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Quantifying Robot Localization Safety: A New
Integrity Monitoring Method for
Fixed-Lag Smoothing

Osama Abdul Hafez
Mathieu Joerger

Abstract—Localization safety, or integrity risk, is the probability
of undetected localization failures and a common aviation perfor-
mance metric used to verify a minimum accuracy requirement.
As autonomous robots become more common, applying integrity
risk metrics will be necessary to verify localization performance.
This letter introduces a new method, solution separation, to quan-
tify landmark-based mobile robot localization safety for fixed-lag
smoothing estimators and compares it’s computation time and fault
detection capabilities to a chi-squared integrity monitoring method.
Results show that solution separation is more computationally
efficient and results in a tighter upper-bound on integrity risk when
few measurements are included, which makes it the method of
choice for lightweight, safety-critical applications such as UAVs.
Conversely, chi-squared requires more computing resources but
performs better when more measurements are included, making
the method more appropriate for high performance computing
platforms such as autonomous vehicles.

Index Terms—Localization, autonomous vehicle navigation,
probability and statistical methods, robot safety, performance
evaluation and benchmarking.

I. INTRODUCTION

OBILE ROBOTS have matured enough for wide deploy-

ment. Well-known examples include Unmanned Aerial
Vehicles, robot vacuum cleaners, and Autonomous Vehicles
(AVs). While some applications, such as cleaning, have public
acceptance and pose little to no safety threat, others, like AV, are
inherently dangerous [1]. Currently, AV safety rules are adapted
from related applications, such as 1S026262, ARP4754, and
SOTIF, where the AV system is divided into components that
are separately certified to prove an overall safety level [2]-
[4]. This letter tackles one of those modules, the localization
subsystem, by introducing and evaluating a new method to
quantify landmark-based robot localization safety for fixed-lag
smoothing estimators in the presence of undetected faults: solu-
tion separation integrity monitoring.
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A robot’s localizer estimates pose and warns the system
when a minimum level of localization performance cannot be
guaranteed. The majority of robotics publications assess local-
ization safety using state estimate variance, which is insufficient
when an unmodeled fault occurs [5]. Faults are rarely occurring
events not modeled by the common zero mean Gaussian white
noise assumption. Examples include GPS clock errors, incorrect
associations among mapped objects, unmapped static objects
mistaken as parts of the map, and measurements due to dynamic
objects.

Instead, this work utilizes a more comprehensive safety
measure: localization integrity risk. Integrity is a quantifiable
performance metric used to set certifiable requirements on an
individual subsystem to ensure a level of safety for the over-
all system [6]. Localization integrity risk is the probability of
robot’s pose estimate error exceeding predefined acceptable
limits without triggering an alarm. Integrity risk has been the pri-
mary safety measure in open-sky Guidance Navigation Satellite
Systems (GNSS)-based aviation applications for decades, and
prior work has applied similar methods to robots operating in
GNSS-denied environments [7]-[10].

Several publications have dealt with enhancing localization
and mapping performance [11]-[16], but relatively few focus on
localization safety. Those that did concentrated on the empirical
evaluation of different fault detection mechanisms [17]-[19].
What distinguishes integrity monitoring from these is that it
upper-bounds the risk of undetected faults while using an opti-
mal filter [20], [21], commonly with a chi-squared test for fault
detection [22].

Recent work has brought integrity monitoring from open-sky
aviation applications to GNSS-denied environments such that
other sensors, like lidars or cameras, must be employed to pro-
vide the necessary sub-meter position accuracy [23]-[26]. This
letter builds upon that work by introducing a solution separation
integrity monitoring method tailored for landmark-based local-
ization via fixed-lag smoothing, a popular robotics localization
technique that often outperforms Kalman filter accuracy. The
letter also compares the technique to the previously investigated
chi-squared technique.

The remainder of the letter begins with a review of fixed-lag
smoothing localization where measurements may be affected by
faults, a point that differentiates this work. Section III defines
integrity risk and the fault detector for solution-separation and
chi-squared methods. Section IV derives the estimate error and
fault detector distributions for each method as a function of
measurement faults. Each method’s integrity risk is statisti-
cally upper-bounded in Section V. Section VI compares the
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performance of each method, and simulation and experimen-
tal results are presented in Section VII. Finally, Section VIII
presents the conclusion and future work.

