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A B S T R A C T

Poor sleep in college students compromises the memory consolidation processes necessary to retain course
materials. A solution may lie in targeting reactivation of memories during sleep (TMR). Fifty undergraduate
students completed a college-level microeconomics lecture (mathematics-based) while listening to distinctive
classical music (Chopin, Beethoven, and Vivaldi). After they fell asleep, we re-played the classical music songs
(TMR) or a control noise during slow wave sleep. Relative to the control condition, the TMR condition showed an
18% improvement for knowledge transfer items that measured concept integration (d = 0.63), increasing the
probability of “passing” the test with a grade of 70 or above (OR = 4.68, 95%CI: 1.21, 18.04). The benefits of
TMR did not extend to a 9-month follow-up test when performance dropped to floor levels, demonstrating that
long-term-forgetting curves are largely resistant to experimentally-consolidated memories. Spectral analyses
revealed greater frontal theta activity during slow wave sleep in the TMR condition than the control condition
(d= 0.87), and greater frontal theta activity across conditions was associated with protection against long-term-
forgetting at the next-day and 9-month follow-up tests (rs = 0.42), at least in female students. Thus, students can
leverage instrumental music—which they already commonly pair with studying—to help prepare for academic
tests, an approach that may promote course success and persistence.

1. Introduction

The pervasiveness of poor sleep in students is well chronicled. Sixty
percent of college students are habitually poor sleepers, and students
sleep fewer than the recommended 7 h on 50–65% of nights
(Hirshkowitz et al., 2015; Lund, Reider, Whiting, & Prichard, 2010;
Scullin, 2019). Such statistics should be of wide concern to students,
teachers, and administrators because insufficient sleep compromises
immune functioning, exacerbates stress reactivity, and impairs nu-
merous cognitive functions. Without sleep, students suffer from im-
pairments to attention (Doran, Van Dongen, & Dinges, 2001), creativity
(King, Daunis, Tami, & Scullin, 2017), and memory consolidation
(Rasch & Born, 2013).

Sleep restriction is detrimental to people of all demographic groups.
However, there is longstanding evidence that women are more likely to
suffer from insomnia than men (Zhang & Wing, 2006). More im-
portantly, there is emerging evidence that females are more vulnerable

than males to the consequences of sleep loss (Goldstein-Piekarski et al.,
2018; Gao, Terlizzese, & Scullin, 2019; Prather, Epel, Cohen, Neylan, &
Whooley, 2013; but see Okano, Kaczmarzyk, Dave, Gabrieli, &
Grossman, 2019). In rats, 72 h of paradoxical sleep deprivation sig-
nificantly impaired spatial learning and short-term memory in female
rats, but not male rats (Hajali, Sheibani, Esmaeili-Mahani, & Shabani,
2012). In humans, Rångtell et al. (2019) found that one night of total
sleep deprivation impaired working memory performance in women,
but not in men. Gender-related sleep disparities are particularly pro-
vocative when considered within the broader educational context of
achievement gaps for females in science, technology, engineering, and
mathematics (STEM) disciplines (especially prevalent in mathematics-
based disciplines; Ballard & Johnson, 2005; Fryer & Levitt, 2010).

To combat sleep-loss-related cognitive impairments for all students,
some educators have implemented sleep education programs (Hershner
& O'Brien, 2018). Unfortunately, education programs tend to only im-
pact students’ knowledge/awareness of sleep, rather than motivate
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them to change their sleep habits/behaviors (van Rijn et al., 2019; Wing
et al., 2015). Another approach is to take a system-wide effort to delay
school start times (e.g., Wahlstrom, 2000). Doing so improves sleep
duration and academic outcomes, but system-wide changes are often
resisted by politicians, administrators, and other stakeholders
(American Academy of Pediatrics Adolescent Sleep Working Group,
2014). A third approach is to incentivize individual students to go to
bed earlier (Scullin, 2019), but this approach is also limited because
sleeping longer does not necessarily change sleep microarchitecture or
increase the probability that classroom/textbook memories will be
consolidated.

A cross-disciplinary challenge for educational, cognitive, and sleep
sciences is to devise methods that increase sleep-dependent memory
consolidation of educational concepts in students. Declarative mem-
ories, such as those learned in the classroom, are theorized to initially
be encoded into a temporary store in the hippocampus (Born &
Wilhelm, 2012), and during slow-wave sleep (SWS), the memories are
reactivated and redistributed to more permanent stores in the neocortex
(for an alternative view, see Yonelinas, Ranganath, Ekstrom, & Wiltgen,
2019). Critically, memory consolidation is theorized to be a selective
process (Cairney, Durrant, Hulleman, & Lewis, 2014; Saletin, Goldstein,
& Walker, 2011). Only the daily experiences that are perceived as most
important, emotionally-salient, or future-relevant are those that are
spontaneously reactivated and consolidated (Bennion, Payne, &
Kensinger, 2015). Therein lies the problem for students. Though edu-
cators might perceive that classroom learning is highly important,
classroom/textbook memories compete against everyday social, en-
tertainment, and extracurricular memories.

