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Multi-chip many-core neural network systems are capable of providing high parallelism benefited from de-
centralized execution, and they can be scaled to very large systems with reasonable fabrication costs. As
multi-chip many-core systems scale up, communication latency related effects will take a more important
portion in the system performance. While previous work mainly focuses on the core placement within a
single chip, there are two principal issues still unresolved: the communication-related problems caused by
the non-uniform, hierarchical on/off-chip communication capability in multi-chip systems, and the scala-
bility of these heuristic-based approaches in a factorially growing search space. To this end, we propose a
reinforcement-learning-based method to automatically optimize core placement through deep deterministic
policy gradient, taking into account information of the environment by performing a series of trials (i.e.,
placements) and using convolutional neural networks to extract spatial features of different placements. Ex-
perimental results indicate that compared with a naive sequential placement, the proposed method achieves
1.99× increase in throughput and 50.5% reduction in latency; compared with the simulated annealing, an ef-
fective technique to approximate the global optima in an extremely large search space, our method improves
the throughput by 1.22× and reduces the latency by 18.6%. We further demonstrate that our proposed method
is capable to find optimal placements taking advantages of different communication properties caused by dif-
ferent system configurations, and work in a topology-agnostic manner.
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1 INTRODUCTION

Machine learning (ML) has been doing wonders in many fields over the past decade, including com-
puter vision [29, 41, 74], speech recognition [26, 30], natural language processing [13, 50, 77], robot-
ics [34, 48], playing video games [57, 84], and many other domains [42, 65, 73]. Current ML models,
most of which are deep neural networks (DNNs) and their variants, e.g., multi-layer perceptrons
(MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), already
have high demands for memory and computational resource. As people are seeking better artifi-
cial intelligence, there is a trend toward larger, more expressive and more complex models. Aiming
at these ever-evolving ML workloads, there arise specialized architectures and accelerators, rang-
ing from those specifically optimized for CNNs (e.g., ShiDianNao [19], Eyeriss [12], and SCNN
[61]) to those designed for general-purpose DNN acceleration (e.g., DaDianNao [11], Cambricon-x
[95], EIE [27], TPU [39], and DNPU [71]). However, existing DNN systems often diversify in per-
formance, accuracy, and power targets, and it is prohibitively costly to build a dedicated accelera-
tor/architecture for each target. With these considerations, multi-chip many-core neural network
systems, which assemble a number of cores into one chip and further interconnect these chips, are
attracting increasing attention. These multi-chip many-core systems, from conventional technol-
ogy such as SpiNNaker [60], TrueNorth [2], Loihi [14], Tianjic [17, 62], and Simba [67], to emerging
technology, such as PUMA [3] with memristors, provide high parallelism benefited from decen-
tralized execution, and can be scaled to very large systems with reasonable fabrication costs.

Usually there are two major steps to map an application or a neural network (NN) model to a
many-core system. In the first step, the computational graph is partitioned into small groups that
are compatible to the computation capability of each core [20, 62, 67], in which we refer these small
groups as logic cores, since some of them are logically connected with demand of communication
and they are not yet placed on physical chips (see Figures 1(a) and 1(b)). Then in the second step,
these logic cores are placed onto physical cores—such process is defined as the core placement

(see Figure 1(c)). As multi-chip many-core systems scale up, communication costs would be a con-
cern in these decentralized systems, and partitioning and placement of computation onto cores
heavily impact the efficiency of on-chip and off-chip communication [2, 46, 67, 82]. Some work
has been proposed to optimize the partitioning in the first step aiming to reduce required commu-
nication between logic cores. For example, Urgeses et al. [82] present a partitioning methodology
to optimize network traffic for spiking neural networks on neuromorphic many-core platforms;
HyPar [75] searches a partition that minimizes the total communication of DNNs on an accelera-
tor array. When it comes to the second step, there is a series of heuristic-based investigations in
mapping applications, especially multi-media workloads, to 2D-mesh NoC architectures [32, 33,
47, 58, 64, 68, 69].

However, there are two principal issues still unresolved in the core placement step. First, these
previous approaches all target on general-purpose many-core systems in a single chip, whereas in
decentralized multi-chip many-core systems, the communication related problem is caused by not
only the demand for communication among different cores but also the non-uniform, hierarchical

on/off-chip communication capability. Second, the scalability is a concern of these heuristic-based
methods, where they mainly handle systems with tens of cores and have limited design space
exploration capabilities. It has been noticed that the computation complexity of these heuristic-
based methods grows drastically [32] as systems scale up. To find an optimal core placement is an
NP-hard [24] problem and the search space of this problem grows factorially with the system size.

To this end, we propose a reinforcement-learning (RL)-based method learning to optimize core
placement with neural networks. This method, as shown in Figure 8, takes into account infor-
mation of the environment by performing a series of trials (i.e., placements) to understand which
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Fig. 1. NN mapping: (a) the original NN; (b) the NN partitioned into logic cores; (c) logic cores placed onto

physical cores.

logic core should be placed on which physical core so that the overall latency can be optimized.
The specific algorithm leveraged in our work is the deep deterministic policy gradient (DDPG)
[72], since the deterministic policy gradient can be estimated much more efficiently than the usual
stochastic policy gradient, leading to a faster training process. To guarantee sufficient exploration
in the search space, we employ the off-policy deterministic actor-critic, a variant of DDPG. Key to
our method is the use of CNNs to extract spatial features of different placements, and the latency of
the predicted placement is then used as the reward signal to optimize parameters in the networks.
Evaluations indicate that compared with a naive sequential placement, the proposed RL-based
method achieves 1.99× increase in throughput and 50.5% reduction in latency; compared with the
simulated annealing [83], an effective technique to approximate the global optima in an extremely
large search space, our method improves the throughput by 1.22× and reduces the latency
by 18.6%.

The specific contributions of our work are as follows:

• We consider DNN inference in multi-chip many-core systems, where a hierarchical pipeline
is implemented, i.e., a block-by-block streaming pipeline for intra-frame dataflow and a
stage-based pipeline for inter-frame dataflow. Then, we formulate the core placement opti-
mization problem.

