NNBench-X: A Benchmarking Methodology for Neural
Network Accelerator Designs

XINFENG XIE, XING HU, PENG GU, SHUANGCHEN LI, YU JI, and YUAN XIE, University

of California, Santa Barbara, United States

The tremendous impact of deep learning algorithms over a wide range of application domains has encour-
aged a surge of neural network (NN) accelerator research. Facilitating the NN accelerator design calls for
guidance from an evolving benchmark suite that incorporates emerging NN models. Nevertheless, existing
NN benchmarks are not suitable for guiding NN accelerator designs. These benchmarks are either selected for
general-purpose processors without considering unique characteristics of NN accelerators or lack quantita-
tive analysis to guarantee their completeness during the benchmark construction, update, and customization.

In light of the shortcomings of prior benchmarks, we propose a novel benchmarking methodology for NN
accelerators with a quantitative analysis of application performance features and a comprehensive awareness
of software-hardware co-design. Specifically, we decouple the benchmarking process into three stages: First,
we characterize the NN workloads with quantitative metrics and select the representative applications for the
benchmark suite to ensure diversity and completeness. Second, we refine the selected applications according
to the customized model compression techniques provided by specific software-hardware co-design. Finally,
we evaluate a variety of accelerator designs on the generated benchmark suite. To demonstrate the effec-
tiveness of our benchmarking methodology, we conduct a case study of composing an NN benchmark from
the TensorFlow Model Zoo and compress these selected models with various model compression techniques.
Finally, we evaluate compressed models on various architectures, including GPU, Neurocube, DianNao, and
Cambricon-X.

CCS Concepts: « Hardware — Application specific integrated circuits; - General and reference —
Evaluation; « Computer systems organization — Neural networks;

Additional Key Words and Phrases: Neural networks, accelerator, software-hardware co-designs, benchmark

ACM Reference format:

Xinfeng Xie, Xing Hu, Peng Gu, Shuangchen Li, Yu Ji, and Yuan Xie. 2020. NNBench-X: A Benchmarking
Methodology for Neural Network Accelerator Designs. ACM Trans. Archit. Code Optim. 17, 4, Article 31 (No-
vember 2020), 25 pages.

https://doi.org/10.1145/3417709

This work was supported in part by NSF 1816833, 1719160, 1725447, and 1730309.

Authors’ address: X. Xie, X. Hu, P. Gu, S. Li, Y. Ji, and Y. Xie, University of California, Santa Barbara, California,
93106; emails: {xinfeng, xinghu}@ucsb.edu, {peng_gu, shuangchenli}@ece.ucsb.edu, maple.jiyu@hotmail.com, yuanxie@
ece.ucsb.edu. 31

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).
1544-3566/2020/11-ART31
https://doi.org/10.1145/3417709

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

https://doi.org/10.1145/3417709
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3417709

31:2 X. Xie et al.

1 INTRODUCTION

Neural network (NN) algorithms have demonstrated better accuracy than traditional machine
learning algorithms in a wide range of application domains, such as computer vision (CV) [27,
28, 49, 51] and natural language processing (NLP) [35, 46, 50]. These breakthroughs indicate a
promising future for their real-world deployment. Deploying these applications, especially for
the inference stage, requires high performance under stringent power budgets, which boosts the
emergence of accelerator designs for these applications. However, designing such an NN acceler-
ator using application-specific integrated circuits (ASICs) is challenging, because NN applications
are changing rapidly to support new functionalities and improve accuracies, while ASIC design
requires a long design and manufacturing period. The accelerator design could be prone to be-
coming obsolete if the design fails to capture key characteristics of emerging models. Therefore, a
benchmark to capture these workload characteristics is crucial to guiding NN accelerator design.
Although there exist some benchmark suites for NN accelerator designs [1, 3, 11, 52], most of them
overlook two critical perspectives when constructing the benchmark suite.

Prior studies usually lack quantitative analysis in the selection of applications for the bench-
mark suite. Without quantitative metrics for selecting applications, it will be difficult to maintain
a representative benchmark suite in benchmark construction, update, and customization. First,
when the benchmark suite is originally constructed, there is a risk that the empirically selected
applications are not the most representative collection, although most of the existing benchmarks
justify their representativeness afterward. Second, due to the rapid change of NN algorithms from
the machine learning community, a benchmark suite needs to be updated periodically to consider
new algorithms. However, without quantitative metrics, it is unclear if existing applications in the
benchmark suite are representative of emerging algorithms. Finally, evaluating NN accelerators
designed for a special application domain needs to filter some applications from a benchmark,
which can hardly be achieved without quantitative metrics. For example, designing a smart cam-
era does not need to evaluate sequence-to-sequence [50] models. The process of filtering unrelated
applications needs quantitative metrics instead of empirical decisions to ensure representativeness.

