
31

NNBench-X: A Benchmarking Methodology for Neural

Network Accelerator Designs

XINFENG XIE, XING HU, PENG GU, SHUANGCHEN LI, YU JI, and YUAN XIE, University

of California, Santa Barbara, United States

The tremendous impact of deep learning algorithms over a wide range of application domains has encour-

aged a surge of neural network (NN) accelerator research. Facilitating the NN accelerator design calls for

guidance from an evolving benchmark suite that incorporates emerging NN models. Nevertheless, existing

NN benchmarks are not suitable for guiding NN accelerator designs. These benchmarks are either selected for

general-purpose processors without considering unique characteristics of NN accelerators or lack quantita-

tive analysis to guarantee their completeness during the benchmark construction, update, and customization.

In light of the shortcomings of prior benchmarks, we propose a novel benchmarking methodology for NN

accelerators with a quantitative analysis of application performance features and a comprehensive awareness

of software-hardware co-design. Specifically, we decouple the benchmarking process into three stages: First,

we characterize the NN workloads with quantitative metrics and select the representative applications for the

benchmark suite to ensure diversity and completeness. Second, we refine the selected applications according

to the customized model compression techniques provided by specific software-hardware co-design. Finally,

we evaluate a variety of accelerator designs on the generated benchmark suite. To demonstrate the effec-

tiveness of our benchmarking methodology, we conduct a case study of composing an NN benchmark from

the TensorFlow Model Zoo and compress these selected models with various model compression techniques.

Finally, we evaluate compressed models on various architectures, including GPU, Neurocube, DianNao, and

Cambricon-X.

CCS Concepts: • Hardware → Application specific integrated circuits; • General and reference →

Evaluation; • Computer systems organization → Neural networks;

Additional Key Words and Phrases: Neural networks, accelerator, software-hardware co-designs, benchmark

ACM Reference format:

Xinfeng Xie, Xing Hu, Peng Gu, Shuangchen Li, Yu Ji, and Yuan Xie. 2020. NNBench-X: A Benchmarking

Methodology for Neural Network Accelerator Designs. ACM Trans. Archit. Code Optim. 17, 4, Article 31 (No-

vember 2020), 25 pages.

https://doi.org/10.1145/3417709

This work was supported in part by NSF 1816833, 1719160, 1725447, and 1730309.

Authors’ address: X. Xie, X. Hu, P. Gu, S. Li, Y. Ji, and Y. Xie, University of California, Santa Barbara, California,

93106; emails: {xinfeng, xinghu}@ucsb.edu, {peng_gu, shuangchenli}@ece.ucsb.edu, maple.jiyu@hotmail.com, yuanxie@

ece.ucsb.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).

1544-3566/2020/11-ART31

https://doi.org/10.1145/3417709

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

https://doi.org/10.1145/3417709
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3417709


31:2 X. Xie et al.

1 INTRODUCTION

Neural network (NN) algorithms have demonstrated better accuracy than traditional machine

learning algorithms in a wide range of application domains, such as computer vision (CV) [27,

28, 49, 51] and natural language processing (NLP) [35, 46, 50]. These breakthroughs indicate a

promising future for their real-world deployment. Deploying these applications, especially for

the inference stage, requires high performance under stringent power budgets, which boosts the

emergence of accelerator designs for these applications. However, designing such an NN acceler-

ator using application-specific integrated circuits (ASICs) is challenging, because NN applications

are changing rapidly to support new functionalities and improve accuracies, while ASIC design

requires a long design and manufacturing period. The accelerator design could be prone to be-

coming obsolete if the design fails to capture key characteristics of emerging models. Therefore, a

benchmark to capture these workload characteristics is crucial to guiding NN accelerator design.

Although there exist some benchmark suites for NN accelerator designs [1, 3, 11, 52], most of them

overlook two critical perspectives when constructing the benchmark suite.

Prior studies usually lack quantitative analysis in the selection of applications for the bench-

mark suite. Without quantitative metrics for selecting applications, it will be difficult to maintain

a representative benchmark suite in benchmark construction, update, and customization. First,

when the benchmark suite is originally constructed, there is a risk that the empirically selected

applications are not the most representative collection, although most of the existing benchmarks

justify their representativeness afterward. Second, due to the rapid change of NN algorithms from

the machine learning community, a benchmark suite needs to be updated periodically to consider

new algorithms. However, without quantitative metrics, it is unclear if existing applications in the

benchmark suite are representative of emerging algorithms. Finally, evaluating NN accelerators

designed for a special application domain needs to filter some applications from a benchmark,

which can hardly be achieved without quantitative metrics. For example, designing a smart cam-

era does not need to evaluate sequence-to-sequence [50] models. The process of filtering unrelated

applications needs quantitative metrics instead of empirical decisions to ensure representativeness.

In addition, prior benchmark selection does not take the specialty of NN accelerators into ac-

count, and hence is not suitable for evaluating software-hardware co-designs. Without this kind

of consideration, existing benchmarks are not feasible to evaluate several state-of-the-art NN ac-

celerators exploiting NN model compression techniques. First, most accelerators are incorporated

with specialized hardware for software optimizations, so evaluating applications without these

optimizations cannot provide insightful guidelines. For example, some accelerators, such as the

TPU [32] and DianNao [12], exploit fixed-point arithmetic logic units (ALUs) for quantized mod-

els, while some accelerators, such as EIE [24] and Cambricon-X [64], exploit sparse tensor compu-

tations for pruned models. TPU and DianNao cannot benefit from the sparsity, while EIE and

Cambricon-X could suffer from the overheads of control logic for running dense NN models.

Second, without the consideration of hardware-software co-design, it is impossible to evaluate

software-level optimizations and their impact on hardware designs. In particular, using only one

set of workloads can hardly study the performance impact of software-level optimizations on spe-

cialized hardware designs, such as performance benefits that the hardware design can obtain if a

new pruning algorithm can further prune half of the weights. Third, without considering software-

hardware co-design during the process of composing benchmark suites, the application set could

include similar and redundant applications, such as VGG and SparseVGG in BenchIP [52].

In this article, we propose an end-to-end benchmarking approach for software-hardware co-

design to quantitatively select applications and benchmark software-hardware co-design by de-

coupling our approach into three stages: workload characterizations, software-level model com-

pression strategies, and hardware-level accelerator evaluations. In the first stage, application set

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:3

selection, we characterize NN applications of interest without considering any software optimiza-

tion techniques. After gathering their performance features, we select representative applications

for the original application set. In the second stage, benchmark suite generation, users can refine the

selected applications to generate the final benchmark suite according to their model compression

strategies. New NN models for each application in the original benchmark suite will be gener-

ated according to software-level optimizations, such as quantizing and pruning techniques. In the

last stage, hardware evaluation, users can provide the performance models of their accelerator de-

signs together with the assumptions of interconnection and host. Accelerators are evaluated with

the benchmark suite generated from the second stage. Power, performance, and area results are

derived according to input performance models.

To demonstrate the functionality of our benchmark, we conduct a case study on designing

NN accelerators for general NN applications. First, we comprehensively analyze 57 models with

224,563 operators from the TensorFlow (TF) Model Zoo [21]. Second, we generate benchmark

suites by using several state-of-the-art software-level optimizations including quantizing and

pruning NN models. Finally, we evaluate several representative accelerators including general-

purpose processors (CPU and GPU), accelerator architecture (DianNao [12]), near-data-processing

architecture (Neurocube [33]), and sparse-aware architecture (Cambricon-X [64]).

Our contributions can be summarized as follows:

• We propose a novel benchmarking method, which selects the benchmark by analyzing a

user-input candidate application pool and covers software-hardware co-design configura-

tions with high flexibility. Therefore, our benchmark method is able to provide guidelines

for architecture design to tradeoff application compatibility, algorithm accuracy, and hard-

ware performance.

• We conduct a case study of generating a general-purpose NN benchmark suite from the TF

Model Zoo while applying state-of-the-art NN model compression techniques and eval-

uate it on representative architectures to demonstrate the functionality of our bench-

mark method. Our case study reveals that CV and NLP applications show very differ-

ent performance characteristics and favor different compression techniques and hardware

architectures.

2 BACKGROUND

In this section, we introduce the basics of NN accelerator system stacks and NN accelerator designs.

2.1 System Stack and the Representation of an NN Model

Modern NN development and deployment system stacks are decoupled into several levels. As

shown in Figure 1, the whole system stack includes application, framework, primitive, and hard-

ware levels. From top to bottom, the application level focuses on developing high accuracy algo-

rithms and sometimes makes tradeoffs between accuracy and performance when exploring differ-

ent NN structures. The framework level focuses on transforming high-level abstractions into hard-

ware primitives by providing a flexible programming model and efficient runtime environment.