• We propose an RL-based method to automatically optimize core placement through DDPG,
taking into account information of the environment by performing series of trials and using
CNNs to extract spatial features of different placements.

• We evaluate our proposed method on multiple workloads: AlexNet [41], VGG16 [74] and
ResNet50 [29]. On the geometric average, it achieves 50.5%, 38.4%, and 18.6% reduction in
the overall latency and improves the throughput by 1.99×, 1.61×, and 1.22×, compared with
the sequential placement, the random search and the simulated annealing, respectively.

• We demonstrate that our proposed method is capable to find optimal placements taking
advantages of different communication properties under different system configurations; it
can also work in a topology-agnostic manner, which is showcased by simple examples in
several other topologies, such as 2D torus, HNoC [10], and dragonfly [40].

2 BACKGROUND

2.1 DNN Workloads

There are multiple variants of DNNs, including MLPs, CNNs, RNNs, and so on. As illustrated in
Figure 2, a convolutional (CONV) layer can be considered as a seven-dimensional nested loop on
input activations (IA), weights (W), and output activations (OA), with the batch size B, the height
H and the width T of OA, the number of output channels K , the number of input channels C , the
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Fig. 2. The seven-dimensional nested loop of convolutional layers, on input activations (IA), weights (W),

and output activations (OA).

height R and the width S of the weight kernel. Similar formulations can also be applied to fully
connected (FC) layers, which are widely used in MLPs and are essential components in DNNs.

2.2 Multi-chip Many-core Architectures

Multi-chip many-core architectures, which are broadly employed to build up neuromorphic sys-
tems, arise with the era of cognitive computing that demands systems capable of processing mas-
sive amounts of multi-sensory data. Among the issues to be solved with top priority in these sys-
tems, real-time operation, low-power consumption and scalability are those attracting the most
attention, and thus parallel architectures working in a decentralized way are developed. There are
several notable examples. SpiNNaker [60], which can model up to one billion neurons and one
trillion synapses, integrates 18 ARM cores per chip and is able to scale to a system with 65,536
chips. The TrueNorth chip [2] from IBM organizes 4096 neurosynaptic cores by 2D mesh, contain-
ing one million digital neurons and 256 million synapses; multiple TrueNorth chips can be further
interconnected to build more complex TrueNorth systems. Loihi [14] from Intel also utilizes the
2D mesh topology to comprise 128 neuromorphic cores and three embedded x86 processor cores
on a single chip, and off-chip communication interfaces are used to connect other chips.

As the variety of DNN workloads increases and the performance, energy and power targets di-
versify in different workloads, the concerns previously discussed in neuromorphic systems also
appear in the design of deep-learning accelerators, and it is prohibitively costly to design a ded-
icated accelerator for each target of each workload. One potential resolution is to employ the
multi-chip-module-based (MCM-based) integration, just as Simba [67], which is a scalable deep-
learning inference accelerator with MCM-based architectures, providing a promising approach for
building large-scale systems. In Simba, it is noticed that the disparity in latency and bandwidth
between on-chip and on-package (off-chip) communication leads to significant latency variabil-
ity across chiplets, based on which Simba optimizes workload partitioning and data placement to
mitigate the inter-chiplet communication overheads, through a random search algorithm to select
good mappings and placements.

In terms of the integration of both neuromorphic primitives (e.g., spiking neural networks) and
DNNs, there is the Tianjic chip [17, 62], a multi-chip many-core architecture providing a hybrid
platform toward artificial general intelligence. The Tianjic chip, consisting of 156 functional cores,
shows significant improvement in both throughput (1.6× to 102×) and power efficiency (12× to
104×) compared with the GPU. Promising potentials are demonstrated that an unmanned bicycle
can achieve autonomous riding by equipped with a single Tianjic chip running multiple different
NN models.
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Fig. 3. Illustration of a typical multi-chip many-core neural network architecture: (a) the multi-chip system,

(b) the many-core chip, and (c) one single core.

In Figure 3, we take Tianjic as an example to illustrate the typical multi-chip many-core ar-
chitecture. Usually, multiple chips (e.g., 4 × 4 in Figure 3(a)) can be interconnected through off-
chip links such as low-voltage differential signaling (LVDS) [9], SerDes [7] and ground-referenced
signaling (GRS) [89, 96]. As illustrated in Figure 3(b), each chip includes an array of functional
cores arranged by a 2D mesh network-on-chip (NoC), an on-chip router for off-chip communica-
tion and essential chip peripherals. Figure 3(c) details the micro-architecture of each core, which
leverages parallel multiplier-and-accumulator (MAC) units for efficient and flexible computation
and contains peripheral processing circuits, such as an input buffer, a weight buffer, an activation
buffer, a transformation unit, a core controller and a router. The input buffer provides input activa-
tions for MACs, where the ping-pong buffer scheme is used to decouple writes by the router and
reads by MACs. The MACs conduct most of the computation, multiplying the input activations
read from the input buffer with the weights stored in the distributed weight buffer to implement
vector-matrix multiplications (VMMs). The activation buffer is used to buffer either intermediate
activations or results that do not need to go through the transformation unit. The transformation
unit is responsible for adding bias, non-linear activation functions, possible pooling operations
and generating output activations, and it finally sends the results to the router. The core controller
manages the overall timing sequence, and whether to enable these MACs or the transformation
unit.

The multi-chip many-core architecture is essentially a spatial architecture, since there is no
off-chip DRAM and all weights must be stored on chip, which is different from common deep-
learning accelerators. As such, it often uses a weight-stationary dataflow: Weights remain in the
weight buffer of each core and are reused across iterations, while new input activations are injected
at each time phase.

2.3 Reinforcement Learning

In the standard setting of RL [78], an agent interacts with an environment E over a number of
discrete time steps, as shown in Figure 4. At each time step t , the agent gets a state st from the
state space S, and selects an action at from the action space A according to its policy π that is
a mapping from the state st to the action at . In return, the agent receives the next state st+1 and
a scalar reward rt : S × A → R. This process continues until the agent reaches a terminal state
after which the process restarts.

