PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Tunable and reconfigurable high-
iIndex semiconductor meta-optics

Lewi, Tomer, Butakov, Nikita, lyer, Prasad, Evans, Hayden,
Chorsi, Hamid, et al.

Tomer Lewi, Nikita A. Butakov, Prasad P. lyer, Hayden A. Evans, Hamid
Chorsi, Juan Trastoy, Javier Del Valle Granda, llya Valmianski, Christian
Urban, Yoav Kalcheim, Ivan K. Schuller, Jon A. Schuller, "Tunable and
reconfigurable high-index semiconductor meta-optics," Proc. SPIE 11290,

High Contrast Metastructures IX, 112901B (26 February 2020); doi:
10.1117/12.2545075

SPIE. Event: SPIE OPTO, 2020, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 01 Dec 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Tunable and Reconfigurable High-index Semiconductor Meta-optics

Tomer Lewi?", Nikita A. Butakov®, Prasad P. lyer®, Hayden A. Evansd, Hamid Chorsi®, Juan Trastoy®®,
Javier Del Valle Granda¢, llya Valmianski€, Christian Urban€, Yoav Kalcheim¢, lvan K. Schuller® and Jon
A. Schuller®

9Faculty of Engineering and Institute for Nanotechnology and Advanced Materials, Bar-llan University, Ramat-Gan 5290002, Israel
bDepartment of Electrical & Computer Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United
States

cDepartment of Physics, University of California, San Diego, La Jolla, California 92093, United States

dMaterials Research Laboratory and Department of Chemistry and Biochemistry, University of California Santa Barbara, California
93106, United States

e Unité Mixte de Physique CNRS, Thales, Univ. Paris-Sud, Univ. Paris Saclay, 91767 Palaiseau, France

Abstract

Metasurfaces manipulate light through engineering the amplitude, phase and polarization across arrays of meta-atom
antenna resonators. Adding tunability and active functionality to metasurface components would boost their potential
and unlock a vast array of new application possibilities such as dynamic beam steering, LIDAR, tunable metalenses,
reconfigurable meta-holograms and many more. We present here high-index reconfigurable meta-atoms, resonators
and metasurfaces that can dynamically and continuously tune their frequency, amplitude and phase, across the infrared
spectral ranges. We utilize narrow linewidth resonances along with peak performance of tunable mechanisms for
efficient and practical reconfigurable devices.
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1. INTRODUCTION

Metasurfaces are two-dimensional structures designed to manipulate light through arbitrary wavefront
shaping 1 23 4, Recently a lot of attention in the field has shifted to the realization of all-dielectric metasurfaces and has
led to tremendous progress, giving rise to several demonstrations including achromatic and broadband metalenses 67,
axicon lenses®, sub-diffraction focusing®, nonlinear generation'® ' 2 beam deflectors®'® 4, wave plates and beam
converters 1617 18 ‘holograms?® 20 21, antireflection coatings?? and magnetic mirrors??, to name a few. However, most
metasurfaces are still implemented for static operation and optimized for limited bandwidth of operation. The next
frontier lies in dynamic and active control over light, which will drastically increase metasurface capabilities and potential
applications.