In addition, prior benchmark selection does not take the specialty of NN accelerators into ac-
count, and hence is not suitable for evaluating software-hardware co-designs. Without this kind
of consideration, existing benchmarks are not feasible to evaluate several state-of-the-art NN ac-
celerators exploiting NN model compression techniques. First, most accelerators are incorporated
with specialized hardware for software optimizations, so evaluating applications without these
optimizations cannot provide insightful guidelines. For example, some accelerators, such as the
TPU [32] and DianNao [12], exploit fixed-point arithmetic logic units (ALUs) for quantized mod-
els, while some accelerators, such as EIE [24] and Cambricon-X [64], exploit sparse tensor compu-
tations for pruned models. TPU and DianNao cannot benefit from the sparsity, while EIE and
Cambricon-X could suffer from the overheads of control logic for running dense NN models.
Second, without the consideration of hardware-software co-design, it is impossible to evaluate
software-level optimizations and their impact on hardware designs. In particular, using only one
set of workloads can hardly study the performance impact of software-level optimizations on spe-
cialized hardware designs, such as performance benefits that the hardware design can obtain if a
new pruning algorithm can further prune half of the weights. Third, without considering software-
hardware co-design during the process of composing benchmark suites, the application set could
include similar and redundant applications, such as VGG and SparseVGG in BenchlIP [52].

In this article, we propose an end-to-end benchmarking approach for software-hardware co-
design to quantitatively select applications and benchmark software-hardware co-design by de-
coupling our approach into three stages: workload characterizations, software-level model com-
pression strategies, and hardware-level accelerator evaluations. In the first stage, application set

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:3

selection, we characterize NN applications of interest without considering any software optimiza-
tion techniques. After gathering their performance features, we select representative applications
for the original application set. In the second stage, benchmark suite generation, users can refine the
selected applications to generate the final benchmark suite according to their model compression
strategies. New NN models for each application in the original benchmark suite will be gener-
ated according to software-level optimizations, such as quantizing and pruning techniques. In the
last stage, hardware evaluation, users can provide the performance models of their accelerator de-
signs together with the assumptions of interconnection and host. Accelerators are evaluated with
the benchmark suite generated from the second stage. Power, performance, and area results are
derived according to input performance models.

To demonstrate the functionality of our benchmark, we conduct a case study on designing
NN accelerators for general NN applications. First, we comprehensively analyze 57 models with
224,563 operators from the TensorFlow (TF) Model Zoo [21]. Second, we generate benchmark
suites by using several state-of-the-art software-level optimizations including quantizing and
pruning NN models. Finally, we evaluate several representative accelerators including general-
purpose processors (CPU and GPU), accelerator architecture (DianNao [12]), near-data-processing
architecture (Neurocube [33]), and sparse-aware architecture (Cambricon-X [64]).

Our contributions can be summarized as follows:

e We propose a novel benchmarking method, which selects the benchmark by analyzing a
user-input candidate application pool and covers software-hardware co-design configura-
tions with high flexibility. Therefore, our benchmark method is able to provide guidelines
for architecture design to tradeoff application compatibility, algorithm accuracy, and hard-
ware performance.

e We conduct a case study of generating a general-purpose NN benchmark suite from the TF
Model Zoo while applying state-of-the-art NN model compression techniques and eval-
uate it on representative architectures to demonstrate the functionality of our bench-
mark method. Our case study reveals that CV and NLP applications show very differ-
ent performance characteristics and favor different compression techniques and hardware
architectures.

2 BACKGROUND

In this section, we introduce the basics of NN accelerator system stacks and NN accelerator designs.

2.1 System Stack and the Representation of an NN Model

Modern NN development and deployment system stacks are decoupled into several levels. As
shown in Figure 1, the whole system stack includes application, framework, primitive, and hard-
ware levels. From top to bottom, the application level focuses on developing high accuracy algo-
rithms and sometimes makes tradeoffs between accuracy and performance when exploring differ-
ent NN structures. The framework level focuses on transforming high-level abstractions into hard-
ware primitives by providing a flexible programming model and efficient runtime environment.
Meanwhile, the primitive level provides simple and well-optimized primitives for the hardware.
For example, cuDNN [40] provides well-optimized library for executing convolution on GPUs. At
the bottom of the whole development and deployment stack, the hardware level provides efficient
hardware platforms for executing NN applications.

Across these system stack levels, each NN model is represented by a computation graph, which
abstracts tensor operators as vertexes and tensor operands as edges to present an NN model. The
topology of computation graphs indicate the data dependency among tensor operators. Figure 2

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:4 X. Xie et al.

~

¢ iOI’Ch '? Caffe @xnet theano -

PYTORCH Tensorfloy

E i m m)

J

FPGA

N

Hardware

J

Fig. 1. System stack for the development and deployment of NN applications including (1) application layer,
(2) framework layer, (3) primitive layer, and (4) hardware layer.

Name: input
Shape: 27 x 27 x
128 Name: convl

DataType: fp32 Op Type: C‘"‘VZP

Value: [..] Input tensor 1: input

Input tensor 2: W1

K Output tensor: i1

input _.-=~""|_Other attributes: ...
Operator Attributes

Input
output

Tensor Attributes

Layer by Layer

Name: W1
Shape:3x3x 128
Name: il DataType: int16
Shape: 13 x 13 x Value: [...]
192
DataType: int16
Value: [...]

