
RIVAChain: Blockchain-based Integrity Verification
for File Transfers
Ahmed Alhussen and Engin Arslan

Computer Science and Engineering, University of Nevada, Reno
Email: aalhussen@nevada.unr.edu, earslan@unr.edu

Abstract—File transfer integrity verification is used to de-
tect silent data corruption by calculating and comparing the
checksum of files using secure hash functions, such as SHA-
256. However, it incurs significant performance overhead due
to I/O and compute-intensive checksum calculation process. In
this paper, we present blockchain-based ledger architecture to
store the checksum of frequently accessed scientific datasets to
minimize the overhead of integrity verification. In the proposed
architecture, the checksum of files is calculated and pushed to a
private blockchain when they are first created such that future
transfers will not require data source to recalculate checksum.
As scientific datasets are typically generated in one location (e.g.,
observatory) and streamed to many geographically distributed
locations to enable collaboration, eliminating checksum calcula-
tion for data sources will save a significant amount of resource
consumption. Moreover, we find that blockchain-based integrity
verification reduces transfer time by up to 50% when data source
is the bottleneck in the integrity verification process. Finally,
we show that private blockchains can scale to thousands of
transactions per second thus they are better fit for scientific
applications in which data generation rate can easily outpace
the transaction confirmation rates of public blockchains.

I. INTRODUCTION

We are witnessing a data deluge in science as increasing
number of projects started to produce large volumes of data.
As an example, Large Hadron Collider experiment ALICE
studies heavy-ion collisions at a centre of mass energy and
generates three terabytes of data per second [1]. Similarly,
Vera Rubin Observatory (also known as Large Sky Survey
Telescope) will soon take high-quality pictures of the southern
universe using a 3, 200 megapixel camera and is expected to
produce 15TB data every night [2]. This massive volumes
of data often moved to geographically distributed locations
for collaboration, processing, and archival purposes. Although
high-speed networks with up to 100Gbps bandwidth are estab-
lished to overcome increasing transfer rates, the reliability of
underlying technology in detecting and recovering from data
corruption has not improved significantly over the years. For
example, studies show that TCP checksum misses bit errors
once in 16 million to 10 billion packets [3], causing missed
errors once in every 30 minutes to 300 hours in 1 Gbps
networks, and once in every 18 seconds to 3 hours in 100 Gbps
networks. Thus, end-to-end integrity verification is proposed
to improve the robustness of file transfers against silent data
corruption.

End-to-end integrity verification works as follows: Transfer
sender first reads a file and sends it to the transfer receiver.

Upon the completion of the transfer, the sender reads the file
again to compute its checksum using a secure hash algorithm,
such as SHA-256. The receiver also computes the checksum of
the file and sends it to the sender to compare. If the checksum
values of the sender and the receiver match, then the transfer
is considered successful. Otherwise, copy of file at the receiver
side is deemed corrupt, so the file is transferred again.

While end-to-end integrity verification is crucial for many
applications to capture silent errors, it imposes significant
overhead due to requiring I/O and CPU-intensive checksum
computation [4]. To alleviate its overhead, Liu et al. [5] pro-
posed block-level pipelining to divide large files into smaller
blocks and overlap transfer and checksum operations for
different blocks. In a previous work, we proposed FIVER to
execute transfer and checksum operations simultaneously for
same file blocks to minimize the cost of integrity verification.
By pipelining checksum and transfer operations for same file
partition, FIVER allows I/O sharing between the checksum
and transfer operations to avoid reading files twice.

In another work, we introduced a Robust Integrity Verifica-
tion algorithm (RIVA) to enhance the robustness of integrity
verification [6], [7]. While existing integrity verification algo-
rithms calculate the checksum of files immediately after their
transfer, RIVA evicts file pages from cache memory before
reading them back from disk for checksum calculation to be
able to detect and recover from undetected disk write errors.
Despite its robustness in detecting silent errors, RIVA requires
both source and destination sides to calculate file checksum
each time a file is transferred, causing nonnegligible increase
in transfer time. While checksum calculation by the transfer
receiver is essential to capture errors, source-side checksum
computation for every transfer causes unnecessary repetitive
work when the same file is transferred multiple times. Since
many science projects involve transmitting gathered data to
multiple geographically distributed locations for collaboration
purposes, current approach for integrity verification incurs
significant compute and I/O overhead at data source that can
be avoided by calculating file checksums once and saving them
in a persistent repository.