II. FIXED-LAG SMOOTHING

This section illustrates the main components of fixed-lag
smoothing localization. First, the general nonlinear optimiza-
tion problem is illustrated. Then, several potential measurement
models are reformulated into a generalized model that allows
us to leverage prior work in integrity monitoring for GNSS
applications. Finally, the robot’s estimated pose is expressed
as a function of the measurements.

A. Optimization Problem

Fixed-lag smoothing is an optimization problem that esti-
mates robot pose at each epoch within a preceding time window
of size M (including the current epoch) by minimizing the
squared norm of the weighted measurements residual:

% = argmin »_ ||z; — h; (x)||3, such that |d||}, = d”D'd
X j:1

(1)
where the robot’s states within the preceding time
window are concatenated in the state vector, X =

T .
Xk M xi_, xi] . such that x, € R™ is the

state at current time and z; € R"™ is the j'" measurement in
the preceding time window. Each of the n measurements can be
represented as a non-linear function of the states with additive
noise and a fault:

zj =h; (x) +v; +1; )

where h;(+) is the ;" measurement observation function
(known), v; ~ N(0,V;) is the Gaussian white noise in the
jt" measurement with 'V as the measurement noise covariance
matrix, and f; is the fault in the j th measurement, such that
f; = 0 means that the j*" measurement is non-faulted.

A measurement fault is a rarely occurring unknown determin-
istic error that can not be modeled by the Gaussian white noise
assumption, which might lead to a non-zero estimate error mean.
Localization algorithms must account for these faults as robots
become more prevalent in life or mission-critical applications.
In the next section, both absolute and relative measurements are
written to match the format in (2).

B. Measurement Models

Relative measurements, such as the ones provided by IMU or
wheel encoders, are usually modeled as:

Xpt1 = 8 (Xp,uj) — wj — £ 3)

where u; is the 4" relative measurement, f; is the projection
of the j*" relative measurement fault on the state space, g;i(-)
is the state evolution model of the j* relative measurement
(known), and w; ~ N (0, W) is the Gaussian white process
noise in the j*" relative measurement with known covariance
matrix W (in this case, w; is the projection of the j*" relative
measurement noise on the state space). (3) is reorganized to fit
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the format provided by (2) as follows:
= — g, ; i f; 4
Q Xpt1 — 8 (Xk,uj) + Wy + )
h; (x) vio

Absolute measurements, such as GNSS or features extracted
from lidar measurements, naturally follow the form in (2). For
example, in landmark-based navigation, z; represents a feature’s
measurements extracted from the detected landmark, h;(-) re-
lates robot states to a landmark’s feature, and f; is nonzero
whenever a measurement extracted from the detected landmark
is faulted. Examples of a landmark’s feature measurement fault
include data association and moving landmark faults [8], [9]. A
special case of absolute measurements is the prior measurement,
Xi— M, the state estimate at the last epoch in the preceding time
window:

XM = XM + 051 + Tk s (5)
—— N N N~
z; h;(x) Vi f;

where 8,7 ~ N(O, Agi 7)) is the Gaussian uncertainty in the
prior state estimate with Ay as its information matrix.

C. Estimation

The robot’s pose estimate as a function of the measurements
after the optimization converges can be found by first expressing
the optimization problem in (1) using batch notation:

% = argmin ||z — h (x)|[3, (6)

where z € RY is the measurement vector, N = Y1 | n; is
the number of independent measurements received during the
preceding time window, and V € RV*¥ is a block matrix
with measurement noise covariance matrices along its diagonal.
Thereafter, the optimization problem is solved by successively
linearizing the observation function, h(x), e.g. using the Gauss-
Newton method. After convergence, the measurement function,
h(x), is linearized around the best estimate x* (obtained in the
optimization’s last iteration):

6 = argmin ||z — h (x*) — HJ*H% @)
6*

where H = 8}5;") |+ is the Jacobian matrix of the observation

function and 6" = x — x*. By defining A = V~1/2H, as the

standardized observation matrix,and b = V~/2(z — h(x*)) as

the residual vector, (7) can be expressed in the general quadratic
form:

5= argmin ||A§" — sz )
6){

There are efficient methods to solve (8) by exploiting the sparse-
ness of the standardized observation matrix, A, [11], [13]. The
solution of the least squares problem in (8) is:

5=A"TATb )

where & = X — x is the estimate error, A = AT A is the infor-
mation matrix, and x is the actual robot pose. Thus, the fixed-lag
smoothing state estimate can be expressed as:

x=x+A1ATDb (10)
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III. HAZARDOUS MISLEADING INFORMATION

Localization safety is quantified using integrity risk, or the
probability of Hazardous Misleading Information (HMI) [8].
HMI occurs when the estimate error in the state-of-interest (e.g.
AV’s lateral error) exceeds a predefined threshold or alert limit,
and the fault detector does not trigger an alarm [24]:

a8 > 1 0 M |A;| < Ta, forSS
for C'S

HMI = (11)

als|>1ng<T

where @ € R+ g the state-of-interest extraction vector:
[ is the alert limit; ny is the number of fault hypotheses; ¢
is the chi-squared fault detector such that it triggers an alarm
whenever it exceeds a predefined threshold, 7', ¢ > T'; and
A;,Vi=1,...,ng are a set of statistics that comprise the
solution separation fault detector such that it triggers an alarm
whenever at least one of the statistics’ magnitudes exceeds its
corresponding predefined threshold, Ta,, U [A;| > T, .
The fault detector, a statistical measure of localization’s
measurement inconsistency, checks whether the mission can
continue and is expressed as:
{Az:aT(f(—}A(L), VZE{I,,TLH} for S (12)
q=|/b|? for C'S

where b is the residual vector, X is the robot pose estimated using
all measurements in the time window, and X; is the robot pose
estimated using only the non-faulted measurements (specified
by the i*" hypothesis) in the time window.

After defining the fault detectors, the probability of HMI,
P(HMT), is quantified under each fault hypothesis, H;, Vi €
{0,...,np}, where the fault hypothesis indicates which mea-
surements are faulted and H|, is the fault-free hypothesis. Since
both the state-of-interest estimate error and the fault detector
are affected by measurement faults within the time window, the
hypotheses must include faults occurring in the window.

Fixed-lag smoothing is typically used in robotics as a se-
quential filter by including the prior estimate, X;_ s as a mea-
surement. Consequently, the impact of faults occurring before
the time window are accounted for by including the possibility
of faults in the prior estimate among the hypotheses. Then,
given a set of mutually exclusive, collectively exhaustive fault
hypotheses, { Hy, . .., H,,, }, the P(HMTI) is evaluated as:

P(HMI) = f:P (HMI|H,) P(H;)
=0

13)

[24] presents a method to evaluate fault hypotheses probabil-
ities, P(H;), given the probability of each measurement being
faulted. Since monitoring integrity for all possible hypotheses
can be computationally intractable, the number of hypotheses
can be limited by only considering those in which the number
of simultaneous faults is less than a given number, 7,5, While
accounting for the risk of having more than n,,,, simultane-
ous faults (see Appendix C of [27]), implementing hypotheses
grouping [21], or improving the computational efficiency [7].

The next section derives the distributions of the state-of-
interest estimate error and the fault detector in the presence of
measurement faults for each integrity monitoring method as a
preliminary step to compute P(HMI|H;).
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IV. ESTIMATE AND FAULT DETECTOR DISTRIBUTIONS

As shown in (11), HMI is a function of both the estimate
error and the fault detector. Therefore, quantifying P(H M)
requires deriving their statistical distributions. From (9), the state
estimate error is defined as the difference between the estimated
and true robot poses:

b=%x—x=ATATV 2 (v 41 (14)
Note that the estimate error, 3, is a function of both measure-
ment’s Gaussian noise and faults. Accordingly, the distribution

of the state-of-interest estimate error, a’é, is:

a’§ ~ N (aTA’lATV’lmf7 aTA’1a> (15)
Next, the distribution of the fault detector for the two integrity
monitoring methods will be derived.

A. Solution Separation Fault Detector Distribution

After convergence for both the state estimate obtained using
all measurements (X) and the state estimate obtained by exclud-
ing the faulted measurements in the i*" fault hypothesis (X;),
the solution separation fault detector (A;,Vi =1,...,nyg) can
be expressed, by substituting (10) in (12), as follows:

A;=a” (A'TAT —A'ATB!B;) b (16)
where A; = ATBzTBiA is the information matrix for the it
solution, X;, and B; is the non-faulted measurements extraction
matrix for the 7" hypothesis. Thus, the distribution of A; is:

A; ~N (aT (A'AT — A;'ATBTB,) Vi, aTA;ia)
a7
where Ax' = A;" — A~! (see Appendix B of [28] for proof).
Given the distribution of A, the i** detector threshold (Ta,)
can be defined such that the frequency of false alarms (triggering
the alarm when there are not faults) is limited by a predefined
value, Ip4:

ny
P (U |A;] > TAiH())

i=1

nH
< P (|A;| > Ta,|Ho) < Ipa
i=1
(18)
Note that the left hand side of (18) has been upper-bounded,
by replacing the union by the sum, to simplify the evaluation
of Ta,. Thus, by giving each fault hypothesis equal allocation
Ipa/ny, the ith detector threshold, Ta,, can be expressed as:

I
Ta, =&} {1 - FA] a’A}'a (19)

2nH

where ®~![-] is the inverse of the standard normal Cumulative
Distribution Function (CDF).

B. Chi-Squared Fault Detector Distribution

After convergence, the fault detector, ¢, can be written as:
2 12
q= HV*l/2 (z—h (&))H - HV*W’ (v+f)— A6H (20)
Substituting (14), the definition of 3, in (20) results in:

o= |- ananyvoreeee e

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on December 01,2020 at 21:10:42 UTC from IEEE Xplore. Restrictions apply.



HAFEZ et al.: QUANTIFYING ROBOT LOCALIZATION SAFETY: A NEW INTEGRITY MONITORING METHOD FOR FIXED-LAG SMOOTHING

Accordingly, the distribution of ¢ is defined as follows:

qr~ X?\/f(MJrl)m,)\ (22)
where Xi, , denotes non-central chi-squared distribution with a
degrees of freedom and non-centrality parameter b. The non-
centrality parameter for q is:
A=V 2 (1- AATAT) V2 (23)

Note that the number of degrees of freedom is less than N
because robot pose estimate, X, is linearly dependant on the
measurement vector, z.

Given ¢’s distribution, the detector threshold, 7', can be de-
fined so that the probability of false alarms is upper-bounded by
a predefined value, I 4:

P(q>T|Hy) =1Ipa (24)
Therefore, the detector threshold, 7', can be expressed as:
T = X;Vi(MH)m [1— Ipal (25)

where X, 2[] is the inverse of the central chi-squared CDF with
a degrees of freedom.

This section presented the distribution of the estimate error
and the fault detectors, which will be used in the next section to
quantify the conditional probability of HMI, P(H M I|H;), for
each integrity monitoring method.

V. INTEGRITY MONITORING

Measurement faults are low frequency events not accounted
for by the Gaussian white noise assumption. In addition, these
events do not follow any clear pattern; thus, they are difficult to
statistically model [23]. Therefore, this work models faults as
unknown deterministic variables, which in turn makes quanti-
fying P(H M I|H;) challenging. This section will upper-bound
P(HMI|H;) for each integrity monitoring method.

A. Solution Separation Integrity Monitoring

P(HMI|H;), the probability of HMI given the 7" fault
hypothesis, for the solution separation method is:

nHg
P(HMI|H;) =P (|8 > () |A;| < Ta,|H; | (26)

Jj=1

Note that in the 7*" fault hypothesis the i*" solution, X;, is fault-
free (unlike % and the rest ny — 1 solutions), and so |A,| is the
most likely statistic to exceed its threshold, T'a,. Accordingly,
the right hand side of (26) will be upper-bounded by neglecting
the non-detection events of all statistics except the it" one [28]:

P(HMI|H;) < P (|aT8\ > 10 |Ai] < Ta, Hi) 27)

Using the conditional probability theorem and upper bounding
P(]A;| < Ta,|H;) by one [28]:
P(HMI|H;) < P (|aTS\ > l’|Ai| < TAi,HZ) (28)

Knowing thata?é = aT& + A;andthatifa = b + cthen|a] <
|b] + |c|, the magnitude of the state-of-interest estimate error,
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\aTS , and the magnitude of the ith statistic, | A, |, can be related

as follows [28]:

@8] < [a”8;] + |A]
which will upper-bound the right hand side of (28):

(29)

P(HMI|H;) < P (\aT3i| FA > 1H;, A < TAi)
(30)
Now, the condition |A;| < Ta, will upper-bound |A;| by Ta,:

P(HMI|H;) < P <|aT3i| Sy - TAi|H1-> 31)
Recall that the ' solution, %;, is obtained by excluding
the faulted measurements in the i*" hypothesis, H;. Thus,
P(HMI|H;)’s upper-bound in (31) is remarkable because the
distribution of x; given H; is not a function of faults [28]:

alé;|H; ~ N (0, aTA; ' a) (32)
Accordingly, the probability of HMI given the i*" hypothesis,
P(HMI|H;), reduces to:

Ta, — 1 (33)

\/aTA e

where @[] is the standard normal CDF.