A potential solution is to bias which daily experiences an individual
consolidates during SWS via targeted memory reactivation (TMR;
Rudoy, Voss, Westerberg, & Paller, 2009). In a seminal experiment,
Rasch, Büchel, Gais, and Born (2007) had participants learn spatial card
locations while smelling a rose odor. Subsequently, researchers pre-
sented the same odor (or control) during SWS, rapid eye movement
(REM) sleep, or wakefulness prior to testing memory again the next
day. Only odor re-exposure during SWS significantly improved memory
consolidation. This TMR finding has now been replicated in more than
30 published studies (for review, see Schouten, Pereira, Tops, &
Louzada, 2017), most commonly using laboratory-based learning ma-
terials (e.g., cat picture location) paired with discrete sound auditory
stimuli (e.g., cat’s meow). Such experiments have been useful in iden-
tifying that TMR can trigger changes in SWS theta power, spindles, or
slow oscillations en route to enhancing retention (Cellini & Capuozzo,
2018; Schreiner & Rasch, 2014).

Despite TMR’s robustness in the laboratory, there are three issues
that currently limit its translational value to addressing educational
challenges. The first issue is that student success in higher education is
often determined by conceptual learning and integration. Such learning
processes are not well-captured by the research tradition of having
participants learn word lists, images, or spatial locations. This distinc-
tion between rote learning and conceptual learning is quite critical, as
underscored by recent findings in the “testing effect” literature
(Karpicke & Roediger, 2008). The testing effect literature has shown
that retrieving a memory while awake reliably improves rote learning
(item memory), but that simple memory retrieval while awake does not
normally benefit conceptual learning or integration (Miyatsu, Nguyen,
& McDaniel, 2018; Pan & Rickard, 2018). Thus, if TMR is simply and
only reactivating item memories, then it should not benefit conceptual
learning.

A second issue for translating TMR from the laboratory to educa-
tional settings is that most students study in dormitory or library set-
tings. In such settings, it is doubtful that most students would attempt to
pair their studying with odors or to attempt to match exact study
content to exact discrete sounds. A more translatable approach would
be to capitalize on existing habits of listening to music while studying, a
“sensory-study pairing” habit shared by more than half of college

students (Danhauer et al., 2009). Listening to lyrical music might im-
pede studying, but empirical work shows that listening to instrumental
classical music does not harm encoding (Jäncke, Brügger, Brummer,
Scherrer, & Alahmadi, 2014) or affect nighttime sleep (Harmat, Takács,
& Bodizs, 2008). Thus, if instrumental music can be demonstrated as an
effective TMR tool, then instrumental music would be an optimal
candidate for broadly implementing TMR into educational settings.

A third issue for understanding TMR’s translational value concerns
whether TMR effects are acute or sustained. Whereas most students are
primarily concerned with strategies that immediately enhance perfor-
mance (i.e. acute effects; Miyatsu et al., 2018), most educators are in-
terested in techniques that prevent the steep forgetting rates that occur
across a semester or academic year (i.e. sustained effects; Conway,
Cohen, & Stanhope, 1991; Ebbinghaus, 1885). TMR studies generally
only test memory the next morning (a few studies used a 1-week delay;
e.g., Hu et al., 2015). Thus, there is a need for data on whether TMR
buffers against typical long-term-forgetting curves, or conversely, if
TMR should only be applied the night before select tests.

The current work was a double-blind, placebo-controlled study in
which college students took a virtual lecture on microeconomics while
listening to classical music. Later that night, when participants entered
stable SWS, they were re-exposed to the classical music (or a white
noise control). The next morning, as well as approximately 9-months
later (akin to the length of one academic year), participants took a
microeconomics test that included concepts they were explicitly trained
to solve as well as problems that required novel conceptual integration
(hereafter, knowledge transfer).

One remaining note is that the current study considered gender
differences in TMR, as motivated by two literatures. First, a recent
meta-analysis found divergent trends of the benefits of TMR across
males and females (Hu, Cheng, Chiu, & Paller, 2020). Second, research
at the intersection of music arts and brain sciences (Cheever et al.,
2018) has indicated that females process music more efficiently than
males, with better association and recognition of familiar music
(Fancourt, Burton, & Williamon, 2016; Feizpour, Parkington, &
Mansouri, 2018; Koelsch, Maess, Grossmann, & Friederici, 2003; Miles,
Miranda, & Ullman, 2016). Musical cues might therefore be especially
strong retrieval cues for females. Based on these literatures, we sup-
plemented our primary analyses with gender-stratified analyses to in-
vestigate whether classical-music TMR affected males and females si-
milarly.