The fundamental challenge for achieving reconfigurable operation is to obtain large and continuous modulation
of optical properties within subwavelength meta-atoms and meta-molecules which are inherently low-Q resonators?*2°.
Desirable tuning mechanisms continuously shift the resonance frequency of the metastructure with at least one
linewidth of the resonance, thus allowing to maximize the modulation of both amplitude and phase. These challenges
have motivated several studies exploring different approaches, designs, and materials that provide extreme tunability.
Previous investigations of active tuning in dielectric metasurfaces and meta-atoms have focused on ultrafast free-carrier
injection?®?’, coupling to liquid crystals?®?°, to atomic vapor3® or to ENZ materials332, phase change materials3*3* and
MEMS? 3637 However, most of these approaches do not provide a viable solution for a fully reconfigurable metadevice
where at each subwavelength meta-atom the phase and amplitude can be individually and continuously tuned to provide
an arbitrary phase profile. Recent studies have showed that the thermo-optic effect (TOE), i.e. refractive index variation
with temperature dn/dT can be used to induce large and continuous index shifts in materials having extraordinary
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thermal dependence3® 3° 4041 The TOE was also recently used to actively tune Si metasurfaces, but only at a limited
temperature range (273-573K)*2. Here we present free carrier and thermal tunability in several groups of high-index
semiconductor resonators over large MIR spectral ranges. We demonstrate doping dependent tuning of Mie resonances
in Si due to modulation of carrier densities. Next we study thermal and TO tunability in group IV semiconductors (Si and
Ge) due to the normal positive TOE (dn/dT >0) and in the lead chalcogenide family of group IV-VI semiconductors (PbTe)
due to the anomalous dn/dT <0 . We demonstrate the tuning of high order mid-infrared (MIR) Mie resonances by several
linewidths with temperature swings as small as AT<10K. Lastly, we discuss reconfigurable and switchable devices driven
by metal-insulator transitions in vanadium-oxide (VO2). We demonstrate independent and continuous tuning of both
amplitude and phase in a single electrically controlled nanophotonic device based on Ge on VO..

Thermo-optic (TO) effects provide an ideal test bed for demonstrating and elucidating reconfigurable
metasurface properties. TO tuning can provide large index shifts with no added losses and be integrated into electrically-
controlled architectures. Thus, TO tunability forms the basis for many reconfigurable integrated photonic devices.
However, the TOC of most materials is small for subwavelength applications, hence typical TO applications exploit small
index changes acting over distances much larger than a wavelength to achieve useful modulation. For efficient
modulation of subwavelength resonators, the maximally induced index shift An should tune the resonance wavelength
by more than its linewidth (AA/FWHM>1, where AA is the resonance wavelength shift and FWHM is the full width at half
max of the linewidth). The route for achieving this tunability is by maximizing the TOE using extraordinary materials?43%3%
414344 and/or narrowing the resonance linewidth using high-Q modes3® such as supported by asymmetric?® or fano-
resonant!® metasurfaces.

2. RESULTS AND DISCUSSION

This study of resonator and metasurface tunability is mainly focused for the MIR spectral range which has
tremendous scientific and technological interest including nanospectroscopy®’, thermal imaging®®, chemical and
biological sensing®’>°, medical applications®?, laser countermeasures®? and spectro-interferometry for astro-photonics>*
60 to name a few. Importantly, thermal tunability can be extended to the NIR and visible ranges where the performance
of e.g. Si and Ge, can be improved due to the expected increase of dn/dT at shorter wavelengths.

Group IV semiconductors

Here we first study the free carrier effects of Si spherical resonators. Varying the carrier concentration in the
resonators through doping, we demonstrate blue shifting of Mie resonances for increasing the carrier deinsity?*. Figure
1 presents the spectral characteristics of Si spheres with a constant radius of d=1 um with increasing doping
concentrations, from undoped Si (blue) and up to highly doped Si of n=1 x 10?° cm=3, demonstrating blue-shifts and
broadening of the Mie resonances with increased carrier density. For doping of 3.8 x 10%° cm™3 the material behaves like
a low index dielectric with overlapping ED and MD modes. For the highest doped sample (pink), the permittivity is
negative at long wavelengths, leading to the emergence of an ED plasmonic mode. Nevertheless, resonances are shifted
by more than a linewidth with carrier densities > 1 x 10%°.

