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Abstract 
Metasurfaces manipulate light through engineering the amplitude, phase and polarization across arrays of meta-atom 
antenna resonators. Adding tunability and active functionality to metasurface components would boost their potential 
and unlock a vast array of new application possibilities such as dynamic beam steering, LIDAR, tunable metalenses, 
reconfigurable meta-holograms and many more. We present here high-index reconfigurable meta-atoms, resonators 
and metasurfaces that can dynamically and continuously tune their frequency, amplitude and phase, across the infrared 
spectral ranges. We utilize narrow linewidth resonances along with peak performance of tunable mechanisms for 
efficient and practical reconfigurable devices.  
       
Keywords: Dielectric Mie resonators, nanoparticles, tunable metasurfaces, reconfigurable metasurfaces, phase change materials 

       

 
1. INTRODUCTION 

  Metasurfaces are two-dimensional structures designed to manipulate light through arbitrary wavefront 
shaping 1 2 3 4. Recently a lot of attention in the field has shifted to the realization of all-dielectric metasurfaces and has 
led to tremendous progress, giving rise to several demonstrations including achromatic and broadband metalenses 5 6 7, 
axicon lenses8, sub-diffraction focusing9, nonlinear generation10 11 12 beam deflectors8,13 14, wave plates and beam 
converters 15 16 17 18, holograms19 20 21, antireflection coatings22 and magnetic mirrors23, to name a few. However, most 
metasurfaces are still implemented for static operation and optimized for limited bandwidth of operation. The next 
frontier lies in dynamic and active control over light, which will drastically increase metasurface capabilities and potential 
applications.  

The fundamental challenge for achieving reconfigurable operation is to obtain large and continuous modulation 
of optical properties within subwavelength meta-atoms and meta-molecules which are inherently low-Q resonators24,25. 
Desirable tuning mechanisms continuously shift the resonance frequency of the metastructure with at least one 
linewidth of the resonance, thus allowing to maximize the modulation of both amplitude and phase. These challenges 
have motivated several studies exploring different approaches, designs, and materials that provide extreme tunability. 
Previous investigations of active tuning in dielectric metasurfaces and meta-atoms have focused on ultrafast free-carrier 
injection26,27, coupling to liquid crystals28,29, to atomic vapor30 or to ENZ materials31,32, phase change materials33,34  and 
MEMS35 36 37 .  However, most of these approaches do not provide a viable solution for a fully reconfigurable metadevice 
where at each subwavelength meta-atom the phase and amplitude can be individually and continuously tuned to provide 
an arbitrary phase profile. Recent studies have showed that the thermo-optic effect (TOE), i.e. refractive index variation 
with temperature dn/dT can be used to induce large and continuous index shifts in materials having extraordinary 
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thermal dependence38 39 40,41. The TOE was also recently used to actively tune Si metasurfaces, but only at a limited 
temperature range (273-573K)42.  Here we present free carrier and thermal tunability in several groups of high-index 
semiconductor resonators over large MIR spectral ranges. We demonstrate doping dependent tuning of Mie resonances 
in Si due to modulation of carrier densities. Next we study thermal and TO tunability in group IV semiconductors (Si and 
Ge) due to the normal positive TOE (dn/dT >0) and in the lead chalcogenide family of group IV-VI semiconductors (PbTe) 
due to the anomalous dn/dT <0 . We demonstrate the tuning of high order mid-infrared (MIR) Mie resonances by several 
linewidths with temperature swings as small as ΔT<10K. Lastly, we discuss reconfigurable and switchable devices driven 
by metal-insulator transitions in vanadium-oxide (VO2). We demonstrate independent and continuous tuning of both 
amplitude and phase in a single electrically controlled nanophotonic device based on Ge on VO2.       

 
Thermo-optic (TO) effects provide an ideal test bed for demonstrating and elucidating reconfigurable 

metasurface properties. TO tuning can provide large index shifts with no added losses and be integrated into electrically-
controlled architectures. Thus, TO tunability forms the basis for many reconfigurable integrated photonic devices. 
However, the TOC of most materials is small for subwavelength applications, hence typical TO applications exploit small 
index changes acting over distances much larger than a wavelength to achieve useful modulation. For efficient 
modulation of subwavelength resonators, the maximally induced index shift Δn should tune the resonance wavelength 
by more than its linewidth (Δλ/FWHM>1, where Δλ is the resonance wavelength shift and FWHM is the full width at half 
max of the linewidth). The route for achieving this tunability is by maximizing the TOE using extraordinary materials24,38,39-

41,43,44 and/or narrowing the resonance linewidth using high-Q modes38  such as supported by asymmetric28 or fano-
resonant10 metasurfaces.   