2. Materials and methods

2.1. Participants

Fifty college students between the ages of 18 and 33 (Mage = 21.16,
SDage = 2.77, 70% female) were recruited via campus flyers to com-
plete a two-night study protocol consisting of educational tasks and
polysomnography procedures. Participants were not eligible if they had
taken a college-level Economics course, had a history of psychiatric,
neurological, or sleep disorders, or were younger than 18 years old. The
Baylor University Institutional Review Board approved this study and
all participants provided written informed consent.

2.2. Material and measurements

2.2.1. Educational materials
The educational learning task resembled course material from an

undergraduate microeconomics class, with the virtual lecture being
developed based on topics from a leading undergraduate textbook
(Baumol & Blinder, 2007). During the learning phase, participants na-
vigated through a self-paced, computer-based interactive lecture for up
to 30 min. The lecture included a section on supply and a section on
demand in a counterbalanced order. As participants navigated through
the lecture, they learned to identify and calculate changes in supply or
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demand in a given scenario, followed by 6 practice questions (Gao
et al., 2019).

During the initial testing phase, participants completed a micro-
economics test with 18 trained questions (9 supply and 9 demand) and
9 knowledge-transfer questions. The 18 supply/demand questions were
similar to lecture example questions where participants needed to shift
only the supply curve or only the demand curve to calculate the correct
answer. The 9 knowledge-transfer questions required integration of
supply and demand concepts, which was not explicitly taught in the
lecture. Participants needed to shift both the supply curve and the de-
mand curve and identify that the correct answer was the intersection of
the two curves. All questions on the test were open-ended questions
scored using a rubric.

To evaluate metacognition (i.e., self-awareness of learning), parti-
cipants reported from 0% to 100% their predictions for learning (start
of lecture sections) and postdictions for learning (conclusion of supply
and demand sections). They repeated these prediction and postdiction
estimates before and after taking the next-day test and the follow-up
test. Table S1 summarizes the meta-cognitive assessment outcomes,
which were consistent in pattern with the objective test outcomes.

2.2.2. Questionnaires
Participants kept a sleep diary for a week prior to the first session

(Carney et al., 2012). During the study, participants completed ques-
tionnaires and intelligence scales. Questionnaires and tests that were
relevant to sleep and cognitive functioning included the Pittsburgh
Sleep Quality Index (Buysse, Reynolds, Monk, Berman, & Kupfer,
1989), Epworth Sleepiness Scale (Johns, 1991), Morningness-Evening-
ness Questionnaire (Horne & Östberg, 1976), a vocabulary test, and the
Raven’s Advanced Progressive Matrices test (Raven, 1938). Participant
responses are summarized in Table 1.

2.2.3. Polysomnography
We used the Grass Comet XL Plus system to objectively record sleep

in a sound-attenuated sleep laboratory. For the experimental night, we
recorded sleep from F3, F4, FZ, C3, C4, CZ, P3, P4, PZ, T3, T4, T5, T6,
O1, O2, and OZ sites (200 Hz), left and right EOG, mentalis EMG,
forehead cerebral oximetry, and fingertip pulse oximetry. A certified
polysomnography technician scored the sleep stages in 30 s epochs, and
according to AASM guidelines (Iber, Ancoli-Israel, Chesson, & Quan,
2007).

2.2.4. Spectral power analysis
Spectral analysis characterizes the power of EEG waves and has

been used to investigate the mechanisms of TMR (Schouten et al.,
2017). We used BrainVision Analyzer 2.0 software to conduct spectral
analyses. First, trained research personnel visually inspected each
epoch and excluded epochs containing artifacts. Second, we filtered
EEG data with high- and low-pass cutoffs of 0.3 Hz and 35 Hz. We then
modified the sampling rate to 128 Hz. Next, we segmented each epoch
into four-second segments with 50% overlap. We applied a symmetric
Hanning window and performed Fast Fourier Transformation with
0.25 Hz resolution. Last, we computed spectral power values for each
sleep stage for the relevant frequency ranges: 0.5–1 Hz for slow oscil-
lation; 1–4 Hz for delta; 4–8 Hz for theta; 8–12 Hz for alpha; 12–16 Hz
for sigma; and 16–32 Hz for beta. We analyzed spectral power in the
slow oscillation, delta, and theta bands averaged across all frontal sites
during SWS, averaged across all sites during SWS, and averaged across
all sites during all sleep epochs. For visual comparison across groups,
we normalized power across the whole night within each frequency
band to highlight the relative spatial power distribution across the
head.

2.2.5. Spindle detection
Using Matlab 9.0, we implemented a previously-validated, wavelet-

based algorithm shown to have high agreement with expert visual
identification (Wamsley et al., 2012; Warby et al., 2014). First, we
modified the sampling rate to 100 Hz. Second, we performed a time–-
frequency transformation on the EEG data using Morlet wavelet. Third,
we classified spindles as EEG events that occurred in the 10–16 Hz
frequency range, that exceeded 4.5 times the mean amplitude of all
artifact-free epochs, and that lasted between 300 and 3000 ms (Scullin
et al., 2019).