In this paper, we tackle this problem through blockchain-
based ledger system, RIVAChain, to store the integrity in-
formation of scientific datasets such that the correctness of
file transfers can be validated without requiring data source
to calculate file checksum for every transfer. In the proposed
architecture, the source of data (e.g., observatory) calculates

the checksum of files when they are first created and pushes
them to cloud-hosted private blockchain such that transfer
receivers can refer to blockchain to detect silent data corrup-
tions. Although the idea of storing the checksum of critical
data in blockchain is not new, this paper, to the best of our
knowledge, makes the first attempt to integrate it to file transfer
integrity verification process. In summary, we make following
contributions in this paper:

• We design and develop blockchain-based integrity verifi-
cation architecture, RIVAChain, to minimize the overhead
of integrity verification for data source.

• We compare the performance of RIVAChain against the
state-of-the-art integrity verification solutions in terms of
transfer time in multiple networks using various dataset
types.

• We evaluate the scalability of RIVAChain in terms of
publishing and querying integrity information using three
different approaches with cloud instance types.

The rest of the paper is organized as follows: Section II
describes related work and Section III presents the design of
RIVAChain as well as the steps it takes for integrity verifica-
tion. Section IV presents experimental results and Section V
concludes the paper with a summary.

II. RELATED WORK

Integrity verification is used widely in many areas including
storage outsourcing [8]–[10], long term archives [11], [12],
file systems [13]–[15], databases [16], provenance [17] and
data transfer [4]–[7] to detect and avoid silent data corruption.
Globus transfer service employs end-to-end integrity verifi-
cation for file transfers by computing and comparing the
checksum of files after their transfers [18]. In the presence
of multiple files in transfer dataset, Globus starts transferring
next file in the queue only after previous one’s transfer and
integrity verification is completed successfully. This sequen-
tial approach incurs significant performance penalty due to
pausing the transfer while checking the integrity [5]. Liu et
al. [5] proposed block-level pipelining to optimize integrity
verification by pipelining transfer and checksum operations
for different files. It reduces execution time considerably
especially when the dataset is composed of files with mixed
sizes.

In previous work, we presented FIVER [4] and RIVA [6] to
reduce the overhead and increase the robustness of integrity
verification. FIVER reads files once and runs the transfer and
checksum computation processes simultaneously, eliminating
the need to read files twice. RIVA, on the other hand, aims
to detect undetected disk write errors that might happen while
flushing file data from memory to disk [6], [7]. RIVA does this
by enforcing cache eviction immediately after the transfer such
that checksum computation has to read files directly from disk.
While RIVA offers stronger integrity verification coverage, it
can lead to longer execution times in networks where I/O
throughput is slower than transfer speed.

Blockchain technology has gained attention in recent years
due to offering an immutable ledger architecture in a decen-

tralized environment. Bitcoin [19] is the first implementation
of blockchain technology for financial transactions. Replac-
ing the central authority with a distributed ledger does not
only offer identity protection for users but also improves the
reliability of the system against cyber attacks. Therefore, it
is adapted to many areas including but not limited to election
voting [20]–[22], healthcare [23], [24], data management [25],
and supply chain [26]. For example, TrialChain implements
blockchain for data governance in biomedical research where
the integrity information of files is stored in blockchain so that
the authenticity of research results can be validated later.

Barinov et al. presented blockchain-based integrity verifica-
tion framework for storage systems by saving files hashes and
transaction logs such that any attempts to manipulate data can
be detected and avoided [27]. Fisher et al. proposed digital
data verification and authentication using blockchain [28].
The method hashes the digital content to a unique value
then submits it to blockchain. As a result, blockchain is
widely used to store sensitive information such that malicious
attempts to alter them can be avoided. We, therefore, adopt
this idea to implement blockchain-based integrity verification
for scientific data transfers where accidental data corruption
happens frequently.

