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Abstract
In modern supervised learning, there are a large
number of tasks, but many of them are associated
with only a small amount of labelled data. These
include data from medical image processing and
robotic interaction. Even though each individual
task cannot be meaningfully trained in isolation,
one seeks to meta-learn across the tasks from past
experiences by exploiting some similarities. We
study a fundamental question of interest: When
can abundant tasks with small data compensate
for lack of tasks with big data? We focus on a
canonical scenario where each task is drawn from
a mixture of k linear regressions, and identify
sufficient conditions for such a graceful exchange
to hold; there is little loss in sample complexity
even when we only have access to small data
tasks. To this end, we introduce a novel spectral
approach and show that we can efficiently utilize
small data tasks with the help of Ω̃(k3/2) medium
data tasks each with Ω̃(k1/2) examples.

1. Introduction
Recent advances in machine learning highlight successes on
a small set of tasks where a large number of labeled exam-
ples have been collected and exploited. These include image
classification with 1.2 million labeled examples (Deng et al.,
2009) and French-English machine translation with 40 mil-
lion paired sentences (Bojar et al., 2014). For common tasks,
however, collecting clean labels is costly, as they require
human expertise (as in medical imaging) or physical inter-
actions (as in robotics), for example. Thus collected real-
world datasets follow a long-tailed distribution, in which a
dominant set of tasks only have a small number of training
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examples (Wang et al., 2017).

Inspired by human ingenuity in quickly solving novel prob-
lems by leveraging prior experience, meta-learning ap-
proaches aim to jointly learn from past experience to quickly
adapt to new tasks with little available data (Schmidhuber,
1987; Thrun & Pratt, 2012). This has had a significant im-
pact in few-shot supervised learning, where each task is
associated with only a few training examples. By leveraging
structural similarities among those tasks, one can achieve
accuracy far greater than what can be achieved for each task
in isolation (Finn et al., 2017; Ravi & Larochelle, 2017;
Koch et al., 2015; Oreshkin et al., 2018; Triantafillou et al.,
2019; Rusu et al., 2018). The success of such approaches
hinges on the following fundamental question: When can
we jointly train small data tasks to achieve the accuracy of
large data tasks?

We investigate this trade-off under a canonical scenario
where the tasks are linear regressions in d-dimensions and
the regression parameters are drawn i.i.d. from a discrete set
of a support size k. Although widely studied, existing liter-
ature addresses the scenario where all tasks have the same
fixed number of examples. We defer formal comparisons to
Section 6.

On one extreme, when large training data of sample size
Ω(d) is available, each task can easily be learned in isola-
tion; here, Ω(k log k) such tasks are sufficient to learn all k
regression parameters. This is illustrated by a solid circle in
Figure 1. On the other extreme, when each task has only one
example, existing approaches require exponentially many
tasks (see Table 1). This is illustrated by a solid square.

Several aspects of few-shot supervised learning makes train-
ing linear models challenging. The number of training ex-
amples varies significantly across tasks, all of which are
significantly smaller than the dimension of the data d. The
number of tasks are also limited, which restricts any algo-
rithm with exponential sample complexity. An example
distribution of such heterogeneous tasks is illustrated in Fig-
ure 1 with a bar graph in blue, where both the solid circle
and square are far outside of the regime covered by the
typical distribution of tasks.

In this data scarce regime, we show that we can still ef-
ficiently achieve any desired accuracy in estimating the
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Figure 1. Realistic pool of meta-learning tasks do not include large
data tasks (circle) or extremely large number of small data tasks
(square), where existing approaches achieve high accuracy. The
horizontal axis denotes the number of examples t per task, and
the vertical axis denotes the number of tasks in the pool that have
at least t examples. The proposed approach succeeds whenever
any point in the light (green) region, and any point in the heavy
(yellow) region are both covered by the blue bar graph, as is in
this example. The blue graph summarizes the pool of tasks in
hand, illustrating the cumulative count of tasks with more than t
examples. We ignore constants and poly log factors.

meta-parameters defining the meta-learning problem. This
is shown in the informal version of our main result in Corol-
lary 1.1. As long as we have enough number of light tasks
each with tL = Ω̃(1) examples, we can achieve any accu-
racy with the help of a small number of heavy tasks each
with tH = Ω̃(

√
k) examples. We only require the total

number of examples that we have jointly across all light
tasks to be of order tLnL = Ω̃(dk2); the number of light
tasks nL and the number of examples per task tL trade off
gracefully. This is illustrated by the green region in Figure 1.
Further, we only need a small number of heavy tasks with
tHnH = Ω̃(k3/2), shown in the yellow region. As long as
the cumulative count of tasks in blue graph intersects with
the light (green) and heavy (yellow) regions, we can recover
the meta-parameters accurately.

Corollary 1.1 (Special case of Theorem 1, informal).
Given two batches of samples, the first batch with

tL = Ω̃(1) , tLnL = Ω̃
(
dk2
)
,

and the second batch with

tH = Ω̃
(√
k
)
, tHnH = Ω̃

(
k2
)
,

Algorithm 1 estimates the meta-parameters up to any desired
accuracy of O (1) with a high probability, under a certain
assumptions on the meta-parameters.

