk of 
incorrection association.   

This work is primarily intended for localization of 
automated driving systems (ADS) using LiDAR and inertial 
measurement units (IMUs).  The focus is on LiDARs for their 
prevalence in ADS, their market availability, and our prior 
experience.  A raw LiDAR scan is made of thousands of data 
points, each of which individually does not carry useful 

navigation information.  Raw measurements must be pre-
processed before they can be used for navigation [3-6].   

A first class of algorithms establishes correlations between 
successive scans to estimate sensor changes in ‘pose’ (i.e., 
position and orientation) [6-9].  One of the most widely 
implemented approaches is the iterative closest point (ICP) [6]. 
Such procedures can become inaccurate or cumbersome for 
ADSs moving over time without loop closure unless a map is 
available.  Occupancy grid maps (OGM) [3,10-12] describe the 
environment using small cells, each of which either contains an 
object (i.e., is occupied) or does not.  The environment can 
alternatively be interpreted using probability hypothesis 
density (PHD), which capture the probability of objects being 
present at surrounding locations [13].  Combining PHDs with 
random finite set (RFS) theory can help track objects in 
cluttered environments [13-16].  In the presence of repetitive 
patterns such as regularly spaced lamp poles or parked cars on 
a street, correlation-based algorithms using PHD and/or OGM 
that aim at minimizing pose estimation errors can converge to 
local minima [16], which can hinder localization risk 
evaluation.   

A second class of algorithms, which is investigated in this 
paper, provides sensor localization by tracking recognizable, 
static features in the perceived environment.  Two steps are 
needed:  feature extraction (FE) and DA. FE aims at finding 
the few most consistently recognizable, viewpoint-invariant 
landmarks in the raw sensor data.  DA aims at assigning 
landmark features to the corresponding feature parameters 
stored in a map.  Yaakov Bar Shalom’s seminal work on DA 
for multi-target tracking [1] has been successfully 
implemented, and built upon, in a wide variety of applications 
including landmark-based navigation [2,17-19], pedestrian 
detection [20], space situational awareness [21-23], air and 
land surveillance and collision avoidance [24-26], for example, 
in traffic management [27].  DA can be challenging in the 
presence of sensor uncertainty.  This is why many advanced 
DA algorithms were developed in [3,28-30].  

Of primary concern in safety-critical autonomous vehicle 
navigation is the prediction of the risk of WA.  Two of the 
most widely-used methods, the Probabilistic Data Association 
and the Joint Probabilistic Data Association (JPDA) [31], 
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provide the means to evaluate the probability of correct 
association.  But, these Bayesian approaches evaluate risk 
given current sample data.  They are not well suited for safety-
critical applications due to the lack of safety risk prediction 
capability, and to the problem of bounding the a-posteriori 
probability of association (a similar issue is encountered in 
[32]).  Another insightful approach is followed in [33].  
However, it makes approximations that do not necessarily 
upper-bound risks, hence, do not guarantee safe operation.  
Reference [33] also presents exact solutions that could only be 
evaluated using computationally expensive numerical methods, 
not adequate for real-time navigation. 

To circumvent these issues, in our prior work, we derived 
an analytical upper bound on the risk of WA, which was used 
to predict navigation integrity [34].  We tested this method in 
landmark-based LiDAR localization applications [34,35].  
Unfortunately, our ability to predict WA occurrences was 
limited, i.e., our WA risk bound was loose.  Even in a 
structured lab environment with few, sparsely distributed 
landmarks, the predicted risk bound was high:  we would 
predict that the situation was unsafe, when the risk was actually 
low.  Only when incorporating extra data from inertial 
measurement units (IMU) were we able to achieve low risk 
bounds [36,37].   

Our prior work and most methods cited in the above three 
paragraphs are either directly based on Bar Shalom’s DA 
criterion, which uses the normalized innovation squared (NIS), 
or on some variant also using a weighted norm of residuals.  
We describe the innovation vector upfront because it is at the 
heart of this paper.  The innovation vector appears in the 
extended Kalman filter (EKF), the most widely implemented 
non-linear sequential estimator.   

