
Adapting Student IDEs for Blind Programmers
Emmanuel Schanzer

schanzer@bootstrapworld.org

Brown University / Bootstrap

Providence, RI, USA

Sina Bahram

sina@sinabahram.com

Prime Access Consulting

Cary, NC, USA

Shriram Krishnamurthi

schanzer@bootstrapworld.org

Brown University / Bootstrap

Providence, RI, USA

ABSTRACT
What does it take to adapt a programming environment so students

with low or no vision can comfortably use it? Every aspect of the

environment needs attention, from toolbars to editors to interac-

tive components. We describe the steps we had to take to adapt

WeScheme, the environment used by Bootstrap:Algebra. We also

summarize the experience of a group of blind students using the

result, and present some lessons for other curricula to consider.

A particular challenge in Bootstrap:Algebra is its heavy reliance

on images, which many other media-rich curricula also use. Visual

computing is, almost by definition, inaccessible to students with

low or poor vision. This poses curricular, legal, and moral obstacles

for computing educators who want to use these curricula.

CCS CONCEPTS
• Human-centered computing → Accessibility systems and
tools; • Software and its engineering→ Integrated and visual
development environments.

KEYWORDS
visual-impairment, blind, accessibility, IDEs, images

ACM Reference Format:
Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2020. Adapt-

ing Student IDEs for Blind Programmers. In Koli Calling ’20: Proceedings
of the 20th Koli Calling International Conference on Computing Education
Research (Koli Calling ’20), November 19–22, 2020, Koli, Finland. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3428029.3428051

1 INTRODUCTION
Many curricula [2, 3, 8] use visual media to motivate students. Stu-

dents find images accessible; they are can be much friendlier than

numbers; and they can easily be used to create content that is en-

tertaining and immediately understandable even by non-technical

people (such as family and friends), who students sometimes turn

to for validation and support. For this reason, many curricula begin
with visual content, even if they do not focus exclusively on it.

Some curricula depend even more heavily on images. For in-

stance, the Bootstrap:Algebra [8] (henceforth bs:a) curriculum,

designed for students in the 12–16 age range, begins by teaching

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Koli Calling ’20, November 19–22, 2020, Koli, Finland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8921-1/20/11. . . $15.00

https://doi.org/10.1145/3428029.3428051

students to write small programs that compose images. The focus

of bs:a is (as the name suggests) algebra, and images are a particu-

larly convenient way to teach composition, a key concept in algebra.

Function composition could (and usually is) taught with numbers,

but it can be quite difficult (and uninteresting) to spot errors: at

best, it introduces a dependency on the very topics students may

be struggling with. In contrast, mistakes in image composition are

immediately visible, and students are typically deeply motivated to

fix them to obtain the picture they wanted.

Hidden in these statements is, of course, the assumption that

students can see what is on the screen. Naturally, this is very prob-

lematic for students who have low or no vision. This can be resolved

by students with partial sight, e.g., by using screen magnifiers. How-

ever, no such partial solution exists for students who are completely

blind. (Even these partial solutions are only so useful: for a student

with color-blindness, magnification is not much use.)

Computing has traditionally been poor at addressing the needs

of such students. The more computing is viewed as a key skill in a

growing number of both jobs and academic disciplines, the more

this weakness is significantly multiplied. When computing is a

required discipline, teachers even face legal requirements to accom-

modate all the students in their class. Even in the absence of legal

demands, our discipline has a moral obligation to accommodate the

needs of all students.

This paper describes steps in our attempt to bringing visual

accessibility to the bs:a curriculum. We set as our goal that a blind

student could usefully complete the first half of the curriculum (the

remainder we discuss in §3.3) using a screen-reader. This primarily

requires addressing the treatment of visual output (to preserve the

benefits discussed above), but requires attention to several other

components as well to create a usable experience. We have been

able to run a brief evaluation of the resulting system with a group

of blind students, with positive results. At the same time there

is much more to do. We hope this paper both documents what

other implementations need to do (with tips on how to do it), and

documents open tasks (for us and others to work on).

This paper is centered around WeScheme [12], the ide that bs:a

uses. WeScheme, shown in fig. 1, runs entirely inside the browser.