P(HMI|H;) < 2®

B. Chi-Squared Integrity Monitoring

The probability of HMI given the i*" fault hypothesis,
P(HMI|H;), for chi-squared integrity monitoring can be ex-
pressed as follows:

P(HMI|H;) =P (|aT8\ >lNng< T\Hi) (34)

Recall, the fault detector, g, follows a chi-squared distribution,
whereas the estimate error, 9, follows a Gaussian distribution,
which makes the evaluation of their joint probability complex.
Luckily, they are statistically independent (see Appendix C

of [28] for proof) so the events can be evaluated individually:
P(HMI|H;) = P (|aT$\ > Z|HZ-) P(q<T|H) (35

Given the distributions of the state-of-interest estimate error,
a’'$, and fault detector, g, P(H M I|H;) is expanded as:

R
a’A o aTAla
(36)

P(HMI|H;) = (@ [

X12V—(M+1)m,k [T]

where 1 7 is the state-of-interest estimate error mean defined
in (15), and A is the non-centrality parameter defined in (23).
Note that 1,5 and A are both affected by measurement faults,
f. Unlike the solution separation method where P(HM1I|H,)
can be manipulated to get a formula that is not a function of
measurement faults, P(H M I|H;) for the chi-squared method is
upper-bounded by searching for the fault vector that maximizes
it (worst-case fault vector) given the set of faulted measurements
specified by the i*" hypothesis, H;:

fl_worst _ fidirf;ﬂag (37)
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Algorithm 1: Summary of Solution Separation Method
Bounds.
1: Estimate robot pose, X, using (1).
2: for every hypothesis H; Vi € 1,...,ny do
- Estimate the ¥ solution, %;, using (1).
- Quantify the ith detector, A, using (12).
- Evaluate T, using (19), and check the alarm.
- Quantify P(HM1I|H;) using (33) and P(H;) as
in [24].
7: Evaluate the integrity risk, P(H M), using (13).

A

Algorithm 2: Summary of Chi-Squared Method Bounds.
1: Estimate robot pose, X, using (1).
2: Quantify detector ¢, and threshold, T, using (12) and
(25).
3: for every hypothesis H; Vi € 1,...,ng

4: - Evaluate 7" worst-case fault direction, fid", using
(38).

5: - Quantify P(HMI|H;) using (39) and P(H;) as
in [24].

6: Evaluate the integrity risk, P(HMT1), using (13).

where £7" and ;" is the direction and magnitude of the worst-
case fault vector, respectively. [28] proved that the worst-case
fault vector direction, fﬁ”’, can be obtained analytically as:

i =Bl [B; (1- AA'AT)Ef] 'BiAA e (38)

where E; is the faulted measurements extraction matrix for the
it" hypothesis. After substituting %" in (36), the upper-bound
on P(HMI|H;) can be quantified by searching for f;"“ that
maximizes (36).

l_ll“aTg

el
) aTé
aTA—la} [ alAla
XX (a4 1ymo [T}]

This section derived an upper-bound on P(H M I| H; ) for both
the solution separation and chi-squared methods. Summaries of
the two procedures are shown in algorithms 1 and 2. The next
compares the performance of the two methods.

P (HMI|H;) < max { <<I> [
f;n,a

(39

VI. TECHNICAL COMPARISON

This section compares the solution separation and chi-squared
integrity monitoring algorithms based on: 1) the computational
load needed to evaluate the fault detector, 2) the computational
load needed to evaluate the integrity risk bound, and 3) the
tightness of the integrity risk bound.