Let 
T

n  be the number of targets in view.  From each target 
originates a measurement set, for example, the target’s position 
coordinates relative to the sensor.  The 

T
n  measurement sets 

are arranged in a measurement vector ẑ .  There are ( !
T

n ) 

possible ways that the 
T

n  measurement sets could be arranged 

in ẑ .  The innovation vector, and its normalized expression 
i
γ  

defined below, compares ẑ  to a predicted version of ẑ , noted 
( )h x .  Vector ( )h x  is a non-linear function of prior target 

observations and of the sensor state prediction x .  Vector x  is 
typically made of the sensor’s location and orientation in a 
frame of interest (e.g., in a navigation frame East-North-Up).  
Simply put, vector ( )h x  is a prediction of ẑ  based on where 
the sensor is expected to be relative to mapped targets.  
Subscript i  in 

i
γ  designates a candidate association:  because 

we do not know the actual ordering of measurements in vector 
ẑ , we must assume that it may be permuted as compared to 

( )h x .  Vector 
i
γ  can therefore be expressed as: 

 ˆ( ( ))
i i i

= −γ W A z h x    for   0,...,i h=  (1) 
 
where 

i
A  are permutation matrices, 1/ 2

i i

−≡W Y  with 
i

Y  

being the innovation vector covariance matrix, and 

! 1
T

h n≡ − .  We use the notation 0i =  for the correct 

association, which is unknown.  Vector 
i
γ  is zero mean if and 

only if 0i =  [34].  Thus, a sensible criterion to find the correct 
association is to take the minimum over all values of i  of the 
norm squared of 

i
γ , which is the NIS.  The NIS-based method 

is effective, but has limitations in safety-critical applications. 

In this paper, we develop a new approach that departs from 
traditional NIS methods by using EKF innovation vector 
projections (IP).  This IP approach improves DA performance 
predictions by providing a significantly tighter bound on the 
risk of WA as compared to NIS.  The IP method relaxes the 
need for extra sensor data and for complex risk evaluation 
methods to reduce WA risk prediction. 

Throughout the paper, we assume a known model of the 
measurement and sensor state parameter time-propagation.  We 
limit the scope of the paper to cases where all sensed targets 
have previously been observed.  Procedures for dealing with 
occluded targets, unwanted objects, and miss-extracted features 
can be found in [38-40] for the NIS approach.  These cases will 
be addressed for IP-based DA in future work.  The current IP 
approach matches targets as a set, which is sometimes referred 
to as a ‘global nearest neighbor’ procedure [23,35,40], as 
opposed to local nearest neighbor (LNN) that finds sensed 
targets corresponding to mapped targets one at a time [23,40].  
The reason for this choice is that LNN requires setting 
thresholds, or gates, on local NIS [31,40].  For safety analysis, 
we are concerned that worst-case associations occurring at the 
threshold would have to be accounted for, and that their impact 
on a safety risk bounds (on missed extraction risk) would 
accumulate over time.  The global nearest neighbor approach 
can be computationally more expensive, but can also be more 
efficient for safety evaluation than LNN.   

Section II of the paper outlines our prior work, and uses a 
one-dimensional two-target ranging example to illustrate the 
looseness of the NIS-based WA-risk bound.  In Section III, we 
derive the new DA criterion using IP. IP are signed quantities 
that not only capture the impact of a WA in terms of its 
magnitude, as does NIS, but also of its direction.  We analyze 
the NIS versus IP approaches in Sections IV and V using 
simulated and experimental data, respectively, for autonomous 
landmark-based inertial-aided LiDAR navigation in a 
structured environment. 

 

II. PRIOR WORK ON NAVIGATION INTEGRITY RISK 

EVALUATION USING NORMALIZED INNOVATIONS SQUARED 

This section describes a DA method for autonomous 
landmark-based vehicle navigation in challenging 
environments, where GNSS is denied.  For the NIS DA 
criterion, we provide a bound on the probability of correct 
association (CA), evaluate the looseness of this bound in an 
example two-landmark scenario, and incorporate it in an 
analytical integrity risk equation.  Throughout the section, we 
point out limitations of our previously derived NIS-based 
method.  We label these limitations (L1) to (L3). They will 
motivate the development of the new IP method in Section III. 
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A. Data Association Using NIS 

To find the most likely CA, which we label *i , we select 

the association candidate that satisfies the nearest-neighbor 
criterion defined as [1]: 