Tensor Attributes

input

Tensor Attributes

Computation Graph
CONV2D

\\ output

Fig. 2. An NN example represented by the layer-by-layer abstraction and the computation graph with the
detailed components of a Conv2D operator to explain what is included in an operator.

provides an example NN represented by these two abstractions to demonstrate their differences.
The computation graph abstraction brings a more flexible representation of NN models and mod-
ern frameworks, such as TensorFlow [2] and PyTorch [16], adopt computation graph as the pro-
gramming model. Thus, the computation graph representation is general across different NN
frameworks. Moreover, because the computation graph does not have any constraint on the graph
topology, it is fully compatible with all widely used NN models including RNN models even though
it could introduce loops in the computation graph. All models from TensorFlow Model Zoo [21] are
represented by TensorFlow graphs, which is an implementation of the computation graph concept.
In the rest of this article, we adopt this abstraction taking an NN model as a computation graph.

2.2 NN Accelerators

For the past few years, researchers have adopted two major guidelines to improve NN accelerator
designs, i.e., the technology-driven architecture designs and the application-driven architecture
designs.

From the technology perspective, researchers aim to utilize the physical properties of emerg-
ing hardware primitives to fundamentally improve the performance and energy efficiency of
new architectures. Some key operations in NN applications that are bottlenecks, such as matrix
multiplication, are especially suited to these architectures. New technologies such as emerging

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:5

Table 1. Classifying NN Benchmarks w.r.t. Benchmark-suite and Benchmark-object

BenchNN | BenchDL | DeepBench || Fathom | BenchIP | Our Work
(1] (48] [7] 3] [52]
Application * * * * * O
Framework]
Primitive * *
Hardware O O O O O

% : benchmark-suite; [J: benchmark-object.

non-volatile memories and 3D die stacking provide new opportunities for the implementa-
tion of PIM accelerators [15, 30], near-data processing (NDP) accelerators [33], and neuromor-
phic chips [10], which demonstrate orders of magnitude improvement in energy efficiency and
performance.

From the application perspective, researchers aim to simplify computational workloads and re-
duce memory footprint through algorithmic optimizations without significantly compromising ap-
plication accuracy. Previous work [42, 54, 55] demonstrates that inference tasks do not require high
numerical precision for weights and intermediate data. There are a number of ASIC designs [12—
14, 32] leveraging these opportunities to improve the performance and energy efficiency for NN
inference tasks. Another promising optimization strategy is pruning [25, 26], which removes un-
necessary connections in NN models and makes tensor operations sparse. Some accelerators [4, 24,
58, 64] are designed to utilize the sparsity of either weights or activations. In addition, software-
hardware co-design methodology [23, 43, 61] with architecture-aware NN model compression [34,
56] or compression-aware accelerator is proposed to figure out the best tradeoffs between accuracy
and performance.

In addition to ASIC accelerators with fixed hardware architectures that rely on software to con-
vert NN models into programs running on hardware, some accelerators, such as BrainWave [19]
and xDNN [60], convert NN models completely into hardware and realize them through recon-
figurable logic, especially FPGAs. Although studies of using FPGAs start from supporting only a
limited set of models [41, 62], the design method is extended to support a wide spectrum of NN
models [47, 63, 65]. These studies usually use hand-optimized RTL templates for key operations
and rely on compiler support to efficiently leverage these well-optimized modules.

In this article, our benchmark aims to provide a comprehensive understanding of NN workloads
to guide accelerator designs regardless of their technology, application domain, and design meth-
ods. Moreover, our benchmark helps domain-specific accelerator designs instead of accelerators
tailored for only one or few models, because accelerators for a limited number of models have
concrete design goals and the known set of representative workloads.

3 MOTIVATION

Although many NN benchmark suites have recently been proposed, through analyzing available
suites, we see that many demands are not met. We first narrow down the analysis of existing suites
by categorizing all previous benchmarks in terms of benchmark-suite and benchmark-object. Then,
we highlight the novelty of this work by comparing it to BenchIP [52] and Fathom [3] in four
detailed aspects.

All previous NN benchmarks can be categorized according to the benchmark-suite and
benchmark-object. A benchmark-suite consists of a set of representative workloads to be evaluated
on different benchmark-objects. We classify the benchmark-suite and benchmark-object into
different levels in the system stack, as shown in Table 1. Although BenchNN [11] is one of

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:6 X. Xie et al.

Table 2. The Uniqueness of Our Benchmarking Methodology

Fathom | BenchIP Ours
Analysis-based App. Selection X X v
Flexible with Update/Customize X X v
SW/HW Co-design X fixed general
Evaluation on Accelerators X ASIC ASIC/NDP

X means the corresponding feature is not supported, and v’ means the corresponding
feature is supported.

earliest efforts in building an NN benchmark, the benchmark-suite is a bit out of date without
updates. Prior study [48] (denoted as BenchDL) proposes a benchmark suite for evaluating
different deep learning software tools, i.e., frameworks in our system stack of NN applications.
DeepBench [7] is a benchmark suite comparing the performance of different primitives on
different platforms. However, benchmarking NN applications from the primitive layer loses the
whole picture. Fathom [3] and BenchIP [52] serve a similar purpose as our work. However, they
do not take software-hardware co-design as the benchmark object. Different from all of them, our
benchmarking methodology targets at capturing end-to-end application-to-hardware characteristics
to guide architecture design for state-of-the-art NN workloads. Since both Fathom and BenchlIP serve
a similar purpose of benchmarking NN accelerator designs, we further detail our comparison
with Fathom and BenchIP in four aspects, as summarized in Table 2.