A. Computational Efficiency of Fault Detector Evaluation

Evaluating the solution separation fault detector, (12), re-
quires implementing the fixed-lag smoothing algorithm 7y
times at each epoch to estimate the ny solutions evaluated
after removing the faulted measurements in each hypothesis.
In contrast, the chi-squared fault detector, (12), can be evaluated
directly from the pose estimate without optimization, making
the computation of the chi-squared detector more efficient.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

B. Computational Efficiency of Integrity Risk Evaluation

Quantifying the chi-squared integrity risk bound (39) re-
quires solving ny optimization problems to find the worst-case
fault magnitude that maximizes the conditional integrity risk,
P(HMI|H;), Vi =1,...,ng. This type of optimization prob-
lem is usually solved using non-gradient optimizers, which are
significantly slower than those used to solve the non-linear least
squares problem in fixed-lag smoothing.

In contrast, the integrity risk bound in solution separation
(33) does not require numerical optimization since the full
set information matrix, A, and the ny solutions’ information
matrices, A;, Vi = 1,...,ng, become available when the state
has been estimated and the fault detector has been evaluated,
respectively. Thus, solution separation is more efficient from
the perspective of integrity risk bound evaluation.

C. Tightness of the Integrity Risk Upper-Bound

For solution separation, the first bound in (27) only considers
the i*" statistic not triggering an alarm (i.e. it ignores all others;
Aj, {Vj =1,...,ng, such that ¢ # j}). This bound is tight be-
cause the full set solution, X, and all of the nz solutions except
the i'" one, (%, {Vj = 1,...,ny, such that i # j}), will be af-
fected by measurement faults. In other words, all of the statistics
involve a subtraction between two random variables, both of
which are affected by faults (except for the i*" statistic, which
involves a subtraction between a faulted and fault-free random
variable); thus, the ignored events are expected to occur with
high confidence.

The second bound, (28), assumes the ith statistic’s nondetec-
tion probability, A;, is one. The bound might be loose because
the higher the fault magnitude, the lower the probability that
A; will not trigger an alarm. The bound becomes tighter as
the number of measurements increases because the impact of
measurement faults on the mean of A; reduces.

The third bound, (29) and (31), bounds the full set estimate
error magnitude, a’s, by the sum of the it" solution error’s
magnitude, a”'§;, and the i*” threshold, T)a,. Of all three bounds,
it has the highest impact on the integrity risk bound’s tightness.
If the number of measurements is low, then the probability of
the faulted estimate’s magnitude, a8, being greater than the
fault-free estimate’s magnitude, &’ d;, becomes higher, | A;| ap-
proaches T'a,, and the bound tightens. Conversely, if the number
of measurements is high, then the probability of the faulted
estimate’s magnitude being greater than the fault-free estimate’s
magnitude becomes lower, |A;| becomes much smaller than
T'a,, and the bound loosens.

Unlike solution separation, chi-squared integrity risk has a
single bound that uses the worst-case fault instead of the actual
(unknown) fault; thus, tightness depends on the number of
measurements. If low, then the impact of measurement faults
on the probability of the estimate error’s magnitude, a4, being
greater than the alert limit, [, becomes higher, and the probability
of no detection becomes more sensitive to measurement faults.
Thus, the difference between the worst-case fault and the actual
(unknown) fault will have a high impact on P(HMI|H;),
and the bound will be loose. Conversely, if the number of
measurements is high, then the measurement fault‘s impact on

the probability of the estimate error’s magnitude, aTsé, being
greater than the alert limit, /, becomes lower, and the probability
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Fig. 1. Estimated robot trajectory while navigating through each of the
three randomly generated maps (3e-3 (top), 6e-3 (middle), and 9e-3 (bottom)
landmarks/m?). Blue circles refer to way-points, red plus-signs represent land-
marks, and the yellow cross-sign is the robots’ starting location.

TABLE I
SIMULATION PARAMETERS
Velocity 25 kmh™! Oyelociry 1M g1
Time step  0.1s Ogyro 2° g1
Sensor range  25m Olidar 0.2m
Alert limit  0.5m Ojteering angle  2°
Fault probability 1073 I;w 1079
TABLE II

OBSERVATIONS FROM THE SIMULATION

Landmark Density [m~2]

3e-3 6e-3 9e-3
Avg. time window size (epochs) 5.7 3.3 3.0
Avg. # of landmarks in the window 21.9 26.3 343

of no detection becomes less sensitive to measurement faults.
Thus, the difference between the worst-case fault and the actual
(unknown) fault will have low impact on P(HM1|H;), and the
bound will be tight.

VII. EMPIRICAL COMPARISON

This section quantifies localization safety for fixed lag
smoothing using the two integrity monitoring algorithms. Sim-
ulation results compare the integrity risk bounds’ tightness and
computational efficiency, yielding guidelines for conditions in
which each method is more suitable. Experiments demonstrate
the performance of each method in real environments.

