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1.  Introduction

Recently, low-dimensional systems have become a focal point 
of interest of the physics, chemistry, and materials science 
communities for their unique (opto)electronic properties [1–
6]. The quasiparticle (QP) excitations in these compounds are 
highly tunable by varying the number of monolayers [7–12], 
their composition [13–16], and the application of external 
stimuli [17–20]. Regular stacking of monolayers with a finite 
twist angle results in the formation of Moiré superstructures 
which are characterized by a periodic variation of the geom-
etry with large correlation lengths [21, 22]. In practice, such 
structures are associated with the formation of localized impu-
rity states whose energy and spatial distribution is determined 
by the twisting angle (θ) [23–25]. Hence, twisting provides a 
powerful tool to control the quantum many-body interactions.

Quantitative understanding of QPs in twisted bilayers is 
hindered by the large system sizes that need to be considered. 
The localization and spatial separation of the Moiré impu-
rities increases with decreasing θ, which requires unit cells 
with thousands of atoms. Density functional theory (DFT) 
[26, 27] is an affordable first principles approach that can treat 
such large systems. However, DFT calculations are limited 
to the inexpensive (semi)local approximation for electronic 
exchange and correlation (xc) [27]. Such methodology suf-
fers from large errors, and it cannot (even in principle) pre-
dict QP energies and the fundamental band gaps (Eg) [28]. 
Furthermore, the (semi)local approximation to the xc does not 
properly account for the non-local electron–electron interac-
tions, i.e. the DFT eigenvalues do not incorporate van der Waals 
effects that are responsible for the bilayer bonding [27, 29]. 
Prediction of QP energies which incorporate weak interactions 
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require many-body perturbation theory. Conventional imple-
mentations of such approaches, however, scale too steeply 
with system size to treat Moiré superstructures.

Recently, many-body perturbation theory was formulated 
using a stochastic sampling approach [30–35]. Because the 
number of samples decreases for large systems due to self-
averaging, the overall cost of a calculations scales linearly 
with system size [30, 31, 35, 36]. Hence, random sampling 
methods enable computations for extremely large systems 
with thousands of electrons without compromising the acc
uracy of the QP energies [31, 35, 37].

Up to now, the stochastic approach has been limited to 
finite systems or 3D periodic solids [31, 34, 35, 37, 38]. Low-
dimensional structures, however, require modified boundary 
conditions. Furthermore, strongly localized states (such as 
Moiré impurity states) are expected to worsen the statistical 
sampling as seen, for example, in calculations involving local-
ized molecular orbitals [34]. Localized states in periodic sys-
tems were not studied by stochastic methods up to now.

In this paper, we expand the stochastic many-body frame-
work to compute QP energies of twist-induced localized states 
in low-dimensional semiconductors. We investigate black 
phosphorene, which shows a large bandgap tunability [9, 12]. 
Twisted bilayers combine a high (opto)electronic anisotropy 
of individual sheets [39] with a range of stable stacking pat-
terns which correspond to distinct polymorphs of multilayer 
black phosphorene [40]. Hence, the twisted phosphorene 
structures exhibit a complicated landscape with multiple dis-
tinct regions (AA, AA’, AB, AB’) acting as potential wells 
for electrons and holes (figure 1). Recent (semi)local DFT 
calculations suggested formation of Moiré impurity states in 
twisted phosphorene [24], but an investigation into QP states 
with many-body techniques was elusive up to now.

We compute QP energies in large twisted phosphorene 
bilayers with up to 13 000 valence electrons. The QP ener-
gies of the valence and conduction Moiré states are strongly 
influenced by many-body effects that are not captured with 
DFT. We apply a projector-based energy-momentum analysis, 
which coincides with band structure unfolding for regular 
supercells [41–44]. This analysis is broadly applicable for 
identification of Moiré impurity states. The band structures 
demonstrate that while twisting only mildly perturbs the 
low-energy valence states, it causes notable band splitting 
and QP localization in the near gap region. The Moiré impu-
rities appear as in-gap states which are well-separated from 
the rest of the valence bands. This separation decreases for 
small twisting angles. In contrast, the unoccupied impurities 
are close to the conduction bands, which are pushed to lower 
energies with the decreasing θ. The behavior of Moiré impuri-
ties is explained as an interplay between electron localization 
and non-local electron correlation. The overall conclusions 
presented here are also applicable to other low-dimensional 
materials.

The paper is organized as follows: we first review the 
theoretical approaches and the computational methodology, 
which is verified at the beginning of the results section. In the 

following section, we study the effects of structural relaxation 
and the evolution of QP states with twisting angles. Lastly we 
present our conclusions.