Meanwhile, the primitive level provides simple and well-optimized primitives for the hardware.

For example, cuDNN [40] provides well-optimized library for executing convolution on GPUs. At

the bottom of the whole development and deployment stack, the hardware level provides efficient

hardware platforms for executing NN applications.

Across these system stack levels, each NN model is represented by a computation graph, which

abstracts tensor operators as vertexes and tensor operands as edges to present an NN model. The

topology of computation graphs indicate the data dependency among tensor operators. Figure 2

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:4 X. Xie et al.

Fig. 1. System stack for the development and deployment of NN applications including (1) application layer,

(2) framework layer, (3) primitive layer, and (4) hardware layer.

Fig. 2. An NN example represented by the layer-by-layer abstraction and the computation graph with the

detailed components of a Conv2D operator to explain what is included in an operator.

provides an example NN represented by these two abstractions to demonstrate their differences.

The computation graph abstraction brings a more flexible representation of NN models and mod-

ern frameworks, such as TensorFlow [2] and PyTorch [16], adopt computation graph as the pro-

gramming model. Thus, the computation graph representation is general across different NN

frameworks. Moreover, because the computation graph does not have any constraint on the graph

topology, it is fully compatible with all widely used NN models including RNN models even though

it could introduce loops in the computation graph. All models from TensorFlow Model Zoo [21] are

represented by TensorFlow graphs, which is an implementation of the computation graph concept.

In the rest of this article, we adopt this abstraction taking an NN model as a computation graph.

2.2 NN Accelerators

For the past few years, researchers have adopted two major guidelines to improve NN accelerator

designs, i.e., the technology-driven architecture designs and the application-driven architecture

designs.

From the technology perspective, researchers aim to utilize the physical properties of emerg-

ing hardware primitives to fundamentally improve the performance and energy efficiency of

new architectures. Some key operations in NN applications that are bottlenecks, such as matrix

multiplication, are especially suited to these architectures. New technologies such as emerging

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:5

Table 1. Classifying NN Benchmarks w.r.t. Benchmark-suite and Benchmark-object

BenchNN BenchDL DeepBench Fathom BenchIP Our Work

[11] [48] [7] [3] [52]

Application � � � � � �
Framework �
Primitive � �
Hardware � � � � �

�: benchmark-suite; �: benchmark-object.

non-volatile memories and 3D die stacking provide new opportunities for the implementa-

tion of PIM accelerators [15, 30], near-data processing (NDP) accelerators [33], and neuromor-

phic chips [10], which demonstrate orders of magnitude improvement in energy efficiency and

performance.

From the application perspective, researchers aim to simplify computational workloads and re-

duce memory footprint through algorithmic optimizations without significantly compromising ap-

plication accuracy. Previous work [42, 54, 55] demonstrates that inference tasks do not require high

numerical precision for weights and intermediate data. There are a number of ASIC designs [12–

14, 32] leveraging these opportunities to improve the performance and energy efficiency for NN

inference tasks. Another promising optimization strategy is pruning [25, 26], which removes un-

necessary connections in NN models and makes tensor operations sparse. Some accelerators [4, 24,

58, 64] are designed to utilize the sparsity of either weights or activations. In addition, software-

hardware co-design methodology [23, 43, 61] with architecture-aware NN model compression [34,

56] or compression-aware accelerator is proposed to figure out the best tradeoffs between accuracy

and performance.

In addition to ASIC accelerators with fixed hardware architectures that rely on software to con-

vert NN models into programs running on hardware, some accelerators, such as BrainWave [19]

and xDNN [60], convert NN models completely into hardware and realize them through recon-

figurable logic, especially FPGAs. Although studies of using FPGAs start from supporting only a

limited set of models [41, 62], the design method is extended to support a wide spectrum of NN

models [47, 63, 65]. These studies usually use hand-optimized RTL templates for key operations

and rely on compiler support to efficiently leverage these well-optimized modules.

In this article, our benchmark aims to provide a comprehensive understanding of NN workloads

to guide accelerator designs regardless of their technology, application domain, and design meth-

ods. Moreover, our benchmark helps domain-specific accelerator designs instead of accelerators

tailored for only one or few models, because accelerators for a limited number of models have

concrete design goals and the known set of representative workloads.

3 MOTIVATION

Although many NN benchmark suites have recently been proposed, through analyzing available

suites, we see that many demands are not met. We first narrow down the analysis of existing suites

by categorizing all previous benchmarks in terms of benchmark-suite and benchmark-object. Then,

we highlight the novelty of this work by comparing it to BenchIP [52] and Fathom [3] in four

detailed aspects.

All previous NN benchmarks can be categorized according to the benchmark-suite and

benchmark-object. A benchmark-suite consists of a set of representative workloads to be evaluated

on different benchmark-objects. We classify the benchmark-suite and benchmark-object into

different levels in the system stack, as shown in Table 1. Although BenchNN [11] is one of

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:6 X. Xie et al.

Table 2. The Uniqueness of Our Benchmarking Methodology

Fathom BenchIP Ours

Analysis-based App. Selection ✗ ✗ �
Flexible with Update/Customize ✗ ✗ �
SW/HW Co-design ✗ fixed general

Evaluation on Accelerators ✗ ASIC ASIC/NDP

✗ means the corresponding feature is not supported, and � means the corresponding

feature is supported.

earliest efforts in building an NN benchmark, the benchmark-suite is a bit out of date without

updates. Prior study [48] (denoted as BenchDL) proposes a benchmark suite for evaluating

different deep learning software tools, i.e., frameworks in our system stack of NN applications.

DeepBench [7] is a benchmark suite comparing the performance of different primitives on

different platforms. However, benchmarking NN applications from the primitive layer loses the

whole picture. Fathom [3] and BenchIP [52] serve a similar purpose as our work. However, they

do not take software-hardware co-design as the benchmark object. Different from all of them, our

benchmarking methodology targets at capturing end-to-end application-to-hardware characteristics

to guide architecture design for state-of-the-art NN workloads. Since both Fathom and BenchIP serve

a similar purpose of benchmarking NN accelerator designs, we further detail our comparison

with Fathom and BenchIP in four aspects, as summarized in Table 2.

Quantitative analysis–based benchmark selection: Accelerator designers usually know the

application domain they are interested in, which could include a large number of NN applications.

Thus, it is important to select representative NN applications to guide hardware architecture de-

sign. Fathom and BenchIP pick their applications with some empirical guidelines but not by any

quantitative analysis. Even though they show the effectiveness of their selected suits afterward,

there is no guarantee that their selections are the most representative. On the contrary, our ap-

proach selects benchmarks according to the results of extensive profiling and analyzing. Our method

characterizes NN applications through application features that are key to the performance, from

the perspective of architecture designs. At the end of Section 6.1, we show how our method cap-

tures additional features that other benchmarks fail to cover.

Flexible with updates and customizations: We propose a benchmarking methodology, not

simply a benchmark suite. By doing this, we are subject to updates due to the rapid developing

NN algorithms. Statistics [52] have shown that within one year, the NN models proposed in top-

tier conferences double. For a fixed benchmark suite, it is difficult to know whether to extend

the suite and whether a new accelerator is needed when a new model appears. Although eval-

uating a new model on existing accelerators can help us understand its characteristics to some

extent, the demand for updating the benchmark suite and designing a new accelerator would be

challenging without an in-depth workload characterization. In addition, most of the accelerators

target a certain application scenario (e.g., autonomous cars), instead of a general NN processor. A

single one-for-all benchmark suite does not adequately address these needs. Instead, we generate

different suites according to the user-customized candidate application pool.

SW/HW co-design: Recent NN accelerator designs usually include both software optimiza-

tions, such as model pruning and quantization, and hardware optimizations. Our benchmark

method is the first for accelerators with a comprehensive awareness of software-hardware co-

design. Although BenchIP [52] includes sparse models, such as Sparse VGG, into their application

set as representative workloads, these considerations are insufficient due to two reasons. First,

pruned models are very similar to their original models in their work. For example, Sparse VGG

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:7

Fig. 3. Benchmark method overview with three main stages and their corresponding inputs and outputs.

performs very similar to VGG in terms of extracted performance features, making it redundant.

Second, their sparsity benchmark cannot consider all model compression techniques. For example,

structural sparsity [61] is not covered.