2.3. Procedure

Participants completed an overnight polysomnography-adaptation
visit prior to returning for the experimental night. During the experi-
mental night, research personnel set the laboratory environment
brightness to 45 lx to simulate evening studying with a desk lamp. The
room temperature was set to 68 degrees Fahrenheit (20 degrees
Celsius), with blankets provided as needed. Participants arrived at ap-
proximately 8:45 pm. Both TMR and control condition participants
completed the economics virtual lecture while listening to background
classical music played from the computer. The music was played to all
participants in loop at 40 dB, which is the volume equivalent of soft
background noise in a library setting. Decibel level was confirmed each
evening prior to participant arrival using an Extech 407735 Digital

Table 1
Demographic Characteristics and Learning Outcomes.

TMR (n = 19) Control (n = 22) Comparison between TMR and control groups (p-value)

Age 20.89 (2.18) 21.05 (2.08) 0.82
Gender (female) 68.42% 77.27% 0.52
Race/Ethnicity (White) 63.16% 63.64% 0.98
Participants with music experience 73.68% 81.82% 0.75
Fluid intelligence (RAPM) (%) 65.12 (14.36) 59.85 (12.36) 0.22
Lecture Duration (min) 16.18 (3.99) 17.80 (5.79) 0.31
Vocabulary test (%) 72.89 (8.22) 70.45 (9.69) 0.40
MEQ score 47.05 (10.53) 49.32 (6.43) 0.42
PSQI 5.22 (2.44) 6.61 (2.69) 0.10
ESS 9.53 (4.64) 10.14 (3.71) 0.64
Sleep diary total sleep time (min) 426.20 (44.44) 443.71 (56.68) 0.30
Habitual bedtime (PSQI) 11:42 pm 11:31 pm 0.56
Difference between habitual bedtime and experimental night bedtime (min) 87.05 (56.23) 70.82 (55.70) 0.37
Completed the 9-month follow-up session 63.16% 68.18% 0.74

Note. Data presented as percentage or mean (standard deviation).
RAPM = Raven’s Advanced Progressive Matrices.
MEQ = Morningness-Eveningness Questionnaire.
PSQI = Pittsburgh Sleep Quality Index.
ESS = Epworth Sleepiness Scale.
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Sound Meter.
The classical music consisted of three pieces: Moonlight Sonata 1st

movement (duration: 6:04; Beethoven, 1802), Spring movement 1: Al-
legro (duration: 3:13; Vivaldi, 1725), and Nocturne in E-Flat Major,
Op.9, No.2 (duration: 4:28; Chopin, 2005). These pieces were selected
for their distinctive melodies, because previous TMR work found that
sensory stimuli must be distinctive to become associated with learning
materials (cf. ocean wave sensory stimuli; Donohue & Spencer, 2011).
Using Audacity software (version 2.1.3; https://audacityteam.org/), we
digitally smoothed the volume and applied fade-in and fade-out to each
song to remove sudden volume fluctuations (Sanchez & Bootzin, 1985).
Music and economics learning materials are publicly available at
https://osf.io/ems7z/. After completing the lecture, trained personnel
applied polysomnography (PSG) electrodes while participants com-
pleted questionnaires. Lights out was at approximately 10:30 pm.

To minimize expectation effects and other potential sources of bias,
the participants and experimenters were masked to the experimental
conditions. Condition assignments were determined via blocked ran-
domization methodology (block sizes of 2 and 4). Once participants
reached their first bout of stable slow wave sleep, the overnight tech-
nician opened a sealed envelope to determine whether to play the
classical music or white noise (matched in decibel level). Classical
music or white noise was played through speakers at the bedside (Bose
Companion 2 Series III). The overnight technician was not involved in
administering any lecture or test materials.

Each classical music piece was played once (total dura-
tion = 13.75 min); and white noise was played to the control group for
the same duration. If a participant showed an EEG arousal, the tech-
nician paused the music/white noise until after the participant returned
to stable SWS. Music/white noise started to play 33.81 (SD = 29.66)
minutes after sleep onset in the TMR condition and 34.24 (SD= 31.26)
minutes after sleep onset in the control condition, which did not differ
between conditions, t(39) = 0.05, p = .96. Music/white noise pre-
sentation time also did not differ across males (M = 32.72,
SD = 34.08) and females (M = 34.53, SD = 29.19), t(39) = 0.17,
p = .87.