Any adaptation of the tool can therefore exploit Web technology

but is also subject to its constraints. The left panel is the Definitions

area, where students write programs that persist (which can be

saved to the cloud), while on the right is the Interactions area,

which offers a read-eval-print loop (repl), where students can run

interactive expressions. The image shows a function definition

(which generates an overlap of two circles, parameterized over

their size) in the Definitions area, and a use of that function, to

generate an image, in the repl. We will refer back to WeScheme

repeatedly in this paper.

https://doi.org/10.1145/3428029.3428051
https://doi.org/10.1145/3428029.3428051

Koli Calling ’20, November 19–22, 2020, Koli, Finland Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi

Figure 1: The WeScheme ide

2 RELATED WORK
Though there is literature on adapting professional ides to users

with low or no vision, their constraints are very different. Their

users already have experience with computing and are more likely

to select projects that accommodate their strengths and constraints.

Students are a more vulnerable population, and are often given

little to no choice on language, tool, or problem.

Relatively little has been written about adapting student ides.

A notable exception is the work on StructJumper [1], but this fo-

cuses very narrowly on code entry, and has the problem we have

mentioned in §5, which we work around. A related paper studies

editable blocks [7], which is the technology that we use here.

The Quorum project [11] is perhaps the most notable attempt at

creating a language with support for such students from scratch.

Their effort addresses everything from the details of syntax—whose

ordering principle we borrow (§4)—to the ide, but they have the

benefit of creating one from the ground-up and are not constrained

by existing implementations. We have also not seen a detailed

description by them of the many components of the ide that need

to be adapted.

Handling visual output is a vexing problem. Most curricula that

are focused on visual media are largely silent on this problem. Stefik

indicates in a recent talk that he is working on something analogous

to what we describe above for images, but it is not published.

Finally, readers interested in these topics should look at the

materials assembled under the aegis of the Alliance for Access to

Computing Careers and the AccessCSForAll [6] projects.

3 IMAGES
We start by focusing on presenting visual output, and return to the

other elements of the ide later. In bs:a, students learn functions

that draw various images as well as functions that combine them.

A student can, for example, display a triangle rotated 45 degrees,

inscribed inside a circle. However, images are opaque datatypes, so

a screen reader can’t inherently describe them. Annotating them

with generic alternate text (e.g., “This is an image”) is common

but useless. If a picture is worth a thousand words, that’s a lot of

missing information!

Fortunately, WeScheme includes the entire language implemen-

tation stack. We therefore altered the image libraries to build scene
graphs [4, §6.6], i.e., a “sentence diagram” for pictures. These are

flattened into a single image when it’s time to render them to the

screen. Similarly, we can annotate the scene graph components. The

data structure for triangles, for example, is annotated “a triangle of

side-length <side length>”. Rotated images are annotated “an image

rotated <degrees> degrees: <image description>”, where the latter is
a recursive description of the image. The annotations are flattened

into a combined description in the same way that the images are

flattened into a combined picture. If the triangle is passed into the

rotate function, for example, the description becomes “an image

rotated 45 degrees: a triangle of side-length 50”.

For instance, the picture in fig. 1 is vocalized as “an overlay: a

solid red circle of radius 50 centered above a solid blue circle of

radius 100”. Notice that the code has functions and variables, none

of which are present in the visual (and hence verbal) output. The

difference between code and output can grow vastly greater with

more composition, iteration or recursion, etc.

This gets us part of the way there, but does not cover all parts

and forms of visual output.

3.1 Describing Colors
Many colors have names associated with them, which can be ref-

erenced programmatically as strings. “Purple”, for example, might

map to the rgb value rgb(128, 0, 128). We modify the language

implementation to preserve these strings to describe an image, mak-

ing the result of (circle 40 "solid" "green") read as “a solid

green circle of radius 40”.

Adapting Student IDEs for Blind Programmers Koli Calling ’20, November 19–22, 2020, Koli, Finland

However, of course, not all colors have (meaningful) names. A

program might construct a color programmatically directly using

rgb values, such as (make-color 66 33 99). We can attempt

to look this up in a color table, but if the browser doesn’t have a

built-in name for this color, what do we do?