Diversity of evaluation platforms: Because of the growing heterogeneity of hardware plat-

forms, targeting only ASIC designs is not sufficient. We evaluate our benchmarks not only on

CPU/GPU and ASICs but also on other innovative architectures such as NDP architectures. In ad-

dition, our evaluation method is not limited to any NN framework. Instead, we use the computation

graph as a programming model with a general abstraction for the execution of NN applications

across different platforms.

4 BENCHMARKING METHODOLOGY

An overview of our benchmarking method is shown in Figure 3. Our benchmarking method in-

cludes three stages. The first stage is application set selection, with an application candidate pool

as its user input and original application set as its output [59]. The second stage is benchmark suite

generation, with the model compression technique as the user input and the previous generated

original application set as another input. The last stage is the hardware evaluation, which takes the

generated benchmark suite and the hardware performance models as its inputs and then outputs

the performance results. The rest of this section will introduce these three stages in detail.

4.1 Application Set Selection

In the first stage, application set selection, we select diverse and representative NN applications

from the application candidate pool that includes the applications of the user’s interests.

The proposed application set selection consists of two phases: operator-level and application-

level analysis, as shown in Figure 4. Since tensor operators are the primitives of NN applications,

operator-level analysis is conducted first, before application-level analysis. In the operator-level

analysis, we extract all operators from the application candidate pool and use two important

metrics, locality and parallelism, as the performance feature to represent an operator. Then,

all the operators are clustered into several groups according to the extracted operator features.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:8 X. Xie et al.

Fig. 4. Application set selection process with two phases: operator-level analysis phase and application-level

analysis phase.

This process of getting operator clusters is detailed as Algorithm 1. After the operator-level

clustering, application-level analysis is performed as the second phase. Applications are first

profiled on baseline architectures before they are quantified by time breakdown on the different

operator clusters. The process of getting application features is detailed as Algorithm 2. After

obtaining these application features, we conduct a similarity analysis for all applications. Finally,

an application set composed of diverse and representative workloads can be selected out of the

application candidate pool. Instead of clustering operators according to their functionalities, as in

prior work [3], our work is fundamentally different, because it clusters tensor operators according

to their architectural features, i.e., locality and parallelism. We observe that functionality-based

classification is not sufficient and can cause incorrect bottleneck characterization, as validated by

the experiments at the end of Section 6.1.

4.1.1 Operator-level Analysis. As shown in Figure 4, we perform operator-level analysis in the

first phase to extract operator features and cluster operators based on these operator features. Our

operator-level analysis first extracts all operators from the applications in the application candidate

pool. Then, we analyze operator features from the perspective of architecture designs. Finally, we

cluster these operators.

To improve the generality of the generated benchmark suite, we use platform-independent met-

rics as the operator feature. Specifically, we define two platform-independent metrics, Locality and

Parallelism, for the operator-level analysis to reflect general architecture considerations when de-

signing accelerators for tensor operators. A common practice in accelerator design is to consider

customized data-path designs, such as the different dataflow structures in Eyeriss [14], that can

leverage both the locality of these operators and can utilize multiple processing elements (PEs) to

exploit the available parallelism. Thus, these two platform-independent metrics can be useful to

help understand operators from the viewpoint of architectural designs for overall demands. The

definition of these two metrics used to represent the architectural feature of an operator is detailed

as follows:

Locality. This metric is defined as the amount of data needed by an operator divided by the

number of scalar arithmetic computations it needs. The amount of data needed by an operator

is equal to the sum of the input tensor size and the output tensor size. Input tensors include all

input data needed by this operator, such as model weights. Our locality metric reflects the overall

locality of an operator, because it indicates the average times of a byte used in the scalar arithmetic

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:9

computations. Moreover, the average times of a byte used in the computation indicates the locality

in an ideal memory system where a cache hit happens if the same location was accessed before.

For example, when the locality metric of an operator equals to 0.1, it means that this operator

performs an arithmetic scalar computation on 0.1 byte of data on average. In other words, each

byte is used for 10 (= 1
0.1 ) scalar computations on average. In an ideal memory system, this byte is

accessed 10 times (1 access per arithmetic computations), and the miss rate is 10%, because only

the first access of these 10 accesses will result in a cache miss. Another example is that when the

locality metric of an operator equals to 12, it means that this operator performs an arithmetic scalar

computation on 12 bytes of data on average. In this case, each data is accessed only once for the

computation, and the miss rate in an ideal memory system is 100%, because there is no data-reuse.

In summary, the cache miss rate of an operator in an ideal memory system ismin{Locality, 100%}
when the cache line size is 1 byte. Thus, lower values of this metric indicate better locality for the

operator.

Parallelism. This metric is defined as the ratio of scalar arithmetic operations that can be

executed in parallel, assuming sufficient hardware resources. Thus, the quantitative value of this

metric falls into the range between 0 and 1. Higher values of this metric express greater avail-

able parallelism for the operator. This metric reflects the parallelism of computations in terms of

data dependency. For example, a tensor Add operator that adds two tensors with N elements in

an element-wise manner has N scalar-add operations. All of these scalar-add operations can be

executed in parallel without any true dependency. Therefore, the parallelism for this tensor Add

operator is 100%. Take a tensor Max operator as another example. The functionality of a tensor

Max operator is to find the maximum value in the input tensor with N elements. A tree-based

reduction can explore the parallelism with loдN sequential steps that must be executed in a se-

quential manner. In each step of this tree-based reduction, all of the N scalar-max operations can

be executed in parallel given sufficient hardware resources. As a result, the parallelism for a tensor

Max operator is 1
loдN

.

After obtaining operator features in the aforementioned metrics, we can group operators into

several clusters according to these operator features.

4.1.2 Application-level Analysis. As shown in Figure 4, we perform application-level analysis

in the second phase to extract application features and select applications based on these appli-

cation features. We define the performance feature of an application as the time breakdown on

the different operator clusters obtained from the operator-level analysis. We denote the number

of operator clusters as n. Specifically, the performance feature is denoted as �f = (R1,R2, . . . ,Rn )
where Ri represents the percentage of the elapsed time spent in the ith class operators. We profile

each application from the application candidate pool on the baseline hardware, usually a CPU or

a GPU, to obtain its time spent in each operator cluster. By analyzing applications in terms of time

breakdown, benchmark users can have a better understanding of which operator class acts as a

bottleneck on the baseline hardware. Because operators are grouped by their architecture features

of both locality and parallelism, it provides clearer guidelines to design specialized hardware to

accelerate the bottleneck operator cluster.

We rely on the application-level analysis phase to understand the application characteristics on

baseline platforms. Thus, there are several major design decisions when we are building application

features. First, we use profiling information on existing baseline platforms for a more accurate

analysis. Although baseline platforms are usually general-purpose processors, such as CPU or

GPU, they can be changed to other hardware devices, depending on design goals. For example,

if NNBench-X is used to develop the second generation of TPU, the first version of TPU could

be the baseline device [32]. Second, because this phase in the application set selection stage, this

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:10 X. Xie et al.

ALGORITHM 1: Operator-level analysis to get operator clusters.

Input: A list of models (M) and the number of operator clusters (N)

Output: Operator cluster centers

Init All_Op_Features = []

for m in M do

for op in m.operator_list() do

op_features = ExtractOperatorFeatures(op)

All_Op_Features.append(op_features)

end for

end for

cluster_centers = kMeans(All_Op_Features, num_clusters=N)

Return cluster_centers

ALGORITHM 2: Application-level analysis to get application features.

Input: A list of models (M) and the centers of operator clusters (cluster_centers)

Output: The application features for each model (All_App_Features)

Init All_App_Features = []

for m in M do

Init app_feature = [0.0] * len(cluster_centers)

Init total_time = 0.0

for op in m.operator_list() do

op_features = ExtractOperatorFeatures(op)

cluster_id = GetNearestClusterCenterID(op_features, cluster_centers)

app_feature[cluster_id] += op.elapsed_time

total_time += op.elapsed_time

end for

app_feature = app_feature / total_time

All_App_Features.append(app_features)

end for

Return All_App_Features

phase needs to be independent from software-hardware co-design solutions to be evaluated by

NNBench-X. Specifically, this phase does not take any software-hardware co-design solutions as

inputs and extracts application features based on performance models of these co-designs, such as

the roofline model [57]. Third, we do not consider inter-operator parallelism as a part of application

features, because software frameworks usually take operators as the granularity of scheduling.

These frameworks will offload operators to hardware instead of the whole computation graph and

they are responsible to exploit inter-operator parallelism. However, when designing an accelerator

taking the whole computation graph as inputs, this metric can be added into application features,

as discussed in Section 7.