  2
* 0,...,

arg min
i

i h
i γ

=
≡   (2) 

 
with  2 T

i i i
γ ≡ γ γ   (3) 

 

In [34], we derived an analytical bound on the probability 
of CA, ( )P CA .  By definition of the DA criterion in (2), a 

WA occurs if the NIS 2
i

γ  for any candidate association 0i ≠  

is smaller than 2
0γ .  We derived the following ( )P CA -bound 

in [34]: 

 2 2
0

1

2
2

( ) 1 ( )

1

1
4

h

i

i

MIN

P CA P WA

P

y
P q

γ γ
=

= −

 
= − ≤ 

 
 
 ≥ − ≥
 
 

   (4) 

 
where 2 2

1,...,
min

MIN i
i h

y y
=

≡    and   2 2{ }
i i

y E γ≡  (5) 

 
In (4), 2q  is a chi squared random variable with ( )n m+  

degrees of freedom, where n  is the number of measurements 
(length of ẑ ) and m  is the number of states (length of x ).  In 

(5), { }E  designates the expected value operator.  The last 

two sentences point out two limitations of this approach: 

(L1) Even though 
i
γ  is n -dimensional, we had no choice 

but to consider a chi squared random variable 2q  with 

( )n m+  degrees of freedom in order to properly 

account for the correlation of 2
i

γ  with 2
0γ  in the second 

equality in (4) (details can be found in [34]). 

(L2) 2
i

y  is the mean value of 2
i

γ .  For 0i > , 2
i

y  is a 

measure of separation between targets: the larger 2
i

y  is, 

the better the ability to distinguish targets.  2
i

y  is 

unknown.  Our best guess for 2
i

y  is the sample 2
i

γ . We 

can use a model of the measurement and state 
prediction noise to derive a lower bound on 2

i
y  that is 

guaranteed with a risk allocation drawn from the 
overall integrity risk requirement [34].  This extra step 
adds complications and contributes to the looseness of 
the ( )P CA  bound.  To limit the length of the paper, we 

do not include this step in the paper, but interested 
readers can find it in [34,39]. 

The ( )P CA  bound in (4) is a compact expression.  First, 

the factor ‘1/4’ on the right-hand side was derived from the 
inverse of the sum squared of the maximum eigenvalues of 
two idempotent matrices [34].  Second, the bound accounts for 
all potential WA.  To achieve this, we had to take the 
minimum value of 2

i
y  over all possible WA. 

(L3) The ( )P CA  bound does not capture the individual 

contributions of each WA.  Instead, in (5), it takes the 
minimum of 2

i
y  for 1,...,i h= .  This limitation stems 

from the fact that (4) considers a union of events 
involving a chi-squared distributed DA statistic. 

B. One-Dimensional Two-Target DA Example Using NIS 

To illustrate the looseness of the bound, we use the one-
dimensional (1D) example displayed in Fig. 1.  The problem is 
to estimate the scalar position x of the sensor (upward pointing 
triangle) on a 1D navigation reference axis R, given the 
positions pA and pB of two target landmarks (black circles), and 
using a set of noisy scalar measurements z1 and z2 between 
sensor and landmarks. The challenge of DA is, in the presence 
of sensor errors, to find the ordering of landmarks {pA, pB} 
corresponding the ordering of measurements {z1, z2}. 

 

  

z2

x sensor location

mapped landmark 
locations

pA
pB

z1

measurements
(noisy) 

R

 

Fig. 1. Illustrative one-dimensional example of a sensor (at location x in 
reference R) providing observations to two landmarks (at locations pA and pB). 
Sensor to landmark measurements are noted z1 and z2. 

 

    

Fig. 2. Two-dimensional normalized innovation-space representation of the 
association process. The ratio of blue-and-cyan samples over the total number 
of samples is the actual probability of correct association (CA).  Only cyan 
samples are accounted for in the NIS lower-bound on the probability of CA. 
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In this instance, the number of target landmarks is nT = 2, 
and the number of possible permutations is (nT!) = 2, i.e., we 
consider two innovation vectors 0γ  and 1γ . Let us define 0y  

and 1y  as the mean vectors of 0γ  and 1γ .  Because index 0 

designates the CA, 0 =y 0 , but 1 ≠y 0 .   