We design a novel spectral approach inspired by (Vempala &
Wang, 2004) that first learns a subspace using the light tasks,
and then clusters the heavy tasks in the projected space. To
get the desired tight bound on the sample complexity, we

improve upon a perturbation bound from (Li & Liang, 2018),
and borrow techniques from recent advances in property
testing in (Kong et al., 2019).

2. Problem formulation and notations
There are two perspectives on approaching meta-learning:
optimization based (Li et al., 2017; Bertinetto et al., 2019;
Zhou et al., 2018; Zintgraf et al., 2019; Rajeswaran et al.,
2019), and probabilistic (Grant et al., 2018; Finn et al., 2018;
Kim et al., 2018; Harrison et al., 2018). Our approach is
motivated by the probabilistic view and we present a brief
preliminary in Section 2.1. In Section 2.2, we present a
simple but canonical scenario where the tasks are linear
regressions, which is the focus of this paper.

2.1. Review of probabilistic view on meta-learning

A standard meta-training for few-shot supervised learn-
ing assumes that we are given a collection of n meta-
training tasks {Ti}ni=1 drawn from some distribution P (T ).
Each task is associated with a dataset of size ti, collec-
tively denoted as a meta-training dataset Dmeta-train ={
{(xi,j , yi,j) ∈ Rd × R}j∈[ti]

}
i∈[n]

. Exploiting some
structural similarities in P(T ), the goal is to train a model
for a new task T new, coming from P (T ), from a small
amount of training dataset D =

{
(xnew
j , ynew

j )
}
j∈[τ ]

.

Each task Ti is associated with a model parameter φi,
where the meta-training data is independently drawn from:
(xi,j , yi,j) ∼ Pφi(y|x)P(x) for all j ∈ [ti]. The prior distri-
bution of the tasks, and hence the model parameters, is fully
characterized by a meta-parameter θ such that φi ∼ Pθ(φ).

Following the definition from (Grant et al., 2018), the meta-
learning problem is defined as estimating the most likely
meta-parameter given meta-training data by solving

θ∗ ∈ arg max
θ

log P(θ | Dmeta-train) , (1)

which is a special case of empirical Bayes methods for
learning the prior distribution from data (Carlin & Louis,
2010). Once meta-learning is done, the model parameter
of a newly arriving task can be estimated by a Maximum a
Posteriori (MAP) estimator:

φ̂ ∈ arg max
φ

log P(φ | D, θ∗) , (2)

or a Bayes optimal estimator:

φ̂ ∈ arg min
φ

Eφ′∼P(φ′ | D,θ∗)[ `(φ, φ
′) ] , (3)

for a choice of a loss function `. This estimated parameter
is then used for predicting the label of a new data point x in
task T new as

ŷ ∈ arg max
y

Pφ̂(y|x) . (4)



Meta-learning for Mixed Linear Regression

General notations. We define [n] := {1, . . . , n} ∀ n ∈
N; ‖x‖p :=

(∑
x∈x |x|

p)1/p as the standard `p-norm;

and Bp,k(µ, r) :=
{

x ∈ Rk | ‖x− µ‖p = r
}

. N (µ,Σ)

denotes the multivariate normal distribution with mean
µ ∈ Rd and covariance Σ ∈ Rd×d, and 1 {E} denotes
the indicator of an event E.

2.2. Linear regression with a discrete prior

In general, the meta-learning problem of (1) is computation-
ally intractable and no statistical guarantees are known. To
investigate the trade-offs involved, we assume a simple but
canonical scenario where the tasks are linear regressions:

xi,j ∼ Px , yi,j = β>i xi,j + εi,j , (5)

for the i-th task and j-th example. Each task is associ-
ated with a model parameter φi =

(
βi ∈ Rd, σi ∈ R+

)
.

The noise εi,j is i.i.d. as εi,j ∼ Pεi , and Pεi is a cen-
tered sub-Gaussian distribution with parameter σ2

i . Without
loss of generality, we assume that Px is an isotropic (i.e.
E
[
xi,jx

>
i,j

]
= Id) centered sub-Gaussian distribution. If

Px is not isotropic, we assume there are large number of
xi,j’s for whitening such that Px is sufficiently close to
isotropic.

We do not make any assumption on the prior of φi’s
other than that they come from a discrete distribution
of a support size k. Concretely, the meta-parameter
θ =

(
W ∈ Rd×k, s ∈ Rk+, p ∈ Rk+ ∩B1,k(0, 1)

)
defines

a discrete prior (which is also known as mixture of lin-
ear experts (Chaganty & Liang, 2013)) on φi’s, where
W = [w1, . . . ,wk] are the k candidate model parameters,
and s = [s1, . . . , sk] are the k candidate noise parameters.
The i-th task is randomly chosen from one of the k compo-
nents from distribution p, denoted by zi ∼ multinomial(p).
The training data is independently drawn from (5) for each
j ∈ [ti] with βi = wzi and σi = szi .