2. RESULTS AND DISCUSSION 
This study of resonator and metasurface tunability is mainly focused for the MIR spectral range which has 

tremendous scientific and technological interest including nanospectroscopy45, thermal imaging46, chemical and 
biological sensing47-50, medical applications51, laser countermeasures52 and spectro-interferometry for astro-photonics53-

60, to name a few. Importantly, thermal tunability can be extended to the NIR and visible ranges where the performance 
of e.g. Si and Ge, can be improved due to the expected increase of dn/dT at shorter wavelengths. 

Group IV semiconductors 
Here we first study the free carrier effects of Si spherical resonators. Varying the carrier concentration in the 

resonators through doping, we demonstrate blue shifting of Mie resonances for increasing the carrier deinsity24. Figure 
1 presents the spectral characteristics of Si spheres with a constant radius of d=1 μm with increasing doping 
concentrations, from undoped Si (blue) and up to highly doped Si of n=1 × 1020 cm−3, demonstrating blue-shifts and 
broadening of the Mie resonances with increased carrier density. For doping of 3.8 × 1019 cm−3 the material behaves like 
a low index dielectric with overlapping ED and MD modes. For the highest doped sample (pink), the permittivity is 
negative at long wavelengths, leading to the emergence of an ED plasmonic mode. Nevertheless, resonances are shifted 
by more than a linewidth with carrier densities > 1 × 1019.  

    
Next we move to study thermal effects leading to large normalized tunability (more than a linewidth). We start 

with TO tuning capabilities of Ge ⎼ one of the most commonly used materials for dielectric metasurfaces and 
nanophotonics. The TOC of Ge is amongst the highest of natural materials61 which, along with its high refractive indices 
and CMOS compatibility, makes it very attractive materials for reconfigurable metasurfaces. However, the typical TOC 
value (~5 x 10-4 K-1) requires large temperature modulation which may cause problems if the TOC is strongly temperature 
dependent38 39. In the mid-infrared (MIR) range, for instance, working at high temperatures can generate FC densities in 
semiconductors that dramatically alter the optical constants due to Drude-like dispersion62.  

To investigate thermal tunability and assess its capabilities, we start by studying Ge single spherical meta-atom 
resonators fabricated by laser ablation24,63. Figure 2 presents a typical spectral response of a Ge spherical Mie resonator 
with r= 1.75 μm.  Experimental spectra (black) show good agreement with the calculated Mie scattering (red) cross-
sections σsca normalized to the geometric cross-section σgeo. A series of multipolar resonance peaks are visible in the 
spectra and correspond to magnetic dipole (MD), electric dipole (ED) and magnetic (MQ) and electric quadrupole (EQ), 
respectively. In Figure 3 we focus on the TO tunability of the EQ mode since its Q-factor is relatively high Qf~50. 
Temperature dependent spectra of the EQ resonance are illustrated in Figure 3a. Significant red shifts of resonances are 
observed which provide tuning by more than one resonance linewidth across the 80-573K temperature range. 
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Figure 3b presents a zoom in view on the spectral shifts between 293K and 473K depicting a normalized tunabiltiy of 
Δλ/FWHM=1.2 with a temperature gradient of ΔT=180K. Such tunability with a practical temperature difference of 
ΔT=180K, would be useful for implementing reconfigurable high-Q Ge metasurfaces.   

Group IV-VI semiconductors 
Although TOCs of group-IV such as Si and Ge are amongst the highest of natural materials61, achieving the 

desired tunability (Δλ/FWHM>1) in Si and Ge metasurface requires large temperature gradients. Meeting the desired 
linewidth tunability with relaxed temperature modulation, requires materials with higher TOCs and/or narrowing the 
resonance linewidth. Remarkably, the lead chalcogenide family PbX (X=S, Se, Te) possesses both very large refractive 
indices with highest reported values of TOCs64.  

Figure 4 presents the TO tuning of a high order high-Q (Q~100 ) Mie resonance in a spherical r=0.9 µm resonator. 
The high figure of merit of normalized tunability arises due to the high refractive index of the material (nPbTe~6) and large 
TOC. Interestingly, the sign of the TOC in PbTe is negative (dn/dT<0) due to anomalous temperature-dependent bandgap 
dispersion61,65,66. Combining the large low-temperature TOE with high-Q resonances enables complete tuning (i.e. by 
more than one linewidth) of resonances with significantly reduced temperature swings (ΔT). This sharp resonance can 
be tuned by more than one linewidth (normalized tunability=1.02) with a temperature swing as small as ΔT=80K. This 
large tunability is enabled by the combination of the narrow linewidth and large TOE.  