The next day, lights on was at approximately 7:30 am, with the
exact timing determined by spontaneous awakenings or by waiting
until the participant reached stage 1 sleep. Participants reported whe-
ther they heard any sounds during the night and then started the mi-
croeconomics test at approximately 7:45 am. They were given up to
45 min to complete the test. Approximately nine months after the initial
session (MTMR = 263.58, SDTMR = 84.88 days; MControl = 292.93,
SDControl = 116.37 days; t(25) = 0.73, p = .47), 27 participants
completed a second microeconomics test that included different test
items, but was similar in difficulty and structure (i.e., consisting of 9
supply and 9 demand questions that participants were trained to solve
and 9 knowledge-transfer questions that required application of learned
concepts; all questions were open-ended). Fourteen participants did not

complete the follow-up test because they had enrolled in economics
courses (n = 2), were not available to participate (n = 4), or did not
respond to requests for follow-up (n = 8). The probability of com-
pleting the follow-up session did not differ across TMR and control
conditions (12 TMR participants, χ2(1) = 0.11, p = .74) or across
gender groups (20 female participants, χ2(1) = 0.03, p = .86).

All microeconomics questions were scored independently by two
raters who were blinded to the experimental conditions. Discrepancies
were resolved by discussion between raters. Overall performance was
calculated as the percentage of correctly answered questions.

2.4. Statistical analysis

Participants were excluded from statistical analyses if there was a
protocol deviation (n = 5 had the music/control noise played prema-
turely during light sleep; n = 1 had the speakers turned off during the
initial lecture). Two other participants did not complete the study and
one wrote responses that were ungradable by independent, blinded
experimenters. Exclusions did not differ across conditions
(χ2(1) = 1.22, p = .27).

We conducted statistical analyses using SPSS (version 25) and JASP
(version 0.10.2.0) software. We used Pearson’s correlations to in-
vestigate associations between test performance and only a small group
of sleep variables that were previously implicated in TMR studies
(frontal theta, delta, spindle, and slow oscillation activity; see Cellini &
Capuozzo, 2018). We conducted t-tests and ANOVAs to compare test
performance between the TMR and control conditions, first collapsed
across genders and then stratified by males and females (following the
approach taken by Gao et al., 2019). EEG data were analyzed and
presented in aggregate form (averaged across relevant channels), and
displayed as individual channels for visualization of spatial patterns.
We conducted additional Bayesian analyses to illustrate the effects on
EEG data. Though all TMR effects were hypothesized to occur in one
direction (TMR > Control), we report the statistics as two-tailed tests
with results of p ≤ 0.05 considered to be statistically significant.
Bayesian analyses results with Bayes factors greater than 3 were con-
sidered as moderate evidence that the data favored the alternative
hypothesis (Dienes, 2014; Lee & Wagenmakers, 2014).

3. Results

3.1. Baseline Measures

Table 1 presents the demographic characteristics of the sample. The
TMR and control conditions were similar in age, gender, race/ethnicity,
music-related experience (i.e., instrument playing and choir singing
experience), fluid intelligence, chronotype, sleep quality in the past
month, daytime sleepiness, and total sleep time from the sleep diary (all
ps > 0.05). Table 2 shows that PSG sleep architecture variables and

Table 2
Polysomnography Measures.

TMR (n = 19) Control (n = 22) Comparison between TMR and control groups (p-value)

Stage 1 sleep (min) 25.34 (16.61) 23.29 (14.62) 0.68
Stage 2 sleep (min) 289.11 (37.42) 282.96 (40.99) 0.62
Slow wave sleep (min) 88.53 (27.14) 92.09 (28.50) 0.69
REM sleep (min) 106.32 (31.39) 111.36 (32.42) 0.62
Total sleep time (min) 509.28 (33.97) 509.87 (37.79) 0.96
Sleep latency (min) 11.50 (10.35) 13.86 (12.25) 0.51
Sleep efficiency (%) 92.14 (5.09) 93.02 (5.35) 0.59
WASO (min) 32.66 (26.74) 24.57 (25.75) 0.33
Number of wake epochs when auditory stimuli were presented 1.16 (2.67) 0.14 (0.35) 0.12
Number of arousals when auditory stimuli were presented 2.47 (4.51) 1.09 (1.74) 0.19
Reported hearing sounds at night 36.84% 36.36% 0.98

Note. Data presented as percentage or mean (standard deviation).
WASO = Wake After Sleep Onset.
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reports of hearing sounds during the night did not differ significantly
between TMR and control groups (all ps > 0.10). The TMR and control
groups took equally long to complete the microeconomics lecture (t
(39) = 1.03, p = .31; Table 1), and they showed equal levels of initial
learning on practice questions during the lecture, t(39) = 0.19, p= .85
(Fig. 1a; Creery, Oudiette, Antony, & Paller, 2015). Male and female
students spent similar amounts of time on the lecture (t(39) = 0.70,
p = .49) and showed equal levels of initial learning (t(39) = 0.29,
p = .78).