After this two-level analysis, we select representative applications out of the application candi-

date pool to build the original application set.

4.2 Benchmark Suite Generation

In the second stage, benchmark suite generation, we provide interfaces for users to customize their

NN compression techniques to generate the final benchmark suite.

This stage is motivated by the success of model compression techniques, either quantizing or

pruning, and the fact that state-of-the-art accelerator designs leverage these techniques for better

computation and memory access efficiency by designing specialized hardware, either fixed-point

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:11

Fig. 5. An example for benchmark suite generation to generate a new computation graph according to user-

provided quantizing (int16) and pruning strategies (sparse weights).

ALU or sparse tensor computation engines. Although we obtain a diverse and representative

application set after the first stage, we cannot benchmark different accelerators using only one

set of applications because of the diversity of NN model compression techniques.

Each application from the original application set is a computation graph. To customize different

NN model compression techniques, we provide interfaces for the users to specify the data type of

tensors in this computation graph. For tensors storing the pre-trained weights, users can overwrite

these weights by using pruned weights so these tensors become sparse. Sparsity information can

also be included as an additional attribute in the tensors storing weights. The sparsity of the tensors

produced by activation functions, such as ReLU, can be computed in runtime. Figure 5 illustrates

a case for these interfaces. Suppose we quantize the original application from the single-precision

floating-point into 16-bit fixed-point and prune weights by 90%; the structure of the computa-

tion graph remains the same, but the operators and tensors are changed accordingly, as shown in

Figure 5. Users can define and import model compression methods, and change the information

of operators and tensors to generate the final benchmark suite according to their software-level

studies in the training stage. Compression techniques resulting in intolerable accuracy degrada-

tions should not be imported into this stage. At the end of this stage, NNbench-X produces the

final test set of applications composed of quantized and pruned NN models for evaluations.

Because our benchmark methodology provides interfaces for the users to specify their own com-

pression methods instead of defining several patterns, NNBench-X is able to support a wide range

of compression methods. For example, when NNBench-X is used to evaluate software-hardware

co-designs exploiting the structural sparsity [6, 36], NNBench-X passes model weights to compres-

sion methods provided by the users to generate weights in structural sparse patterns. In this case,

the pruned models with weights in structural sparse patterns will be in the generated benchmark

suite at the end of this stage.

4.3 Hardware Evaluation

In the final stage, the hardware evaluation, we evaluate the generated benchmark suite on accel-

erator designs.

Although this stage can be completed by users with detailed simulation results of accelerators,

we build a system-level simulator for fast performance estimation in the initial architecture de-

sign stages to provide high-level guidelines for accelerator designs. Our system-level simulator

evaluates accelerators on the generated benchmark suite by using the performance models of the

accelerator, the host, and the interconnection between the accelerator and the host. These perfor-

mance models are provided by users so they can be as simple as a roofline model or as complicated

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:12 X. Xie et al.

Fig. 6. The workflow of hardware evaluation with the user-inputs for hardware modeling including models

for host, interconnect, and accelerators.

as a cycle-accurate simulator depending on the demands of hardware evaluation. For example,

early design stages could use the roofline model to decide the balance between computation and

memory resources while later design stages could need cycle-accurate simulators to model more

hardware details. The inputs and outputs of our system-level simulator are shown in Figure 6. For

each application in the generated benchmark suite, our simulator schedules operators into either

the accelerator or the host by a first-come-first-serve scheduling algorithm. When an operator is

not supported by the accelerator, it will be launched into the host with subsequent data transfer

between the accelerator and the host. The performance results of running supported operators

on accelerators and overheads of data transfer between the host and accelerators are provided by

input hardware models that are a part of inputs to our system-level simulator. To demonstrate the

usage of our system-level simulator, we use a simple but effective analytical model, the roofline

model, in Section 6.2 to evaluate various architectures, including DianNao [12], Neurocube [33],

and Cambricon-X [64].

Our system-level simulator plays a role similar to that of frameworks. Our straightforward

scheduling policy may not consistently achieve optimal performance, but integrating accelerators

into the whole system with developed primitives is time-consuming and impractical in the initial

design space exploration stage for architectures. As the case study shows in Section 6.2, the

performance speedups of different architectures could vary in orders of magnitudes. Therefore,

our coarse but fast estimations can still provide insightful guidelines in architectural designs.

Furthermore, the accuracy of estimation in this stage depends on the accuracy of performance

models provided by users. Although we use a simple analytical model, roofline model, in

Section 6.2 as a demo case, users can provide models capturing more hardware details to fit

their demands exploiting various hardware designs. For example, when it is decided to use

dataflow architectures in NN accelerators and our benchmark methodology is used to evaluate

and compare different dataflow designs, the MAESTRO [37] framework can be used to provide the

performance results of different architectures for supported operators. Another example is that

when the users want to evaluate software-hardware co-designs exploiting structural sparsity, the

user-provided performance models of hardware designs need to take the sparsity into account [6,

36]. In both examples, our system-level simulator is responsible to provide operator information,

such as input tensor shapes and operator weights, while users need to implement their own

performance models as the backend to return the performance results of running the operator

on their accelerators. For accelerator designs in Section 6.2, we implement a roofline model as

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:13

the backend for various accelerator designs, which returns the performance by using the roofline

model according to operator information and hardware specifications. For the performance of

operators on real devices, such as CPU and GPU, we implement the backend performance model

by running the operator on the real device and returning the measured time.

5 VALIDATION ON BENCHMARK METHODOLOGY

To validate the effectiveness of our benchmark methodology, we conduct case studies in Section 6.

Before going to experimental results in Section 6, we explain how our case studies validate our

benchmark methodology.

There are two major design goals of our benchmark methodology. First, our benchmark method-

ology is developed to quantitatively capture the architectural characteristics of applications from

an input application pool to select diverse and representative ones. In Section 6.1, we conduct

a case study of workload characterization on TensorFlow (TF) Model Zoo [21] covering a large

number of models from different application domains. The characterization results on these mod-

els indicate that our benchmark methodology is able to distinguish workloads from different ap-

plication domains and provide key architectural insights for application domains. Second, our

benchmark methodology is developed to evaluate software-hardware co-design methods. In Sec-

tion 6.2, we have several diverse software-hardware co-designs on the application set selected in

Section 6.1. The evaluated software-hardware co-designs have a wide coverage, including both

memory-centric accelerators [33] and compute-centric accelerators [12]. We also cover various

model compression techniques, including both quantization [12, 33] and pruning [64]. The evalu-

ation results on these software-hardware co-designs indicate that our benchmark methodology is

able to capture key performance benefits of software-hardware co-designs.

In summary, through these two main case studies on workload characterization and hardware

evaluation, we are able to validate our benchmark methodology on its design goals.

6 CASE STUDY: FROM TENSORFLOW MODEL ZOO TO A BENCHMARK SUITE

We conduct a case study of benchmarking NN inference accelerators to demonstrate the usage of

our benchmark approach. To this end, we set the TensorFlow (TF) Model Zoo [21] (with 57 NN

models and 224,563 operators) as the application candidate pool, and our software-hardware co-

design evaluation includes several state-of-the-art model compression techniques and hardware

designs. The version of the TF Model Zoo we used in this case study contains 57 NN models from

24 different applications. These NN models have very diverse structures, including convolutional

neural networks (CNNs) and recurrent neural networks (RNNs). From the perspective of learning

algorithms, these models are from different learning methods, including supervised learning, unsu-

pervised learning, and reinforcement learning. Thus, our application pool has very good coverage

on existing NN applications from different application domains, with different model structures

and trained by different learning algorithms. This section follows the three-step process introduced

in Section 4. First, Section 6.1 studies our application set selection process to select representative

applications from TF Model Zoo. By comparing to the application set of prior benchmarks, we

also demonstrate the advantages by the end of Section 6.1. Then, Section 6.2 evaluates several

software-hardware co-designs on these selected applications. In the process of both application

set selection and evaluating software-hardware co-designs, we conclude several observations on

application characteristics and architecture design guidelines from these studies.

6.1 Application Selection from TensorFlow Model Zoo

As the first step of our analysis flow, we apply the operator-level analysis to most of the ap-

plications from the TensorFlow Model Zoo [21]. We first perform extract operators (Figure 4-❶)

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:14 X. Xie et al.

Fig. 7. The distribution of operator features for all operators from the application candidate pool (TF Model

Zoo) and the clustering results by running k-means.