We want to characterize the sample complexity of this meta-
learning. This depends on how complex the ground truths
prior θ is. This can be measured by the number of com-
ponents k, the separation between the parameters W, the
minimum mixing probability pmin, and the minimum posi-
tive eigen-value λmin of the matrix

∑k
j=1 pjwjw

>
j .

Notations. We define ρi :=
√
s2
zi + ‖wzi‖

2
2 as the

sub-Gaussian norm of a label yi,j in the i-th task, and
ρ2 := maxi ρ

2
i . Without loss of generality, we assume

ρ = 1, which can be always achieved by scaling the
meta-parameters appropriately. We also define pmin :=
minj∈[k] pj , and ∆ := mini,j∈[k],i6=j ‖wi −wj‖2 and as-
sume pmin,∆ > 0. ω ∈ R+ is such that two n×n matrices
can be multiplied in O (nω) time.

3. Algorithm
We propose a novel spectral approach (Algorithm 1) to solve
the meta-learning linear regression, consisting of three sub-
algorithms: subspace estimation, clustering, and classifica-
tion. These sub-algorithms require different types of tasks,
depending on how many labelled examples are available.

Clustering requires heay tasks, where each task is associated
with many labelled examples, but we need a smaller number
of such tasks. On the other hand, for subspace estimation
and classification, light tasks are sufficient, where each task
is associated with a few labelled examples. However, we
need a large number of such tasks. In this section, we present
the intuition behind our algorithm design, and the types of
tasks required. Precisely analyzing these requirements is the
main contribution of this paper, to be presented in Section 4.

3.1. Intuitions behind the algorithm design

We give a sketch of the algorithm below. Each step of
meta-learning is spelled out in full detail in Section 5. This
provides an estimated meta-parameter θ̂ =

(
Ŵ, ŝ, p̂

)
.

When a new task arrives, this can be readily applied to solve
for prediction, as defined in Definition 4.5.

Algorithm 1

Meta-learning

1. Subspace estimation. Compute subspace U which ap-
proximates span {w1, . . . ,wk}, with singular value
decomposition.

2. Clustering. Project the heavy tasks onto the subspace of
U, perform distance-based k clustering, and estimate
w̃i for each cluster.

3. Classification. Perform likelihood-based classification
of the light tasks using w̃i estimated from the Clus-
tering step, and compute the more refined estimates
(ŵi, ŝi, p̂i) of (wi, si, pi) for i ∈ [k].

Prediction

4. Prediction. Perform MAP or Bayes optimal prediction
using the estimated meta-parameter as a prior.

Subspace estimation. The subspace spanned by the regres-
sion vectors, span{w1, . . . ,wk}, can be easily estimated
using data from the (possibly) light tasks with only ti ≥ 2.
Using any two independent examples from the same task
(xi,1, yi,1), (xi,2, yi,2), it holds that E

[
yi,1yi,2xi,1x

>
i,2

]
=∑k

j=1 pjwjw
>
j . With a total of Ω(d log d) such exam-

ples, the matrix
∑k
j=1 pjwjw

>
j can be accurately esti-

mated under spectral norm, and so is the column space
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span{w1, . . . ,wk}. We call this step subspace estimation.

Clustering. Given an accurate estimation of the subspace
span{w1, . . . ,wk}, we can reduce the problem from a d-
dimensional to a k-dimensional regression problem by pro-
jecting x onto the subspace of U. Tasks with ti = Ω(k)
examples can be individually trained as the unknown param-
eter is now in Rk. The fundamental question we address is:
What can we do when ti = o(k)? We propose clustering
such light tasks based on their estimates of the regression
vector βi’s, and jointly solve a single regression problem
for each cluster.

To this end, we borrow techniques from recent advances in
property estimation for linear regression. Recently, in the
contextual bandit setting, Kong et al. (2019) proposed an
estimator for the correlation between the linear regressors
between a pair of datasets. Concretely, given two datasets
{x1,j , y1,j}j∈[t] and {x2,j , y2,j}j∈[t] whose true (unknown)
regression vectors are β1 and β2, one can estimate ‖β1‖22,
‖β2‖22 and β>1 β2 accurately with t = O

(√
d
)
. We use this

technique to estimate ‖βi2 − βi2‖
2
2, whose value can be

used to check if the two tasks are in the same clusters. We
cluster the tasks with ti = Ω

(√
k
)

into k disjoint clusters.
We call this step clustering.

After clustering, resulting estimated w̃i’s have two sources
of error: the error in the subspace estimation, and the error in
the parameter estimation for each cluster. If we cluster more
heavy tasks, we can reduce the second error but not the first.
We could increase the samples used in subspace estimation,
but there is a more sample efficient way: classification.

Classification. We start the classification step, once each
cluster has enough (i.e. Ω(k)) datapoints to obtain a rough
estimation of their corresponding regression vector. In this
regime, we have O (1) error in the estimated w̃i’s. This
is sufficient for us to add more datapoints to grow each of
the clusters. When enough data points are accumulated
(i.e. Ω̃(d) for each cluster), then we can achieve any desired
accuracy with this larger set of accurately classified tasks.
This separation of the roles of the three sub-algorithms is
critical in achieving the tightest sample complexity.