The accumulated rewards after the time step t can be expressed as

Rt =

∞∑
k=0

γ krt+k , (1)
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Fig. 4. A typical framing of RL.

where γ ∈ (0, 1] and γ is the discount factor. The state-action value Qπ (s,a) is represented by

Qπ (s,a) = Eπ [Rt |st = s,at = a], (2)

which is the expected return after selecting action a at state s with policy π . Similarly, the state
value Vπ (s ) is defined as

Vπ (s ) = Eπ [Rt |st = s], (3)

which is the expected return starting from state s by following policy π . The goal of the agent is
to maximize the expected return for every state s .

There are two general types of methods for RL: value-based methods and policy-based methods.
In value-based methods, the state-action value functionQπ (s,a) is approximated by either tabular
approaches or function approximations, and at each state s the agent always selects the optimal
action a∗ that can bring the maximal state-action value Qπ (s,a∗). One well-known example of
value-based methods is Q-learning [86]. As for policy-based methods, they directly parameterize
the policy πθ (s,a) and update the parameters θ by performing gradient ascent on Eπ [Rt ]. One
example is the REINFORCE algorithm [88]. In standard REINFORCE, the policy parameters θ are
updated in the direction of ∇θ logπθ (st ,at )Qπ (st ,at ), which is an unbiased estimate of ∇θEπ [Rt ].

RL is modeled based on Markov decision process [6], and thus it is talented to handle sequential
decision-making processes. By embedding optimization goals into reward functions, RL agents are
able to figure out optimal solutions.

3 APPROACH

3.1 Formulation of Core Placement Optimization

For simplicity and clarity, we consider the spatial mapping with a weight-stationary dataflow for
DNN inference.

3.1.1 Mapping Neural Networks to Logic Cores. Taking advantages of model parallelism, there
have been several state-of-the-art DNN tiling techniques [11, 39, 61, 91] proposed to partition
weights in the spatial mapping, based on which we partition DNN weights uniformly along the
input channel C and the output channel K . Figure 5 illustrates the uniform partitioning of CONV
and FC layers. In the decentralized many-core system, outputs of VMM cores will be delivered to
other cores for cross-core partial-sum reduction, referred to as vector-vector-accumulation (VVA),
if handling with large neural networks. We decouple the execution of VMM and VVA to different
cores to ease the timing implementation.

We further optimize the uniform partitioning by two steps: first, we balance the computation re-
quired on each core, to avoid over-busy or idle cores; second, we consider the trade-off between the
exploitation of computation parallelism and the communication/synchronization costs. Figure 6
shows the breakdown of logic cores for different models. Since CONV layers are often bound by
computation while FC layers are often bound by memory, more logic cores are assigned for CONV
layers to balance the computation.
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Fig. 5. The uniform partitioning of CONV or FC layer, where the red tensors on the top represent weights

(W), the green tensors in the middle represent input activations (IA), and the orange tensors at the bottom

represent the output activations (OA).

Fig. 6. The breakdown of parameters (denoted with -p) and logic cores (denoted with -c) for CONV and FC

layers in different models, with the number of logic cores marked for each model.

3.1.2 Core Placement. Consider a set of logically connected cores consisting of Z logic cores
{Core1,Core2, . . . ,CoreZ }, and a set of D available physical cores {V1,V2, . . . ,VD } connected in a
specific topology (whereZ ≤ D). A placement P = {p1, p2, . . . ,pZ } is an assignment of a logic core
Corei to a physical core pi , where pi ∈ {V1,V2, . . . ,VD } and ∀i � j, there is pi � pj .

In each single frame, it is possible to implement a streaming pipeline across multiple CONV lay-
ers to take advantage of inter-layer parallelism, because each convolution operation only needs
part of input activations, whereas for FC layers one output activation cannot be generated until all
input activations are ready, indicating that there only exists intra-layer parallelism. Based on this
execution difference, we consider a hierarchical pipeline execution. For the inter-frame execution,
a stage-based pipeline is used to decouple the computation of CONV and FC layers, leveraging
better parallelism. Accordingly, we place the logic cores for CONV and FC layers in different re-
gions of the multi-chip many-core system, and optimize their core placement processes separately

by masking unused regions.
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Fig. 7. An example of the block-by-block streaming pipeline execution and its corresponding timing config-

urations.

Then in the intra-frame execution, instead of the row-by-row streaming pipeline [16] in which
logic cores have more and more idle time as layer propagates, we employ the block-by-block
streaming pipeline for CONV layers to make better utilization of resources. As depicted in Figure 7,
we showcase a block-by-block streaming pipeline and its corresponding timing configurations by
an example of the MNIST dataset [43], where each input frame is divided into four blocks. In this
example, there is a three-stage streaming pipeline, with one time phase for one pipeline stage; to
guarantee system functionality, the time phase, which contains both the computation latency as
well as the communication latency, should be long enough to cover the pipeline stage that con-
sumes the maximum latency. Similar analogy is used in FC layers, where the pipelined execution
is applied layer by layer.

Assume there is an F -stage streaming pipeline for intra-frame execution, we use T (k |P ) to
denote the latency of the kth pipeline stage for a given placement P. By minimizing the maximum
latency among all stages, the overall latency and throughput can be optimized. Therefore, the
optimization goal is

P∗ = argmin
P
{L(P )}, (4)

where L(P ) = maxk {T (k |P )} for k = 1, 2, . . . ,F .

3.2 Learning Core Placement with Deep Deterministic Policy Gradient

Overview. Figure 8 presents the overview of the RL-based core placement optimization. The agent
attempts to learn an optimal core placement to minimize the overall latency, and the environment
gives feedback to the agent by different rewards to encourage or punish the agent according to its
behaviors. Through interactions with the environment, the agent is able to learn and figure out
the optimal policy.

We build the core placement problem as a Markov decision process. At the beginning of each
trial, no assignment has been generated and all physical cores are available. At each time step
t , with the observation of currently available physical cores and unplaced logic cores, which is
referred as the state st in the state spaceS, a placement of a couple of logic cores will be generated,
which is referred as the action at in the action spaceA. With this action at , corresponding physical
cores are occupied by these assigned logic cores, and the state st is updated to the state st+1.
The placement of logic cores is generated sequentially according to the index and the reward
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Fig. 8. Overview of the RL-based core placement optimization.

is provided at each time step. It is notable that from our simulation results, different placement
orders have little influence on learning performance, as the agent can adjust its behaviors during
interactions with the environment, mitigating the effects caused by different orders. When all logic
cores have been placed onto physical cores, the overall performance of this placement is measured
by the maximum latency among all pipeline stages, i.e., L(P ), which is then used to derive the
final reward of this placement. These rewards, together with information from states, actions, and
state-action values, are combined to train the agent and update following placements.