Quantitative analysis—based benchmark selection: Accelerator designers usually know the
application domain they are interested in, which could include a large number of NN applications.
Thus, it is important to select representative NN applications to guide hardware architecture de-
sign. Fathom and BenchIP pick their applications with some empirical guidelines but not by any
quantitative analysis. Even though they show the effectiveness of their selected suits afterward,
there is no guarantee that their selections are the most representative. On the contrary, our ap-
proach selects benchmarks according to the results of extensive profiling and analyzing. Our method
characterizes NN applications through application features that are key to the performance, from
the perspective of architecture designs. At the end of Section 6.1, we show how our method cap-
tures additional features that other benchmarks fail to cover.

Flexible with updates and customizations: We propose a benchmarking methodology, not
simply a benchmark suite. By doing this, we are subject to updates due to the rapid developing
NN algorithms. Statistics [52] have shown that within one year, the NN models proposed in top-
tier conferences double. For a fixed benchmark suite, it is difficult to know whether to extend
the suite and whether a new accelerator is needed when a new model appears. Although eval-
uating a new model on existing accelerators can help us understand its characteristics to some
extent, the demand for updating the benchmark suite and designing a new accelerator would be
challenging without an in-depth workload characterization. In addition, most of the accelerators
target a certain application scenario (e.g., autonomous cars), instead of a general NN processor. A
single one-for-all benchmark suite does not adequately address these needs. Instead, we generate
different suites according to the user-customized candidate application pool.

SW/HW co-design: Recent NN accelerator designs usually include both software optimiza-
tions, such as model pruning and quantization, and hardware optimizations. Our benchmark
method is the first for accelerators with a comprehensive awareness of software-hardware co-
design. Although BenchlIP [52] includes sparse models, such as Sparse VGG, into their application
set as representative workloads, these considerations are insufficient due to two reasons. First,
pruned models are very similar to their original models in their work. For example, Sparse VGG

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs

Candidate Pool

Appllcatlons

Operators

i M-1 | m-2
' o
Y o
i 3
®
*, 0
i Metric-2 Feature 2 ‘
Application Application Set Original

Application Set

dense

Configurations D M1 M-2 op O
Data type: int8 3
Sparsity: 30% H A sparse

‘ op O
Model Compression Benchmark
Techniques suite
— 4 Perf. Power Area
Perf. Host

MatMul: —.~ dispat

4096x4096x4096 i

—>40ms ;

Hardware Perf. Hardware Performance

Models Evaluation Results

Fig. 3. Benchmark method overview with three main stages and their corresponding inputs and outputs.

performs very similar to VGG in terms of extracted performance features, making it redundant.
Second, their sparsity benchmark cannot consider all model compression techniques. For example,
structural sparsity [61] is not covered.

Diversity of evaluation platforms: Because of the growing heterogeneity of hardware plat-
forms, targeting only ASIC designs is not sufficient. We evaluate our benchmarks not only on
CPU/GPU and ASICs but also on other innovative architectures such as NDP architectures. In ad-
dition, our evaluation method is not limited to any NN framework. Instead, we use the computation
graph as a programming model with a general abstraction for the execution of NN applications
across different platforms.

4 BENCHMARKING METHODOLOGY

An overview of our benchmarking method is shown in Figure 3. Our benchmarking method in-
cludes three stages. The first stage is application set selection, with an application candidate pool
as its user input and original application set as its output [59]. The second stage is benchmark suite
generation, with the model compression technique as the user input and the previous generated
original application set as another input. The last stage is the hardware evaluation, which takes the
generated benchmark suite and the hardware performance models as its inputs and then outputs
the performance results. The rest of this section will introduce these three stages in detail.

4.1

In the first stage, application set selection, we select diverse and representative NN applications
from the application candidate pool that includes the applications of the user’s interests.

The proposed application set selection consists of two phases: operator-level and application-
level analysis, as shown in Figure 4. Since tensor operators are the primitives of NN applications,
operator-level analysis is conducted first, before application-level analysis. In the operator-level
analysis, we extract all operators from the application candidate pool and use two important
metrics, locality and parallelism, as the performance feature to represent an operator. Then,
all the operators are clustered into several groups according to the extracted operator features.

Application Set Selection

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:8 X. Xie et al.

[Application Candidate Pool]

Profile 1 Extract Operators

Computation Graph Operator Pool
and Operator Trace
2 Extract Operator

. Features
Extract Application

Feat
eatures Operator Features
Application Features 3 Cluster Operators

6 Select Applications Operator Clusters

[Original Application Set]

5

Application Analysis
Operator Analysis

Fig. 4. Application set selection process with two phases: operator-level analysis phase and application-level
analysis phase.