The DA criterion in (2) is represented in Fig. 2 in 
normalized innovation space, which is two-dimensional 
( 2n = ).  Vectors 0y  and 1y  are represented with black dots, 

and 0y  is at the origin.  In addition, 5000 random samples of 

innovation vectors are displayed.  The innovation vectors are 
normalized, which explains the isotropic sample distribution.  
The criterion in (2) was directly used to distinguish correctly 
associated samples in blue-and-cyan, from incorrectly 
associated samples in red.  The actual ( )P CA  is the ratio of 

blue-and-cyan samples over the total number of samples.  In 
addition, cyan dots represent correctly associated samples as 
counted using the bound in (4).  We simulated measurement 
and state prediction noise with a large variance as compared to 
the target separation. In this particular example, the 

( )P CA lower-bound bound only counted 26% of samples when 

in actuality, 87% were correctly associated.  This direct 
simulation illustrates observation (L3). 

C. Example Application:  Integrity Risk Bound Using NIS 

In prior work, we used the ( )P CA -bound to quantify 
landmark-based navigation integrity in automotive applications 
[34].  The integrity risk, or probability of hazardously 
misleading information (HMI) at time k , is noted ( )

k
P HMI , 

and is defined in Fig. 3.  The safety criterion is: 

kREQk IHMIP ,)( ≤  where 
kREQI ,  is a predefined integrity risk 

requirement set by a certification authority (similar to 
requirements set for aviation applications in [41-43]). Values 
for 

kREQI ,  that might be used in future autonomous driving 

system (ADS) applications can be found in [44-46]. 

In [34,39], we established an analytical bound on the 
integrity risk, which accounts for the risk of any incorrect 
association at any time. This bound is expressed as: 

 

 

 



  
Fig. 3. Integrity Risk for Automotive Applications. The integrity risk is the 
probability of the car being outside the alert limit requirement box (blue 
shaded area) when it was estimated to be inside the box. When lateral 
deviation is of primary concern, then the alert limit is the distance ℓ between 
edge of car and edge of lane. 

  ( ) 1 1 ( | ) ( )
k k K K

P HMI P HMI CA P CA ≤ − −    (6) 

  

with  { }( | ) 2k K kP HMI CA Q σ=   (7) 

  2

2

1

( ) ,
4

k
MIN

K l l

l

y
P CA P n m

χ
=

  
≥ + 

  
∏   (8) 

 
where 

k  is an index identifying a time step; 
K  designates a range of indices: },...,0{ kK ≡ , from filter 

initiation to time k ; 

K
CA  is the correct association hypothesis for all landmarks, at 

all times 0, ..., k ; 
}{Q is the tail probability function of the standard normal 

distribution; 
  is the specified alert limit that defines a hazardous 

situation [44-46] (e.g., see Fig. 3); 

kσ  is the standard deviation of the estimation error for the 
vehicle state of interest (or linear combination of states);  

2 { , }P dof T
χ

  is the probability that a chi-squared-distributed 

random variable with “dof” degrees of freedom is lower 
than some value T; 

ln  is the number of measurements at time step l ; 

lm  is the number of estimated state parameters at time l ; 

 

In an EKF, because past-time WA can impact current-time 
state estimates, we must account for WA at all time steps from 
EKF initialization to current-time. This raises an additional 
concern.   

Limitations (L1) to (L3) are the motivation for seeking a 
new approach, one that is not based on chi-square distributed 
random variables.   

 

III. A NEW APPROACH USING INNOVATION VECTOR 

PROJECTIONS 

In order to address the limitations of the NIS-based method, 
we develop a new method that uses innovation projections (IP).   

A. New Data Association Criterion Using IP 

To avoid dealing with chi-squared variables, we project 
vectors 

i
γ  to obtain a DA test statistic that is a linear 

combination of normally distributed random variables.  Given 
that projections are signed quantities and that WA are well-
structured sources of error, we will be able to leverage the 
direction of these errors to help identify them. 