III. SYSTEM DESIGN

Blockchain has become popular in recent years due to its
decentralized and tamper-resistant architecture. In blockchain,
users submit transactions to the transaction pool, which are
then combined in blocks and added to the ledger. Ledger
in blockchain links blocks to each other to ensure that no
single transaction in the ledger can be altered without requiring
to recreate all blocks. To further improve resilience against
data manipulation attacks, some implementations (e.g., Bit-
coin) require participants (aka miners) to run computationally
intensive calculations (mining) to become eligible for block
generation. The mining process prevents malicious users to
exploit the system for their benefit (e.g., double spending
attack) since no single entity can dominate the mining process
unless it can outpower the rest of the miners in terms of
computation, also known as 51% attack.

Proof of Work (PoW) is a popular mining process that
requires users to find a random number (i.e., nonce) to
satisfy hash requirements when appended to blocks. Although
PoW improves the robustness of the system against malicious
users, it has adverse impact on the system performance. For
instance, it takes an average of 10 minutes to mine a block in
Bitcoin, resulting in an average of 2-3 transactions per second
throughput. Thus, it is a major impediment in the adoption of
blockchain technology especially for delay sensitive workload.
On the other hand, private blockchain implementations offer
high throughput by eliminating PoW in mining process. Since
this would pose a threat to the immutability of blockchain
when malicious users are present, permission is required for
users to participate in mining process. Therefore, we utilize a
private blockchain solution to implement the proposed frame-
work. While this may cause security concerns due to potential

Compute
checksum 1F5039E50BD6

6B290C56684D
8550C6C2

Create
transaction

[{"publishers" : [
"1JxAbUGWKgjfnQ1bwsrM
oucs2KUhZ6ADQa2PsT"],
"keys" : ["file10"],
"offchain" : false,
"available" : true,
"data" : …
"confirmations" : 34,
"blocktime" : 1598287091,
"txid" :
"a8b29e651a46af059f46572f3
d01bea01a82d4326736d50a0e
5 1905ea47eb939" },]

File Name file1

Chunk ID file1-0

Size 256MB

Checksum 1F50…

Time
Stamp

1586473686848

Submit to
blockchain

Confirmation

Fig. 1: Illustration of transaction preparation and verification process in RIVAChain.

File 1 File 2

File1

Query checksum

Download files

Client

File 2

Calculate and publish
checksum

1

2

3

Fig. 2: RIVAChain obviates the need for checksum compu-
tation for data source as clients can verify the integrity of
transfer using blockchain.

breaches, the impact of such attacks can be minimized by
synchronizing the contents of the private blockchain with
public blockchains periodically. We leave the implementation
of a private-public blockchain integrated solution as future
work and use MultiChain [29] in this paper to store the
integrity information of scientific datasets.

MultiChain is an open-source private blockchain that is
derived from Bitcoin Core software. It allows participants to
have different roles as publisher and subscriber. The creator
of the first block (i.e., genesis block) owns the root privileges
and can add others as publisher or subscriber. Separation of
publisher and subscriber roles offers enhanced security in
transaction submission and block generation process while
enabling read access to many clients. When a node joins to
MultiChain, a unique identifier is assigned to it to keep track
of the publishers of transactions and blocks.

RIVAChain works as follows: When a file is first generated,
its checksum is calculated and published in MultiChain that
is deployed in the cloud. Then, whenever a client wants to
download a file, s/he can transfer the file from data source
and query the file’s checksum from blockchain. Upon the
completion of the transfer operations, the client then calculates
the checksum of the downloaded file and compares it against
the one obtained from RIVAChain to make sure that the file is
not corrupted during the transfer. If checksum values match,
then the transfer is considered successful. Otherwise, the file
is downloaded from the data source again. Figure 2 illustrates
these steps for two files whose checksum values are computed
and published in the cloud-hosted private blockchain (step

1) such that the client downloads data from the source (step
2) and validate the integrity of transfers by comparing their
checksum against the ones saved in the blockchain (step 3).