Figure 1: Spectral characteristics of doped Mie resonators and free carrier based tuning effects. The Spectra of 2 μm diameter Si 
spheres with different doping concentrations, demonstrating blue-shifts and broadening of the Mie resonances with increased doping. 
For doping of 3.8 × 1019 cm−3 the material behaves like a low index dielectric with overlapping ED and MD modes. For the highest 
doped sample (pink), the permittivity is negative at long wavelengths, leading to the emergence of an ED plasmonic mode.  
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Furthermore, at lower temperatures of ~ 170K the observed dn/dT was shown to be an order of magnitude larger than 
the dn/dT at RT temperatures38. These results clearly demonstrate the strong, negative TO effect in PbTe nanoparticles  

Figure 2: Ge spherical Mie resonator with r= 1.75 μm. Experimental spectra (black) show good agreement with the calculated 
Mie scattering (cyan, dashed) and FDTD (solid cyan) cross-sections σsca normalized to the geometric cross-section σgeo. A series 
of multipolar resonance peaks are visible in the spectra and correspond to magnetic dipole (MD), electric dipole (ED) magnetic 
quadrupole (MQ) and electric quadrupole (EQ), respectively. 

 

Figure 3: Thermal tuning of a high order EQ  in a r=1.75µm Ge spherical resonator (a) Temperature dependent spectra in the 
80-573K range (b) Tuning by more than one resonance linewidth (Δλ/FWHM=1.2) with a ΔT=180K temperature gradient 
demonstrated between 293K and 473K. 
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Figure 4: Tunable PbTe meta-atoms. Tuning of high order resonance by more than a linewidth in PbTe spherical resonators with 
ΔT=80K. At T=173K normalized tunability Δλ/FWHM=1.6 is achieved with ΔT=10K thanks to peak TO coefficient. 

Figure 5: Dynamic tuning in PbTe cubic resonators. Temperature dependent resonance shifts of the first 4 resonance modes in a a 
= 850nm PbTe cube on Au, are presented. The dashed lines are a guide to the eye. Resonance shifts exhibit the large and anomalous 
(dn/dT < 0) TO coefficient, and a marked increase in magnitude below room temperature. 
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and is the largest dynamic tuning of Mie resonators reported to date67-70. These properties make PbTe an ideal candidate 
material for TO-tunable nanophotonics and metasurface resonators.  

Tracking the shift of all Mie resonances across a variety of temperatures provides valuable insight into the 
dispersion of TOE with temperature and wavelength. An example of temperature dependent spectra of a PbTe cube of 
side a=850 nm on a gold substrate, is presented in Figure 5. The temperature dependence of the first 4 resonance 
wavelengths are tracked. The tunable resonances exhibit some unusual characteristics. The wavelength shifts at low 
temperatures (80K-293K) are much larger than the shifts above room temperature (293K-573K). These results show that 
the largest dn/dT occurs between 80K to RT and a more thorough examination reveals a maximum in dn/dT somewhere 
between 80K and 200K38. Although observed shifts are consistent with other measurements65 71 72, this significant 
increase in TO coefficient at low temperatures has not previously been reported. Moreover, standard TO models61, based 
on temperature-dependent bandgap (Eg) dispersion,66 73 are unable to explain this effect, suggesting unknown physical 
mechanisms may be at play. Nevertheless, by operating at cryogenic temperatures, significant increases in TO tunability 
can be achieved. Altogether these results reveal a great potential for practical TO switching with PbTe components.  
Phase transition materials 

Among active materials, phase transition and phase change materials can arguably provide the largest variation 
in optical constants. When applying heat, electric or magnetic fields to these materials, their optical constants can 
undergo dramatic (and reversible) shifts. Various mechanisms have been investigated and employed to realize tunable 
nanophotonic and metasurface platforms. These include the transition from nematic to isotropic phases in liquid 
crystals28,67, amorphous to crystalline phase change in GeSbTe (GST)46,74,75 and metal─insulator transitions (MIT) in 
prototypical strongly correlated materials such as vanadium dioxide (VO2)63,76-80 and V2O3

81,82.  
We have previously demonstrated that VO2 metasurfaces support switchable dielectric-plasmonic response63: in the 
insulating phase, the metasurfaces exhibit dielectric Mie-type resonances, that are switched to plasmonic resonances in 
the metallic phase.  