The first question is:  what vector should 
i
γ  be projected 

on?  In innovation space, e.g., in Fig. 2, the obvious direction is 
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along 1y .  Vector 1y  is unknown, but our best a-priori guess 

on 1y , or 
j

y  in general, is given by: 

 

  ( ) ( )
j j j

= −γ W A I h x    for   1,...,j h=  (9) 

 
where I  is the n n×  identity matrix and where we introduced 
the index j .  We consider projections along all characteristic 

WA directions 
j

y , or along our best guess, 
j
γ .  The idea is to 

increase our chances of identifying WA by projecting 
i
γ  along 

a direction that maximizes the projection’s magnitude, i.e., 
ideally along 

i
y .  In contrast, for the CA, projections of the 

zero-mean 0γ  along any direction should be small.  It is worth 

noticing that index j , for 1,...,j h= , is known because we can 

generate the permutation matrices 
j

A .  But, which of index i  

is 0i =  remains unknown because the sample innovation 
vector is affected by measurement and state prediction error.  
(We can generate a comprehensive set of permutations to 

i
γ ’s, 

for 0,...,i h= , but we do not know which of these is the CA). 

The second question is:  how to choose a criterion that 
combines all projections along 

j
γ , for 1,...,j h= .  After first 

considering the maximum projection, we settled on the sum of 
projections because it would help us evaluate a ( )P CA -bound. 

Therefore, the IP-based DA approach identifies the CA *i  
using the following criterion: 

  ( )* 0,...,
arg min T

i
i h

i
=

≡ β γ    where   
1

h

j

j=

≡β γ  (10) 

 
This expression involves more terms than the NIS criterion in 
(2): we compute vectors 

i
γ , for 0,...,i h=  as well as 

j
γ , for 

1,...,j h= .  But the effectiveness of the resulting approach is 

worth the computational cost if ( )P CA -evaluation is of 
interest.  The next subsection provides an analytical lower 
bound on ( )P CA  using IP.   

B. Analytical Bound on the Probability of CA Using IP 

The starting point of the derivation is the following.  A 
WA-event using the IP criterion in (10) occurs when the 
following inequality is always satisfied:  
 
   0

T T

i
≤β γ β γ    for any i , 1,...,i h=   (11) 

 

In order to evaluate the probability of occurrence of the 
WA event, we respectively define the actual measurement and 
predicted measurement vectors as: 

 ˆ = +z z v    and    ( ) ( )= +h x h x Hε   (12) 
 

where  ˆE{ }≡z z ,   ( ) E{ ( )}≡h x h x ,   
( )∂

≡
∂ x

h x
H

x
 (13) 

 
with E{ }  being the expectation operator.  The measurement 

noise vector v  is assumed normally distributed with zero mean 
and covariance V .  We use the notation:  ~ N( , )v 0 V .  We 

assume that the state prediction error vector E{ }≡ −ε x x  

satisfies:  ~ N( , )ε 0 P .  We can use these notations to express 

the innovation covariance matrix as:  T T

i i i≡ +Y A VA HPH . 

The following inequalities are equivalent to (11): 

  0[ ]T

i
− ≤β γ γ 0  

 

  0 0ˆ( ( )) ( )T

i i
 − − − ≤ β W A z h x W A v Hε 0  

 

0 0( ( ) ) ( )T

i i i
 + − − − − ≤ β W A z A v h x Hε W A v Hε 0  (14) 

By definition of a CA (subscript 0i = ), 0E{ } =γ 0 , which 
is equivalent to:  

  0 ( )=A z h x ,   or   0 ( )T=z A h x   (15) 

 
Substituting (15) into (14) gives the following inequality:  
 

0 0 0( ( ) ( ) ) ( )T T

i i i
 − + − − − ≤ β W A A h x h x A v Hε W A v Hε 0 (16) 

 

After re-arranging terms, (16) becomes:  

  
i iTζ ≤   (17) 

 

where   0 0 0( ) ( )T

i i i iζ  ≡ − − − β W A W A v W W Hε  

  0( ) ( )T T

i i i
T ≡ − −β W A A I h x  

 
The distribution of 

i
ζ  is known: 

  2~ N(0 , )
i i

ζ σ   (18) 
 
where   

  
2

0 0 0 0

0 0

( ) ( )

( ) ( )

T T

i i i i i

T T T

i i

σ ≡ − −

+ − −

β W A W A V W A W A β
β W W HPH W W β

 

 
Equation (17) can be used to evaluate the probability of the 
WA event occurring for a given i, for example for comparison 
with the expressions in (4) and (5).   