One option would be to give up, and report all colors as rgb

numbers. This is, naturally, unsatisfactory, because it transforms

even information that could be rendered meaningfully into abstract

information: “255, 0, 0” takes much longer to recognize (and may

not be recognized at all) compared to “red”. It also makes it difficult

for a blind student to answer a word problem that uses color names.

Imagine an assignment that asks students to “write a function that

takes in a number and draws green triangles of that size”; if the

output doesn’t say “green”, a blind student will have a much more

difficult time knowing whether they’ve solved it. Therefore, we

need a way to come up with a name for any color.

Ideally, we want to search in color-space for the nearest color.

Fortunately, there is significant research in color theory and color

spaces, offering dozens of models. In one model two shades might

be very close together (red is close to dark red), while in another

they are not (black is closer to dark red). We chose the labmodel [4,

§28.9], for twomain reasons: First, lab is device-independent, mean-

ing it does not rely on the particular screen a student is using. Sec-

ond, lab represents the space of all colors perceivable by sighted

humans, reducing any gap between the populations.

We have therefore modified WeScheme to record lab values of

every named color that has a string equivalent. When the Scene

Graph tries to describe a color that it doesn’t recognize, it converts

the rgb value to an lab one, and then searches the list of known

lab values to find the nearest-neighbor. Fortunately, we only have a

small number of named colors, so this search is fast even on mobile

phones. (If we had thousands of named colors, we could speed up

search using structures like k-d trees, but we have not felt the need

for this in practice.) Our implementation is sufficiently modular

that if there were good reason to use a different model of colors, it

should be easy to adapt the software to it.

3.2 Describing Imported Images
So far, we have talked about generated images. WeScheme, however,

also allows students to use images from the Web. For instance,

(bitmap/url
"https://www.bootstrapworld.org/images/icon.png")

fetches the bs:a logo. These pre-created images are particularly

valuable in bs:a. Students use such images to personalize the cur-

riculum, and in the process take ownership of their product [9]. In

many cases, parts of images they want—whose fidelity may be per-

sonally meaningful—are literally, or at least (with their knowledge)

effectively, impossible to generate computationally (e.g., the globe

at the center of the Brazilian flag).

Unfortunately, these Web images do not come with textual de-

scriptions. Remembering the process of obtaining it does not help

if the image is in a file from another student (e.g., when pair pro-

gramming). Thus, directly supporting these images is critical.

Here, AI comes to the rescue. Tools like Google’s Vision api can

consume an image and produce a textual description of it. While

these are not always perfect, they are often extremely useful, and

can also exploit information from other sources than just the raw

pixels (e.g., search results) to improve over time. We therefore

incorporated this api to generate useful image descriptions.
1

3.3 From Static Images to Moving Pictures
The bs:a curriculum does not stop with images: in the end, students

produce a small video game. This requires the description of not

only images but also sequences of them.

In principle, we can simply describe each one in order, which we

have modified WeScheme to do (to our knowledge, the first educa-

tional environment to do this). However, this solution is naturally

naïve and unlikely to work well in practice. A smarter solution

would keep track of just what has changed between frames, and

read out just that description—with a vocalization that distinguishes

full-image descriptions from descriptions of changes. We leave this

as a challenge for future work.

4 NAVIGATION
As mentioned in §1, the entire ide must function accessibly, not

only output images.

The key to making the ui accessible is to annotate the different

sections of WeScheme so that screen readers can identify and de-

scribe them appropriately. The annotation system for this is called

aria, which is a detailed specification for how Web developers can

express their interface for use with screen readers. In addition to

the Interactions and Definitions area, the reader will notice that

fig. 1 also shows a toolbar. Not only did we label each of these

regions, we also ensured that each button or field in the toolbar

was appropriately labeled: each control announces itself with a

descriptive name, and an associated keyboard shortcut.

Supporting students who use screen readers also requires that we

prioritize different modalities for interaction. While many sighted

users use keybindings, these are far more critical for blind users to

be able to navigate a system efficiently. Blind users also have some

expectations: that objects like histories (like the repl) and lists (like

output) can be traversed. Thus, designing an interface for the blind

requires enumerating all the operations that might need keyboard

support, prioritizing them, and then allocating them to keys around

the existing constraints of the operating system and platform (for

instance, WeScheme runs in the browser and F5 reloads the page

in all browsers, so we leave this key alone).