This process of getting operator clusters is detailed as Algorithm 1. After the operator-level
clustering, application-level analysis is performed as the second phase. Applications are first
profiled on baseline architectures before they are quantified by time breakdown on the different
operator clusters. The process of getting application features is detailed as Algorithm 2. After
obtaining these application features, we conduct a similarity analysis for all applications. Finally,
an application set composed of diverse and representative workloads can be selected out of the
application candidate pool. Instead of clustering operators according to their functionalities, as in
prior work [3], our work is fundamentally different, because it clusters tensor operators according
to their architectural features, i.e., locality and parallelism. We observe that functionality-based
classification is not sufficient and can cause incorrect bottleneck characterization, as validated by
the experiments at the end of Section 6.1.

4.1.1 Operator-level Analysis. As shown in Figure 4, we perform operator-level analysis in the
first phase to extract operator features and cluster operators based on these operator features. Our
operator-level analysis first extracts all operators from the applications in the application candidate
pool. Then, we analyze operator features from the perspective of architecture designs. Finally, we
cluster these operators.

To improve the generality of the generated benchmark suite, we use platform-independent met-
rics as the operator feature. Specifically, we define two platform-independent metrics, Locality and
Parallelism, for the operator-level analysis to reflect general architecture considerations when de-
signing accelerators for tensor operators. A common practice in accelerator design is to consider
customized data-path designs, such as the different dataflow structures in Eyeriss [14], that can
leverage both the locality of these operators and can utilize multiple processing elements (PEs) to
exploit the available parallelism. Thus, these two platform-independent metrics can be useful to
help understand operators from the viewpoint of architectural designs for overall demands. The
definition of these two metrics used to represent the architectural feature of an operator is detailed
as follows:

Locality. This metric is defined as the amount of data needed by an operator divided by the
number of scalar arithmetic computations it needs. The amount of data needed by an operator
is equal to the sum of the input tensor size and the output tensor size. Input tensors include all
input data needed by this operator, such as model weights. Our locality metric reflects the overall
locality of an operator, because it indicates the average times of a byte used in the scalar arithmetic

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:9

computations. Moreover, the average times of a byte used in the computation indicates the locality
in an ideal memory system where a cache hit happens if the same location was accessed before.
For example, when the locality metric of an operator equals to 0.1, it means that this operator
performs an arithmetic scalar computation on 0.1 byte of data on average. In other words, each
byte is used for 10 (= ﬁ) scalar computations on average. In an ideal memory system, this byte is
accessed 10 times (1 access per arithmetic computations), and the miss rate is 10%, because only
the first access of these 10 accesses will result in a cache miss. Another example is that when the
locality metric of an operator equals to 12, it means that this operator performs an arithmetic scalar
computation on 12 bytes of data on average. In this case, each data is accessed only once for the
computation, and the miss rate in an ideal memory system is 100%, because there is no data-reuse.
In summary, the cache miss rate of an operator in an ideal memory system is min{Locality, 100%}
when the cache line size is 1 byte. Thus, lower values of this metric indicate better locality for the
operator.

Parallelism. This metric is defined as the ratio of scalar arithmetic operations that can be
executed in parallel, assuming sufficient hardware resources. Thus, the quantitative value of this
metric falls into the range between 0 and 1. Higher values of this metric express greater avail-
able parallelism for the operator. This metric reflects the parallelism of computations in terms of
data dependency. For example, a tensor Add operator that adds two tensors with N elements in
an element-wise manner has N scalar-add operations. All of these scalar-add operations can be
executed in parallel without any true dependency. Therefore, the parallelism for this tensor Add
operator is 100%. Take a tensor Max operator as another example. The functionality of a tensor
Max operator is to find the maximum value in the input tensor with N elements. A tree-based
reduction can explore the parallelism with logN sequential steps that must be executed in a se-
quential manner. In each step of this tree-based reduction, all of the N scalar-max operations can
be executed in parallel given sufficient hardware resources. As a result, the parallelism for a tensor
Max operator is ﬁ.

After obtaining operator features in the aforementioned metrics, we can group operators into
several clusters according to these operator features.

4.1.2 Application-level Analysis. As shown in Figure 4, we perform application-level analysis
in the second phase to extract application features and select applications based on these appli-
cation features. We define the performance feature of an application as the time breakdown on
the different operator clusters obtained from the operator-level analysis. We denote the number
of operator clusters as n. Specifically, the performance feature is denoted as f = (R,R,,...,Ry)
where R; represents the percentage of the elapsed time spent in the ith class operators. We profile
each application from the application candidate pool on the baseline hardware, usually a CPU or
a GPU, to obtain its time spent in each operator cluster. By analyzing applications in terms of time
breakdown, benchmark users can have a better understanding of which operator class acts as a
bottleneck on the baseline hardware. Because operators are grouped by their architecture features
of both locality and parallelism, it provides clearer guidelines to design specialized hardware to
accelerate the bottleneck operator cluster.

We rely on the application-level analysis phase to understand the application characteristics on
baseline platforms. Thus, there are several major design decisions when we are building application
features. First, we use profiling information on existing baseline platforms for a more accurate
analysis. Although baseline platforms are usually general-purpose processors, such as CPU or
GPU, they can be changed to other hardware devices, depending on design goals. For example,
if NNBench-X is used to develop the second generation of TPU, the first version of TPU could
be the baseline device [32]. Second, because this phase in the application set selection stage, this

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:10 X. Xie et al.