In practice, ( )h x  is unknown;  our best guess of ( )h x  is 

( )h x .  A similar problem appeared for NIS, which was pointed 
out in (L2).  Fortunately, the IP method offers a 
straightforward and efficient way to address the loose bound 
described in (L2).  Substituting the equation ( ) ( )= −h x h x Hε  
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in 
i

T , substituting the result into (17), and rearranging terms, 

we obtain the following inequality: 

 , ,N i N iTζ ≤   (19) 

 

where , 0 0 0 0( ) ( )T T

N i i i i iζ  ≡ − − − β W A W A v W A A W Hε  

  , 0( ) ( )T T

N i i i
T ≡ − −β W A A I h x  

 
The distribution of ,N i

ζ  is 2
, ,~ N(0 , )

N i N i
ζ σ , where:   

2
, 0 0 0 0

0 0 0 0

( ) ( )

( ) ( )

T T

N i i i i i

T T T T T

i i i i

σ ≡ − −

+ − −

β W A W A V W A W A β

β W A A W HPH W A A W β
 

 

For clarity of explanation and to limit the length of the 
paper, we use equations (1) to (5) for NIS and the inequality in 
(17) rather than (19) for the IP approach.  We are able to do so 
in the “Testing and Experimental Evaluation” because 
reference truth is available.  Even though this extra benefit of 
the IP method’s ability to address (L2) is not be leveraged, it 
will still outperform NIS.  

By definition of a WA in (11), we can write the following 
expression: 

 
( )

{ }

0
1

1

1

( ) 1 ( )

1

1

1

h
T T

i

i

h

i i

i

h

i i

i

P CA P WA

P

T

Q T

ζ

σ

=

=

=

= −

 
= − ≤ 

 

≥ − ≥

≥ −





β γ β γ
  (20) 

 
In (20), the probability of a union of events is upper-bounded 
by the sum of probabilities of each individual event.  This will 
cause a loose bound in cluttered environment when 
measurements and state predictions are highly uncertain, i.e., 
when the actual WA risk is high.  The bound will be tight when 
it matters, i.e., when the actual risk is low enough to approach 
or meet safety-critical requirements. 

C. One-Dimensional Two-Target DA Example Using IP 

We evaluated the IP method by direct simulation for the 1D 
example in Fig. 1.  For each association hypothesis, the IP 
criterion in (10) separates the innovation hyperspace, which is 
a plane in Fig. 2, in a half space for CA and the other half 
space for WA.  In contrast, the NIS criterion in (2) identifies 
CA within a hypersphere (a circle in Fig. 2) of radius the half-
magnitude of the smallest mean innovation vector.  The IP 
criterion produced the same WA red samples in Fig. 2 as NIS, 
which means that the actual WA risk is the same using both 
methods.  However, the IP CA bound in (20) gave 86.9%, 
which accurately estimated the actual sample CA probability 
of 87% (ratio of blue-&-cyan samples over all samples), much 
more so than the 26% NIS bound obtained using (4). 

 

Fig. 4. Three-dimensional normalized innovation-space representation of the 
association process. The ratio of blue-and-cyan samples over the total number 
of samples is the actual probability of correct association (CA).  Only cyan 
samples are accounted for in the NIS lower-bound on the probability of CA, 
whereas both blue and cyan samples are accounted for using IP.  Few maroon 
data points (bottom left of the sample ball) are double counted using the IP 
bound.  

The 1D example in Fig. 1 was extended to include a third 
landmark.  The separation between pairs of adjacent landmarks 
was taken to be the same.  Values of the actual distance 
between landmarks, measurement error and state prediction 
variance, are inconsequential in this preliminary discussion.  
Thus, in Fig. 4, the innovation space is three-dimensional (nT = 
3) and the number of innovation permutations is nT ! = 6.  The 
6 mean innovation vectors are represented with black dots.  
Red samples represent incorrectly associated cases, which 
again match for the NIS and IP approaches.  Cyan dots 
representing the NIS CA bound are not easy to distinguish, but 
they are within a sphere centered at the origin.  In contrast, the 
IP CA bound is more accurate because it can be represented as 
including both cyan and blue samples.  Six maroon data points 
at the bottom left of the sample-ball are double or triple 
counted using the IP bound because they lay in overlapping 
half-spaces as defined in (17) for 1,...,i h= .  In this example, 
the actual CA probability was 88.2%, well approximated by the 
IP bound with 88%, whereas the NIS bound gave 35.5%. 