To enable quick navigation, we borrow ChatZilla’s F6-Carousel

approach, allowing the user to hit F6 (or Shift-F6) to rotate focus be-

tween the Toolbar, Definitions, and Interactions regions. However,

students employing screen readers also use navigation aids that

go far beyond the carousel. In addition to linear (“next element”)

navigation, screen-readers provide a notion of a “search cursor”,

which is controlled with arrow keys and can be used to navigate

the interface spatially. They can also present the user with a list of

“landmarks”, which exist in both tab-order and spatial-order modal-

ities. These landmarks must be explicitly declared by the interface

to be used by the screen reader.

1
This api is not free. We were fortunate to get credits from Google for limited use, but

general use will require some way to pay for it.

Koli Calling ’20, November 19–22, 2020, Koli, Finland Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi

The Interactions Area
The Interactions area is a standard repl: the user enters an expres-

sion and the computer replies with an evaluated result (or an error

message). Programs typed in the repl are typically quite short,

and the Interactions area is used for student experimentation and

exploration. For short programs, having a screen reader announce

each symbol, keyword or string as the user types is acceptable.

The repl “conversation” needs to be annotated as well, in order to

be navigable. Again, we borrow from the conventions established by

ChatZilla: we use history shortcuts like Alt-1, Alt-2, etc. to have the

browser read back previous program-evaluation pairs, and Alt-Up

and Alt-Down to page back and forth through previously-evaluated

programs. All of this simplifies entering code into the Interactions

Area. Even non-image output, however, is complicated.

First, the easy part: we can use aria alerts to announce the new

content. This even works for error messages, allowing the computer

to read the error aloud to the student. But consider the following

three terms:

Value What it Means

3 the number 3

"3" the string “3”

"three" the string “three”

A standard screen-reader will read all of those the same way, de-

spite the fact that they are very different values. In contrast, our

modified WeScheme reads these out respectively as “three”, “three,

a string”, and “three, a string”. The latter two are disambiguated by

switching to a verbose mode in the screen-reader. This is a matter of

efficiency: code would become intolerable if every string were read

out character-by-character. Programmers must therefore exercise

some care to avoid these kinds of situations where possible, though

this is true even for sighted programmers: in our experience, almost

all students are confused by values like "3" (string or number?).

As shown above, numbers are not explicitly tagged but all other

types are disambiguated. The types are rendered after the values

based on the principle of semantic prioritization [10], which is criti-

cal due to the speeds at which blind users run vocalization. Some

programmers, however, use different voices for different types, an
aural equivalent of code-coloring; we do not yet support this but

can do so very easily.

Programs, of course, produce even more complex values like lists,

vectors, functions, and images (which we have already covered in

§3). Solving these issues required that we build in accessibility

features at the runtime level, so that every possible datatype is

tagged with the appropriate aria label, and those labels bubble

up to the ide to be read by the screen reader. Thus, the value

#3(true "hello" 4)—a three-element vector whose first element

is the Boolean value true, the second is the string "hello", and
the third is the number 4—is verbalized by WeScheme as

A vector of size three. True, a boolean. Hello, a string.

Four.

The difficulty of implementing this depends on the representation

choices in the language implementation. For us it was possible be-

cause WeScheme includes the full language implementation, which

we were free to modify. Indeed, for very large values, we can even

(but have not yet) replace strings with generators: e.g., the output
can read “A list with thousand elements.” and take verbal input for

how to navigate that large structure. This would be very hard or at

least awkward to do with a purely textual system, e.g., if one were

to build a toVoiceOver analogous to toString.

5 WRITING CODE
In the repl, programs are sufficiently short that they can be en-

tered by standard voice dictation. Furthermore, these “programs”

are not meant to persist. In contrast, programs in the Definitions

area are edited incrementally over time, and can get quite long, so

programmers need to be able to navigate them efficiently.

As we have noted in §4, a critical step is to annotate the interface

for the screen-reader. This annotation should ideally be structural
(as we sawwith repl output, above). Structure is useful for usability,

as evidenced by our various computing metaphors (like nested fold-

ers, navigable trees, etc.), and even non-computer text (sentences,

paragraphs, and the like).