ALGORITHM 1: Operator-level analysis to get operator clusters.

Input: A list of models (M) and the number of operator clusters (N)
Output: Operator cluster centers
Init All_Op_Features = []
for min M do
for op in m.operator_list() do
op_features = ExtractOperatorFeatures(op)
All_Op_Features.append(op_features)
end for
end for
cluster_centers = kMeans(All_Op_Features, num_clusters=N)
Return cluster_centers

ALGORITHM 2: Application-level analysis to get application features.

Input: A list of models (M) and the centers of operator clusters (cluster_centers)
Output: The application features for each model (All_App_Features)
Init All_App_Features = []
for m in M do
Init app_feature = [0.0] * len(cluster_centers)
Init total_time = 0.0
for op in m.operator_list() do
op_features = ExtractOperatorFeatures(op)
cluster_id = GetNearestClusterCenterID(op_features, cluster_centers)
app_feature[cluster_id] += op.elapsed_time
total_time += op.elapsed_time
end for
app_feature = app_feature / total_time
All_App_Features.append(app_features)
end for
Return All_App_Features

phase needs to be independent from software-hardware co-design solutions to be evaluated by
NNBench-X. Specifically, this phase does not take any software-hardware co-design solutions as
inputs and extracts application features based on performance models of these co-designs, such as
the roofline model [57]. Third, we do not consider inter-operator parallelism as a part of application
features, because software frameworks usually take operators as the granularity of scheduling.
These frameworks will offload operators to hardware instead of the whole computation graph and
they are responsible to exploit inter-operator parallelism. However, when designing an accelerator
taking the whole computation graph as inputs, this metric can be added into application features,
as discussed in Section 7.

After this two-level analysis, we select representative applications out of the application candi-
date pool to build the original application set.

4.2 Benchmark Suite Generation

In the second stage, benchmark suite generation, we provide interfaces for users to customize their
NN compression techniques to generate the final benchmark suite.

This stage is motivated by the success of model compression techniques, either quantizing or
pruning, and the fact that state-of-the-art accelerator designs leverage these techniques for better
computation and memory access efficiency by designing specialized hardware, either fixed-point

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:11

y = Relu (Wx + b)
i1 i2
a TV o
w b
Quantizing + Pruning Neural Network Models r/

Original
Computation
Graph

— Fix-point Fix-point Fix-point \
E 2 Sparse il Sparse i2 y
R MatMul BiasAdd
g3
g E
&5 Sparse_W Sparse_b

. e

Fig. 5. An example for benchmark suite generation to generate a new computation graph according to user-
provided quantizing (int16) and pruning strategies (sparse weights).

ALU or sparse tensor computation engines. Although we obtain a diverse and representative
application set after the first stage, we cannot benchmark different accelerators using only one
set of applications because of the diversity of NN model compression techniques.

Each application from the original application set is a computation graph. To customize different
NN model compression techniques, we provide interfaces for the users to specify the data type of
tensors in this computation graph. For tensors storing the pre-trained weights, users can overwrite
these weights by using pruned weights so these tensors become sparse. Sparsity information can
also be included as an additional attribute in the tensors storing weights. The sparsity of the tensors
produced by activation functions, such as ReLU, can be computed in runtime. Figure 5 illustrates
a case for these interfaces. Suppose we quantize the original application from the single-precision
floating-point into 16-bit fixed-point and prune weights by 90%; the structure of the computa-
tion graph remains the same, but the operators and tensors are changed accordingly, as shown in
Figure 5. Users can define and import model compression methods, and change the information
of operators and tensors to generate the final benchmark suite according to their software-level
studies in the training stage. Compression techniques resulting in intolerable accuracy degrada-
tions should not be imported into this stage. At the end of this stage, NNbench-X produces the
final test set of applications composed of quantized and pruned NN models for evaluations.

Because our benchmark methodology provides interfaces for the users to specify their own com-
pression methods instead of defining several patterns, NNBench-X is able to support a wide range
of compression methods. For example, when NNBench-X is used to evaluate software-hardware
co-designs exploiting the structural sparsity [6, 36], NNBench-X passes model weights to compres-
sion methods provided by the users to generate weights in structural sparse patterns. In this case,
the pruned models with weights in structural sparse patterns will be in the generated benchmark
suite at the end of this stage.

4.3 Hardware Evaluation

In the final stage, the hardware evaluation, we evaluate the generated benchmark suite on accel-
erator designs.

Although this stage can be completed by users with detailed simulation results of accelerators,
we build a system-level simulator for fast performance estimation in the initial architecture de-
sign stages to provide high-level guidelines for accelerator designs. Our system-level simulator
evaluates accelerators on the generated benchmark suite by using the performance models of the
accelerator, the host, and the interconnection between the accelerator and the host. These perfor-
mance models are provided by users so they can be as simple as a roofline model or as complicated

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:12 X. Xie et al.