When the checksum of a file does not match with the one
in the blockchain due to data corruption, the client needs to
download the file again. This is true even if the corruption
alters only a single bit of a large file. This file-level integrity
verification incurs significant recovery overhead, especially for
large file transfers [4]. As an example, failure of integrity
verification would require entire 100GB file to be downloaded
again even if only single bit is corrupted. Thus, we adopt
chunk-level integrity verification to confirm the integrity of
large files [4], [6]. In the chunk-level integrity verification, the
checksum is calculated for a fixed-size of file segments. For
instance, a chunk size of 128MB will create 8 file segments
(i.e., chunks) for a 1GB file. The checksum of each segment
is not dependent on other segments such that the integrity
of each segment transfer can be verified independently. Thus,
when data corruption takes place, we can localize the error by
finding the chunk whose integrity has failed so that only that
portion of the file is retransferred.

Once the checksum of a file chunk is calculated, it is
then submitted to blockchain for confirmation as shown in
Figure 1. In a transaction, we include file name, size, chunk ID,
checksum, and timestamp information. Size refers to the size
of the chunk, which would be equal to file size when the chunk
size is equal or larger than file size. Checksum field stores the
hash of a chunk calculated using secure hash algorithms, such
as SHA-256. We finally append the timestamp of the checksum
calculation for clients to be able to confirm the time of the
checksum computation. Once the transaction is formed, it is
submitted to the blockchain by the publisher nodes. When a
transaction is included in a block and confirmed by the chain,
publisher id, confirmation id, block time, and transaction id
are assigned for future references.

IV. EVALUATIONS

We compared the performance of RIVAChain against the
traditional integrity verification methods in terms of execution
time. FIVER overlaps the transfer of a file with the checksum
of the same file to share I/O between the two. Although
FIVER keeps the overhead of integrity verification low, it
falls short to prevent the detection of disk write errors [6],
[7]. RIVA enforces checksum computation to read files from
disk after their transfer to capture disk write errors. It incurs

Testbed Storage CPU Memory Size Bandwidth RTT Disk Write Speed
HPCLab NVMe SSD 16 x Intel Xeon E5-2623 @2.60GHz 64 GB 40G 0.2 ms < 3GB/s

Chameleon-WAN SATA HDD 12 x Intel Xeon E5-2650 @2.30GHz 64 GB 1G 32 ms < 100MB/s

Chameleon-LAN SATA SSD 12 x Intel Xeon E5-2670 @2.30GHz 128 GB 10G 0.2 ms < 100MB/s

Pronghorn GPFS 16 x Intel Xeon E5-2683 @2.10GHz 192 GB 10G 0.1 ms < 3GB/s

TABLE I: Specifications of test environments.

 20

 40

 60

 80

 100

 120

 140

 160

1GB
100MB

10KB
1KB

T
im

e
 (

s
)

File Size

FIVER
RIVAChain

RIVA
Globus

(a) HPCLab

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

1GB
100MB

10KB
1KB

T
im

e
 (

s
)

File Size

FIVER
RIVAChain

RIVA
Globus

(b) Pronghorn

Fig. 3: Comparison of integrity verification algorithms in HPCLab and Pronghorn networks.

slightly higher overhead compared to FIVER in exchange of
increased robustness against silent disk errors. Globus is a
widely-used data transfer service that, by default, runs integrity
verification for all file transfers. Globus runs transfer and
integrity verification operations sequentially, thus transfer of a
file starts only after the integrity of previous file is successfully
completed. This in turn causes Globus to perform worse when
there are lots of small files in the dataset due to causing a delay
between transfers. Similar to RIVAChain, FIVER and RIVA
use chunk-level integrity verification to avoid transferring large
files as a whole when checksum mismatch is detected.

We conducted experiments in HPCLab, Chameleon, and
Pronghorn networks whose hardware and network specifica-
tions are listed in Table I. Chameleon is an academic cloud
service that offers instances in two sites, Chicago, IL and
Austin, Texas. We name the experiments that run transfers
between the instances of the same site as Chameleon-LAN
and different sites as Chameleon-WAN. HPCLab is comprised
of two data transfer nodes in the same local area network with
40 Gbps connectivity. Finally, Pronghorn is a campus cluster
and its transfer nodes are connected with 10G links.