In contrast to the necessary condition of ti = Ω
(√
k
)

for the
clustering step, we show that one can accurately determine
which cluster a new task belongs to with only ti = Ω(log k)

examples once we have a rough initial estimation W̃ of the
parameter W. We grow the clusters by adding tasks with a
logarithmic number of examples until we have enough data
points per cluster to achieve the desired accuracy. We call
this step classification. This concludes our algorithm for the
parameter estimation (i.e. meta-learning) phase.

4. Main results
Suppose we have nH heavy tasks each with at least tH
training examples, and nL light tasks each with at least tL
training examples. If heavy tasks are data rich (tH � d),
we can learn W straightforwardly from a relatively small
number, i.e. nH = Ω(k log k). If the light tasks are data
rich (tL � k), they can be straightforwardly clustered on
the projected k-dimensional subspace. We therefore focus
on the following challenging regime of data scarcity.

Assumption 1. The heavy datasetDH consists of nH heavy
tasks, each with at least tH samples. The first light dataset
DL1 consists of nL1 light tasks, each with at least tL1 sam-
ples. The second light dataset DL2 consists of nL2 tasks,
each with at least tL2 samples. We assume tL1, tL2 < k,
and tH < d.

To give more fine grained analyses on the sufficient condi-
tions, we assume two types of light tasks are available with
potentially differing sizes (Remark 4.3). In meta-learning
step in Algorithm 1, subspace estimation uses DL1, clus-
tering uses DH , and classification uses DL2. We provide
proofs of the main results in Appendices A, B, and C.

4.1. Meta-learning

We characterize a sufficient condition to achieve a target ac-
curacy ε in estimating the meta-parameters θ = (W, s,p).

Theorem 1 (Meta-learning). For any failure probability
δ ∈ (0, 1), and accuracy ε ∈ (0, 1), given three batches of
samples under Assumption 1, meta-learning step of Algo-
rithm 1 estimates the meta-parameters with accuracy

‖ŵi −wi‖2 ≤ εsi ,∣∣ŝ2
i − s2

i

∣∣ ≤ ε√
d
s2
i , and

|p̂i − pi| ≤ ε

√
tL2

d
pi ,

with probability at least 1− δ, if the following holds. The
numbers of tasks satisfy

nL1 = Ω

d log3
(

d
pmin∆δ

)
tL1

·min
{

∆−6p−2
min,∆

−2λ−2
min

} ,

nH = Ω

(
log(k/δ)

tH pmin∆2

(
k + ∆−2

))
,

nL2 = Ω

(
d log2(k/δ)

tL2pminε2

)
,

and the numbers of samples per task satisfy tL1 ≥
2, tL2 = Ω

(
log (kd/(pminδε)) /∆

4
)
, and tH =

Ω
(

∆−2
√
k log (k/(pmin∆δ))

)
, where λmin is the small-

est non-zero eigen value of M :=
∑k
j=1 pjwjw

>
j ∈ Rd×d.
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In the following remarks, we explain each of the conditions.
Remark 4.1 (Dependency in DL1). The total number of
samples used in subspace estimation is nL1tL1. The suf-
ficient condition scales linearly in d which matches the
information theoretically necessary condition up to loga-
rithmic factors. If the matrix M is well conditioned, for
example when wi’s are all orthogonal to each other, sub-
space estimation is easy, and nL1tL1 scales as ∆−2λ−2

min.
Otherwise, the problem gets harder, and we need ∆−6p−2

min

samples. Note that in this regime, tensor decomposition
approaches often fails to provide any meaningful guarantee
(see Table 1). In proving this result, we improve upon a
matrix perturbation bound in (Li & Liang, 2018) to shave
off a k6 factor on nL1 (see Lemma A.12).
Remark 4.2 (Dependency in DH ). The clustering step re-
quires tH = Ω̃(

√
k), which is necessary for distance-based

clustering approaches such as single-linkage clustering.
From (Kong & Valiant, 2018; Kong et al., 2019) we know
that it is necessary (and sufficient) to have t = Θ(

√
k),

even for a simpler testing problem between β1 = β2 or
‖β1 − β2‖22 � 0, from two labelled datasets with two lin-
ear models β1 and β2.

Our clustering step is inspired by (Vempala & Wang, 2004)
on clustering under Gaussian mixture models, where the al-
gorithm succeeds if tH = Ω̃(∆−2

√
k). Although a straight-

forward adaptation fails, we match the sufficient condition.