Representations of Core Placement Optimization. The mathematical representations of
the state, the action and the reward of core placement optimization are detailed in this part as
follows.

• Representation of Core Placements (i.e., the states). Among most multi-chip many-core archi-
tectures for neural networks, the 2D mesh topology is the mainstream for both intra-chip
and inter-chip interconnect. Simultaneously, the connectivity information that we mainly
consider is the communication characteristic, and so we prefer the matrix representation
of the placement, simpler and more intuitively appropriate. In our formulation, the state
st is represented by a 2D matrix to encode the current placement status, which includes
the information required by the agent to make decisions, as shown in the upper part of
Figure 9. In this illustration, a 3 × 3 chip array with 2 × 2 cores per chip is represented by
a 6 × 6 matrix, where the available physical cores are denoted by zero and occupied phys-
ical cores are denoted by the indexes of their assigned logic cores. In general, the state of
the current placement on a multi-chip many-core system composed of a rowchip × colchip

chip array with rowcor e × colcor e cores per chip can be denoted as a (rowchip × rowcor e )-
by-(colchip × colcor e ) matrix.

• Representation of Assigning Placements (i.e., the actions). Given that the current core place-
ment is uncompleted, the action is defined as assigning a placement of z unplaced logic
cores, which is encoded as [x1,y1,x2,y2, . . . ,xz ,yz], with (xi ,yi ) representing the physical
coordinate on which a logic core will be placed.

• Representation of the Reward Function. We empirically find that defining the reward at the
time step with a completed placement as rt =

√
B −
√
L(P ), where B is the latency of the

best placement found by the random search, makes the learning process more robust. With
this definition, placements that lead to better latency are encouraged by positive rewards,
the shorter latency the more reward received; while placements with worse latency are pe-
nalized by negative rewards. For those time steps at which one placement is not completed,
the reward is defined as rt = 0.
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Fig. 9. DNN structure of the RL-based agent: the actor, and the critic.

Deterministic Policy Gradient (DPG). Policy gradients have been broadly applied under dif-
ferent RL scenarios, where the basic idea is to directly parameterize the policy via a probability
distribution πθ (s,a) = P (a |s;θ ) that stochastically takes the action a given the state s according
to the parameters θ . If we define the discounted state distribution [79] by

ρπ (s ′) :=

∫
S

∞∑
t=1

γ t−1P (st = s
′|s0 = s,π )P (s0 = s )ds, (5)

then the expected return can be expressed as

J (πθ ) = Es∼ρπ ,a∼πθ

⎡⎢⎢⎢⎢⎣
∞∑

k=0

γ krk

⎤⎥⎥⎥⎥⎦
=

∫
S
ρπ (s )

∫
A
πθ (s,a)Qπ (s,a)dads,

(6)

where Qπ (s,a) is defined in Equation (2) and the discount factor γ ∈ (0, 1].
To maximize the expected return of a stochastic policy, the corresponding stochastic policy

gradient algorithm should update the parameters θ by performing gradient ascent on the expected
return, i.e., adjusting the parameters θ in the direction of ∇θJ (πθ ), where

∇θJ (πθ ) = ∇θ

∫
S
ρπ (s )

∫
A
πθ (s,a)Qπ (s,a)dads

=

∫
S
ρπ (s )

∫
A
πθ (s,a)

∇θπθ (s,a)

πθ (s,a)
Qπ (s,a)dads

= Es∼ρπ ,a∼πθ
[∇θ logπθ (s,a)Qπ (s,a)] .

(7)

Whereas in our work, instead of the stochastic policy, we give attention to the deterministic
policy [72]. We propose to train a deterministic policy μθ (s ) : S → A, which is a deterministic
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mapping from the current placement status st to the action at – the placement assignment of
unplaced logic cores. With the deterministic policy, the core placement process can be optimized
by maximizing

J (μθ ) = Es∼ρμ

⎡⎢⎢⎢⎢⎣
∞∑

k=0

γ krk

⎤⎥⎥⎥⎥⎦
=

∫
S
ρμ (s )Qμ (s, μθ )ds .

(8)

Then the deterministic policy gradient is derived as

∇θJ (μθ ) = ∇θ

∫
S
ρμ (s )Qμ (s, μθ )ds

=

∫
S
ρμ (s )∇θ μθ (s )∇aQμ (s,a) |a=μθ (s )

= Es∼ρμ

[
∇θ μθ (s )∇aQμ (s,a) |a=μθ (s )

]
.

(9)

From the practical perspective, the cardinal reason of applying deterministic policy gradient
rather than stochastic policy gradient is that the stochastic policy gradient should be estimated by
the integration over both the state space and the action space, as shown in Equation (7); while the
deterministic policy gradient only needs to integrate the state space as in Equation (9), indicating
that it can be estimated more efficiently and leads to a faster learning process, especially for a large
action space, which is our case.

Aiming at combining the benefits of both policy-based methods and value-based methods, we
employ the off-policy deterministic actor-critic (OPDAC) [72], a variant of DPG, which consists of
two components: the critic and the actor. The critic estimates the action-value function Qw (s,a) ≈
Qμ (s,a) by adjusting parameters w based on Q-learning, and the actor learns the deterministic
policy μθ (s ) by ascending the gradient of the action-value function.

To improve the sample efficiency of the learning process, we apply the experience replay
taking advantages of past experiences, which is implemented by a replay buffer storing tuples
(st ,at , rt , st+1) from history trajectories. To sufficiently explore the large search space, we add
Ornstein-Uhlenbeck noise [81] to the action space, which is multiplied by a fading factor as the
training process proceeds.