How do we structure code? A natural, generic structure is avail-

able in the form of line-numbers. This approach is, however, deeply

unsatisfying. It ignores the rich structure that programs have, forc-

ing programmers to keep it in their head; and it is very brittle,

because any line-level addition earlier in the program changes all

the later positions, rendering a programmer’s memory useless.

A better option is to use the program’s abstract syntax tree as the

basis for navigation. This automatically gives the programmer a tree-
shaped rendering of their program, easily letting them recursively

descend and ascend the program in a semantically meaningful

way (which lines usually are not). This idea was explored with

great promise by Baker, Milne, and Ladner in their StructJumper

project [1]. They enable blind programmers to navigate well-formed

Java programs, and their study found that several common tasks

were made easier with a tree view. In principle, we do the same.

Sadly, this approach has its own significant brittleness: if the

program has even a tiny syntax or other parsing error, then it is not

well-formed, and therefore does not have an abstract syntax tree.

At that point, this reasonable approach to navigation breaks down

entirely and the programmer is left with just a block of unstructured

text. We must therefore do everything possible to construct a parse

tree at all times. However, the history of structured editors shows

that this can be overly restrictive.

Our solution is the one part of this paper that does not easily

generalize to another ide: we exploit the syntactic structure of

the underlying Racket language. Drawing on its Lisp legacy, there

are two levels of well-formedness (sometimes called a bicameral
syntax [5]). At the low-level of well-formedness, all we know is

that all the parentheses in the program line up. At the high-level,

the program is also syntactically correct, meeting the rules of the

language. This distinction is shared with other bicameral languages

like those made with XML: well-formedness means adherence to the

generic XML syntax (e.g., the tags match up), while validity means

adherence to a specific language’s rules (which tags are allowed,

how they can nest, their multiplicity, etc.).

In Racket, well-formed expressions are either atomic (like 3,
x, or "hello") or parenthesized, only some of which are valid:

(if true 1 2) is both well-formed and valid, while (if true 1)
and (if true) are well-formed but not valid because an if expres-
sion must always have a conditional and both then- and else-parts.

Adapting Student IDEs for Blind Programmers Koli Calling ’20, November 19–22, 2020, Koli, Finland

Our editor takes advantage of this distinction. It attempts to

parse each expression. If it parses, then the expression is verbal-

ized as the language construct— e.g., “2-circs: function definition

with one argument: size”—and offers high-level, construct-specific

navigation. Otherwise, it verbalizes the term as “unknown”. . . but

can continue parsing the rest of the program. The programmer can

switch to textual editing to modify the unknown expression. There-

fore, they only need to resort to text editing for the sub-expressions

that do not parse.

The only thing this depends on is that the parentheses remain

matched. This is easy to achieve because every parenthesis inserted

also inserts a corresponding closing parenthesis, and in general we

“hide” the parenthesis from the user entirely. Only if they go into

“power user” mode to edit individual characters can they modify

the parentheses, and when they do so, the editor will not let them

commit their change if they leave the term mis-parenthesized.

6 LESSONS LEARNED FROM USERS
As Bootstrap team members, we were once told, “Blind kids just

aren’t going to make their own videogames if they can’t see them”.

The visual-centricity of the bs:a curriculum therefore creates an

obvious challenge for universal use.

In April 2017, we were able to test our modified WeScheme with

a group of blind students. Our project was invited to participate in

the Alabama STEMWars event, hosted by Daniela Marghitu’s team

at Auburn University. STEM Wars is a cross-discipline event aimed

at exposing differently-abled students to various STEM activities,

and Dr. Marghitu asked us to run the Computer Science track at

the event. Most of the students at this particular STEM Wars had

low or no vision, which made it a perfect opportunity to test our

modifications.

After a welcome presentation, the students split up into three

groups, which rotated through brief events in Computer Science,

Engineering, and Biology. Most students were in the age range

12–16, and none of them had ever programmed a computer before.