We only require the number of heavy samples nHtH to be
Ω̃ (k/pmin) up to logarithmic factors, which is information
theoretically necessary.
Remark 4.3 (Gain of using two types of light tasks). To get
the tightest guarantee, it is necessary to use a different set of
light tasks to perform the final estimation step. First notice
that the first light dataset DL1 does not cover the second
light dataset since we need tL2 ≥ Ω(log(kd)) which does
not need to hold for the first datasetDL1. On the other hand,
the second light dataset does not cover the first light dataset
in the setting where ∆ or pmin is very small.
Remark 4.4 (Dependency in DL2). Classification and pre-
diction use the same routine to classify the given task. Hence,
the log k requirement in tL2 is tight, as it matches our lower
bound in Proposition 4.6. The extra terms in the log factor
come from the union bound over all nL2 tasks to make sure
all the tasks are correctly classified. It is possible to replace
it by log(1/ε) by showing that ε fraction of incorrectly clas-
sified tasks does not change the estimation by more than
ε. We only require nL2tL2 = Ω(d/pmin) up to logarithmic
factors, which is information theoretically necessary.

4.2. Prediction

Given an estimated meta-parameter θ̂ = (Ŵ, ŝ, p̂), and
a new dataset D = {(xnew

j , ynew
j )}j∈[τ ], we make predic-

tions on the new task with unknown parameters using two

estimators: MAP estimator and Bayes optimal estimator.

Definition 4.5. Define the maximum a posterior (MAP)
estimator as

β̂MAP(D) := ŵî , where î := arg max
i∈[k]

log L̂i , and

L̂i := exp

(
−

τ∑
j=1

(ynew
j −ŵ>i xnew

j )
2

2ŝ2i
− τ log ŝi + log p̂i

)
.

Define the posterior mean estimator as

β̂Bayes(D) :=

∑k
i=1 L̂iŵi∑k
i=1 L̂i

.

If the true prior, {(wi, si, pi)}i∈[k], is known. The posterior
mean estimator achieves the smallest expected squared `2

error, ED,βnew

[∥∥∥β̂(D)− βnew
∥∥∥2

2

]
. Hence, we refer to it as

Bayes optimal estimator. The MAP estimator maximizes
the probability of exact recovery.

Theorem 2 (Prediction). Under the hypotheses of Theo-
rem 1 with ε ≤ min

{
∆/10,∆2

√
d/50

}
, the expected pre-

diction errors of both the MAP and Bayes optimal estimators
β̂(D) are bound as

E
[(

x>β̂(D)− y
)2
]
≤ δ +

(
1 + ε2

) k∑
i=1

pis
2
i , (6)

if τ ≥ Θ
(
log(k/δ)/∆4

)
, where the true meta-parameter is

θ = {(wi, si, pi)}ki=1, the expectation is over the new task
with model parameter φnew = (βnew, σnew) ∼ Pθ, training
dataset D ∼ Pφnew , and test data (x, y) ∼ Pφnew .

Note that the
∑k
i=1 pis

2
i term in (6) is due to the noise

in y, and can not be avoided by any estimator. With an
accurate meta-learning, we can achieve a prediction error
arbitrarily close to this statistical limit, with τ = O (log k).
Although both predictors achieve the same guarantee, Bayes
optimal estimator achieves smaller training and test errors
in Figure 2, especially in challenging regimes with small
data.

We show that τ = Ω(log k) training samples are necessary
(even if the ground truths meta-parameter θ is known) to
achieve error approaching this statistical limit. Let Θk,∆,σ

denote the set of all meta-parameters with k components,
satisfying ‖wi −wj‖2 ≥ ∆ for i 6= j ∈ [k] and si ≤ σ for
all i ∈ [k]. The following minimax lower bound shows that
there exists a threshold scaling asO (log k) below which no
algorithm can achieve the fundamental limit of σ2, which is∑k
i=1 pis

2
i in this minimax setting.



Meta-learning for Mixed Linear Regression

(a) Training error (b) Prediction error

Figure 2. Bayes optimal estimator achieves smaller errors for an
example. Here, k = 32, d = 256, W>W = Ik, s = 1k, p =
1k/k, and Px and Pε are standard Gaussian distributions. The
parameters were learnt using the Meta-learning part of Algorithm 1
as a continuation of simulations discussed in Appendix E, where
we provide extensive experiments confirming our analyses.

Remark 4.6 (Lower bound for prediction). For any σ,∆ >

0, if τ =
(
(1 + ∆2)/σ2

)−1
log(k − 1), then

inf
ŷ

sup
θ∈Θk,∆,σ

E
[
(ŷ(D, θ)− y)

2
]

= σ2 + Ω
(
∆2
)
, (7)

where the minimization is over all measurable functions of
the meta-parameter θ and the training data D of size τ .

5. Details of the algorithm and the analyses
We explain and analyze each step in Algorithm 1. These
analyses imply our main result in meta-learning, which is
explicitly written in Appendix A.

5.1. Subspace estimation

In the following, we use k SVD(·, k) routine that outputs the
top k-singular vectors. As E[M̂] = M :=

∑k
j=1 pjwjw

>
j ,

this outputs an estimate of the subspace spanned by the true
parameters. We show that as long as tL1 ≥ 2, the accuracy
only depends on the total number of examples, and it is
sufficient to have nL1tL1 = Ω̃(d).