Fig. 8. The distribution of application features using CPU and GPU as baseline devices.

to all 224,563 operators from the application candidate pool. We then extract operator features

(Figure 4-❷) and measure both the locality and the parallelism of the operators as defined in Sec-

tion 4.1. The resulting distribution of operator features is shown in Figure 7(a). It labels different

operator functionalities, including matrix multiplication (MatMul), convolution (Conv), pooling,

reduction, element-wise, and other irregular operators (Others) where computations and memory

accesses are dependent on input tensor values. Based on the performance feature distribution, we

conduct cluster operations step (Figure 4-❸), which groups these operators into three clusters. We

apply the k-means algorithm and obtain the cluster results shown as Figure 7(b). After this, we con-

duct an application-level analysis. Because most accelerator designs compare their performance

to two kinds of general-purpose processors, CPU and GPU, we profile (Figure 4-❹) all applications

from the application candidate pool on Intel Xeon E5-2680 CPU and NVIDIA Titan Xp GPU. To

extract application features (Figure 4-❺), we use the three operator classes from previous opera-

tor analysis. The application performance feature in this case study is denoted as �f = (R1,R2,R3),
where R1, R2, and R3 represent the time breakdown of an application into three operator clusters.

The performance feature distributions measured on CPU and GPU are shown as Figure 8(a) and

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:15

Fig. 9. The distribution of application features for selected applications out of the application candidate pool

(TF Model Zoo).

Table 3. Brief Descriptions for 10 Applications Selected into the Original Application Set

Application Description Application Domain

textsum [46] Text summarization Natural Language Processing

skip_thoughts [35] Sentence-to-vector encoder Natural Language Processing

pcl_rl [38] Reinforcement learning Others

entropy_coder [31] Image file compression Information and Coding

mobilenet [28] Image classification Computer Vision

inception_resnet_v2 [27, 51] Image classification Computer Vision

image_decoder [53] Image file decompression Information and Coding

rfcn_resnet101 [20] Object detection Computer Vision

faster_rcnn_resnet50 [45] Object detection Computer Vision

vgg16 [49] Image classification Computer Vision

Figure 8(b). SinceR1 + R2 + R3 = 1, we plot two-dimensional scatter figures where x-axis stands for

the R2, y-axis stands for the R3, and R1 can be derived by 1 − R2 − R3. Finally, we select applications

(Figure 4-❻). Based on the distribution of the application features on CPU, we select 10 diverse

and representative applications as the original application set by evenly sampling the application

candidate pool. The distribution of these 10 applications is shown in Figure 9. Brief descriptions

for these 10 applications can be found in Table 3.

Observations on the operator-level analysis. We classify operators into several categories

to obtain observations on their architectural characteristics. The operator categories are designed

to reflect operator functionalities or data access patterns. Among these operator categories, ma-

trix multiplication (MatMul), convolution (Conv), and pooling attract intensive attention in many

accelerator designs because of their importance in early NN models, such as VGG models [49].

The activation functions are also very common in NN models, such as ReLU operation in con-

volutional neural networks [27, 49, 51], and all of them are vector-like element-wise operations.

Thus, we create a category as Element-wise in Figure 7(a) for all operators performing vector-like

operations. We also create a separate category named as reduction for operators with reduction

patterns, such as the Softmax and Argmax operations. Although these five categories cover most

of the operators, we put the rest of operators into the last category as others.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:16 X. Xie et al.

We make several observations from the results of operator clustering (Figures 7(a)–7(b)). First,

convolution and matrix multiplication operators are similar to each other, and most of them have

good locality. Because of existing reduction patterns along some tensor dimensions, such as input

channels in convolution operators, these two kinds of operators possess moderate parallelism. Sec-

ond, all element-wise operators have identical parallelism while the computation intensity on each

tensor element can vary significantly. Because of fully parallel scalar operations for all elements

in element-wise operators, element-wise operators have the largest degree of parallelism (100%).

Third, operators with the same or similar functions can have very different performance features,

such as reduction and pooling operators. Clustering these operators by functions and designing

hardware accordingly would result in bottleneck misprediction.

Architecture implications of operator clusters. The application feature in our work is di-

rectly associated with the breakdown of execution time spent on different operator clusters. Since

we cluster operators according to their architecture features, i.e., locality and parallelism, opera-

tors in the same cluster could favor similar architecture designs. Specifically, operators in the first

cluster have limited parallelism and moderate locality, whose execution time contributes to R1.

These operators could benefit from the locality optimizations while they can hardly benefit from

more parallel processing elements (PEs). Operators from the second cluster have both moderate

parallelism and locality, such as matrix multiplication and convolution, whose execution time con-

tributes to R2. These operators could benefit from parallel PE design, more computation resources,

and optimizations on locality, such as the careful design of data-flow to exploit data reuse. Finally,

operators from the third cluster can be fully parallelized whose execution time contributes to R3.

Increasing the number of PEs is helpful to exploit the parallelism while these operators will become

bounded by memory bandwidth when the number of PEs is sufficient.

From the perspective of applications, application features indicate the distribution of execu-

tion time on these operator clusters. Thus, these application features help identify the application

bottleneck from the perspective of operator clusters, which further provides architecture design

guidelines. For example, an application with a large R2 indicates that its bottleneck comes from

operators in the second cluster, which could prefer architecture designs with more computation

resources or larger on-chip memory. Similarly, an application with a largeR3 could prefer memory-

centric architectures for higher effective memory bandwidth, because it is bounded by operators

in the third cluster.

Observations on the application-level analysis. For the application-level analysis in

Figures 8(a)–8(b), we summarize the following observations: First, Conv, MatMul, and Element-

wise operators take up a majority of the application time in most of the applications, since most

of the applications distribute near the line R2 + R3 = 1. Second, in contrast to CPU, GPU is more

likely to be bounded by R1, due to its more powerful computing resource and higher memory

bandwidth. In addition, R3 takes a larger percentage on GPU, indicating there are opportunities

for GPU memory system optimization. Third, the consideration of application scenarios reveals

additional trends. Both Figures 8(a) and Figure 8(b) label different application domains, including

computer vision (CV), natural language processing (NLP), hybrid CV and NLP (CV+NLP), infor-

mation and coding, and others. We classify applications into application domains according to the

task of applications. Applications for traditional CV or NLP tasks are labeled as CV or NLP, re-

spectively. The task of some applications is mixed by traditional CV or NLP tasks. For example,

image captioning requires image understanding and caption generation, where image feature ex-

traction is a CV task while the caption generation involving text summary is an NLP task. The

application domain of these mixed tasks is denoted as CV+NLP. In addition to these traditional CV

or NLP tasks, some tasks focus on the coding of information, such as file compression, decompres-

sion, and encryption. The application domain of these tasks related to information and coding is

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:17

labeled as Information and Coding although they could need domain knowledge related to CV or

NLP when handling corresponding information, such as image compression. The domain labeled

as Others includes the rest of the applications; most of the applications in this category belong to

applications using reinforcement learning, such as robotics applications. Most CV applications are

bounded by operations from R2 (mostly Conv and MatMul). On the contrary, most NLP applications

are bounded by operations from the R3 (mostly element-wise operators). This indicates that memory-

centric computing architectures can be helpful for these NLP applications.

The advantage of our methodology. We first demonstrate the advantage of the operator-

level analysis by showing how misleading bottleneck diagnosis would occur if the aforementioned

analysis is neglected. Without operator-level clustering, one has to extract the application feature

with function-based operator clustering. For example, as described by Fathom, Add operators are

clustered as the category Elementwise Arithmetic, but transpose operators are clustered as another

category, Data Movement. However, when using our operator-level analysis, these two clusters

should be in the same category (R3 in our notation), since they have very similar architecture

features in terms of locality and parallelism. There would be an issue in the case where R3 is the

application’s bottleneck, but as part of R3, neither Elementwise Arithmetic nor Data Movement indi-

vidually shows as a bottleneck. The bottleneck is then misunderstood. The described problem happens

for 15 out of 57 models in the TF Model Zoo. Taking application video_prediction_stp [18] for exam-

ple, according to the performance feature defined in Fathom, it will show Conv2D as the bottleneck

(taking 38% of total time). However, the elapsed time of operators from the R3 cluster takes 52%

of total time, making R3-like operators (memory-intensive highly parallel operators) the actual

bottleneck, not Conv2D. Instead of accelerating Conv2D, which would result in more computation

resources or larger on-chip memory, our analysis recommends that the architecture should be de-

signed with higher effective memory bandwidth, such as processing-in-memory architectures [15,

22, 30, 33] for R3-like operators, because they take the majority of the elapsed time.