2. Theory and methods

2.1.  Ground state calculations

We use Kohn–Sham (KS) density functional theory (DFT) 
[26, 27, 43] to obtain the ground state electronic structure, 
which is the starting point for the many-body calculations 
(section 2.2). The KS Hamiltonian leads to a set of single-
particle equations  for the eigenstates φ and corresponding 
eigenvalues εKS:

[
−1
2
∇2 + Vext(r) + VH(r) + Vxc(r)

]
φ(r) = εKSφ(r).� (1)

The first term in brackets represents the kinetic energy oper-
ator, the remaining terms correspond to the external, Hartree 
and exchange-correlation (xc) potentials. In the absence of 
external fields, Vext is the potential of nuclei; the Hartree term 
is the potential due to the total electron density n(r):

VH(r) =
∫

ν(r, r′)n(r′)dr′,� (2)

where ν(r, r′) is the Coulomb kernel

ν(r, r′) =
1

|r− r′|
.� (3)

The xc term is a local mean-field potential, which, in principle, 
embodies all ground-state electron–electron interactions but is 
approximated in practice.

For 2D systems, the Coulomb kernel (equation (3)) is mod-
ified so that the direction perpendicular to the surface of the 
slab (z) is treated aperiodically by truncating ν  in momentum 
space [46, 47]. The Coulomb kernel thus depends on the 
components of the momentum vector perpendicular to and in-
plane of the 2D system, denoted kz and kxy [47]:

ν(kz, kxy) =




4π
k2

[
1+ e−kxyR( kz

kxy
sin(kzR)− cos(kzR))

]
∀kz ∧ kxy > 0

4π
k2 [1− kzR sin(kzR)− cos(kzR)] kz �= 0 ∧ kxy = 0

−2πR2 kz = 0 ∧ kxy = 0.
� (4)

Here k2 = k2z + k2xy and R is the cutoff parameter, which cor-
responds to half of the simulation cell length along the z direc-
tion. The value of R has to be converged as discussed below. 
The Coulomb kernel cutoff is applied in the Vext and VH terms.

The DFT calculations are performed on a real-space grid 
with Troullier–Martins pseudopotentials [48]. The exchange-
correlation interaction is described by the PBE functional 
[49]. In all calculations, we use a 22Eh  kinetic energy cutoff, 
which yields DFT eigenvalues converged to  <5 meV. The 
grid spacing is 0.50± 0.04 a0; the small variation is due to 
changes of the unit cell dimensions with relaxation of dif-
ferent structures. A vacuum layer of 15a0 above and below the 
2D system (i.e. the cutoff parameter is R = 15 a0) is sufficient 
and leads to  <1 meV errors in the Kohn–Sham eigenvalues. 
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Overall, the Kohn–Sham eigenvalues are converged to  <10 
meV. Convergence of the QP energies will be discuss later.

The real-space implementation was verified against the 
plane wave quantum espresso (QE) code [50]. In the QE 
calculations, we employed an identical set of norm-conserving 
pseudopotentials. The Brillouin zone was sampled by a 10 × 8 
× 1 Monkhorst–Pack grid [51]. We applied kinetic energy and 
density cutoffs of 25 Eh and 40 Eh. The QE code adopts a dif-
ferent treatment of the 2D periodic boundary conditions [52, 
53], yet the agreement with our real-space code is excellent. 
The difference between our implementation and QE results 
is  <1 meV for the band edge states (see the discussion in sec-
tion 3.3 and figure B1).

The phosphorene monolayer, bilayer and twisted bilayer 
with θ ≈ 8.0◦ were optimized in the QE code; van der Waals 
interactions were treated by the Tkatchenko–Scheffler total 
energy corrections [54]. The relaxation of the cell parameters 
and ionic positions was performed until each component of the 
residual force vector for each atom was below 5× 10−4Eh/a30.

2.2.  Quasiparticle energy calculations

The QP energies are computed via many-body perturbation 
theory [28], in which a dynamical and non-local self-energy 
operator, Σ(r, r′, t), captures the electron–electron interac-
tions. In practical calculations, the self-energy is constructed 
from a perturbation expansion which has to be approximated; 
we use the widely successful GW formulation [28, 55–58]:

Σ(r, r′, t) = G(r, r′, t)W(r, r′, t+),� (5)

where G is the QP Green’s function, and W is the screened 
Coulomb potential [28, 57, 58]. The time argument t+ is 
infinitesimally after t to guarantee the correct time-ordering. 
The GW expression is further approximated by neglecting the 
self-consistency and the QP energy is obtained by a ‘one-shot’ 
correction, conventionally denoted as G0W0. Specifically, for 
the ith KS eigenstate:

εQPi = εKSi − Vxc,i +Σi
(
εQP

)
,� (6)

where Vxc,i and Σi  are the expectation values of the xc potential 
and the self-energy for state φi. The self-energy is expressed 
in the frequency domain, and should be evaluated at the fre-
quency corresponding to the QP energy.