Algorithm 2 Subspace estimation
Input: data DL1 = {(xi,j , yi,j)}i∈[nL1],j∈[tL1], k ∈ N
compute for all i ∈ [nL1]

β̂
(1)
i ← 2

tL1

tL1/2∑
j=1

yi,jxi,j , β̂
(2)
i ← 2

tL1

tL1∑
j=tL1/2+1

yi,jxi,j

M̂← (2nL1)
−1∑nL1

i=1

(
β̂

(1)
i β̂

(2)>
i + β̂

(2)
i β̂

(1)>
i

)
U← k SVD

(
M̂, k

)
output U

The dependency on the accuracy ε changes based on the
ground truths meta-parameters. In an ideal case when W
is an orthonormal matrix (with condition number one), the

sample complexity is Õ
(
d/(p2

minε
2)
)
. For the worst case

W, it is Õ
(
d/
(
p2

minε
6
))

.

Lemma 5.1 (Learning the subspace). Suppose Assump-
tion 1 holds, and let U ∈ Rd×k be the matrix with top
k eigen vectors of matrix M̂ ∈ Rd×d. For any failure prob-
ability δ ∈ (0, 1) and accuracy ε ∈ (0, 1), if the sample size
is large enough such that

nL1 = Ω
(
dt−1
L1 ·min

{
ε−6p−2

min, ε
−2λ−2

min

}
· log3(nL1d/δ)

)
,

and 2 ≤ tL1 < d, we have∥∥(UU> − I)wi

∥∥
2
≤ ε , (8)

for all i ∈ [k] with probability at least 1− δ, where λmin is
the smallest non-zero eigen value of M :=

∑k
i=1 piwiw

>
i .

Time complexity: O
((
nω−1
L1 + nL1tL1

)
d
)

for computing
M̂, and O

(
kd2
)

for k SVD (Allen-Zhu & Li, 2016).

5.2. Clustering

Once we have the subspace, we can efficiently cluster any
task associated with tH = Ω̃(

√
k) samples. In the following,

the matrix H ∈ RnH×nH estimates the distance between the
parameters in the projected k-dimensional space. If there is
no error in U, then E[Hi,j ] ≥ Ω

(
∆2
)

if i and j are from
different components, and zero otherwise. Any clustering
algorithm can be applied treating H as a distance matrix.

Algorithm 3 Clustering and estimation
Input: data DH = {(xi,j , yi,j)}i∈[nH ],j∈[tH ], 2L ≤ tH ,
k ∈ N, L ∈ N, U ∈ Rd×k
compute for all ` ∈ [L] and i ∈ [nH ]

β
(`)
i ← (2L/tH)

∑`·(tH/2L)
j=(`−1)·(tH/2L)+1 yi,jxi,j

β
(`+L)
i ← (2L/tH)

∑2`·(tH/2L)
j=`·(tH/2L)+1 yi,jxi,j

compute for all ` ∈ [L] and (i, j) ∈ [nH ]× [nH ]

H
(`)
i,j ←

(
β̂

(`)
i − β̂

(`)
j

)>
UU>

(
β̂

(`+L)
i − β̂(`+L)

j

)
compute for all (i, j) ∈ [nH ]× [nH ]

Hi,j ← median
(
{H(`)

i,j }`∈[L]

)
Cluster DH using H and return its partition {C`}`∈[k]

compute for all ` ∈ [k]

w̃` ← (tH |C`|)−1∑
i∈C`,j∈[tH ] yi,jUU>xi,j

r̃2
` ← (tH |C`|)−1∑

i∈C`,j∈[tH ]

(
yi,j − x>i,jw̃`

)2
p̃` ← |C`| /nH

output
{
C`, w̃`, r̃

2
` , p̃`

}k
`=1

This is inspired by (Vempala & Wang, 2004), where clus-
tering mixture of Gaussians is studied. One might wonder
if it is possible to apply their clustering approach to β̂i’s
directly. This approach fails as it crucially relies on the
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fact that ‖x− µ‖2 =
√
k ± Õ(1) with high probability

for x ∼ N (0, Ik). Under our linear regression setting,
‖yx− β‖2 does not concentrate. We instead propose me-
dian of estimates, to get the desired tH = Ω̃(

√
k) sufficient

condition.

Lemma 5.2 (Clustering and initial parameter estimation).
Under Assumption 1, and given an orthonormal matrix U ∈
Rd×k satisfying (8) with any ε ∈ (0,∆/4), Algorithm 3 cor-
rectly clusters all tasks with tH = Ω(∆−2

√
k log(nH/δ))

with probability at least 1− δ, ∀ δ ∈ (0, 1). Further, if

nH = Ω

(
k log(k/δ)

tH ε̃2 pmin

)
, (9)

for any ε̃ > 0, with probability at least 1− δ,∥∥U>(w̃i −wi)
∥∥2

2
≤ ε̃ (10a)∣∣r̃2

i − r2
i

∣∣ ≤ ε̃√
k
r2
i , (10b)

where r2
i := (s2

i + ‖w̃i −wi‖22) for all i ∈ [k].

Time complexity: It takes O (nHdtH + nHdk) time to
compute {U>β̂(l)

i }i∈[nH ],l∈[L]. Then by using matrix mul-
tiplication, it takesO

(
n2
Hk

ω−2
)

time to compute the matrix
H, and the single linkage clustering algorithm takesO

(
n2
H

)
time (Sibson, 1973).