3.2. Next-day test

At most colleges in the United States, a grade of 70 is considered the
cutoff for passing a test, and thus we used this criterion to define a
passing score, representative of successful learning. As shown in Fig. 1b,
TMR increased the likelihood of “passing” the microeconomics test
(57.89% of participants) relative to the control condition (22.73% of
participants; Odds Ratio = 4.68, 95%CI: 1.21, 18.04, χ2(1) = 5.30,
p = .02). Specifically, this was driven by the TMR group showing
higher performance than the control group on the challenging, in-
tegrative knowledge-transfer questions, by 18.58 percentage points (t
(39) = 2.03, p = .050, d = 0.63; Fig. 1c). Fig. 2a illustrates how the
benefit of TMR on knowledge transfer questions seemed to be more
pronounced in female participants (Fig. 2a; t(28) = 3.05, p = .005,
d = 1.13) than in male participants (t(9) = 0.40, p = .70, d = 0.24),
though the direct comparison across genders was only marginally sig-
nificant, F(1,37) = 3.46, p = .07, partial η2 = 0.09. Performance on
basic/trained questions showed similar patterns but was less sensitive
to condition (t(39) = 1.56, p= .13, d= 0.50; Fig. 2b). By the 9-month
follow-up visit, test performance dropped to floor levels in both the
TMR and control conditions (Fig. 1d: basic/trained questions: t
(25) = 0.27, p = .79, d = 0.10; knowledge-transfer questions: t
(25) = 1.34, p = .20, d = 0.56), with no evidence for a gender by
condition interaction, F(1,23) = 0.18, p = .68, partial η2 = 0.01.

3.3. Spectral analysis results

Table 3 shows that TMR affected sleep microarchitecture. TMR
specifically increased frontal theta activity averaged across SWS epochs
throughout the night, t(39) = 2.67, p= .01, d= 0.87 (the next largest
effect was for spindle density, t(39) = 1.89, p = .07, d = 0.55). To
restrict the potential inflation in family-wise error rates for conducting
multiple null hypothesis significance tests, we complemented our ana-
lyses with Bayesian analyses. Note that because corrections for family-
wise type 1 error rates are adjustments of p-values, and the Bayesian
analytical approach does not depend on this limitation of p-values,
corrections for family-wise type I error rates are unnecessary in Baye-
sian analyses (Bender & Lange, 2001). Table 3 illustrates that Bayesian
analyses yielded similar findings.

Gender stratified analyses indicated similar trends in both gender
groups for theta activity during SWS at frontal sites (Fig. 3a; Females: t
(28) = 1.78, p= .09, d= 0.69; Males: t(9) = 1.99, p= .08, d= 1.14;
Gender by Condition interaction: F(1,37) = 2.07, p = .16, partial
η2 = 0.05). Next, we tested whether frontal theta activity during SWS
predicted test scores, with the scatterplots shown in Fig. 4. Although
frontal theta activity was not associated with levels of learning during
the lecture in females (r(28) = −0.01, p = .95), Fig. 3b shows that
greater frontal theta activity significantly predicted higher performance
on knowledge transfer questions on the next-day test (r(28) = 0.42,
95% CI: 0.07, 0.68, p= .02). We observed a similar effect size at the 9-
month follow-up test, albeit with marginal significance given the
sample size attrition (r(18) = 0.42, 95% CI: −0.02, 0.73, p = .06,
Fig. 4). There were too few male participants to conduct definitive
correlational tests in this subgroup, and therefore we only report the
correlation values for archival purposes (lecture performance: r
(9) = −0.34, p = .30; next-day test: r(9) = −0.01, 95%CI: −0.61,
0.59, p = .98; follow-up test: r(5) = 0.11, 95% CI: −0.70, 0.80,
p = .82; Fisher’s r-to-z-transformation test across the gender groups
showed Z = 1.14, p = .25 for next-day test; Z = 0.61, p = .54 for
follow-up test; Fisher, 1915).

Fig. 1. (a) Performance on lecture
practice questions was not different
between TMR and control groups; (b)
Proportion of participants who passed
the test with a total score ≥70% was
significantly higher in the TMR group;
TMR benefited performance on (c) the
next-day microeconomics test, but per-
formance on (d) the follow-up micro-
economics test dropped to floor levels.
Error bars: standard error. * p ≤ 0.05.
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4. Discussion

This double-blinded TMR study showed that naturalistic sensory
stimuli (classical music) can be leveraged to promote integration of
college-level educational concepts. TMR increased theta activity during
SWS, and greater theta activity across conditions was associated with
better subsequent test performance. Interestingly, some results sug-
gested that classical music TMR might particularly benefit females, a
finding that converges with the literature on music neuroscience and
that has implications for addressing achievement gaps in economics or
other mathematics-based fields.