In practice, we decompose Σ to a sum of static and dynam-
ical (frequency-dependent) components, ΣX and ΣP, which 
represent the exchange and polarization self-energies. The 
expectation values of the exchange term for a KS eigenstate 
φ is:

ΣX = −
Nocc∑
j

∫ ∫
φ∗ (r)φj (r) ν(r, r′)φ∗

j (r
′)φ (r′) drdr′,

� (7)
where the sum extends over all Nocc occupied states. The polar-
ization self-energy represents a potential due to the induced 
charge density; its expectation value in the time domain is: 
[34, 35, 59]

ΣP (t) =
∫ ∫ ∫ ∫

φ∗(r)G(r, r′, t)

ν(r, r′′)χ(r′′, r′′′, t+)ν(r′′′, r′)φ(r′) drdr′dr′′dr′′′
� (8)
where χ is the reducible polarizability [60]. The self-energy 
and the polarizability are time-ordered quantities [34, 35, 59]. 
The time and frequency-dependent representations of ΣP are 
related by Fourier transformation.

The G0W0 method yields QP energies and fundamental 
band gaps in good agreement with experiments [28, 56–58], 
though self-consistent treatment is often necessary to achieve 
this [28, 61–63]. Widespread application of GW, however, has 
been hindered by its computational cost which scales as N4 
with number of electrons [64–66]. This limitation has been 
recently overcome by the stochastic G0W0 formulation [31, 
34, 35], a statistical approach in which the expectation values 
of the self-energy are sampled using random vectors in the 

Figure 1.  Bilayer phosphorene with twisting angle θ ≈ 3.8◦ is depicted from the z-axis perspective (top-down). Black arrows denote the 
x (zigzag) and y  (armchair) directions. The structure is constructed by superimposing two monolayers (atoms are distinguished by red and 
blue colors) with a rotation along the direction normal to the plane. The mismatch of the two layers causes a finite relative strain. Due to the 
ridged structure of a monolayer of phosphorene, four characteristic stacking regions (AA, AA’, AB, AB’) appear. The areas with distinct 
stacking patterns are distinguished by dashed lines and shown in the insets on the right. The stacking nomenclature is adopted from [24].
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Hilbert space. This method leads to substantial computational 
savings and allows performing many-body calculations in a 
linear scaling fashion [31, 35]. The time-domain formulation 
is further combined with partial self-consistency at no addi-
tional cost [59].

In the stochastic formulation, the Green’s function is 
decomposed into a set of random vectors ζ. Two additional 
sets of stochastic vectors are used to characterize the polar-
izability and to perform time ordering using the sparse sto-
chastic compression technique [35]. Each vector represents 
the entire occupied/unoccupied space, which is convention-
ally described by the KS orbitals from the ground-state calcul
ation. In practice, the expectation value of the self-energy 
becomes a statistical estimator. Such reformulation is only 
exact in the limit of an infinite number of stochastic vectors, 
therefore a finite number of random states results in a statis-
tical error. However, only a small number of stochastic states 
is usually required to converge the error below an acceptable 
threshold. The convergence is discussed in more detail in the 
following paragraph and in section 3.1.

In this paper, we use a modified version of the StochasticGW 
code [35] with Coulomb kernel cutoff for 2D periodic systems 
(equation (4)). We employ 20 000 fragmented stochastic bases 
[35]. The screened Coulomb potential is sampled by eight sto-
chastic orbitals per each stochastic sampling of the Green’s 
function, similarly to a previous study of phosphorene [37]. 
The time propagation is performed using the random-phase 
approximation with a propagation time of 100 atomic units. 
The total number of stochastic samples Nζ is varied to reach 
a designated error. The convergence of the QP energies with 
the number of stochastic vectors Nζ is discussed in sec-
tion 3.1. The QP energies of twisted bilayers in Section 3.3 
were computed at the G0W0 level as well as with a simpli-
fied self-consistency ∆̄GW0, in which the Green’s function is 
updated as detailed in [59].