Experiments. We set d = 8k, p = 1k/k, s = 1k, and
Px and Pε are standard Gaussian distributions. Given an
estimated subspace with estimation error ∼ 0.1, the clus-
tering step is performed with nH = max

{
k3/2, 256

}
tasks

for various tH . The minimum tH such that the clustering
accuracy is above 99% for at-least 1− δ fraction of 10 ran-
dom trials is denoted by tmin(1− δ). Figure 3 and Table 3
illustrate the dependence of k on tmin(0.5), and tmin(0.9).
More experimental results are provided in Appendix E.

Figure 3. The trends of tmin(0.9) and tmin(0.5) for various k show
the tH ' k1/2 dependence as predicted by Lemma 5.2 when
nH = k3/2.

5.3. Classification

Once we have {w̃`}k`=1 from the clustering step, we can
efficiently classify any task with tL2 = Ω̃(log k) sam-
ples, and an extra log nL2 samples are necessary to ap-
ply the union bound. This allows us to use the light
samples, in order to refine the clusters estimated with
heavy samples. This separation allows us to achieve
the desired sample complexity on light tasks (tL2 =

Ω(∆−4 log d), nL2tL2pmin = Ω̃(ε−2d)), and heavy tasks
(tH = Ω̃(∆−2

√
k), nHtHpmin = Ω̃(∆−2k)).

In the following, we use Least Squares(·) routine that out-
puts the least-squares estimate of all the examples in each
cluster. Once each cluster has O (d) samples, we can accu-
rately estimate the meta-parameters.

Algorithm 4 Classification and estimation
Input: data DL2 = {(xi,j , yi,j)}i∈[nL2],j∈[tL2],{
C`, w̃`, r̃

2
`

}
`∈[k]

compute for all i ∈ [nL2]

hi ← arg min
`∈[k]

1

2r̃2
`

∑
j∈[tL2]

(
yi,j − x>i,jw̃`

)2
+ tL2 log r̃`

Chi ← Chi ∪ {(xi,j , yi,j)}
tL2

j=1

compute for all ` ∈ [k],
ŵ` ← Least Squares(C`)
ŝ2
` ← (tL2 |C`| − d)

−1∑
i∈C`,j∈[tL2]

(
yi,j − x>i,jŵ`

)2
p̂` ← |C`| /nL2

output
{
C`, ŵ`, ŝ

2
` , p̂`

}k
`=1

Lemma 5.3 (Refined parameter estimation via classifica-
tion). Under Assumption 1 and given estimated parameters
w̃i, r̃i satisfying ‖w̃i −wi‖2 ≤ ∆/10,

(
1−∆2/50

)
r̃2
i ≤

s2
i + ‖w̃i −wi‖22 ≤

(
1 + ∆2/50

)
r̃2
i for all i ∈ [k] and

nL2 task with tL2 = Ω
(
log(knL2/δ)/∆

4
)

examples per
task, with probability 1− δ, Algorithm 4 correctly classifies
all the nL2 tasks. Further, for any 0 < ε ≤ 1 if

nL2 = Ω

(
d log2(k/δ)

tL2pminε2

)
, (11)

the following holds for all i ∈ [k],

‖ŵi −wi‖2 ≤ εsi , (12a)∣∣ŝ2
i − s2

i

∣∣ ≤ ε√
d
s2
i , and (12b)

|p̂i − pi| ≤ ε
√
tL2/d pi. (12c)

Time complexity: Computing {hi}i∈[nL2] takes
O (nL2tL2dk) time, and least square estimation takes
O
(
nL2tL2d

ω−1
)

time.
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Table 1. Sample complexity for previous work in MLR to achieve small constant error on parameters recovery of the mixed linear
regression problem. We ignore the constants and poly log factors. Let n, d, and k denote the number of samples, the dimension of the
data points, and the number of clusters, respectively. (Yi et al., 2016) and (Chaganty & Liang, 2013) requires σk, the k-th singular value of
some moment matrix. (Sedghi et al., 2016) requires smin, the k-th singular value of the matrix of the regression vectors. Note that 1/smin

and 1/σk can be infinite even when ∆ > 0. (Zhong et al., 2016) algorithm requires ∆max/∆min = O (1) and some spectral properties.

References Noise # Samples n

(CHAGANTY & LIANG, 2013) YES d6 · poly(k, 1/σk)
(YI ET AL., 2016) NO d · poly(k, 1/∆, 1/σk)
(ZHONG ET AL., 2016) NO d · exp(k log(k log d))
(SEDGHI ET AL., 2016) YES d3 · poly(k, 1/smin)
(LI & LIANG, 2018) NO d · poly(k/∆) + exp(k2 log(k/∆))

(CHEN ET AL., 2020) NO d · exp(
√
k) poly(1/∆)

6. Related Work
Meta-learning linear models have been studied in two con-
texts: mixed linear regression and multi-task learning.