We run the experiments using four datasets that contain
same-size files. The dataset consists of (i) 10x1GB files,
100x100MB files, 10, 000x10KB files, and 100, 000x1KB
files. We repeated the experiments at least five times and report
average and standard deviation values in the figures.

A. Transfer Time

Figure 3 shows the results of experiments in HPCLab and
Pronghorn networks. The speed of network transfers is faster
than checksum calculation speed in these networks due to

slow hash calculation speed (< 3Gbps). Since FIVER runs
checksum calculation of files using cache data, its performance
is better than other solutions. Please note that FIVER does
not offer the same level of protection for file transfers as
provided by RIVA and RIVAChain. The performance dif-
ference widens for small files as the cost of cache eviction
process by RIVAChain and RIVA is exacerbated when the
number of files in the dataset is large. For instance, it takes
92 seconds for FIVER to complete the transfer of 100, 000
1KB files with integrity verification whereas it lasts more
than 120 seconds for the others in HPCLab network. Similar
performance gap can be observed in Pronghorn network as
shown in Figure 3(b). On the other hand, it takes the longest
duration for Globus to finish the transfers, which can be
attributed to the fact that it does not pipeline transfer and
checksum calculations processes for different files. As an
example, Globus spends around 450 seconds to complete 1KB
dataset while the other algorithms can finish it in less than 220
seconds. It is clear that RIVAChain performs similar to RIVA
in terms of transfer duration. Even though data source does not
calculate checksum of files after the transfer, the receiver still
needs to compute it to compare it against the version in the
blockchain. Consequently, despite saving I/O and computation
overhead for data source, RIVAChain does not shorten the
transfer time in HPCLab and Pronghorn networks.

Figure 4 shows the results of experiments in Chameleon
network. Since the network bandwidth of Chameleon-LAN
is faster (> 10 Gbps as shown in Table I) than the speed
of checksum computation (around 2.4 Gbps using a single
CPU core), checksum calculation becomes the bottleneck.
Globus outperforms FIVER, RIVA, and RIVAChain since

 10

 100

 1000

1GB
100MB

10KB
1KB

T
im

e
 (

s
)

File Size

FIVER
RIVAChain

RIVA
Globus

(a) Chameleon-LAN

 10

 100

 1000

 10000

1GB
100MB

10KB
1KB

T
im

e
 (

s
)

File Size

FIVER
RIVAChain

RIVA
Globus

(b) Chameleon-WAN

Fig. 4: Comparison of algorithms in Chameleon-LAN and Chameleon-WAN networks.

cache eviction takes a long time when disk speed is slow.
The performance gap between Globus and the others reach
to 10x for 1KB files. Again, this reduction in the transfer
times comes at the expense of reduced coverage in integrity
verification. Specifically, while RIVA and RIVAChain offer
full end-to-end coverage for data corruptions, FIVER only
detects errors that happen in the network. On the other hand,
Globus error coverage depends on file size. Since it runs the
integrity verification right after the transfer without evicting
files from cache memory, its checksum calculation will utilize
cache data when file size is small enough to fit in the memory.
Since all the files we used in the experiments can fit into the
memory of the servers in the Chameleon network, its execution
time is shorter. It is important to note that the benefit of
cache-based checksum calculation is reflected on the transfer
time only when disk read/write speed is slower than checksum
computation. As a result, Globus falls short to take advantage
of this in HPCLab and Pronghorn networks where storage
system is powered by RAID arrays on flash drives.

For large file transfers in Chameleon-WAN, RIVAChain out-
performs RIVA as presented in Figure 4(b). This is mainly
due to using nodes with slow I/O performance for the sender
in the Chameleon-WAN experiments. While both sender and
receiver nodes have SSD drives in the Chameleon-LAN
network, the sender has hard drive and receiver has SSD
drive in Chameleon-WAN experiments. As a result, sender-
side checksum calculation takes longer than receiver-side
checksum calculation thus becomes the bottleneck for RIVA
transfers. On the other hand, RIVAChain does not require
transfer senders to calculate the file checksum at the time of
the transfer, hence runs at the checksum speed of receiver
and yields higher throughput. Finally, performance of Globus
degrades in Chameleon-WAN network due to slow transfer
performance. Specifically, despite using cache data to calculate
the checksum of files, it runs transfers and integrity verification
sequentially hence causes short pauses between the transfer of
files. This pause causes TCP congestion window to reset [30],
necessitating TCP to go through slow start phase for each