3.  Results

3.1.  Convergence of the quasiparticle gaps

In the stochastic formulation, the QP energies are obtained by 
equation  (6), with the expectation values of the self-energy 
evaluated by statistical sampling. The statistical error in Σ is 
governed by the number of stochastic orbitals ζ used in the 
decomposition of the Green’s function (see section  2.2). In 
periodic systems, the band gaps tend to converge quickly, with 
several hundred ζ vectors usually being sufficient. The fluc-
tuation in the monolayer and bilayer is similar; Nζ ≈ 200 is 
sufficient for the band gaps of the largest systems studied to a 
statistical error of 25 meV.

Next, we turn to convergence with respect to simulation 
cell sizes. In the ground-state KS DFT calculations, even small 
supercells (with  ∼100 atoms) yield converged total energies 
and eigenvalues. However, the convergence of the many-body 
calculations is different. The non-locality of the GW self-
energy often requires huge cells to converge the quasiparticle 
energies. In addition, the many-body calculations must be 
carefully converged with respect to vacuum layer thickness. 

Based on tests with larger simulation cells, we estimate that an 
R  =  15a0 Coulomb cutoff (i.e. vacuum layer of 30 a0) leads to 
QP energies cconverged to 1 meV.

In our implementation, the periodic system is treated by a 
supercell that has to be larger than the characteristic electron–
electron correlation length. This real-space supercell approach 
is equivalent to the Brillouin-zone sampling using a regular 
mesh of k points. For systems with strong screening, such as 
3D periodic semiconductors, the convergence with the system 
size is usually rapid [35, 37]. In free-standing 2D semicon-
ductors, the electron–electron interaction is screened much 
less (particularly in the direction perpendicular to the surface) 
[12, 67–70]. Hence, the characteristic distance of electron–
electron interactions (and the simulation cell dimensions) are 
longer in 2D than in 3D systems.

For monolayer phosphorene, extremely large supercells 
are needed. We considered seven systems with sizes up to 
1280 atoms. The values of the QP band gaps (figure 2) change 
approximately linearly with the inverse of a characteristic 
length L =

√
Nx · a× Ny · b, where a and b are the lattice 

parameters and Nx and Ny  are the number of cells in a super-
cell along the x and y  directions. Nx and Ny  were chosen to 
make the supercells approximately square. However, even 
the largest monolayer system with Nx × Ny = 20× 16 is not 
converged, as illustrated in figure 2. By linear extrapolation, 
we estimate that Eg ≈ 2.07± 0.03 eV for L → ∞. This value 
is in excellent agreement with the previous G0W0 estimates, 
which range between 2.0 and 2.1 eV [9, 71].

The convergence for bilayer phosphorene is much faster. 
We consider six systems with up to 2560 atoms. Their fun-
damental band gaps (figure 2) start to converge for super-
cells larger than 10× 8 unit cells. For Nx × Ny = 16× 12 
and 20× 16, the band gaps are almost identical: 1.26± 0.05 
and 1.28± 0.04. By fitting a simple power function (shown 
by a dashed line in figure 2), we obtain an extrapolated value 
of 1.31± 0.03 eV. These results are in excellent agreement 
with the previous G0W0 calculations, which reported values 
between 1.22 and 1.32 eV [9, 12].

Figure 2.  Convergence of the QP band gap with respect to 
the inverse characteristic length of the monolayer and bilayer 
supercells. Error bars represent the statistical error due to stochastic 
implementation. The vertical-axis brackets represent literature 
values for the monolayer and bilayer (see table 1).
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Finally, we test the convergence of Eg for a twisted bilayer 
phosphorene with θ ≈ 8.0◦, which is commensurate with the 
10× 5 bilayer supercell. Here, the band edge states are local-
ized (discussed below) and the stochastic fluctuations increase 
by  ∼30%. For the 8.0° twisted cell (as for all twisted systems 
considered in the rest of this paper), Nζ = 400 is sufficient 
to converge the gaps to a stochastic uncertainty of �30 meV.

The convergence pattern with the cell size is similar as in 
the bilayer phosphorene. We compared the results for a single 
θ ≈ 8.0◦ unit cell and a 2× 2 supercell (i.e. systems with 404 
and 1616 atoms). The QP gap follows the same convergence 
trend as the bilayer, with a constant difference of  ∼0.36 eV. 
Based on extrapolation for the bilayer, the deviation from an 
L → ∞ limit is  <0.03 eV for the 1616 atoms supercell. The 
size of this error is comparable to the stochastic uncertainty.

To investigate the effect of twist-induced localization (sec-
tion 3.2), we consider a 2× 2 supercell of the 8.0◦ twisted 
bilayer and single unit cells for θ � 5◦. Hence, all the cells 
considered have 1/L < 0.012 a−1

0 , which is near to the 
fully converged limit (based on the Eg extrapolation for the 
bilayer—see figure 2). We estimate the total errors to be  <80 
meV.