DNN Structure of the RL-based Agent. The structure of the RL-based agent is depicted in
Figure 9, where both the actor and the critic have similar network structures. The input to these
DNNs is the current state of the placement being predicted, which includes physical cores either
currently available or already assigned with logic cores. Then the actor outputs the action in vector,
and the critic generates the state-action value in scalar. Since the state-action value is a function
of both the current state and the action being taken, the output of the actor is merged to the critic
after its first FC layer. We employ CONV layers followed with max-pooling layers to extract spatial
features of various placements, because there are some similarities between the core placement
analysis and image analysis, on which CONV layers usually perform well. The local response
normalization is applied after each pooling layer, and the batch normalization is applied after each
FC layer. The activation function is ReLU for all layers, except for the output of the actor, which
uses tanh to bound actions to the size of multi-chip many-core systems. Since the outputs of the
actor network are in continuous values, we apply the floor function to derive placement locations,
i.e., finding the closest integers that are no larger than the outputs. If there is a contradiction
between the currently being placed core and an already placed core, then the current core will
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ALGORITHM 1: Deep deterministic policy gradient for core placement optimization

1 Initialize parameters θ for the actor and w for the critic;

2 Initialize the episode counter i ← 0;

3 Initialize the best core placement Pbest ← Pbaseline ;

4 while i < episodemax do

5 t ← 0 ; // The time step counter.

6 Initialize state st ← an empty placement;

7 while t < stepmax do

8 Perform action at based on policy μθ (st );

9 Get updated placement st+1;

10 if all logic cores have been placed then

11 Receive the reward rt =
√
B −
√
L(st+1);

12 Add (st ,at , rt , st+1) into replay buffer;

13 if L(st+1) < L(Pbest ) then

14 Pbest ← st+1;

15 end

16 Clear state st+1 ← an empty placement;

17 else

18 Receive the reward rt = 0;

19 Add (st ,at , rt , st+1) into replay buffer;

20 end

21 Update θ and w according to Equations (10)–(12);

22 t ← t + 1;

23 end

24 i ← i + 1;

25 end

26 return Pbest ;

be placed to the position that has the minimum Manhattan distance to its originally intentional
position. If there are multiple available candidates, then we choose the first one found.

The network parameters are learned by Adam optimizer based on the estimation of Equation (9),
which is computed by sampling a minibatch of size Kmb from the replay buffer, leading to the
updates of parameters as follows:

δi = ri + γQw (si+1, μθ (si+1)) −Qw (si ,ai ), (10)

wt+1 = wt + αw ·
1

Kmb

tKmb∑
i=t1

δi∇wQw (si ,ai ), (11)

θt+1 = θt + αθ ·
1

Kmb

tKmb∑
i=t1

∇θ μθ (si )∇aQw (si ,ai ) |a=μθ (s ), (12)

where αw and αθ are learning rates of the critic and the actor, respectively, and i ∈ {t1, . . . , tKmb
}.

The entire procedure of core placement optimization with deep deterministic policy gradient is
summarized in Algorithm 1.

4 EXPERIMENT

In this section, we present the experiment setup, the baseline, and the analysis of the results.
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Table 1. Simulation Configuration Parameters

System
Number of Chips 4 × 4

Off-chip Interconnect GRS
Off-chip Interconnect Bandwidth 100 GB/s/chip

Chip

Number of Cores 16 × 16
Technology UMC 28-nm HLP

NoC Interconnect Bandwidth 64 GB/s/core
Core Frequency 400 MHz

Core

Weight Buffer Size 64 KB
Input+Activation Buffer Size 64 KB

Number of MACs 128
MAC Width 8b

Input/Weight Precision 8b
Partial-sum Precision 32b

4.1 Experiment Setup

We build an in-house simulator for the typical multi-chip many-core architecture illustrated in
Figure 3. The overall system consists of a 4 × 4 chip array with 16 × 16 cores per chip, with the
off-chip interconnect assumed as GRS [89, 96]. Generally, the routing is based on the minimal
path, with X-Y routing for both NoC and off-chip communication. Although all chips are func-
tional in the multi-chip many-core system, different workloads may occupy different number of
chips/cores, since in these spatially weight-stationary mappings, the number of cores consumed
is kind of proportional to the model size. Configuration parameters are summarized in Table 1,
which are collected from existing multi-chip many-core architectures [17, 62, 67, 89, 96]. As for
hyperparameters in our RL-based approach, the learning rates of the actor and the critic are set
as αθ = 0.0002 and αw = 0.001, with the discount factor γ = 0.98. In each epoch the actor predicts
30 placements and the size of minibatch is K = 64.

We consider DNN workloads of AlexNet [41], VGG16 [74], and ResNet50 [29], which are rep-
resentative deep-learning models, and evaluate the latency when the batch size is one and the
throughput when the batch size is much larger. The overall latency is derived according to the
latency of each time phase, which is measured by adding the computation latency (i.e., the cycles
required for computation) and the communication latency. As mentioned in Section 3.1.2, we place
the logic cores for CONV and FC layers in different regions of the multi-chip many-core system,
and optimize their core placement processes separately.

4.2 Baselines

Our RL-based approach (denoted by DDPG) is evaluated with the following placement methods.

• Sequential placement (denoted by BS): logic cores are placed sequentially along with the
indexes of physical cores (first chip index, then core index).

• Random search (denoted by RS): one million placements are sampled randomly, and the best
placement found during the random search is selected.

• Simulated annealing [83] (denoted by SA): SA is an effective technique to approximate
the global optima in an extremely large search space, with the procedure detailed in Al-
gorithm 2. The cooldown factor is set as 0.99; the initial temperature T0 and the ending
temperature Tend are chosen according to the application such that around one million
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ALGORITHM 2: Simulated annealing for core placement optimization

1 Randomly generate initial core placement Pcurr ent ← P0;

2 Initialize the best core placement Pbest ← P0;

3 Initialize temperature T ← T0;

4 while T > Tend do

5 iter ← 0;

6 while iter < iterationmax do

7 Select a placement Pnew ∈ N (Pcurr ent );

/* A neighbor placement to current placement. */

8 if L(Pnew ) < L(Pcurr ent ) then

9 Pcurr ent ← Pnew ;

10 if L(Pnew ) < L(Pbest ) then

11 Pbest ← Pnew ;

12 end

13 else

14 Δ = L(Pnew ) − L(Pcurr ent );

15 Accept Pcurr ent ← Pnew with probability P = e−Δ/T ;

16 end

17 iter ← iter + 1;

18 end

19 T ← α ×T ;

/* 0 < α < 1, the cooldown factor. */

20 end

21 return Pbest ;

placements would be searched; and the neighborhood function N (Pcurr ent ) indicates that
the placement of 1% of logic cores in Pcurr ent will be randomly changed.