: @ H User Input

s @té@ | FromLast stage
--------------------- 2 Arch: CPU...

g schedule compration perf(op)

: !El ' Graph Energy(op)

i ost |

e L
E : Arch: PCle...

: §ystem Perf(datasize)

E Simulator Energy(datasize)

B @ ___________________

Accelerator Model

E-'——l"': Performance Arch: DianNao...
: Accelerator : results perf(op)
; Perf. Energy | ! Energy(op)
i ||| App1 1
App2

Fig. 6. The workflow of hardware evaluation with the user-inputs for hardware modeling including models
for host, interconnect, and accelerators.

as a cycle-accurate simulator depending on the demands of hardware evaluation. For example,
early design stages could use the roofline model to decide the balance between computation and
memory resources while later design stages could need cycle-accurate simulators to model more
hardware details. The inputs and outputs of our system-level simulator are shown in Figure 6. For
each application in the generated benchmark suite, our simulator schedules operators into either
the accelerator or the host by a first-come-first-serve scheduling algorithm. When an operator is
not supported by the accelerator, it will be launched into the host with subsequent data transfer
between the accelerator and the host. The performance results of running supported operators
on accelerators and overheads of data transfer between the host and accelerators are provided by
input hardware models that are a part of inputs to our system-level simulator. To demonstrate the
usage of our system-level simulator, we use a simple but effective analytical model, the roofline
model, in Section 6.2 to evaluate various architectures, including DianNao [12], Neurocube [33],
and Cambricon-X [64].

Our system-level simulator plays a role similar to that of frameworks. Our straightforward
scheduling policy may not consistently achieve optimal performance, but integrating accelerators
into the whole system with developed primitives is time-consuming and impractical in the initial
design space exploration stage for architectures. As the case study shows in Section 6.2, the
performance speedups of different architectures could vary in orders of magnitudes. Therefore,
our coarse but fast estimations can still provide insightful guidelines in architectural designs.
Furthermore, the accuracy of estimation in this stage depends on the accuracy of performance
models provided by users. Although we use a simple analytical model, roofline model, in
Section 6.2 as a demo case, users can provide models capturing more hardware details to fit
their demands exploiting various hardware designs. For example, when it is decided to use
dataflow architectures in NN accelerators and our benchmark methodology is used to evaluate
and compare different dataflow designs, the MAESTRO [37] framework can be used to provide the
performance results of different architectures for supported operators. Another example is that
when the users want to evaluate software-hardware co-designs exploiting structural sparsity, the
user-provided performance models of hardware designs need to take the sparsity into account [6,
36]. In both examples, our system-level simulator is responsible to provide operator information,
such as input tensor shapes and operator weights, while users need to implement their own
performance models as the backend to return the performance results of running the operator
on their accelerators. For accelerator designs in Section 6.2, we implement a roofline model as

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:13

the backend for various accelerator designs, which returns the performance by using the roofline
model according to operator information and hardware specifications. For the performance of
operators on real devices, such as CPU and GPU, we implement the backend performance model
by running the operator on the real device and returning the measured time.

5 VALIDATION ON BENCHMARK METHODOLOGY

To validate the effectiveness of our benchmark methodology, we conduct case studies in Section 6.
Before going to experimental results in Section 6, we explain how our case studies validate our
benchmark methodology.

There are two major design goals of our benchmark methodology. First, our benchmark method-
ology is developed to quantitatively capture the architectural characteristics of applications from
an input application pool to select diverse and representative ones. In Section 6.1, we conduct
a case study of workload characterization on TensorFlow (TF) Model Zoo [21] covering a large
number of models from different application domains. The characterization results on these mod-
els indicate that our benchmark methodology is able to distinguish workloads from different ap-
plication domains and provide key architectural insights for application domains. Second, our
benchmark methodology is developed to evaluate software-hardware co-design methods. In Sec-
tion 6.2, we have several diverse software-hardware co-designs on the application set selected in
Section 6.1. The evaluated software-hardware co-designs have a wide coverage, including both
memory-centric accelerators [33] and compute-centric accelerators [12]. We also cover various
model compression techniques, including both quantization [12, 33] and pruning [64]. The evalu-
ation results on these software-hardware co-designs indicate that our benchmark methodology is
able to capture key performance benefits of software-hardware co-designs.

In summary, through these two main case studies on workload characterization and hardware
evaluation, we are able to validate our benchmark methodology on its design goals.

6 CASE STUDY: FROM TENSORFLOW MODEL ZOO TO A BENCHMARK SUITE

We conduct a case study of benchmarking NN inference accelerators to demonstrate the usage of
our benchmark approach. To this end, we set the TensorFlow (TF) Model Zoo [21] (with 57 NN
models and 224,563 operators) as the application candidate pool, and our software-hardware co-
design evaluation includes several state-of-the-art model compression techniques and hardware
designs. The version of the TF Model Zoo we used in this case study contains 57 NN models from
24 different applications. These NN models have very diverse structures, including convolutional
neural networks (CNNs) and recurrent neural networks (RNNs). From the perspective of learning
algorithms, these models are from different learning methods, including supervised learning, unsu-
pervised learning, and reinforcement learning. Thus, our application pool has very good coverage
on existing NN applications from different application domains, with different model structures
and trained by different learning algorithms. This section follows the three-step process introduced
in Section 4. First, Section 6.1 studies our application set selection process to select representative
applications from TF Model Zoo. By comparing to the application set of prior benchmarks, we
also demonstrate the advantages by the end of Section 6.1. Then, Section 6.2 evaluates several
software-hardware co-designs on these selected applications. In the process of both application
set selection and evaluating software-hardware co-designs, we conclude several observations on
application characteristics and architecture design guidelines from these studies.