3.2.  Quasiparticle energies and twist-induced structural 
changes

A non-zero twisting angle is associated with a Moiré super-
structure characterized by regions with different local stacking 
orders. Optimization with simple force-fields results in bulging 
and corrugation of the bilayer related to the local stacking [24], 
however, our calculation with a state-of-the-art reactive force 
field [72] did not reproduce this result. To avoid potential 
errors due to a particular force-field parametrization, we use 
first principles geometry optimization to study the qualitative 
and quantitative effects of structural relaxation on the band 
edge states. Here, we investigate the θ ≈ 8.0◦ system, which 
has a unit cell small enough that the first-principles geometry 
optimization can be performed (as detailed in section 2.1).

We start from a planar structure based on the 0◦-bilayer 
geometry. After optimization, the average interlayer distance 
d̄  is increased by 6% to d̄ = 3.48 Å . Large deviations from 
d̄  are observed in the AA’ and AB stacking regions (figure 
1), which correspond to arrangements with the shortest and 
largest separation of phosphorus atoms in each layer. After the 
relaxation, the atoms are displaced mostly along the z-axis, 
illustrated in figure 3.

The valence band maximum (VBM) and conduction band 
minimum (CBM) states are shown in figure 4 for the relaxed 
structure. The band edge states are strongly confined along 
the x-axis and reflect the topography of the relaxed bilayer 
surface: the VBM state is localized along the line connecting 
AA–AB regions, while the CBM state connects the AA’–AB’ 
areas (figure 1). Besides their spatial distribution, the two 
states qualitatively differ by the presence/absence of the hori-
zontal nodal plane between the top and bottom phosphorene 
layer. The VBM and CBM states are distinctly affected by the 
variation of the average interlayer distance (d̄). The CBM state 

is preferentially localized in the interlayer area and, hence, it 
depends on d̄  more as discussed below.

The G0W0 QP gap of the fully relaxed twisted bilayer is 
1.00± 0.03 eV, i.e. 27% smaller than in the 0◦-bilayer (see 
table 1 and section 3.1). Two effects are responsible for the 
changes in Eg: First, the finite θ-angle leads to state locali-
zation. The spatial distribution of the VBM and CBM states 
is affected by the twisting angle, but it is insensitive to the 
presence of bulging and corrugation. Second, d̄  increases and 
opens the band gap. We compared two planar twisted bilayers 
with d̄ = 3.29 Å  and 3.48 Å  and found that their band gaps 
were 0.78± 0.03 and 0.91± 0.03 eV. The smaller gap cor-
responds to the interlayer distance in relaxed 0◦-bilayer. We 
conclude that the presence of localized Moiré impurity states 
together with increased d̄  are the primary causes of band gap 
changes.

The remaining difference between the gaps of the fully 
relaxed (1.00± 0.03 eV) and the planar system (0.91± 0.03 
eV) is due to bulging and corrugation in the AA’ and AB’ 
stacking region (figure 1) and slight variations in lattice 
parameters. The largest interlayer distance is 3.72 Å , which 
corresponds to the AA’ stacking region (see figure 1). Since 
the CBM state is localized between the two monolayers (figure 
4), it is sensitive to the interlayer distance variation. Indeed, 
if the d̄  of a planar twisted bilayer is increased to 3.72 Å , the 
band gap increases to 1.04± 0.02 eV. In contrast, the valence 
impurity energy does not change with d̄  increase. Hence, the 
result for enlarged d̄  is in excellent agreement with the fully 
relaxed system despite the absence of bulging and corruga-
tion. The remaining small difference (∼0.04 eV) is primarily 

Figure 3.  Structure of the relaxed θ ≈ 8◦ unit cell is shown along 
the z-direction; the underlying coloring3 depicts the local difference 
from the average interlayer distance d̄ = 3.48 Å . The interlayer 
distances within each stacking configuration are provided in  
table A1.

3 The mesh was made with a 1000× 1000 rectangular grid with the value of 
each grid space interpolated by an average of the input data weighted by the 
inverse fourth power of its distance to the grid space.
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due to the increased lattice parameters of the relaxed twisted 
bilayer: a changes by ≈0.3% and b by ≈0.9%.

Finally, we note that the presence of corrugation lifts 
degeneracy of occupied states. In planar twisted bilayer, the 
VBM is doubly degenerate (energy splitting is  <0.02 eV); the 

two states connect the AA–AB and AA’–AB’ areas (figure 4). 
The VBM state degeneracy is not present in the underlying 
DFT band structure, i.e. it is a result of the many-body treat-
ment. Hence, corrugation and local distortions affect state 
ordering, but do not represent significant contributions to Eg.