Second, our benchmark process selects more diverse and representative applications. Compared

to Fathom, our method selects applications from a large application candidate pool based on ex-

tracted application features. Therefore, our analysis-based selection guarantees the diversity and

representativeness of selected applications from the viewpoint of performance features. To under-

stand the representativeness of Fathom applications on the TF Model Zoo, we go through the same

application analysis process for applications (eight applications in total) from Fathom. The results

measured on the CPU and the GPU are shown as Figures 10(a) and 10(b). Through comparisons, we

can conclude that the application selection in Fathom is fairly good due to its similar distribution

as TF Model Zoo. However, compared with Fathom, our benchmark selection in Figure 9 is more

evenly distributed, making it more representative as a general benchmark. For example, the two

selected benchmark applications in the orange circle in Figure 10(a) are too close to each other,

making one of them redundant. In addition, some applications are underrepresented, such as ap-

plications in green circles in Figure 10(a) and 10(b). The applications from Fathom in these green

circles are not sufficiently representative of the other applications with similar characteristics.

6.2 Benchmark Generation and Hardware Evaluation

We need the benchmark generation step (Section 4.2) after application selection to plug in the NN

compression setup. This step is user-customized. According to our evaluation target, we generate

our benchmark suite with three configurations: no compression (for GPU), quantized 16-bit fixed-

point (for DianNao), and 16-bit fixed-point quantized and 90%/95% pruned (for Cambricon-X).

Finally, we conduct studies on evaluating several state-of-the-art software-hardware solutions

in this section. In particular, we evaluate GPU (Titan Xp), Neurocube [33], DianNao [12], and

Cambricon-X [64] with different model compression techniques. Among these hardware platforms

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:18 X. Xie et al.

Fig. 10. The application feature distribution of applications from our application candidate pool (TF Model

Zoo) compared to the distribution of applications in Fathom.

Fig. 11. The architecture overview of (a) Neurocube, (b) DianNao, and (c) Cambricon-X to distinguish key

architecture differences among them: (a) an NDP design, (b) a compute-centric design, and (c) a compute-

centric design with the support for sparsity.

we evaluated, GPU is a representative many-core processor exploiting the massive parallelism in

tensor operators. Neurocube is an NDP design that exploits an internal memory bandwidth of

memory cubes to accelerate memory-bound operators, while DianNao is a compute-centric accel-

erator design with on-chip computation and data movements tailored for NN applications. Both

of these two platforms are designed for computing fixed-point arithmetic, which needs the help

of NN model quantization from the software-level. Cambricon-X has a similar design as DianNao,

except that its design is intensively customized to exploit the sparsity of NN models, which needs

the help of NN model pruning. For the purpose of architecture comparison, Figure 11 shows the

architecture of Neurocube, DianNao, and Cambricon-X.

Table 4 includes comparisons among these platforms in terms of power, performance, and area.

These numbers are collected from official product specifications or their original papers. Due to

the lack of detailed power models and area models on these platforms, such as the off-chip DRAM

power and area data of DianNao and Cambricon-X, we only estimate the performance in our case

studies. We use our system-level simulator to estimate the performance of these platforms com-

pared to the CPU baseline implementation. According to the performance results presented in the

original papers, we derive an analytical model based on the roofline model [57] to estimate the per-

formance of each supported tensor operators on accelerators. Results on the GPU are profiled and

measured from the execution on a real machine. We assume that these heterogeneous platforms

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:19

Table 4. The Description of Hardware Platforms

Platform GPU Nuerocube DianNao Cambricon-X

Peak Comp (GOPs) 12,100 132.4 482 528

Peak Mem (GB/s) 547.7 320 250 250

TDP (W) 250 21.5 0.4851 0.9541

Area (mm2) 471 68 3.021 6.381

Tech Node (nm) 16 15 65 65

1These power and area data are from their original papers without considering the power

consumption and area cost of DRAM dies.

Fig. 12. The speedups over CPU baseline of applications on (a) GPU without any model compression,

(b) Neurocube with models quantized into 16-bit fixed-point, (c) DianNao with models quantized into 16-

bit fixed-point, Cambricon-X (90%) with models further pruned 90% weights, and Cambricon-X (95%) with

models further pruned 95% weights.

are connected to a host CPU, Intel Xeon E5-2680 CPU, through PCIe, and any unsupported oper-

ator will be offloaded into the CPU for computation. The time of execution on the host CPU and

data transfers triggered by offloading unsupported operators will be counted in the final elapsed

time. However, we exclude the time used for transferring input data and model weights into these

platforms, because transferring different batches of input data can overlap in real-world inference

stage, and loading trained weights into these platforms is a one-time overhead.

Our simulation results are shown in Figure 12. The original application set is evaluated on

the GPU, and results are shown in Figure 12(a). Figure 12(b) presents the performance results on

Neurocube for applications quantized into 16-bit fixed-point data-type. Figure 12(c) presents the

performance results for DianNao and Cambricon-X. Applications executed on DianNao are also

quantized into 16-bit fixed-point. We evaluate two pruning strategies for applications executed on

Cambricon-X, which prunes 90% and 95% weights of models, denoted as Cambricon-X (90%) and

Cambricon-X (95%), respectively.

Insights from the result. By evaluating three representative accelerator designs with various

compression configurations, we make the following observations from Figure 12: First, GPU can

benefit these applications with a higher R2 ratio in their performance features. These applications

are usually computation-bound. Since applications on the x-axis are ordered by the increasing

order of R2, applications closer to the right direction along the x-axis spend more time in the

second cluster operators, of which most are convolution and matrix multiplication operations. As

shown in Figure 12(a), GPU obtains higher speedups on applications on the right side of the x-axis.

Second, near-data computing architectures favor applications (mostly NLP related) with a higher

R3 ratio. Figure 12(b) shows that Neurocube achieves higher speedups on applications on the left

side of the x-axis. Finally, we found that weight pruning is less attractive for NLP applications than

it is for CV applications. Figure 12(c) shows the comparison of DianNao and Cambricon-X in terms

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:20 X. Xie et al.

of performance benefits from pruning NN model weights, which reduces the computation and

memory workloads of matrix multiplication and convolution operations. Comparing Cambricon-

X (90%) to DianNao, Cambricon-X can achieve higher speedups than DianNao, which mainly

benefits from the reduction of computation and memory workloads due to pruned models. Such

speedups are more significant for computation-bound applications as opposed to memory-bound

applications. The results of models with different sparsities, Cambricon-X (90%) and Cambricon-X

(95%), indicate that pruning more weights can have slight benefits on memory-bound applications

while significant benefits on computation-bound applications.

7 DISCUSSION

Software-hardware co-design in MLPerf. Neural network applications, especially the inference

stage, benefit from the hardware-software co-design methodology. Thus, our work urges taking

the whole software-hardware co-design solution as a benchmark object instead of benchmarking

pure hardware designs by providing a fixed set of applications. The recently released MLPerf

inference benchmark [44] includes an Open Division under the same motivation as our study,

although they are a preliminary release and the rules of Open Division are immature. Compared

to the immature rules in this preliminary release, our methodology provides a concrete interface

to take the model compression techniques as the input and generate the compressed models as

the output. Our work takes model compression techniques as the software optimizations in the

end-to-end methodology, and our case studies reveal new insights for the impact of software

optimizations on hardware designs. We still need to further refine stages in our methodology to

embrace a larger scope of software solutions varying model architectures for the same prediction

task, which is an important perspective of our future work.

Extensibility of our benchmark methodology. There are many configuration choices in our

case study, which should be configured case-by-case. For example, we use locality and parallelism

as operator features to capture various architecture designs. They are sufficient to indicate the

overall architecture demand, such as compute-centric vs. memory-centric designs, because these

two metrics are major considerations among different architecture designs to capture memory

access patterns and computation intensity. However, these two metrics are not able to capture

finer-grain locality and parallelism characteristics. When finer-grain operator characteristics are

needed, the operator-level analysis phase needs to be adapted to new features, such as adding the

reuse distance [17] to reflect the average distance between data reuses. Another example is adding

new application features. We consider time breakdowns in application features because we think

inter-operator parallelism is usually implemented in software frameworks, such as TensorFlow [2],

for a higher flexibility of scheduling. However, when designing an accelerator taking the whole

computation graphs as inputs and exploiting inter-operator parallelism at the hardware-level, the

characteristics of computation graphs, such as the average of node degrees, can be added to the

application features. In summary, configurations in our benchmark methodology are not fixed and

some of them are tailored to our case study. We expect this benchmark methodology to be used by

varying configurations case-by-case. Despite the change of configurations, such as adding reuse

distance into the operator features, the key principles of our benchmark methodology, selecting

applications quantitatively and benchmarking software-hardware co-designs, remain the same.