They only had a short time to learn any programming, but every

student learned how to use our editor and learned enough Racket to

write simple image programs on the computer. Many of the students

were very excited by it, and quite a few said that programming was

their favorite event of the day. At the same time, we learned several

things from this experience, some of which surprised us:

• Students are not familiar with screen-readers. We incorrectly

assumed that many students would be comfortable with

the basic keyboard shortcuts and spoken feedback used by

screen-readers. Computer science teachers working with

students with low or no vision should not make this same

mistake! This has curricular implications, since it suggests

at least some classroom time should be spent building up

this knowledge for students.

• There’s a threshold code length below which typing is better

than overly-structured editing. Students overwhelmingly

preferred text-based programming for short expressions.

This may be due to lack of familiarity, or it could be be-

cause text is just a convenient interface for simple expres-

sions. Students with low or no vision found the overhead of

navigation unnecessary for small programs. There’s reason

to believe that this threshold is different for each student

and alters with experience, which underscores a need for an

environment that can switch between both modes.

• Students with low or no vision enjoyed making images. We

hypothesized that making images would be either uninterest-

ing or downright frustrating for students who couldn’t see

them. This hypothesis turned out to be completely wrong.

A teacher who’d spent his career supporting such students

said he wasn’t surprised at all; specifically, “Even when [such]
kids are included in a mainstream class, they’re often given
‘blind work’ that is different from the work given to sighted
kids, and they feel that” (our emphasis). The opportunity to

write programs that would typically be intended for sighted

users was exhilarating.

In short, we learned three lessons. First, structured editors aren’t

always a win! Second, curriculum writers should not take usabil-

ity aids for granted and must include materials and scaffolds that

introduce these devices—just as they already include materials

for familiarizing sighted students with the uis of Eclipse, Scratch,

or WeScheme. And finally, curriculum developers should be cog-

nizant of the tradeoffs between making special accommodations for

differently-abled students. There’s a balance between completely

other-izing and making no accommodations at all, and that balance

point may be surprising and subtle.

Acknowledgments. For funding and/or other support, we thank
the US NSF, the ESA Foundation, Google, Vinton Cerf, Daniela

Marghitu, AccessCSforAll, Richard Ladner, and Andreas Stefik.

REFERENCES
[1] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. StructJumper:

A Tool to Help Blind Programmers Navigate and Understand the Structure of

Code. In SIGCHI Conference on Human Factors in Computing Systems.
[2] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-

namurthi. 2018. How to Design Programs (second ed.). MIT Press. http:

//www.htdp.org/

[3] Mark Guzdial and Barbara Ericson. 2016. Introduction to Computing and Program-
ming in Python. Pearson.

[4] John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D.

Foley, Steven K. Feiner, and Kurt Akeley. 2013. Computer Graphics: Principles and
Practice (third ed.). Addison-Wesley.

[5] Shriram Krishnamurthi. 2006. Programming Languages: Application and Interpre-
tation.

[6] Richard E. Ladner and Andreas Stefik. 2017. AccessCSforall: making computer

science accessible to K-12 students in the United States. ACM SIGACCESS Acces-
sibility and Computing 118 (June 2017), 3–8.

[7] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible

AST-Based Programming for Visually-Impaired Programmers. In ACM Technical
Symposium on Computer Science Education.

[8] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, and Matthias Felleisen.

2015. Transferring Skills at Solving Word Problems from Computing to Algebra

Through Bootstrap. In ACM Technical Symposium on Computer Science Education.
[9] Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler. 2018. Creativity,

Customization, and Ownership: Game Design in Bootstrap:Algebra. In ACM
Technical Symposium on Computer Science Education.

[10] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel

Garcia. 2009. SODBeans. In IEEE International Conference on Program Compre-
hension.

[11] Andreas Stefik and Richard E. Ladner. 2017. The Quorum Programming Language.

In ACM Technical Symposium on Computer Science Education.
[12] Danny Yoo, Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler. 2011.

WeScheme: The Browser is Your Programming Environment. In Conference on
Innovation and Technology in Computer Science Education.

http://www.htdp.org/
http://www.htdp.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Images
	3.1 Describing Colors
	3.2 Describing Imported Images
	3.3 From Static Images to Moving Pictures

	4 Navigation
	5 Writing Code
	6 Lessons Learned from Users
	References