4.3 Analysis of Core Placements Optimized by DDPG

Figure 10 compares both the latency and the throughput of different core placement methods for
AlexNet, VGG16 and ResNet50 workloads. DDPG achieves significant improvements among all
considered workloads, especially for VGG16 that has the largest model size, where DDPG reduces
the overall latency by 67.4%, 51.7%, and 23.2%, and improves the throughput by 3.06×, 2.07×, and
1.30×, compared with BS, RS, and SA, respectively. Generally, there is usually a larger optimization
space for large models, because they are often mapped onto more logic cores, resulting in a larger
search space, just as aforementioned that the search space of core placement optimization grows

factorially with the system size. In addition, more conspicuous improvements are shown in FC
layers than those in CONV layers, since the inter-layer connections are denser in FC layers; one
exception comes from the FC layers in ResNet50, whose small layer size leads to a relatively small
search space as well as a small optimization space. Furthermore, the communication demand is
usually related to the size of feature maps, the number of input and output channels, and whether
there exist bypass connections in the workload neural networks, and so on, indicating that the
more complex the network structure is, the higher the communication demand is often required,
and thus the more essential it is to conduct the core placement optimization. Stronger improve-
ments are displayed by DDPG in VGG16 and ResNet50, since both of them have more complicated
network structures than that of AlexNet. Considering all the workloads, on the geometric aver-
age, 50.5%, 38.4%, and 18.6% reductions in the overall latency are achieved by DDPG, with the
throughput improvement of 1.99×, 1.61×, and 1.22×, compared with BS, RS, and SA, respectively.
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Fig. 10. Latency and throughput of different placement methods, both of which are normalized to BS (the

baseline).

Fig. 11. Hop distributions of BS- and DDPG-based core placement optimization.

Notably, under the scenario of extremely large search spaces, DDPG substantially outperforms
SA. In SA, new placements at each time are randomly picked from the neighborhood of the current
placement, and whether or not to accept a new placement is dependent on the latency, or to be
more specific, the objective function, ignoring past experiences and introducing unreliability to
the search process. In contrast, DDPG proactively explores the search space. Learning from differ-
ent rewards received during the exploration, DDPG extracts useful spatial features from various
placements, to avoid defective placements and further encourage trials to approach optimums.
Through the leverage of experience replay, past experiences can be consolidated into the training
process, thus stabilizing the overall learning and search process.

To show more insights of core placements found by DDPG, Figure 11 depicts the hop distri-
butions before and after DDPG-based core placement optimization, in which the averaged hop
distances in the CONV and FC layers of AlexNet, VGG16, and ResNet50 are reduced by 2.5×, 4.5×,
4.6×, 4.3×, 2.9×, and 2.8×, respectively. The geometric average reduction in hop distance is 3.5×.
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Fig. 12. The distribution of total number of packets transferred through each core per time phase, and the

total number of packets delivered by each off-chip link per time phase, for core placements of VGG16-CONV:

(a) placed by BS, (b) optimized by DDPG, (c) with doubled off-chip bandwidth optimized by DDPG, and

(d) with less cores per chip optimized by DDPG.

This indicates that long data paths are significantly shrunken and cores that are logically connected
are tended to be placed on the nearby regions, reducing long travel time of data as well as remov-
ing potential congestions. Additionally, with the reduced hop distances, the active communication
power consumption can also be implicitly reduced.

Figures 12(a) and 12(b) show the communication traffic of placements optimized by BS and
DDPG. For BS, there are multiple extremely busy cores for on-chip communication, and there are
several off-chip links having heavy communication workloads; whereas after the optimization by
DDPG, both the on-chip and the off-chip communication are balanced: the unnecessary off-chip
communication is removed to the on-chip communication that usually consumes lower costs, and
the traffic of busy cores is spreaded to those relatively idle cores. DDPG ensures that the off-chip
traffic is low enough to avoid congestion delay, thus improving the latency.

As for cost evaluations of DDPG, in terms of the number of placements evaluated, our method
can converge at around 300K ∼ 400K placements, conspicuously surpassing the best placements
found by either RS or SA with one million searched placements; in terms of the running time, since
DDPG is a learning-based method, it definitely consumes longer time per placement evaluated,
but shorter time in total to find a better placement. Even if the training time is longer than other
approaches, this is a one-time cost and can be amortized by every future inference on chip once
the placement is completed during compilation.

4.4 Strong Learning Capability of DDPG

Here, we discuss the strong learning capability of our proposed DDPG-based core placement op-
timization that can make better use of different communication configurations; we also demon-
strate that DDPG has great versatility that can work for several other topologies such as 2D torus,
HNoC [10] and dragonfly [40], in a topology-agnostic manner.

Making better use of communication configurations. To examine the off-chip commu-
nication bandwidth sensitivity of DDPG-based core placement optimization, we adjust the off-
chip bandwidth to 1.5× and 2.0× of its original configuration, and apply core placement optimiza-
tion under each configuration. It is undoubted that given the increased bandwidth there should
appear reductions in latency, even if the original placement is not modified according to these
changed communication properties. To demonstrate the influence coming from the increased off-
chip communication bandwidth, we fix placements that are optimized under the original config-
uration and only make changes in the off-chip communication bandwidth; as shown in Figure 13,
there achieves less than 10% reduction in latency. Then in Figure 14, we compare the optimized
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Fig. 13. Latency and throughput of the placements optimized under the original (vanilla) configuration, with

changing off-chip communication bandwidth.