NNBench-X for new NN workloads. Because of the promising results from NN techniques,

there are new algorithms developed for challenges in various applications. In these fast-growing

algorithm studies, our benchmark methodology is feasible to characterize new NN workloads to

provide insights for accelerator designs. For example, Bayesian neural networks (BNNs) [9, 39]

attract attention due to their ability to deal with uncertainty during the estimation. In our bench-

mark methodology, we decompose BNN models into operators and go through the application

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:21

Table 5. The Performance of Image Classification Models on the CPU and FPGA of Amazon Web

Service F1 Instance for Processing a Single Image with the Size 224 x 224 (Width x Height)

Models bvlc_googlenet resnet50_v1 squeezenet vgg16

CPU (8 vCPUs) 103.92 ms 91.71 ms 42.41 ms 324.08 ms

FPGA (Xilinx Virtex UltraScale+) 1.57 ms 3.82 ms 1.43 ms 10.11 ms

Speedup 66.19 24.01 29.66 32.06

set selection flow to understand their characteristics. The only class of operators in BNN mod-

els different from existing NN models in the TF Model Zoo is sampling to generate the learned

distribution of weights. Because each element in weights is sampled independently from its dis-

tribution in BNNs, these sampling operators have 100% parallelism. Thus, these operators belong

to the third cluster in Figure 7(b) and their execution time contributes to R3. BNN models with

these sampling operators will have a larger R3 than NN models with the same NN architecture.

As a result, BNN models could have a larger demand on memory bandwidth, which is the same as

most of the workloads bounded by R3. If the performance of BNN models is significantly bounded

by these sampling operators, efficient sampling implementations in the accelerator should also be

considered [8]. These architectural implications will be helpful when designing new accelerators

for BNN models.

NNBench-X for FPGA software-hardware co-designs. In addition to ASIC accelerators,

FPGA is a promising platform to efficiently support various NN models. One promising software-

hardware co-design among FPGA solutions is optimizing RTL templates for several widely used

operators and developing a compilation flow to generate FPGA designs based on these templates

on a given NN model represented by a computation graph. Similar to other software-hardware

co-designs in ASICs, our benchmark methodology is able to be used to evaluate these FPGA so-

lutions. To demonstrate how to use NNBench-X to evaluate FPGA solutions, we conduct a case

study on Xilinx xDNN [60] in this section. We assume hardware designers are developing FPGA

software-hardware co-designs for image classification applications. In the first stage of NNBench-X,

our benchmark methodology takes a pool of image classification models as the input and selects

representative ones from them. In this case study, we compose an application candidate pool in-

cluding 10 image classification models, and the first stage of NNBench-X produces an application

set with 4 of them (bvlc_googlenet [51], resnet50_v1 [27], squeezenet [29], and vgg16 [49]). In the

second stage of NNBench-X, we pass these 4 models to the second stage to quantize models. At the

end of these stages, quantized models are generated according to the quantization methods pro-

vided by xfDNN middleware, which is the software optimization part of the xDNN co-design [60].

In the last stage of NNBench-X, we run these quantized models generated by the second stage

on FPGA hardware. Specifically, we run these quantized models on Amazon Web Service (AWS)

f1.2xlarge instance, which has eight vCPUs and one Xilinx Virtex UltraScale+ FPGAs [5]. Experi-

mental results are shown in Table 5. These results demonstrate a significant performance benefit

of the FPGA co-design over the CPU baseline. In summary, we demonstrate that the benchmark

methodology developed in this work is general to evaluate FPGA software-hardware co-designs

through this case study. We hope our benchmark methodology can be helpful to improving future

FPGA solutions for NN workloads.

8 CONCLUSION

In this article, we propose a novel end-to-end benchmarking method for NN accelerator designs.

To select the most representative NN applications and evaluate software-hardware co-designs,

our benchmark method is composed of three stages: application set selection, benchmark suite

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.



31:22 X. Xie et al.

generation, and hardware evaluation. The application set selection stage selects representative

NN applications according to quantitative metrics to ensure the diversity of the benchmark suite.

The benchmark suite generation and hardware evaluation stages refine the selected applications

according to user-provided model compression techniques and evaluate the compressed models on

accelerator designs. We conduct a study of benchmarking several state-of-the-art NN accelerator

designs to demonstrate the usage of our benchmark method. We analyze applications from the

TensorFlow Model Zoo and observe that applications from the same application domains have

similar bottlenecks. Moreover, we evaluate several state-of-the-art software-hardware co-design

solutions, including hardware designs for quantized and pruned NN models. From our case studies,

we observe that computation-centric and memory-centric architectures can have different benefits

for different application domains. Also, we find that pruning NN models provides little benefit to

memory-bound applications. Through our case studies and observations, we are convinced that

our benchmark method is practical and feasible to provide insightful guidance to NN accelerator

designs.

REFERENCES

[1] MLPerf. 2018. MLPerf. Retrieved from https://mlperf.org/.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.

Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the Symposium on Operating Systems

Design and Implementation (OSDI’18), Vol. 16. 265–283.

[3] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2016. Fathom: Reference workloads

for modern deep learning methods. In Proceedings of the IEEE International Symposium on Workload Characterization

(IISWC’16). IEEE, 1–10.

[4] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and Andreas Moshovos. 2016.

Cnvlutin: Ineffectual-neuron-free deep neural network computing. In Proceedings of the ACM/IEEE 43rd International

Symposium on Computer Architecture (ISCA’16). IEEE, 1–13.

[5] Amazon. 2020. Amazon EC2 F1 Instances. Retrieved from https://aws.amazon.com/ec2/instance-types/f1/.

[6] Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalamanchili. 2019. Eridanus: Efficiently running infer-

ence of DNNs using systolic arrays. IEEE Micro 39, 5 (2019), 46–54.

[7] Baidu. 2018. DeepBench. Retrieved from https://github.com/baidu-research/DeepBench.

[8] Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2019. AcMC 2: Accelerating Markov chain Monte

Carlo algorithms for probabilistic models. In Proceedings of the 24th International Conference on Architectural Support

for Programming Languages and Operating Systems. 515–528.

[9] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. 2015. Weight uncertainty in neural net-

works. arXiv preprint arXiv:1505.05424 (2015).

[10] Geoffrey W. Burr, Robert M. Shelby, Severin Sidler, Carmelo Di Nolfo, Junwoo Jang, Irem Boybat, Rohit S. Shenoy,

Pritish Narayanan, Kumar Virwani, Emanuele U. Giacometti, Bulent N. Kurdi, and Hyunsang Hwang. 2015. Experi-

mental demonstration and tolerancing of a large-scale neural network (165,000 synapses) using phase-change mem-

ory as the synaptic weight element. IEEE Trans. Electron Dev. 62, 11 (2015), 3498–3507.

[11] Tianshi Chen, Yunji Chen, Marc Duranton, Qi Guo, Atif Hashmi, Mikko Lipasti, Andrew Nere, Shi Qiu, Michele

Sebag, and Olivier Temam. 2012. BenchNN: On the broad potential application scope of hardware neural network

accelerators. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC’12). IEEE, 36–

45.

[12] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. Diannao: A

small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 269–284.

[13] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui

Sun, and Olivier Temam. 2014. Dadiannao: A machine-learning supercomputer. In Proceedings of the 47th IEEE/ACM

International Symposium on Microarchitecture. IEEE Computer Society, 609–622.

[14] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks. IEEE J. Solid-State Circ. 52, 1 (2017), 127–138.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

https://mlperf.org/
https://aws.amazon.com/ec2/instance-types/f1/
https://github.com/baidu-research/DeepBench


NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:23

[15] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. Prime:

A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In

Proceedings of the 43rd International Symposium on Computer Architecture. IEEE Press, 27–39.

[16] PyTorch Core team. 2017. PyTorch. Retrieved from http://pytorch.org/.

[17] Chen Ding and Yutao Zhong. 2003. Predicting whole-program locality through reuse distance analysis. In ACM Sig-

plan Not., Vol. 38. ACM, 245–257.

[18] Chelsea Finn, Ian Goodfellow, and Sergey Levine. 2016. Unsupervised learning for physical interaction through video

prediction. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 64–72.

[19] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,

Michael Haselman, Logan Adams, Mahdi Ghandi et al. 2018. A configurable cloud-scale DNN processor for real-time

AI. In Proceedings of the ACM/IEEE 45th International Symposium on Computer Architecture (ISCA’18). IEEE, 1–14.