Figure 4.  The left and right columns show the isosurfaces of the band edge states viewed along the z and x directions. The yellow and blue 
colors denote different wave-function phases. All the states are confined along the x-direction. Panel (a) shows the conduction impurity 
states bridging the AA’–AB’ region; it is localized in the interlayer region of the twisted bilayer. Panels (b) and (c) show the isosurfaces of 
the valence impurities which have a nodal plane in the interlayer region. For planar systems the two valence impurities are degenerate in 
energy.

Table 1.  Table of results for all of the systems considered. ε̄  is the average of relative strains in the x and y  direction between the top and 
bottom monolayers. Experimental and theoretical values of Eg are given in the reference column with appropriate references in square 
brackets. All systems considered are planar besides monolayer and bilayer, which are fully relaxed.

Eg (eV)

ε̄ a× b (Å) PBE G0W0 ∆̄GW0 Reference

monolayer 0% 3.310× 4.636 0.94 2.07a ± 0.03 2.21a ± 0.03 2.0–2.08 [9, 12, 71]
bilayer 0% 3.300× 4.638 0.62 1.32a ± 0.02 1.37a ± 0.03 1.22–1.32 [9, 12]

θ = 8.0◦ 0.98% 33.00× 23.19 0.37 0.91b ± 0.03 0.96b ± 0.03

θ = 5.0◦ 0.39% 52.80× 37.10 0.32 0.79± 0.02 0.82± 0.02
θ = 3.8◦ 0.22% 69.30× 51.02 0.28 0.83± 0.02 0.86± 0.02
θ = 3.1◦ 0.15% 85.80× 60.29 0.26 0.90± 0.03 0.98± 0.03

a Estimated from interpolation shown in figure 2
b Calculations based on 2× 2 supercell with dimensions 66.00× 46.38 Å .
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In the rest of this study, we consider only changes that stem 
purely from the twist-induced localization of QP states, i.e. the 
changes due to a small angle θ. All the structures are planar 
and constructed with d̄ = 3.48 Å  (i.e. the d̄  of the relaxed 
8.0◦-degree bilayer). In all structures studied, a small strain 
(<1%, see table 1) is present due to the mismatch between the 
upper and lower monolayers.

3.3.  Evolution of Moiré impurity states

We now turn to the investigation of QP states in bilayers 
with decreasing twisting angle. The largest system investi-
gated contains 2708 atoms (corresponding to 13 540 valence 
electrons) and has a twist angle of θ ≈ 3.1◦. Note that con-
ventional many-body calculations scale too steeply with the 
number of electrons and, hence, cannot be applied to such 
large systems. As shown in section 3.2 and in figures 4 and 5, 
twisting leads to strong localization of the band edge states. 
Although a twisted structure has regions with characteristic 
stacking order (figure 1), it is not meaningful to explore 
stacking patterns independently. Rather, the twisted structure 
has to be considered as a whole.

In order to investigate the behavior of the band edge states, 
we first inspect the energy-momentum characteristics of the 
eigenvectors φ. The projector-based energy-momentum anal-
ysis (PEMA) is equivalent to the band unfolding for supercells 
constructed from ideally periodic unit cells [41–44]. We apply 
band unfolding to the twisted bilayer cell by projection onto 

the Brillouin zone of a single unit cell of a 0◦-bilayer (detailed 
below). Note that this approach is fundamentally different 
from plotting the band structure within a Brillouin zone of 
the twisted cell [24], which obfuscates the distinction between 
localized states and regular bands.

To perform the PEMA, eigenstates are transformed from 
a real-space grid to the k-space. Hence, φj is represented by a 
plane wave expansion:

|φj〉 =
∑
G

Cj(G)eiG·r,� (9)

where G represents the reciprocal lattice vectors of the 
supercell. Note our use of real-space grid and supercells is 
equivalent to Γ point sampling of the Brillouin zone. The 
band structure unfolding starts with computing an expectation 
value [41–44]:

Pj(k) ≡
∑
n

|〈φj|k, n〉|2 ,� (10)

where |k, n〉〈k, n| is a projector on a k-dependent state in the 
first Brillouin zone of a single unit cell. Here, k is a vector in 
the reciprocal space and n is the band index. In the plane wave 
representation, the expectation value is computed directly 
from the Fourier components in equation (9):

Pj(k) =
∑
g

|Cj(g+ k)|2 ,� (11)

Figure 5.  The VBM (left) and CBM (right) wave-function isosurfaces along the z-axis for each of the twisted phosphorene bilayer. The 
blue and yellow colors denote wave-function phase. All orbitals are highly localized in the x-direction. The VBM states bridge the AA–AB 
stacking regions, whereas the CBM states bridge the AA’-AB’ stacking regions. As the twisting angle gets smaller, the unit cell increases 
and the impurity states become more separated.
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where g is the reciprocal lattice vectors of a single unit cell. 
Finally, the band structure is plotted as a function of k and QP 
energy of the j th state.