Next we move to study thermal effects leading to large normalized tunability (more than a linewidth). We start
with TO tuning capabilities of Ge — one of the most commonly used materials for dielectric metasurfaces and
nanophotonics. The TOC of Ge is amongst the highest of natural materials®® which, along with its high refractive indices
and CMOS compatibility, makes it very attractive materials for reconfigurable metasurfaces. However, the typical TOC
value (~5 x 10 K1) requires large temperature modulation which may cause problems if the TOC is strongly temperature
dependent3® 3, In the mid-infrared (MIR) range, for instance, working at high temperatures can generate FC densities in
semiconductors that dramatically alter the optical constants due to Drude-like dispersion®.

To investigate thermal tunability and assess its capabilities, we start by studying Ge single spherical meta-atom
resonators fabricated by laser ablation?*%3, Figure 2 presents a typical spectral response of a Ge spherical Mie resonator
with r= 1.75 um. Experimental spectra (black) show good agreement with the calculated Mie scattering (red) cross-
sections Osca Normalized to the geometric cross-section ogeo. A series of multipolar resonance peaks are visible in the
spectra and correspond to magnetic dipole (MD), electric dipole (ED) and magnetic (MQ) and electric quadrupole (EQ),
respectively. In Figure 3 we focus on the TO tunability of the EQ mode since its Q-factor is relatively high Qs~50.
Temperature dependent spectra of the EQ resonance are illustrated in Figure 3a. Significant red shifts of resonances are
observed which provide tuning by more than one resonance linewidth across the 80-573K temperature range.
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Figure 1: Spectral characteristics of doped Mie resonators and free carrier based tuning effects. The Spectra of 2 um diameter Si
spheres with different doping concentrations, demonstrating blue-shifts and broadening of the Mie resonances with increased doping.
For doping of 3.8 x 101° cm~3 the material behaves like a low index dielectric with overlapping ED and MD modes. For the highest
doped sample (pink), the permittivity is negative at long wavelengths, leading to the emergence of an ED plasmonic mode.

Figure 3b presents a zoom in view on the spectral shifts between 293K and 473K depicting a normalized tunabiltiy of
ANFWHM=1.2 with a temperature gradient of AT=180K. Such tunability with a practical temperature difference of
AT=180K, would be useful for implementing reconfigurable high-Q Ge metasurfaces.

Group IV-VI semiconductors

Although TOCs of group-IV such as Si and Ge are amongst the highest of natural materials®?, achieving the
desired tunability (AA/FWHM>1) in Si and Ge metasurface requires large temperature gradients. Meeting the desired
linewidth tunability with relaxed temperature modulation, requires materials with higher TOCs and/or narrowing the
resonance linewidth. Remarkably, the lead chalcogenide family PbX (X=S, Se, Te) possesses both very large refractive
indices with highest reported values of TOCs®*.

Figure 4 presents the TO tuning of a high order high-Q (Q~100 ) Mie resonance in a spherical r=0.9 um resonator.
The high figure of merit of normalized tunability arises due to the high refractive index of the material (neb7e™~6) and large
TOC. Interestingly, the sign of the TOC in PbTe is negative (dn/dT<0) due to anomalous temperature-dependent bandgap
dispersion®-%5%¢ Combining the large low-temperature TOE with high-Q resonances enables complete tuning (i.e. by
more than one linewidth) of resonances with significantly reduced temperature swings (AT). This sharp resonance can
be tuned by more than one linewidth (normalized tunability=1.02) with a temperature swing as small as AT=80K. This
large tunability is enabled by the combination of the narrow linewidth and large TOE.
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Figure 2: Ge spherical Mie resonator with r= 1.75 um. Experimental spectra (black) show good agreement with the calculated
Mie scattering (cyan, dashed) and FDTD (solid cyan) cross-sections osca normalized to the geometric cross-section ogeo. A series
of multipolar resonance peaks are visible in the spectra and correspond to magnetic dipole (MD), electric dipole (ED) magnetic