Instance type vCPUs Memory (GB)
Large 2 16

XLarge 4 32

2XLarge 8 64

4XLarge 16 128

8XLarge 32 256

TABLE II: Specifications of AWS Cloud instance types.

file. While this takes negligible amount of time in local area
networks, it can dominate total transfer time in wide-area
networks especially when file size is small. Therefore, despite
saving time in checksum calculation process, Globus falls
behind due to poor transfer performance. For instance, Globus
finishes the transfer of 10KB dataset in more than 1, 000
seconds while other algorithms keep it under 50 seconds.
Similarly, it takes more than 12, 000 seconds for Globus to
transfer 1KB dataset as opposed to less than 550 seconds by
the other solutions.

B. Scalability Analysis

As RIVAChain performs similar or better compared to
RIVA in terms of transfer time, we next evaluate its ability
to handle a large number of requests. To do so, we first
measured its performance in accepting and publishing 100, 000
file checksum data. Table II lists the instance types and
their main hardware specifications that we evaluated in this
experiment. When users submit checksum data for new files,
RIVAChain first places them into a queue. Then, the items
in the queue are fetched to be submitted to MultiChain. We
implemented three strategies to process queries in the queue as
follows: The first and simplest approach uses a single thread
to process requests one by one. The second approach uses
multiple threads to pull requests from the queue and process
them. The final and third approach uses a single thread for bulk
processing in which multiple checksum requests are bundled
in a one transaction. For instance, if there are 100 publish
requests in the queue, bulk query can bundle them in a single
transaction to reduce the number of total transactions.

 10

 100

 1000

Large XL 2XL 4XL 8XL

T
im

e
 (

s
)

Instance Type

Single Thread
Multi Thread

Bulk

(a) Publish

 10

 100

 1000

Large XL 2XL 4XL 8XL

T
im

e
 (

s
)

Instance Type

Single Thread
Multi Thread

Bulk

(b) Query

Fig. 5: Scalability analysis of RIVAChain to publish (a) and query (b) 100,000 file checksum data using different methods.
MultiChain’s ability to combine many keys (i.e., file checksum) in single transaction (i.e., Bulk Method) offers low-latency
for high-frequency operations.

Figure 5(a) shows the time it takes to process 100, 000 pub-
lish requests for file checksum data using the three approaches.
It is clear that, it takes more than 1000s for single thread
approach to process all the requests for all instance types.
While multi-threaded approach improves the performance by
lowering the time to around 100s when using 8XL instance,
it still falls behind bulk method. Note that we decided the
number of threads in multi-threaded approach by dynamically
increasing the count until observed performance stops increas-
ing. Finally, we find that bulk publish approach offers scalable
performance regardless of the instance type. Specifically, it can
complete processing all 100, 000 publish requests in less than
50 seconds, bringing its speed to 1, 500 operations/sec.

We also evaluated the impact of using single thread, multi-
thread, and bulk method to receive a response for 100, 000
queries in RIVAChain. We find that response time for a single
query is about 0.1ms, thus single thread approach returns the
slowest execution time. It takes 795 seconds to 968 seconds
for single thread approach to evaluate 100, 000 requests. Multi-
thread approach yields significantly better results by process-
ing multiple requests simultaneously. However, improvement
ratio is not same for all instance types due to the difference
in hardware specifications. Specifically, the execution time re-
duces from 968.7 seconds to 54.9 seconds (over 90% decrease)
when it is applied in 8XLarge instance type whereas execution
time falls by less than 15% for Large instance type. This can
be attributed to the difference in vCPUs in instance types as
multithreading cannot improve the performance much when
the threads have to share the same core.