 

IV. RISK BOUND ANALYSIS USING SIMULATED DATA 

This section compares NIS versus IP DA criteria in an 
example application of landmark-based LiDAR/IMU 
navigation, for a vehicle roving between landmarks.  We 
assume that the initial rover position is known, and that a map 
is available.  The EKF-based algorithm is detailed in [37].  We 
use this simulation to illustrate how the IP method addresses 
the NIS limitations.  A two-landmark scenario illustrates the 
difference in NIS versus IP DA risk bounds and assesses the 
looseness of the NIS bound as pointed out in (L1) to (L3). 
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In Fig. 5, a rover whose location over time is shown with 
black triangles drives by two point-feature landmarks 
represented with black circles.  The vehicle is equipped with a 
LiDAR/IMU system with specifications given in Table I.  We 
picked error model parameter values, in particular a large 
LiDAR range error standard deviation, in order to facilitate risk 
evaluation by direct simulations using a tractable number of 
random samples.  The red ellipses in Fig. 5 are inflated by a 
factor 75 to facilitate visualization.  They represent the rover’s 
positioning errors.  The ellipses’ shape and dimensions vary as 
the LiDAR-to-landmark geometry changes due to rover 
motion.  The impact of geometry changes on lateral positioning 
deviations, which are of primary concern in this paper, are 
analyzed in detail in [2]. 

 

TABLE I.  LIDAR AND IMU SIMULATION PARAMETERS 

System Parameters Values 

Standard deviation of LiDAR feature range data 0.3 m 

Standard deviation of LiDAR feature angular data 0.5 deg 

LiDAR data sampling interval 0.5 s 

Accelerometer velocity random walk 0.022 2m/s / Hz   

Gyroscope angle random walk 0.15   deg/ hr  

Accelerometer time constant 3600 s 

Gyroscope time constant 3600 s 

Standard deviation of accelerometer GMRP bias 0.1 2m/s  

Standard deviation of Gyroscope GMRP bias 0.2 deg   

Vehicle speed 1 m/s 

Alert limit ℓ  0.25 m 

 

  

Fig. 5. Vehicle and Landmark Positioning Covariance Analysis Using 
LiDAR/IMU in EKF-Based Simultaneous Localization And Mapping 
(SLAM) for the Two-Landmark Scenario. 

 

 
Fig. 6. Integrity Risk Bounds Using NIS Versus IP-Based Data Association 
for the Two-Landmark Scenario. 

 
The covariance ellipses in Fig. 5 assume that CA is always 

achieved.  In contrast, the integrity risk accounts for ( )P CA .  

Fig. 6 shows ( )
k

P HMI  curves evaluated by direct simulation 

of random state prediction and measurement errors over 10,000 
Monte Carlo (MC) trials.  The actual risk curve for the IP 
method (red cross markers) matches that of the NIS approach 
(black circles).  In parallel, ( )

k
P HMI -bounds are derived 

using (6) and (4) for NIS, and using (6) and (20) for IP, and are 
respectively shown in black and red.  The two curves overlap 
for rover travel distances smaller than 15 meters and larger 
than 30 meters because over these two ranges, the 

( | )
k K

P HMI CA  term dominates in (6).  For IP, the ( )
k

P HMI -
bound approaches the actual risk over most of the trajectory.  
For travel distances 15-to-30 meters, the conservative ( )P CA  

bound dominates the NIS bound, but this is not the case for the 
IP approach that achieves orders of magnitude lower 

( )
k

P HMI -bound values. 

V. TESTING AND PERFORMANCE EVALUATION  

In this section, we test the new DA IP-based method using 
actual data in a landmark-based navigation application using 
LiDAR/IMU.  The LiDAR/IMU estimation methods was 
derived in [36].   