Mixed Linear Regression (MLR). When each task has
only one sample, (i.e. ti = 1), the problem has been widely
studied. Prior work in MLR are summarized in Table 1. We
emphasize that the sample and time complexity of all the
previous work either has a super polynomial dependency on
k (specifically at least exp(

√
k)) as in (Zhong et al., 2016;

Li & Liang, 2018; Chen et al., 2020)), or depends on the
inverse of the k-th singular value of some moment matrix as
in (Chaganty & Liang, 2013; Yi et al., 2016; Sedghi et al.,
2016), which can be infinite. (Chen et al., 2020) cannot
achieve vanishing error when there is noise.

Multi-task learning. (Baxter, 2000; Ando & Zhang, 2005;
Rish et al., 2008; Orlitsky, 2005) address a similar problem
of finding an unknown k-dimensional subspace, where all
tasks can be accurately solved. The main difference is that
all tasks have the same number of examples, and the perfor-
mance is evaluated on the observed tasks used in training.
Typical approaches use trace-norm to encourage low-rank
solutions of the matrix

[
β̂i, . . . , β̂n

]
∈ Rd×n. This is posed

as a convex program (Argyriou et al., 2008; Harchaoui et al.,
2012; Amit et al., 2007; Pontil & Maurer, 2013).

Closer to our work is the streaming setting where n tasks
are arriving in an online fashion and one can choose
how many examples to collect for each. (Balcan et al.,
2015) provides an online algorithm using a memory of
size only O (kn+ kd), but requires some tasks to have
ti = Ω

(
dk/ε2

)
examples. In comparison, we only need

tH = Ω̃(
√
k) but use O

(
d2 + kn

)
memory. (Bullins et al.,

2019) also use only small memory, but requires Ω̃
(
d2
)

to-
tal samples to perform the subspace estimation under the
setting studied in this paper.

Empirical Bayes/Population of parameters. A simple

canonical setting of probabilistic meta-learning is when
Pφi is a univariate distribution (e.g. Gaussian, Bernoulli)
and φi is the parameter of the distribution (e.g. Gaussian
mean, success probability). Several related questions have
been studied. In some cases, one might be interested in just
learning the prior distribution Pθ(φ) or the set of φi’s. For
example, if we assume each student’s score of one particular
exam xi is a binomial random variable with mean φi (true
score), given the scores of the students in a class, an ETS
statistician (Lord, 1969) might want to learn the distribution
of their true score φi’s. Surprisingly, the minimax rate on
estimating the prior distribution Pθ(φ) was not known until
very recently (Tian et al., 2017; Vinayak et al., 2019) even
in the most basic setting where Pφi(x) is Binomial.

In some cases, similar to the goal of meta-learning, one
might want to accurately estimate the parameter of the new
task φnew given the new data xnew, perhaps by leveraging
an estimation of the prior Pθ(φ). This has been studied for
decades under the empirical bayes framework in statistics
(see, e.g. the book by Efron (Efron, 2012) for an introduc-
tion of the field).

7. Discussion
We investigate how we can meta-learn when we have multi-
ple tasks but each with a small number of labelled examples.
This is also known as a few-shot supervised learning set-
ting. When each task is a linear regression, we propose
a novel spectral approach and show that we can leverage
past experience on small data tasks to accurately learn the
meta-parameters and predict new tasks.

When each task is a logistic regression coming from a mix-
ture model, then our algorithm can be applied seamlessly.
However, the notion of separation ∆ = mini 6=j ‖wi−wj‖2
does not capture the dependence on the statistical complex-
ity. Identifying the appropriate notion of complexity on
the groundtruths meta-parameters is an interesting research
question.
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The subspace estimation algorithm requires a total number
of Ω̃(dk2) examples. It is worth understanding whether this
is also necessary.

Compared to online algorithms for multi-task learning,
whose focus is in using small memory, our approach
achieves better sample complexity at the expense of requir-
ing a larger memory scaling as O(d2 + kn); this is larger
than the O(kd + kn) memory required by (Balcan et al.,
2015). An interesting research direction is to achieve the
sample complexity of our appooach with only O(kd+ kn)
memory.

Handling the setting where Px has different covariances
in different tasks is a challenging problem. There does
not seem to exist an unbiased estimator for W. Neverthe-
less, (Li & Liang, 2018) study the t = 1 case in this setting
and come up with an exponential time algorithm. Studying
this general setting and coming up with a polynomial time
algorithm for meta-learning in a data constrained setting is
an interesting direction.

Our clustering algorithm requires the existence of medium
data tasks with tH = Ω(

√
k) examples per task. It is worth

investigating whether there exists a polynomial time and
sample complexity algorithms that learns with tH = o(

√
k).

We conjecture that with the techniques developed in the
robust clustering literature (Diakonikolas et al., 2018; Hop-
kins & Li, 2018; Kothari et al., 2018), it is possible to learn
with tH = o(

√
k) in the expense of larger nH , and higher

computation complexity. For a lower bound perspective, it
is worth understanding the information theoretic trade-off
between tH and nH when tH = o(

√
k).
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