For perfectly periodic systems, Pj(k) is composed of 
δ-functions and is fully equivalent to the band structure com-
puted using conventional k point sampling. This is illustrated 
for the ground state KS DFT results in appendix B. Figure 6 
shows the ∆̄GW0 band structure of the 0◦-bilayer unfolded 
along the Y → Γ and Γ → X directions in the Brillouin zone 
of a single unit cell. The occupied and unoccupied states are 
shifted in energy to reproduce the QP band gap. The zero 
energy is defined as the maximum at k = 0 that has the 
highest energy in the occupied subspace. For the 0◦-bilayer, 
we see that the maxima in Pj(k) form valence and conduction 
bands. Slight numerical noise leads to partial smearing of the 
bands; nevertheless, the band structure is clearly visible.

With the exception of the 2× 2 supercell for the θ ≈ 8.0◦ 
system, we investigate merely single twisted unit cells 
(shown in figure  5). Hence, the electronic states cannot be 
unfolded in the strict sense. However, it is possible to per-
form a momentum analysis using equations (9) and (11) with 
g-vectors of a bilayer unit cell with θ = 0◦. Figure 6 shows 
the energy-momentum plots for θ ≈ 8.0◦, 5.0◦, and 3.1◦. The 
energies of the bands are provided along the same k-vector 
path as for the bilayer. However, the horizontal axis is labeled 
as Ỹ , Γ̃, and X̃  since the special k-points do not represent the 
critical points of the true Brillouin zone.

In figure  6, we see that twisting causes energy splitting. 
Nevertheless, it is possible to observe individual valence 
bands for energies  <−1.5 eV below the band edge. The deep 

valence states are localized mainly on individual monolayers, 
and they are thus less sensitive to twisting compared the states 
near the VBM. Still, large twisting angles lead to bandwidth 
reduction of all valence states. The arrangement of individual 
monolayers becomes more coherent for small θ; the areas of 
individual stacking regions increase, and the average strain in 
the upper layer decreases (see table 1). As a result, the plot of 
θ ≈ 3.1◦ system is close to the band structure of a 0◦-bilayer.

More importantly, figure 6 captures the twist-induced local-
ization. The Moiré impurity states appear in the gray-shaded 
area with minimal energy dispersion. Two valence impurities 
(see figure 4) have no intensity at k = 0. Hence, they appear 
just above the zero energy. Furthermore, they are separated 
from the valence region by an energy gap that decreases from 
0.19± 0.03 to 0.06± 0.03 eV for angles between 8.0◦ and 
3.1◦. In contrast, the conduction states are dragged to lower 
energies for small θ; the empty Moiré impurity states are thus 
energetically close to the rest of the unoccupied states.

In table 1, we list the KS DFT eigenvalue gaps, and the 
QP gaps as predicted by G0W0 and by partially self-consistent 
∆̄GW0 approaches. While KS DFT predicts that Eg decreases 
monotonically with θ, the many-body methods show a dif-
ferent scenario. For the angles between 5.0◦ and 3.1◦ the band 
gap rises by  ∼0.16 eV, which is eight times higher than the 
stochastic uncertainty and roughly twice as big as the esti-
mated error due to the supercell size convergence discussed 
in section 3.1.

The differences between the mean-field DFT and the GW 
results stem from the treatment of electron–electron interac-
tions. In DFT, the xc term is represented by a local potential, 

Figure 6.  The QP band structures are computed by the PEMA discussed in section 3.3. Individual panels show the energy-momentum plots 
for various twisting angles θ along the Y → Γ → X path of the Brillouin zone of a 0◦-bilayer. The zero energy is defined as the maximum 
at k = 0 that has the highest energy in the occupied subspace. The point size is proportional to logP(k) (see equation (9)). The paths in the 
Brillouin zones of the twisted cells sample corresponding k-vectors, but they are labeled Ỹ , Γ̃, and X̃  as they do not correspond to the true 
critical points.
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which changes only negligibly (it decreases linearly with θ 
with a slope of  ∼0.01 eV/°). The KS eigenvalue response is 
governed by the changes from the external and Hartree terms. 
Together, the two electrostatic potentials tend to destabilize 
the occupied states and lead to band gap closing.