Fig. 14. Latency and throughput optimized by DDPG and SA under each different off-chip communication

bandwidth.

placements found by DDPG and SA under each new configuration, to figure out their abilities
of making use of different communication situations caused by different off-chip communication
bandwidths. Obviously, more improvements are achieved by DDPG than those of SA: for CONV
layers in VGG16, SA decreases the latency by 10% and 19%, while DDPG reduces the latency by
18% and 31%, with 1.5× and 2.0× off-chip bandwidth, respectively; for FC layers in AlexNet, SA de-
creases the latency by 4% and 8%, while DDPG reduces the latency by 12% and 17%, with 1.5× and
2.0× off-chip bandwidth, respectively. Generally, FC layers in AlexNet are relatively not bound
by the off-chip communication bandwidth. In both of the cases here, DDPG is more capable to
figure out the communication properties in the system, and find optimal placements under the
corresponding configuration. Figure 12(c) shows the traffic of the placement optimized by DDPG
with doubled off-chip bandwidth, where DDPG leverages the improved off-chip communication
capability by subtly increasing the off-chip communication workloads and slightly alleviating the
on-chip communication, compared with Figure 12(b).

We also make attempts to another case, where the number of cores per chip is decreased from
16 × 16 to 8 × 8 and so the number of chips is quadruple. In this case, resources are sacrificed for
performance, i.e., adding more communication resources to release the average communication
burden on each off-chip link. It is worth noting that directly reducing the number of cores per
chip in the absence of modifying the previously optimized placements may cause random effects:
as shown in Figure 15, some receive performance gains, while others’ performance is hurt, which
is mainly attributed to the possible destruction of the spatial locality in communication. After core
placement optimization under the new configuration, SA attains 22% and 4% reduction in latency,
while DDPG reaches 39% and 24% reduction in latency, for CONV layers in VGG16 and FC layers in
AlexNet, respectively, which is illustrated in Figure 16. DDPG optimizes core placement via trials
and interactions with the environment to better understand and further leverage communication
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Fig. 15. Latency and throughput of the placements optimized under the original (vanilla) configuration, with

changing number of cores per chip.

Fig. 16. Latency and throughput optimized by DDPG and SA under each different number of cores per chip.

characteristics brought from different hierarchical structures. Simultaneously, there appears better
utilization of the spacial locality in communication patterns of different workloads, where logic
cores obtaining more connectivity are grouped more tightly. As displayed in Figure 12(d) that ex-
hibits the communication traffic of the placement optimized by DDPG with 8 × 8 cores per chip,
the off-chip communication is apparently reduced and balanced, with lightweight on-chip com-
munication; and central chips and cores are relatively busier, since packets from other cores may
transit through them.

Working in a topology-agnostic manner. Besides the 2D mesh, DDPG has great versatility
to deal with other topologies, such as 2D torus, HNoC [10], and dragonfly [40]. We demonstrate
this by building several small multi-chip many-core systems, since these topologies may have
scalability issues: for 2D torus and HNoC, there consists of a 3 × 3 chip array with 2 × 2 cores per
chip; for dragonfly, there consists of six chips with five cores per chip. All other configurations are
set the same as those shown in Table 1, except for the weight buffer size and the input/activation
buffer size, both of which are selected as 16 KB. A synthetic MLP with 600-467-124-103 structure
is taken as the workload.

Figure 17 displays the latency of different core placement methods for different topologies. Even
though SA already attains good performances, it is surpassed by DDPG, where on the geometric
average DDPG achieves 19%, 12%, and 8% reduction in latency, compared with BS, RS, and SA,
respectively. SA is a probabilistic technique and uses meta-heuristic aiming at approximations
of the global optima, which searches solutions to some extent hinging on randomness, and thus
is not always reliable; whereas DDPG, which is intrinsically based on trial and error, makes a
trade-off between exploration and exploitation, so it is more capable to capture the communication
characteristics, i.e., domain specific information, via interactions with the environment, indicating
its ability of working in a topology-agnostic manner. Additionally, through the leverage of CONV
layers, DDPG is able to figure out spatial features aroused from different topologies, which is
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Fig. 17. Latency of different placement methods for different topologies: (a) illustration of different topolo-

gies, and (b) latency normalized to the BS.

Fig. 18. Latency and throughput of different placement methods on the RNN workload, both of which are

normalized to BS (the baseline).

essential and beneficial for an optimized placement; through the leverage of past experiences,
DDPG has better understanding of both the system and the placement being predicted.

4.5 Discussions

Extension to RNN workloads. As current inference systems are capable to run a wide range
of applications, including but not limited to vision-related tasks (most of which are CNN-based),
natural language processing and recommendation systems (most of which are based on recurrent
neural networks (RNNs)), we extend the evaluation of our method to RNN workloads, taking a
multi-layer long short-term memory (LSTM) RNN as an example. For RNN configurations, the
size of the input vector is set as 512, with two LSTM layers each of which consists of 512 neurons,
and the output is a scalar generated by an FC layer; all architectural configurations are set the same
as those shown in Table 1. As shown in Figure 18, DDPG can reduce the latency by 26%, 18%, 11%,
and improve the throughput by 1.35×, 1.21×, 1.12×, compared with BS, RS, and SA, respectively.

Consideration of other global optimization methods. There are various global optimiza-
tion methods aiming at finding the global optima in a extremely large search space. Besides the SA
that is mainly considered in our work, we also give a glimpse to the genetic algorithm [87], one
prominent instance of evolutionary optimization algorithms. As depicts in Figure 19, the genetic
algorithm (denoted by GA) cannot beat the SA for the FC layers in AlexNet and CONV layers
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Fig. 19. Comparison with the generic algorithm.

Fig. 20. Learning curves of DDPG and AC.

in VGG16. In our future work, we would like to make a thorough comparison with several other
global optimization approaches.

Comparison between DPG and stochastic policy gradient. In our work, we apply the DPG
(i.e., outputting the placement directly), due to its much faster convergence speed than the case
using stochastic policy gradient algorithms (i.e., predicting the probability on the entire placement
map). Despite the theoretical proof is aforementioned in the Section 3.2, we conduct an extra small-
scale experiment as an intuitive demonstration. To make the comparison fair, we compare DDPG
with its stochastic counterpart, the stochastic actor-critic (denoted by AC), and make both the actor
and the critic have the same network structure as those used in the DDPG. The critic estimates
the state-value function V (s ), and the actor generates the placement probability distribution on
the entire placement map.