A. Simulation Results

The simulation consists of a constant-velocity bicycle model
navigating predefined way-points in three environments of dif-
ferent landmark densities (see Fig. 1 and Table I). Relative
measurements, steering angle and linear and angular velocities,
are assumed to be fault free. Absolute measurements, range and
bearing to mapped landmarks, can be faulted with a probability
of 1072, The time window is continuously resized to include the
smallest number of landmark detections above 20 to maintain
reasonable computational time [24]. For each landmark density,
the two integrity monitoring methods were assessed using the
same landmark locations (see Table II).

Fig. 2 shows the integrity risk bounds versus time for each
landmark density. Both methods provide a guaranteed upper-
bound on integrity risk, but the solution separation method
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Fig.2. Integrity risk bound for solution separation (blue) and chi-squared (red)
for 0.003, 0.006, 0.009 landmark densities (top, middle, bottom).

provides a uniformly tighter bound than the chi-squared method
when the number of measurements is small (see Fig. 2 top).
As the number of measurements increases, the integrity risk
bound becomes looser for solution separation and tighter for
the chi-squared method (see Fig. 2, middle). Finally, when the
number of measurements is relatively large, the chi-squared
method provides a uniformly tighter integrity risk bound (see
Fig. 2, bottom). This was expected, as illustrated in Section VI,
because the most dominant (third) bound in solution separation
becomes tighter as the number of measurements decreases,
whereas the chi-squared method’s only bound becomes tighter
as the number of measurements increases.

To assess computational efficiency, the simulation was re-
peated multiple times for different landmark densities. Fig. 3
(top) shows that the average number of landmark detections
in the time window increases as landmark density increases,
whereas the middle shows that the average number of time
epochs in the window decreases as landmark density increases
to maintain the smallest number of landmark detections in
the time window above 20. Fig. 3 (bottom) shows the scaled
computational time versus landmark density in the map.

As outlined in Section VI, the chi-squared detector requires
much less time than the solution separation detector for all land-
mark densities. The solution separation detector’s computation
time is nonlinear as a function of landmark density because when
landmark density is very small, although the number of fault
hypotheses (specified by the number of measurements) is low,
the number of states to estimate per hypothesis (specified by
the time window size) is very high, and so the elapsed time
is high. However, as landmark density increases, the number of
states to estimate per hypothesis reduces, but the number of fault
hypotheses increases, and thus the elapsed time decreases and
then, when the number of fault hypotheses dominates, increases.

Although the chi-squared detector does not require optimiza-
tion and its computational time is proportional to the size of the
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Fig. 3. Top—average number of landmark detections in the time window.

Middle—average number of time epochs in the window. Bottom—scaled com-
putational time (time per 5 s) for chi-squared and solution-separation, fault
detector and integrity risk versus landmark densities in the map.

residual vector, b, its computational time is also nonlinear as
a function of landmark density. When landmark density is low,
the number of epochs in the time window is high, and so the
number of relative measurements is high. Thus, the total number
of measurements, represented by the size of b, is very high and so
is the elapsed time. However, as landmark density increases, the
number of relative measurements in the window reduces and the
number of landmark detections increases. Thus, the elapsed time
reduces and then, when the number of landmark detections dom-
inates, increases. For both solution separation and chi-squared
methods, the time needed to evaluate the integrity risk increases
as the number of fault hypotheses increases, but the solution
separation method needs much less time than the chi-squared
method for all landmark densities and is more computationally
efficient.

Integrity risk evaluation efficiency for both methods could
be improved by around 1/ny by using a separate processor
thread for each conditional integrity risk, P(HMI|H;), as they
are independent. Multi-threading could also improve evaluation
times for the solution separation fault detector. In addition, the
computing time dedicated to evaluating the solution separation
detector can be reduced by considering the sparse structure of the
standardized observation matrix, A, when solving the non-linear
least squares problem [13]. Thus, the solution separation method
has large potential for real-time applications. Accordingly, as a
rule of thumb, solution separation should be used to quantify
localization safety unless the number of measurements becomes
relatively high. Ultimately, since the threshold for the number of
measurements in the time window is based on sensor type, the
quality of sensor measurements, and the quality of the feature
extraction algorithm, the suitable method should be determined
through some pre-analysis.