In the many-body calculations, the changes in the Hartree 
and external potentials are compensated by the non-local 
self-energy. For the valence impurity state, Σ is dominated 
by exchange interaction that grows more negative with 
orbital localization. For the valence impurities, the stabilizing 
exchange term is roughly 80-100 times larger than the polari-
zation contribution, which shifts QP energies up. Since the 
valence Moiré states become more localized with decreasing 
θ, their energy decreases as they are governed by Σx.

The conduction states behave differently because the 
exchange interaction is much weaker for unoccupied states. 
Furthermore, the Σx expectation value is diminished in bilayer 
phosphorene due to small orbital overlaps in equation (7). This 
is related to the distinct spatial distribution of the occupied 
and unoccupied states: the conduction impurity orbital is pre-
dominantly located in the interlayer region, while the occu-
pied states spread over the monolayers (figure 4). In contrast 
to the valence states, the polarization self-energy is as large 
as the exchange term (due to enhanced polarizability term in 
equation (8)), and it shifts the QP energies down. States with 
a high orbital density in the interlayer region are strongly cou-
pled to polarization modes, which are also responsible for the 
van der Waals bonding. Dynamical and non-local ΣP captures 
such effects in the QP energies (unlike the underlying KS 
DFT). In general, we observe stabilization of the conduction 
states through the polarization term, i.e. the empty states are 
shifted to lower energies as seen in figure 6 for θ ≈ 5.0◦.

The band gap variation in the twisted bilayer is thus gov-
erned by the interplay of non-local electron–electron interac-
tions, which distinctly affect occupied and unoccupied Moiré 
impurities. The valence states are stabilized by the exchange 
interaction. In contrast, the conduction states are subject to a 
competition of exchange and polarization effects which have 
similar strength but shift the QP energies in opposite direc-
tions. The interplay between exchange and polarization inter-
actions is common for all van der Waals (hetero)structures. 
Hence, we expect that the same scenario applies to a wide 
class of systems, in which the non-local many-body effects 
may be tuned by variable twisting angle.

4.  Conclusions

In this work, we investigate the QP energies of the Moiré 
impurity states in twisted bilayer phosphorene using many-
body perturbation theory. To perform such calculations, 
we implement stochastic GW approach for systems with 
2D-periodicity. Similar to 3D solids, the stochastic fluc-
tuations converge faster for large systems. The comparison 
between 0◦ and twisted bilayers reveals that the stochastic 
error is increased by  ∼30% due to a twist-induced localization. 

Hence, the convergence of the stochastic error is slower and 
around twice as many random vectors are needed. The cur
rent stochastic formulation for 2D systems allows treatment 
of supercells with thousands of atoms. We demonstrate these 
capabilities on twisted bilayer phosphorene systems with up 
to 2708 phosphorus atoms, i.e. with 13 540 valence electrons. 
This implementation of stochastic GW is applicable to any 
2D system, and it provides a powerful tool to study Moiré 
impurities.

The structures of twisted bilayer phosphorene are char-
acterized by areas with distinct stacking order, which causes 
variation in the local geometry. The fully relaxed structures 
are corrugated, and the interlayer distance is not uniform. 
The conduction impurity states are more strongly affected by 
relaxation because they are localized mostly in the interlayer 
region. However, corrugation leads to relatively small changes 
in the QP energies compared to the effect of bare twisting. 
We thus focus on QPs in planar bilayers induced purely by 
changes in the twisting angle θ.

To investigate the twist-induced in-gap states, we employ 
a projector-based energy-momentum analysis method which 
clearly illustrates the formation of strongly localized orbitals. 
Both valence and conduction impurities appear above/below 
the band edge energies of a 0◦-bilayer. The occupied Moiré 
impurities are well-separated from the rest of the valence 
bands, but this separation decreases with small θ. The unoc-
cupied impurities are close to the conduction bands, which are 
pushed to lower energies with the decreasing twisting angle.

The behavior of the Moiré states and the size of the band 
gap are governed by an interplay between local (ionic and 
Hartree) and non-local (electron–electron) interactions. Twist-
induced localization affects the valence and conduction states 
distinctly. The former is stabilized by electron localization, 
while the dynamical correlation strongly influences the latter.

Twisting thus introduces a unique way to modify the 
electron–electron interactions with high precision. Twisted 
phosphorene bilayers represent one class of 2D system 
with Moiré states, but the described mechanism of impurity 
energy (de)stabilization is general and applicable to other 
low-dimensional van der Waals (hetero)structures.
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