[20] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature hierarchies for accurate object de-

tection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

580–587.

[21] Google. 2018. TensorFlow Models. Retrieved from https://github.com/tensorflow/models.

[22] Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang, Dimin Niu, and Yuan Xie. 2020. iPIM: Pro-

grammable in-memory image processing accelerator using near-bank architecture. In Proceedings of the ACM/IEEE

47th International Symposium on Computer Architecture (ISCA’20). IEEE, 804–817.

[23] Kaiyuan Guo, Song Han, Song Yao, Yu Wang, Yuan Xie, and Huazhong Yang. 2017. Software-hardware codesign for

efficient neural network acceleration. IEEE Micro 37, 2 (2017), 18–25.

[24] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. 2016. EIE:

Efficient inference engine on compressed deep neural network. In Proceedings of the 43rd International Symposium on

Computer Architecture. IEEE Press, 243–254.

[25] Song Han, Huizi Mao, and William J. Dally. 2015. Deep compression: Compressing deep neural networks with prun-

ing, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015).

[26] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural

network. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 1135–

1143.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

[28] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,

and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861 (2017).

[29] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer.

2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint

arXiv:1602.07360 (2016).

[30] Yu Ji, Youyang Zhang, Xinfeng Xie, Shuangchen Li, Peiqi Wang, Xing Hu, Youhui Zhang, and Yuan Xie. 2019. FPSA:

A full system stack solution for reconfigurable ReRAM-based NN accelerator architecture. In Proceedings of the 24th

International Conference on Architectural Support for Programming Languages and Operating Systems. 733–747.

[31] Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel

Shor, and George Toderici. 2017. Improved lossy image compression with priming and spatially adaptive bit rates for

recurrent networks. arXiv preprint arXiv:1703.10114 (2017).

[32] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike

Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert

Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Hurt Dan, Julian Ibarz, Aaron Jaffey, Alek Jaworski,

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James

Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire

Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,

Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory

Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia

Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-

datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th International Symposium on

Computer Architecture. ACM, 1–12.

[33] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. 2016. Neurocube: A pro-

grammable digital neuromorphic architecture with high-density 3D memory. In Proceedings of the ACM/IEEE 43rd

International Symposium on Computer Architecture (ISCA’16). IEEE, 380–392.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

http://pytorch.org/
https://github.com/tensorflow/models


31:24 X. Xie et al.

[34] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. 2015. Compression of deep

convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015).

[35] Ryan Kiros, Yukun Zhu, Ruslan R. Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.

2015. Skip-thought vectors. In Proceedings of the International Conference on Advances in Neural Information Processing

Systems. 3294–3302.

[36] H. T. Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing sparse convolutional neural networks for efficient

systolic array implementations: Column combining under joint optimization. In Proceedings of the 24th International

Conference on Architectural Support for Programming Languages and Operating Systems. 821–834.

[37] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna.

2019. Understanding reuse, performance, and hardware cost of DNN dataflow: A data-centric approach. In Proceedings

of the 52nd IEEE/ACM International Symposium on Microarchitecture. 754–768.

[38] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. 2017. Bridging the gap between value and

policy based reinforcement learning. In Proceedings of the International Conference on Advances in Neural Information

Processing Systems. 2772–2782.

[39] Radford M. Neal. 2012. Bayesian Learning for Neural Networks. Vol. 118. Springer Science & Business Media.

[40] Nvidia. 2017. cuDNN. Retrieved from https://developer.nvidia.com/cudnn.

[41] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song,

Yu Wang, and Huazhong Yang. 2016. Going deeper with embedded FPGA platform for convolutional neural network.

In Proceedings of the ACM/SIGDA International Symposium on Field-programmable Gate Arrays. ACM, 26–35.

[42] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: Imagenet classification

using binary convolutional neural networks. In Proceedings of the European Conference on Computer Vision. Springer,

525–542.

[43] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee, José Miguel

Hernández-Lobato, Gu-Yeon Wei, and David Brooks. 2016. Minerva: Enabling low-power, highly-accurate deep neu-

ral network accelerators. In Proceedings of the 43rd International Symposium on Computer Architecture. IEEE Press,

267–278.

[44] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C. Wu, B. Anderson, M. Breughe, M. Charlebois, W.

Chou, R. Chukka, C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner, I. Hubara, S. Idgunji, T. B.

Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne, G.

Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,

B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou. 2020. MLPerf inference benchmark. In Proceedings of the ACM/IEEE

47th International Symposium on Computer Architecture (ISCA’20). 446–459.

[45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-time object detection with

region proposal networks. In Proceedings of the International Conference on Advances in Neural Information Processing

Systems. 91–99.

[46] Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence sum-

marization. arXiv preprint arXiv:1509.00685 (2015).

[47] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra, and

Hadi Esmaeilzadeh. 2016. From high-level deep neural models to FPGAs. In Proceedings of the 49th IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO’16). IEEE, 1–12.

[48] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. 2016. Benchmarking state-of-the-art deep learning soft-

ware tools. In Proceedings of the 7th International Conference on Cloud Computing and Big Data (CCBD’16). IEEE,

99–104.

[49] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556 (2014).

[50] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Proceed-

ings of the International Conference on Advances in Neural Information Processing Systems. 3104–3112.

[51] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 1–9.

[52] Jin-Hua Tao, Zi-Dong Du, Qi Guo, Hui-Ying Lan, Lei Zhang, Sheng-Yuan Zhou, Cong Liu, Hai-Feng Liu, Shan Tang,

Allen Rush, Willian Chen, Shao-Li Liu, Yun-Ji Chen, and Tian-Shi Chen. 2017. BENCHIP: Benchmarking intelligence

processors. arXiv preprint arXiv:1710.08315 (2017).

[53] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, and Michele Covell.

2016. Full resolution image compression with recurrent neural networks. arXiv preprint (2016).

[54] Peiqi Wang, Dongsheng Wang, Yu Ji, Xinfeng Xie, Haoxuan Song, XuXin Liu, Yongqiang Lyu, and Yuan Xie. 2019.

QGAN: Quantized generative adversarial networks. arXiv preprint arXiv:1901.08263 (2019).

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

https://developer.nvidia.com/cudnn


NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:25

[55] Peiqi Wang, Xinfeng Xie, Lei Deng, Guoqi Li, Dongsheng Wang, and Yuan Xie. 2018. HitNet: Hybrid ternary recurrent

neural network. In Proceedings of the International Conference on Advances in Neural Information Processing Systems.

604–614.

[56] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning structured sparsity in deep neural

networks. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 2074–

2082.

[57] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model

for multicore architectures. Commun. ACM 52, 4 (2009), 65–76.

[58] Xinfeng Xie, Dayou Du, Qian Li, Yun Liang, Wai Teng Tang, Zhong Liang Ong, Mian Lu, Huynh Phung Huynh, and

Rick Siow Mong Goh. 2017. Exploiting sparsity to accelerate fully connected layers of CNN-based applications on

mobile SoCs. ACM Trans. Embedd. Comput. Syst. 17, 2 (2017), 1–25.

[59] Xinfeng Xie, Xing Hu, Peng Gu, Shuangchen Li, Yu Ji, and Yuan Xie. 2019. NNBench-X: Benchmarking and under-

standing neural network workloads for accelerator designs. IEEE Comput. Archit. Lett. 18, 1 (2019), 38–42.

[60] Xilinx. 2020. Xilinx xDNN Processing Engine. Retrieved from https://github.com/Xilinx/ml-suite.

[61] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott Mahlke. 2017. Scalpel:

Customizing DNN pruning to the underlying hardware parallelism. In Proceedings of the 44th International Symposium

on Computer Architecture. ACM, 548–560.

[62] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based accel-

erator design for deep convolutional neural networks. In Proceedings of the ACM/SIGDA International Symposium on

Field-programmable Gate Arrays. ACM, 161–170.

[63] Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. 2018. Caffeine: Toward

uniformed representation and acceleration for deep convolutional neural networks. IEEE Trans. Comput.-aided Des.

Integ. Circ. Syst. 38, 11 (2018), 2072–2085.

[64] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016.

Cambricon-X: An accelerator for sparse neural networks. In Proceedings of the 49th IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO’16). IEEE, 1–12.

[65] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. 2018.

DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs. In Proceedings

of the IEEE/ACM International Conference on Computer-aided Design (ICCAD’18). IEEE, 1–8.

Received October 2019; revised July 2020; accepted August 2020

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

https://github.com/Xilinx/ml-suite