B. Experimental Results

The performance of the two methods was assessed using real-
world data from a car traversing a university campus.
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Fig. 4. Testing environment with test setup in the upper left. Both tree trunks
and poles are used as landmarks for localization. The sensor suite consists of
STIM-300 tactical-grade IMU, two Velodyne VLP-16 lidars, and Novatel SPAN-
CPT DGPS attached to a roof-rack of a vehicle.

TABLE III
EXPERIMENT PARAMETERS
ODgpsPosXYZ 0.013, 0.006, 0.014 m Olidar 0.2m
Opgpsverxyz  0.042, 0.021, 0.044ms ! Alert limit  0.5m
PSDycceinoise  0.002m? /s Iy 1079
PSDGyronoise ~ 3-05 x 10~ rad? /s’ frequencyp,,,  1Hz
PSDycceipias 240 x 1077 m? /s° frequencyy,, 10Hz
PSDGyropias ~ 2-12x 10712 rad? /s* frequencyy,y  125Hz
50
0 .
> +
50 R
-100 ! ! ! ! ! g ' !
-350 -300 -250 -200 -150 -100 -50 0 50

X [m]

Fig. 5. Estimated vehicle trajectory. The vehicle starts from the yellow dot at
(0,0), and red-plus signs denote mapped landmarks (poles and tree trunks).

1) Setup: Fig. 4 shows the testing environment and sensor
suite. Absolute measurements are range and bearing to light
poles and tree trunks (landmarks) extracted from two synchro-
nized Velodyne VLP-16 lidar point clouds and Differential GPS
(DPGS) updates from a Novatel SPAN-CPT. A STIM-300 tac-
tical grade Inertial Measurement Unit (IMU) provides relative
measurements (see Table III).

The landmark map was obtained a priori using SLAM. The
state vector has 15 states: six for pose, three for velocity, and
six for IMU biases. Fig. 5 shows the estimated trajectory and
landmark map. We assume only absolute measurements can be
faulted (10~ failure probability). The lateral-error is the state-
of-interest with an alert limit of 0.5 m. Last, the time window is
resized continuously so that it contains the minimum number of
landmark detections or DGPS updates above 30.

2) Results: Fig. 6 shows the integrity risk bound. As before,
solution separation is uniformly tighter at all times except be-
tween 5 and 25 s, when not enough landmarks are visible. This
increases the time window, resulting in a large number of DGPS
updates (see Fig. 7). Thus, the number of measurements in the
time window increases, because there are six measurements per
DGPS update, whereas each landmark detection includes only
two measurements.

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on December 01,2020 at 21:10:42 UTC from IEEE Xplore. Restrictions apply.



HAFEZ et al.: QUANTIFYING ROBOT LOCALIZATION SAFETY: A NEW INTEGRITY MONITORING METHOD FOR FIXED-LAG SMOOTHING

tion separation
squared

Fig. 6. Experimental integrity risk bound for solution separation (blue) and
chi-squared (red) methods.
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Fig. 7. The number of landmark detections and DGPS updates in the time
window as a function of time.

The large variation in integrity risk is due to the extremely low
nominal DGPS uncertainty with respect to landmark detections
(see Table III). Unlike feature measurements, DGPS measure-
ments are a direct observation of the robot state. Thus, if there
are several DGPS measurements during the time window, the in-
tegrity risk decreases dramatically. Additionally, if the detected
landmarks are spread apart enough with sufficient redundancy,
adding or removing a single feature does not significantly affect
integrity risk.

Auvailability, the percentage of time integrity risk is below a
predefined requirement (chosenas Irgq = 107 based on [27]),
for solution separation is 92% and 85% for the chi-squared
method. This provides insight on how sensitive the tightness
of the bound is on whether a robot can continue operation.

VIII. CONCLUSION

This letter presents a solution separation-based mobile robot
localization safety method for fixed-lag smoothing estimators,
and compares its performance with a chi-squared technique. The
results show that solution separation is always more compu-
tationally efficient than the chi-squared method, but solution
separation offers a tighter upper-bound than chi-squared only
when small number of measurements are in the time-window,
and vise-versa. In future work, we will derive integrity monitor-
ing methods for the more challenging SLAM problem. Code to
evaluate integrity can be found at https://github.com/mspenko/
RoboticsLab-Integrity-Evaluation.
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