4.1. TMR mechanisms

Most previous TMR work has focused on the mechanisms, or EEG
signature, of memory reactivation during SWS. For example, studies of
odor and discrete-sound TMR cues indicated that TMR increased
spindle density (Creery et al., 2015; Oyarzún, Morís, Luque, de Diego-
Balaguer, & Fuentemilla, 2017), delta/slow oscillation activity (Creery
et al., 2015), or frontal theta activity (Farthouat, Gilson, & Peigneux,
2016; Oyarzún et al., 2017), and that such increases predicted sub-
sequent performance. In the current study, using more continuous au-
ditory stimuli, classical music TMR had no discernible impact on delta/
slow oscillations, and there was only a marginal trend for an increase in
spindle activity. However, classical music TMR was associated with
significantly more frontal theta activity than the white-noise control
group, and frontal theta activity predicted later test performance.

Increased theta activity during SWS can indicate successful pro-
cessing of auditory cues (Cox, Korjoukov, de Boer, & Talamini, 2014;
Farthouat et al., 2016). By some views, theta activity is also theorized to
contribute to memory formation through hippocampal-neocortical
long-term potentiation and synaptic plasticity mechanisms (Axmacher,
Mormann, Fernández, Elger, & Fell, 2006; Cantero et al., 2003; Nyhus &
Curran, 2010). Consistent with this latter view, the re-occurrence of
theta rhythms during SWS was predictive of retention of specific
memories in at least two studies (vocabulary/translation words and
paired associative learning in Schreiner & Rasch, 2014; Farthouat et al.,
2016, respectively). The current study indicates that similar theta-de-
pendent mechanisms can be triggered across bouts of SWS by classical
music, with the outcome being the integration of learned educational
concepts rather than solely the consolidation of specific discrete
memories.

An alternative view is that classical music during SWS benefits test
performance not because of frontal theta activity or other memory re-
activation mechanisms (i.e. TMR), but instead because there is some
intrinsic cognitive benefit to listening to classical music. This notion,
which has been popularized as the “Mozart effect,” is rooted in a few
studies that found that listening to Mozart (or other energetic classical
music) improved performance on the Stanford-Binet intelligence test
(Rauscher, Shaw, & Ky, 1993). However, all reported benefits to per-
formance have been temporary (15 min), meaning that this literature
would not predict that listening to classical music while sleeping would
help test performance 9 h later. In addition, since the original media-
popularized studies in the 1990s, most researchers have concluded that

Fig. 2. Performance on the next-day test in male and female students, separated by (a) knowledge-transfer questions and (b) trained questions. Error bars: standard
error. * p ≤ 0.05.

Table 3
Spectral Power and Spindle Density in TMR and Control Conditions.

TMR (n=19) Control (n=22) Condition Effect (p-value) Condition Effect (Bayes Factor10)

Slow oscillation activity
SWS (frontal) 34.58 (12.87) 33.19 (15.16) 0.76 0.32
SWS (all sites) 20.39 (6.40) 20.38 (7.61) >0.99 0.31
All sleep epochs (all sites) 7.40 (1.99) 8.29 (5.26) 0.47 0.37
Delta activity
SWS (frontal) 87.38 (38.24) 75.99 (37.33) 0.34 0.44
SWS (all sites) 41.55 (14.32) 38.86 (16.12) 0.58 0.35
All sleep epochs (all sites) 14.37 (4.50) 13.65 (5.42) 0.65 0.33
Theta activity
SWS (frontal) 6.51 (2.58) 4.72 (1.48) 0.01* 5.64†

SWS (all sites) 3.97 (1.44) 3.28 (0.91) 0.08 1.19
All sleep epochs (all sites) 2.29 (0.82) 1.95 (0.64) 0.14 0.74
Spindle density (N2, frontal) 2.90 (0.32) 2.57 (0.75) 0.07 1.07
Spindle density (SWS, frontal) 1.54 (0.74) 1.35 (0.76) 0.43 0.39

Note. Data presented as mean (standard deviation). Slow oscillation is 0.5–1 Hz; μV2; Delta activity is 1–4 Hz; μV2; Theta activity is 4–8 Hz; μV2.
* p≤0.05.
† Bayes factor >3 indicates that the data favor the alternative hypothesis over the null hypothesis.
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the Mozart effect is an artifact of arousal and mood (Thompson,
Schellenberg, & Husain, 2001), with one meta-analysis finding that
evidence for the Mozart effect was largely restricted to one laboratory
(Pietschnig, Voracek, & Formann, 2010). In other words, Mozart does
not make memories; but, pairing music with studying and then listening
to that music again during sleep can be memory-promoting via TMR
mechanisms.