We consider a small multi-chip many-core system consisting of a 3 × 3 chip array with 2 × 2
cores per chip, with 16 KB as the size of weight buffer and input/activation buffer. A synthetic
MLP with 435-487-227-194 is taken as the workload. Figure 20 displays learning curves of both the
deterministic and the stochastic RL-based approaches, each of which is averaged on trainings with
five different random number seeds and is smoothed by the moving average of neighboring 100
placements. After exploring around 50K placements, DDPG reaches its convergence, whereas AC
consumes more than 375K placements to converge. This gap in convergence speed will continue to
widen as the targeting multi-chip many-core system scales up, because the agent requires longer
time to sufficiently explore the larger design spaces to converge.
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5 RELATED WORK

We review some previous work on three major categories: the general methodology that uses ML-
based methods for architecture/system designs, the target application that maps computation onto
many-core systems, and the specific technique that applies deep RL to optimize latency.

ML applied for system design. Recently, there have been signs of emergence of applying ML
to enhance system design, showing promising potentials. Applying ML for system design has a
twofold meaning: 1© the reduction of burdens on human experts designing systems manually, and
2© the close of the positive feedback loop, i.e., architecture/system for ML and simultaneously

ML for architecture/system, encouraging improvements on both sides. These applications include
predictive performance modeling [18, 35, 44, 45, 52, 56, 90], efficient design space exploration [36,
38, 49, 92], cache replacement [5, 70, 80], prefetcher [8, 28, 93], branch prediction [25, 37], NoC
design [21, 63, 85], power and resource management [4, 31], task allocation [51, 94], malware
detection [15, 59], compiler design [53, 76], and so on.

Mapping computation onto many-core architecture. A series of investigations in mapping
applications onto 2D mesh NoC architectures has been conducted by applying various heuristic-
based techniques. They mainly target on minimizing communication energy consumption [32, 33,
68], reducing the total traffic loads and the average network hop count [69], or optimizing network
latency [47, 58, 64]. There are four major differences between our work and the previous work.
First, these previous approaches all focus on general-purpose many-core architectures in a single
chip, while we give attention to decentralized multi-chip many-core systems for neural network
workloads, where the communication related issue is caused by not only the demand for commu-
nication among different cores but also the non-uniform, hierarchical on/off-chip communication
capability. It is worth noticing that in those general-purpose many-core architectures, cores are
usually heterogeneous, since such architectures are designed for general workloads, whereas in
our targeting multi-chip many-core architecture, cores are homogeneous and specifically designed
for DNN workloads, just as shown in Figure 3. As such, our method, especially the logic cores
partitioning part, is specifically tailored for the multi-chip many-core systems with DNN work-
loads. Second, the workloads previously considered are usually multi-media benchmarks, while
we discuss neural-network-based workloads that have different communication patterns. Third,
scalability is another problem of these heuristic-based methods, where they mainly handle systems
with tens of cores, and it is noticed that the computation complexity grows drastically [32] as sys-
tems scale up; in contrast, our RL-based scheme is capable to deal with systems with thousands
of cores. At last, previous work consider topology-specific knowledge of 2D mesh NoCs (e.g., the
geometric features and communication characteristics), while our proposed method can work in
a topology-agnostic manner.

Device placement optimization with RL. In recent years, there is a surge in demand on com-
putational resources in terms of training and inference of neural networks with bigger models and
larger batch sizes. One prevalent solution is to employ a heterogeneous distributed system with
a mixture of different hardwares, with one instance of using the combination of CPUs and GPUs.
In this scenario, the device placement refers the process of mapping the computational graph of
neural networks onto hardware devices. Although such partitioning and placement decisions are
usually made by human experts, there are still several concerns: first, expertise in both neural
networks and hardware architectures is required; second, these decisions are often based on sim-
ple heuristics and intuitions, which do not scale well or cannot produce optimal results especially
for complicated networks. To this end, Mirhoseini et al. [55] propose an RL-based method for
device placement optimization, which uses a sequence-to-sequence RNN model as the parameter-
ized policy to generate placements. This work manually groups operations and then places these
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groups onto devices, and later they develop a hierarchical end-to-end model by making the manual
grouping process automatic [54]. In both of their work, network parameters are trained by pol-
icy gradients via the REINFORCE [88] algorithm. In contrast, Spotlight [23] employs the proximal
policy optimization (PPO) [66] to achieve better training speed and uses the softmax distributions
to represent the policy. They further propose Post [22], which integrates PPO with cross-entropy
minimization to acquire theoretically guaranteed optimal efficiency. Placeto [1] uses graph em-
beddings to encode the structure of the computational graph and exhibits good generalizability to
unseen neural networks, while having high computation costs.

The work related to device placement optimization aims to achieve optimal training speed in a
distributed environment with heterogeneous hardware devices. Our work focuses on optimizing
inference latency in multi-chip many-core systems by core placement optimization, where we
apply the deterministic actor-critic algorithm instead of pure policy gradient-based techniques
and both the actor and the critic are implemented by CNNs.

6 CONCLUSION

In this work, we consider DNN inference in multi-chip many-core systems and formulate the core
placement optimization problem. Previous work mainly focuses on mapping multi-media appli-
cations onto many-core architectures in a single chip and does not consider the communication-
related issue in multi-chip many-core systems, which is caused by not only the demand for commu-
nication among different cores but also the non-uniform, hierarchical on/off-chip communication
capability; another concern is the scalability of these heuristic-based approaches as systems scale
up. To this end, we propose an RL-based method to automatically optimize core placement through
DDPG, taking into account information of the environment by performing a series of trials and
using CNNs to extract spatial features of different placements. We evaluate our proposed method
on AlexNet, VGG16, and ResNet50, where on average DDPG reduces the overall latency by 50.5%,
38.4%, and 18.6%, and improves the throughput by 1.99×, 1.61×, and 1.22×, compared with BS, RS,
and SA, respectively. We further demonstrate that our proposed RL-based method is capable of
finding optimal placements, taking advantage of different communication properties caused by
different system configurations, and it can also work in a topology-agnostics manner.
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