Although multithreading improves the performance of run-
ning queries in MultiChain, threads execute a separate query
for each checksum request, causing its performance to lag be-
hind the bulk querying approach as can be seen in Figure 5(b).
In the bulk query method, we specify 100 requests in a single
query thus reduce the total number of queries to execute. The
duration of querying 100, 000 transactions with bulk query
method ranges between 18 to 25 seconds. Compared to single

 0

 50

 100

 150

 200

 250

4 8 16 32 64 10242048

T
ra

n
s
a
c
ti
o
n
 T

im
e
 (

s
)

Chunk Size (MB)

Transaction Time (s)

Fig. 6: Impact of chunk size on the transaction confirmation
duration. Larger chunk sizes lead to smaller transactions times
due to reducing the number of transactions for large files.

thread and multi-thread approaches, bulk querying improves
the performance by 50− 99%.

We analyzed the impact of chunk size on the performance
of RIVAChain in Figure 6. Chunk size defines the number of
checksum values will be created for large files. For example,
chunk size of 128MB will create 8 checksum values for a 1GB
file. Lowering chunk size has an advantage for recovery time in
the case of data corruption due to requiring to resend smaller
amount of data. On the other hand, keeping the chunk size
too low has disadvantage of creating too many transactions
to be published/saved in the blockchain. Figure 6 presents
the duration to publish checksum information of a 100GB
file using a single thread approach when chunk size is set to
values between 4MB and 2048MB. As small chunk size values
create more chunks for same amount of data, it takes longer to
confirm the corresponding transactions. Specifically, while it
takes 259 seconds to publish the checksum information of all
chunks when chunk size is set to 4MB, the same takes around
1 second when chunk size is set to 2048MB.

V. CONCLUSION

In this paper, we propose RIVAChain to utilize blockchain
technology to store checksum information of scientific dataset
such that cost of integrity verification process for file trans-
fers can be minimized. We show that RIVAChain reduces
significant amount of overhead on frequently accessed data
repositories by delegating integrity verification process of
file transfers to blockchain. Moreover, transfer time can be
reduced by up to 50% with RIVAChain when transfer sender
is slower than transfer receiver in checksum calculation due
to slow I/O and CPU throughput. Finally, we evaluated the
scalability of RIVAChain in responding to checksum queries
and find that it can process 100, 000 requests in around 20
seconds, achieving 5, 000/s query processing throughput. As
a future work, we intend to adapt RIVAChain to high-speed
data transfer applications [31], [32] to facilitate its adoption
by science community.

REFERENCES

[1] “Alice experiment,” https://home.cern/science/experiments/alice, 2020.
[2] “Large Synoptic Survey Telescope,” https://www.lsst.org/, 2020.
[3] J. Stone and C. Partridge, “When the CRC and TCP checksum disagree,”

in ACM SIGCOMM computer communication review, vol. 30, no. 4.
ACM, 2000, pp. 309–319.

[4] E. Arslan and A. Alhussen, “A low-overhead integrity verification for
big data transfers,” in 2018 IEEE International Conference on Big Data
(Big Data). IEEE, 2018, pp. 4227–4236.

[5] S. Liu, E.-S. Jung, R. Kettimuthu, X.-H. Sun, and M. Papka, “Towards
optimizing large-scale data transfers with end-to-end integrity verifica-
tion,” in Big Data (Big Data), 2016 IEEE International Conference on.
IEEE, 2016, pp. 3002–3007.

[6] B. Charyyev, A. Alhussen, H. Sapkota, E. Pouyoul, M. H. Gunes,
and E. Arslan, “Towards securing data transfers against silent data
corruption,” in IEEE/ACM International Symposium in Cluster, Cloud,
and Grid Computing, IEEE/ACM, 2019.

[7] B. Charyyev and E. Arslan, “RIVA: Robust integrity verification algo-
rithm for high-speed file transfers,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 6, pp. 1387–1399, 2020.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Pro-
ceedings of the 14th ACM conference on Computer and communications
security. Acm, 2007, pp. 598–609.

[9] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, “Cooperative provable data posses-
sion for integrity verification in multicloud storage,” IEEE transactions
on parallel and distributed systems, vol. 23, no. 12, pp. 2231–2244,
2012.

[10] C. Liu, C. Yang, X. Zhang, and J. Chen, “External integrity verification
for outsourced big data in cloud and IoT: A big picture,” Future
generation computer systems, vol. 49, pp. 58–67, 2015.