4.2. Gender differences in music processing and academic achievement

Research at the intersection of music and neuroscience is developing
rapidly (Cheever et al., 2018), and there are several studies

demonstrating that females process music differently than males (Gaab,
Keenan, & Schlaug, 2003; Koelsch et al., 2003). There are at least two
mechanisms by which gender differences in music processing would
explain why classical music TMR effects seemed very strong in females.
First, in multitasking scenarios, females show that they can maintain
cognitive task performance levels while listening to music whereas
males cannot (Fancourt et al., 2016; Feizpour et al., 2018), implying
that females may be able to study more effectively than males while
listening to music, a pre-requisite for TMR to be successful (Creery
et al., 2015). Second, females outperform males at later recognizing
familiar music (Miles et al., 2016), implying that when familiar classical
music was played during SWS, females’ ability to efficiently recognize

Fig. 3. (a) The TMR group showed increased frontal midline theta power during SWS for both males and females. Values shown are normalized to z-scores, to
highlight relative spatial power distributions across groups. (b) Knowledge transfer test performance was positively correlated with theta power during SWS in
females, but not males. Significant correlations are marked with dark dots.
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the music would facilitate reactivation of the associated educational
content. Of course, future studies with considerable statistical power to
detect gender interactions are required to confirm (or falsify) this hy-
pothesis that gender differences in musical processing allow females to
specifically benefit from classical-music TMR.

Advancing knowledge of TMR and music processing might inform
pathways to bridging achievement gaps in STEM learning. Gender
differences have long been observed in mathematics-based disciplines
(Fryer & Levitt, 2010). There are numerous factors that contribute to
the underrepresentation of women in some STEM fields (e.g., disposi-
tion, occupational interests); however, many of the factors known to
influence STEM achievement gaps are themselves influenced by sleep
and sleep restriction: cognitive abilities/relative strengths, field-specific
ability beliefs, and gender-related stereotypes (Wang & Degol, 2017).
Restricting sleep amplifies stress/emotional reactivity and activates
stereotypes (Ghumman & Barnes, 2013; Goldstein-Piekarski et al.,
2018), which in a cyclical fashion can contribute to more chronic sleep
disturbances, thereby impairing attention and memory consolidation. If
females are more susceptible to these detrimental effects than males
(Gao et al., 2019; Hajali et al., 2012; Rångtell et al., 2019), then ad-
dressing sleep disparities may bridge STEM achievement gaps (Heissel,
Levy, & Adam, 2017). Classical music TMR may be one sleep-based
approach to reducing sleep disparities and achievement gaps.

4.3. Limitations and conclusions

Limitations of the current study include attrition, sample size in-
equality, and low performance at the nine-month follow-up. Although a
single TMR session may help students to cram for the next-day test, for
effects to persist throughout the academic year, TMR sessions may need
to be repeated and progressively spaced apart (Kornell, 2009). Fur-
thermore, while the current study used an ecological research

paradigm, the research procedures were carried out in a controlled-
laboratory setting. Future research that translates TMR procedures to
home settings will be an important step towards remediating deficits in
memory consolidation caused by insufficient sleep in college students
(Goldi & Rasch, 2019).

It may also be fruitful for future studies to include multiple control
groups, for example, a group that listens to classical music during sleep
but not during the lecture. Adding such a condition would help to
disentangle TMR-based explanations from brainwave-entraining ex-
planations. According to the brainwave-entraining view, listening to
classical music during sleep entrains brainwave oscillations in a manner
that leads to memory enhancement (Obleser & Kayser, 2019). For this
explanation to be considered viable, several methodological conditions
must be met. First, when music entrains brainwaves, the elicited state
evoked potentials will synchronize to the tempo of the music (Daly
et al., 2014); but, in the current study, the classical music tempos never
matched theta frequency, meaning that they should not entrain theta
waves (110 to 147 beats per minute, corresponding to 1.83 to 2.45 Hz).
Second, for auditory stimulation during sleep to entrain specific
brainwave frequencies, the stimulation must consistently occur in-
phase with ongoing oscillations (Ngo, Claussen, Born, & Mölle, 2013).
However, the Chopin, Beethoven, and Vivaldi pieces used here lacked
consistency in interstimulus intervals, again disfavoring an entrainment
explanation. The practical recommendation, therefore, is that students
only listen to classical music while sleeping if they first paired that
music with studying.

The current work showed that TMR is achievable with continuous
auditory cues (classical music) and integrative educational concepts.
Classical music TMR can improve performance on knowledge-transfer
questions on the next-day test. Some findings indicated that females
were particularly benefited by classical music TMR, but definitive
gender-based conclusions will require additional future testing. Future

Fig. 4. (a) Theta power at frontal sites
during slow wave sleep predicted perfor-
mance on next-day knowledge-transfer
questions in females, but not in males; (b)
Theta power trended toward predicting
knowledge-transfer question performance
on the follow-up test in females, but not in
males. Circles and solid lines represent fe-
males; triangles and dash lines represent
males.
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work at the intersection of music, memory theory, and neuroscience is
needed to enhance educational outcomes and bridge achievement gaps
in STEM learning.
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