Fig. 9 shows the experimental testbed that we designed to 
quantify ( )

k
P HMI  [36].  The testbed comprises a sensor-

equipped rover moving on a figure-eight track, and an infrared 
(IR) camera motion capture system providing truth reference 
trajectory. The rover can operate for hours unattended to 
collect LiDAR and IMU data over repeated trajectory passes.  
We use a Velodyne’s VLP-16 Puck LTE LiDAR and a 
NovAtel’s IMU-IGM-A1 coupled with NovAtel’s ProPak6. 
The IMU is set to record at 100 Hz sampling rate.  The motion 
capture system includes twelve cameras, four VICON MX-
T20s and eight Vantage 5s, which record the locations of small 
retro-reflective markers placed on the sensors and landmarks, 
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thus providing sub-centimeter level positioning and mapping at 
up to 200 Hz update rates.  Data from all three sensors, IR 
cameras, LiDAR, and IMU, are time-tagged on a common 
computer clock and post-processed.  

The landmarks used for navigation are four cylindrical 
landmarks.  This simplistic test setup facilitates feature 
extraction and was chosen to avoid obscuring the analysis with 
extraction errors.  In this case, the features are the coordinates 
in navigation frame of the intersection between a cylinder’ axis 
and an arbitrary horizontal plane (e.g., the ground plane).  In 
this implementation, we use a preset map of the cylinders.  Our 
current feature extraction routine was evaluated in [36].  The 
test setup parameter values are listed in Table II.   

We evaluate the localization performance of an IMU-aided 
LiDAR localization system.  The IMU helps maintain an 
accurate measurement prediction ( )h x .   

In Fig. 10, the true and estimated trajectories are 
respectively represented with a thin black line and a thick blue 
line.  They are overlapping.  Rover positioning uncertainty is 
represented with red covariance ellipses.  An inflation factor of 
5 is used to facilitate visualization. Background shades of gray 
are used consistently across figures to identify segments of the 
rover trajectory: the dark gray area designates straight 
segments while light-gray and white areas respectively 
designate the top and bottom loops of the trajectory.  

Fig. 11 displays ( )
k

P HMI -bounds using the NIS-based 

DA criterion in black, and using IP in red.  The ( )
k

P HMI  
bound is our safest estimate of the risk that the cross-track 
positioning error exceeds a 0.25 m alert limit.  The NIS curve 
suggests that the term capturing the risk of WA quickly 
becomes prevalent in the NIS ( )

k
P HMI -bound, which thus 

increases monotonically and reaches 10-1 within the first 3 
seconds.  The bound stays at that level because ( )P CA  in (8) is 
computed as a product of contributions over time:  this risk 
contribution can only increase.  In contrast, the IP-based bound 
remains lower than 10-5.  The red curve’s variations reflect 
changes in positioning variance due to changes in the vehicle-
to-landmark geometry as the rover moves.   

 

Landmarks LiDAR/IMU Rover Figure-eight track

 

Fig. 7. Testbed Setup (VICON cameras at the ceiling are not shown) 

 

TABLE II.  TEST SETTINGS AND PARAMETERS 

System Parameters Values 

Standard deviation of feature extraction ranging 
measurement  

0.15 m 

Standard deviation of feature extraction angular 
measurement  

3 deg 

Laser data sampling interval 0.1 s 

Accelerometer velocity random walk 4.739 2m/s / Hz  

Gyroscope angle random walk 17.244 deg/ hr  

Accelerometer bias GMRP correlation time constant 3600 s 

Gyroscope bias GMRP correlation time constant 3600 s 

standard deviation of accelerometer GMRP bias 0.67 2m/s  

The standard deviation of Gyroscope GMRP bias 10 deg 

IMU sampling time 0.01 s 

Vehicle speed 0.6 m/s 

Alert limit ℓ  0.25 
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Fig. 8. Estimated Trajectory and Covariance Ellipses Using LiDAR/IMU 

 

 
Fig. 9. Integrity Risk Bounds for the NIS Versus IP Data Association 
Criteria Using LiDAR/IMU 

 

VI. CONCLUSION 

In this paper, we develop a new approach to data 
association for multi-target tracking in autonomous vehicle 
landmark-based navigation using LiDAR/IMU.  The new 
method determines correspondences between currently and 
previously observed targets using innovation projections (IP), 
as opposed to the more conventional criterion based on 
normalized innovation squared (NIS).  The IP-based method 
provides a significant improvement in our ability to evaluate 
the risk of wrong associations (WA).  We evaluated the new 
method using simulation and testing.  The IP-based method 
demonstrated integrity risk levels orders of magnitude lower 
than the NIS method.  Whereas the NIS risk bound inevitably 
increased as potential exposures to WA accumulated, the IP 
method stayed low.   
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