[11] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. Rosenthal, and M. Baker,
“The LOCKSS peer-to-peer digital preservation system,” ACM Trans-
actions on Computer Systems (TOCS), vol. 23, no. 1, pp. 2–50, 2005.

[12] M. Vigil, J. Buchmann, D. Cabarcas, C. Weinert, and A. Wiesmaier,
“Integrity, authenticity, non-repudiation, and proof of existence for long-
term archiving: a survey,” Computers & Security, vol. 50, pp. 16–32,
2015.

[13] A. Ma, C. Dragga, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and M. K. Mckusick, “Ffsck: The fast file-system checker,” ACM
Transactions on Storage (TOS), vol. 10, no. 1, p. 2, 2014.

[14] Y. Zhang, D. S. Myers, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Zettabyte reliability with flexible end-to-end data integrity,”
in Mass Storage Systems and Technologies (MSST), 2013 IEEE 29th
Symposium on. IEEE, 2013, pp. 1–14.

[15] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “End-to-end data integrity for file systems: A ZFS case study.”
in FAST, 2010, pp. 29–42.

[16] M. U. Arshad, A. Kundu, E. Bertino, A. Ghafoor, and C. Kundu,
“Efficient and scalable integrity verification of data and query results
for graph databases,” IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 5, pp. 866–879, 2018.

[17] R. Hasan, R. Sion, and M. Winslett, “The Case of the Fake Picasso:
Preventing History Forgery with Secure Provenance.” in FAST, vol. 9,
2009, pp. 1–14.

[18] “Globus,” https://www.globus.org/.
[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”

Manubot, Tech. Rep., 2019.
[20] N. Kshetri and J. Voas, “Blockchain-enabled e-voting,” IEEE Software,

vol. 35, no. 4, pp. 95–99, 2018.
[21] A. B. Ayed, “A conceptual secure blockchain-based electronic voting

system,” International Journal of Network Security & Its Applications,
vol. 9, no. 3, pp. 01–09, 2017.

[22] F. P. Hjalmarsson, G. K. Hreioarsson, M. Hamdaqa, and G. Hjalmtysson,
“Blockchain-based e-voting system,” 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pp. 983–986, 2018.

[23] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in 2016 IEEE 18th international conference on e-health network-
ing, applications and services (Healthcom). IEEE, 2016, pp. 1–3.

[24] X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, “Healthcare data
gateways: found healthcare intelligence on blockchain with novel privacy
risk control,” Journal of medical systems, vol. 40, no. 10, p. 218, 2016.

[25] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in 2015 IEEE Security and Privacy Workshops.
IEEE, 2015, pp. 180–184.

[26] F. Tian, “An agri-food supply chain traceability system for china based
on rfid & blockchain technology,” in 2016 13th international conference
on service systems and service management (ICSSSM). IEEE, 2016,
pp. 1–6.

[27] I. Barinov, V. Lysenko, S. Beloussov, M. Shmulevich, and S. Protasov,
“System and method for verifying data integrity using a blockchain
network,” Oct. 30 2018, uS Patent 10,114,980.

[28] J. Fisher and M. H. Sanchez, “Authentication and verification of digital
data utilizing blockchain technology,” Sep. 29 2016, uS Patent App.
15/083,238.

[29] G. Greenspan, “Multichain private blockchain-white paper,” URl:
http://www. multichain. com/download/MultiChain-White-Paper. pdf,
2015.

[30] “TCP Congestion Control,” https://tools.ietf.org/html/rfc2581.
[31] E. Arslan and T. Kosar, “High Speed Transfer Optimization Based

on Historical Analysis and Real-Time Tuning,” IEEE Transactions on
Parallel and Distributed Systems, 2018.

[32] E. Arslan, B. A. Pehlivan, and T. Kosar, “Big data transfer optimization
through adaptive parameter tuning,” Journal of Parallel and Distributed
Computing, vol. 120, pp. 89–100, 2018.

	Introduction
	Related Work
	System Design
	Evaluations
	Transfer Time
	Scalability Analysis

	Conclusion
	References