quadrupole (MQ) and electric quadrupole (EQ), respectively.
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Figure 3: Thermal tuning of a high order EQ in a r=1.75um Ge spherical resonator (a) Temperature dependent spectra in the
80-573K range (b) Tuning by more than one resonance linewidth (AA\/FWHM=1.2) with a AT=180K temperature gradient
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Furthermore, at lower temperatures of ~ 170K the observed dn/dT was shown to be an order of magnitude larger than
the dn/dT at RT temperatures3®. These results clearly demonstrate the strong, negative TO effect in PbTe nanoparticles
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Figure 4: Tunable PbTe meta-atoms. Tuning of high order resonance by more than a linewidth in PbTe spherical resonators with
AT=80K. At T=173K normalized tunability A\/FWHM=1.6 is achieved with AT=10K thanks to peak TO coefficient.
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Figure 5: Dynamic tuning in PbTe cubic resonators. Temperature dependent resonance shifts of the first 4 resonance modesinaa
=850nm PbTe cube on Au, are presented. The dashed lines are a guide to the eye. Resonance shifts exhibit the large and anomalous
(dn/dT < 0) TO coefficient, and a marked increase in magnitude below room temperature.
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and is the largest dynamic tuning of Mie resonators reported to date®”7°. These properties make PbTe an ideal candidate
material for TO-tunable nanophotonics and metasurface resonators.

Tracking the shift of all Mie resonances across a variety of temperatures provides valuable insight into the
dispersion of TOE with temperature and wavelength. An example of temperature dependent spectra of a PbTe cube of
side a=850 nm on a gold substrate, is presented in Figure 5. The temperature dependence of the first 4 resonance
wavelengths are tracked. The tunable resonances exhibit some unusual characteristics. The wavelength shifts at low
temperatures (80K-293K) are much larger than the shifts above room temperature (293K-573K). These results show that
the largest dn/dT occurs between 80K to RT and a more thorough examination reveals a maximum in dn/dT somewhere
between 80K and 200K38. Although observed shifts are consistent with other measurements® 7! 72, this significant
increase in TO coefficient at low temperatures has not previously been reported. Moreover, standard TO models®, based
on temperature-dependent bandgap (Eg) dispersion,® 73 are unable to explain this effect, suggesting unknown physical
mechanisms may be at play. Nevertheless, by operating at cryogenic temperatures, significant increases in TO tunability
can be achieved. Altogether these results reveal a great potential for practical TO switching with PbTe components.
Phase transition materials

Among active materials, phase transition and phase change materials can arguably provide the largest variation
in optical constants. When applying heat, electric or magnetic fields to these materials, their optical constants can
undergo dramatic (and reversible) shifts. Various mechanisms have been investigated and employed to realize tunable
nanophotonic and metasurface platforms. These include the transition from nematic to isotropic phases in liquid
crystals?®®’, amorphous to crystalline phase change in GeSbTe (GST)* 747> and metal—insulator transitions (MIT) in
prototypical strongly correlated materials such as vanadium dioxide (VO2)5760 and V,03%182,

We have previously demonstrated that VO2 metasurfaces support switchable dielectric-plasmonic response®: in the
insulating phase, the metasurfaces exhibit dielectric Mie-type resonances, that are switched to plasmonic resonances in
the metallic phase.