In the following, we show that hybrid dielectric−VO2 structures exhibit several novel behaviors of great interest 

in the development of reconfigurable optics, including independent tuning of the reflection amplitude and phase, large 
modulation of transmission and absorption, and electronic switching. Our device is basically a tunable Fabry–Pérot (TFP) 
cavity, comprised of a 1 μm thick Ge layer, atop of a 100 nm thick film of VO2, on an R-cut sapphire substrate (Figure 6a). 
At the interface between a transparent material and VO2, the reflectivity undergoes a π phase shift across the MIT. Here, 
reflection-phase switching of the MIT, modulates the complex reflectivity (i.e., amplitude and phase), transmission, and 

absorption of the simple Ge−VO2 TFP. Unlike existing switchable VO2 photonic devices, here the mesoscopic continuous 

nature of the MIT in the VO2 thin film, is used to achieve continuous reflection modulation (Figure 6b), as well as 
independent control over the phase83, a key requirement for reconfigurable high-efficiency metasurfaces. In Figure 6b 
and 6c, we demonstrate an electrically controlled TPF device. The device is modulated through Joule heating by passing 
current directly through a 200 μm × 200 μm TFP. In the VO2 insulating state, current passes predominantly through the 
lightly doped Ge layer. This enables Joule heating of the device in both metallic and insulating VO2 states, without 
introducing additional lossy metals. The temporal characteristics of the device are investigated by exciting the TFP with 
a square voltage pulse (26 Vpp, 60 μs), and monitoring the temporal response of the device with a fast MCT detector 
and the FTIR in a step-scan mode. Transient reflectivity measurements in the 900-3000cm-1 range were also carried out, 
exhibiting the continuous temporal evolution of the spectrum, including the nodes and antinodes. Figure 5c traces the 
rise and decay time characteristics of at λ=4.7µm. Fast rise time, due to rapid Joule heating is observed, followed by a 
slower thermal-diffusion-limited decay. Dynamic traces exhibit an approximately 12.6 μs rise time, as determined 
through an exponential fit with an approximately 285 μs decay time, corresponding to estimated modulation rates on 
the order of 3.5 kHz. When applying even larger voltages, faster rise times can be achieved44. These values are an order 
of magnitude faster than previous large-area VO2 optical modulators79,80 which have rise and relaxation times of the 
order of few milliseconds. The decay time is likely limited by the relatively large thermal capacitance of the device and 
may be improved with thermally engineered metasurface structures that reduce the Ge and VO2 volumes. Further 
improvements in speed can also be attained by reducing the modulation depth or by utilizing vertical contact geometries.  
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3. CONCLUSIONS 
In summary, we studied dynamic tuning performance in resonators and metasurfaces obtained from several 

materials systems comprising group IV, group IV-VI semiconductors and phase transition materials. Identifying the 
linewidth tunability (Δλ/FWHM>1) as the figure of merit for efficient tuning, we pinpoint the route to achieve such 
tunability by combings materials with large optical effects along with high-Q resonances. We study TO tuning in Ge 
resonators and highlight their capabilities with a demonstration of tunable high-order resonances which are completely 
tuned ΔT=180K. 

 To further reduce the temperature gradients required for linewidth tunability, we investigate lead 
chalcogenides of group IV-VI semiconductors. We show that PbTe is an excellent candidate for infrared reconfigurable 
meta-optics, having both high refractive index and largest known TOC of all materials. We find that PbTe exhibits an 
anomalous TOE with peak performance at cryogenic temperatures, which cannot be explained with standard TOC 
models.  

Finally, we investigate tunability in hybrid dielectric−VO2 structures and show that these structures exhibit novel 

properties highly desirable for reconfigurable meta-optics. We utilize the metal−insulator phase transition of VO2 to 

create electrically reconfigurable, continuously tunable nanophotonic devices across a broad spectral range. The 
continuous modulation is enabled by driving the underlying VO2 film across the phase transition. Electronically triggered 
transient reflection measurements revealed switching rates of 3.5KHz, which can be further improved with thermal 
management and more sophisticated designs. These findings expand the potential of active metasurfaces, that take 

advantage of the reconfigurable properties of hybrid semiconductor−VO2 architectures. Altogether, this work highlights 

Figure 6: Electrically tunable Fabry–Pérot resonator. (a) Schematic of Ge–VO2–Al2O3 device in the insulating, intermediate, and 
metallic states. The arrows represent the dominant reflection interfaces. (b) Electrically tuned device, showing continuously 
modulated reflection amplitude with increase current. (c) Normalized transient reflectivity at the anti-node wavelength (λ = 4.7μm). 
Solid black line corresponds to the experimental raw data while the red and blue lines correspond to fitted exponential curves (red, 
heating; blue, cooling). 
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the opportunities and potential of thermally tunable semiconductor metasurfaces and can pave the way to efficient high-
Q reconfigurable metadevices, which will ultimately be implemented in important applications for the infrared range.   
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