In the following, we show that hybrid dielectric—VO:z structures exhibit several novel behaviors of great interest
in the development of reconfigurable optics, including independent tuning of the reflection amplitude and phase, large
modulation of transmission and absorption, and electronic switching. Our device is basically a tunable Fabry—Pérot (TFP)
cavity, comprised of a 1 um thick Ge layer, atop of a 100 nm thick film of VO, on an R-cut sapphire substrate (Figure 6a).
At the interface between a transparent material and VO, the reflectivity undergoes a 1t phase shift across the MIT. Here,
reflection-phase switching of the MIT, modulates the complex reflectivity (i.e., amplitude and phase), transmission, and
absorption of the simple Ge—VO: TFP. Unlike existing switchable VO2 photonic devices, here the mesoscopic continuous
nature of the MIT in the VO: thin film, is used to achieve continuous reflection modulation (Figure 6b), as well as
independent control over the phase®3, a key requirement for reconfigurable high-efficiency metasurfaces. In Figure 6b
and 6¢, we demonstrate an electrically controlled TPF device. The device is modulated through Joule heating by passing
current directly through a 200 um x 200 um TFP. In the VO2insulating state, current passes predominantly through the
lightly doped Ge layer. This enables Joule heating of the device in both metallic and insulating VO: states, without
introducing additional lossy metals. The temporal characteristics of the device are investigated by exciting the TFP with
a square voltage pulse (26 Vpp, 60 us), and monitoring the temporal response of the device with a fast MCT detector
and the FTIR in a step-scan mode. Transient reflectivity measurements in the 900-3000cm range were also carried out,
exhibiting the continuous temporal evolution of the spectrum, including the nodes and antinodes. Figure 5c traces the
rise and decay time characteristics of at A=4.7um. Fast rise time, due to rapid Joule heating is observed, followed by a
slower thermal-diffusion-limited decay. Dynamic traces exhibit an approximately 12.6 us rise time, as determined
through an exponential fit with an approximately 285 us decay time, corresponding to estimated modulation rates on
the order of 3.5 kHz. When applying even larger voltages, faster rise times can be achieved*. These values are an order
of magnitude faster than previous large-area VO optical modulators’®8® which have rise and relaxation times of the
order of few milliseconds. The decay time is likely limited by the relatively large thermal capacitance of the device and
may be improved with thermally engineered metasurface structures that reduce the Ge and VO2 volumes. Further
improvements in speed can also be attained by reducing the modulation depth or by utilizing vertical contact geometries.
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Figure 6: Electrically tunable Fabry—Pérot resonator. (a) Schematic of Ge-VO,—Al,O3 device in the insulating, intermediate, and
metallic states. The arrows represent the dominant reflection interfaces. (b) Electrically tuned device, showing continuously
modulated reflection amplitude with increase current. (c) Normalized transient reflectivity at the anti-node wavelength (A = 4.7um).
Solid black line corresponds to the experimental raw data while the red and blue lines correspond to fitted exponential curves (red,
heating; blue, cooling).

3. CONCLUSIONS

In summary, we studied dynamic tuning performance in resonators and metasurfaces obtained from several
materials systems comprising group 1V, group IV-VI semiconductors and phase transition materials. Identifying the
linewidth tunability (AA/FWHM>1) as the figure of merit for efficient tuning, we pinpoint the route to achieve such
tunability by combings materials with large optical effects along with high-Q resonances. We study TO tuning in Ge
resonators and highlight their capabilities with a demonstration of tunable high-order resonances which are completely
tuned AT=180K.

To further reduce the temperature gradients required for linewidth tunability, we investigate lead
chalcogenides of group IV-VI semiconductors. We show that PbTe is an excellent candidate for infrared reconfigurable
meta-optics, having both high refractive index and largest known TOC of all materials. We find that PbTe exhibits an
anomalous TOE with peak performance at cryogenic temperatures, which cannot be explained with standard TOC
models.

Finally, we investigate tunability in hybrid dielectric-VOz structures and show that these structures exhibit novel
properties highly desirable for reconfigurable meta-optics. We utilize the metal—insulator phase transition of VO to
create electrically reconfigurable, continuously tunable nanophotonic devices across a broad spectral range. The
continuous modulation is enabled by driving the underlying VO2 film across the phase transition. Electronically triggered
transient reflection measurements revealed switching rates of 3.5KHz, which can be further improved with thermal
management and more sophisticated designs. These findings expand the potential of active metasurfaces, that take
advantage of the reconfigurable properties of hybrid semiconductor—VO: architectures. Altogether, this work highlights
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the opportunities and potential of thermally tunable semiconductor metasurfaces and can pave the way to efficient high-
Q reconfigurable metadevices, which will ultimately be implemented in important applications for the infrared range.
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