6.1 Application Selection from TensorFlow Model Zoo

As the first step of our analysis flow, we apply the operator-level analysis to most of the ap-
plications from the TensorFlow Model Zoo [21]. We first perform extract operators (Figure 4-@)

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:14 X. Xie et al.
254 e MatMul 25 4 ® Cluster1 +
Conv * ° v Cluster2 *
v Pooling Cluster 3
204 Reductlon‘ 204 N
Element-wise ; ¥
» Others M *
- L]
159 154
=) M
§ . g :
10 4 b 10 - b
; 7 ! A ;i i
g] g °
. v commmut O © $ v
v .ol WS § 0 v v "'"" v H
of Taox M Moe . o ®ee ® i v H
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Parallelism Parallelism

(a) Operators from the pool. (b) Operator clusters.

Fig. 7. The distribution of operator features for all operators from the application candidate pool (TF Model
Zoo) and the clustering results by running k-means.

el o w 101 4m o «
+ A NLP » A NLP
A A B CV+NLP o0 B CV+NLP
0.8 4 + Information and Coding 0.8 4 * O + Information and Coding
>y, * Others ° * ‘-‘I— * Others
A * \.
[]
0.6 1 - %+ 0.6 1
o *‘ o e
< <
] -) < b
0.4 LI +y 041 o s ° . ®
[N) g °
[]
0.2 1 e o 0.2
*
° S
0.0 1 &\ 0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
R2 Rz
(a) CPU (b) GPU

Fig. 8. The distribution of application features using CPU and GPU as baseline devices.

to all 224,563 operators from the application candidate pool. We then extract operator features
(Figure 4-@) and measure both the locality and the parallelism of the operators as defined in Sec-
tion 4.1. The resulting distribution of operator features is shown in Figure 7(a). It labels different
operator functionalities, including matrix multiplication (MatMul), convolution (Conv), pooling,
reduction, element-wise, and other irregular operators (Others) where computations and memory
accesses are dependent on input tensor values. Based on the performance feature distribution, we
conduct cluster operations step (Figure 4-8), which groups these operators into three clusters. We
apply the k-means algorithm and obtain the cluster results shown as Figure 7(b). After this, we con-
duct an application-level analysis. Because most accelerator designs compare their performance
to two kinds of general-purpose processors, CPU and GPU, we profile (Figure 4-@) all applications
from the application candidate pool on Intel Xeon E5-2680 CPU and NVIDIA Titan Xp GPU. To
extract application features (Figure 4-®), we use the three operator classes from previous opera-
tor analysis. The application performance feature in this case study is denoted as f = (R1, Rz, R3),
where Ry, Ry, and R; represent the time breakdown of an application into three operator clusters.
The performance feature distributions measured on CPU and GPU are shown as Figure 8(a) and

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:15

1.0
? TF Model Zoo

textsum * Selected Applications
skip_thoughts

** pel_rl

0.8

entropy_coder
mobilenet

0.6
L

R3

S inception_resnet_v2
0.4 1 image_decoder

e #cnfresnetwl
0.2
faster_rcnn_resnet50

0.0 vggl

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

R2

Fig. 9. The distribution of application features for selected applications out of the application candidate pool
(TF Model Zoo).

Table 3. Brief Descriptions for 10 Applications Selected into the Original Application Set

Application

Description

Application Domain

textsum [46]

skip_thoughts [35]

pel_rl [38]

entropy_coder [31]
mobilenet [28]
inception_resnet_v2 [27, 51]
image_decoder [53]
rfen_resnet101 [20]
faster_rcnn_resnet50 [45]
vggl6 [49]

Text summarization
Sentence-to-vector encoder
Reinforcement learning
Image file compression
Image classification

Image classification

Image file decompression
Object detection

Object detection

Image classification

Natural Language Processing
Natural Language Processing
Others

Information and Coding
Computer Vision

Computer Vision
Information and Coding
Computer Vision

Computer Vision

Computer Vision

Figure 8(b). Since R; + Ry + R; = 1, we plot two-dimensional scatter figures where x-axis stands for
the Ry, y-axis stands for the Rs, and R; can be derived by 1 — R, — Rs. Finally, we select applications
(Figure 4-®). Based on the distribution of the application features on CPU, we select 10 diverse
and representative applications as the original application set by evenly sampling the application
candidate pool. The distribution of these 10 applications is shown in Figure 9. Brief descriptions
for these 10 applications can be found in Table 3.

Observations on the operator-level analysis. We classify operators into several categories
to obtain observations on their architectural characteristics. The operator categories are designed
to reflect operator functionalities or data access patterns. Among these operator categories, ma-
trix multiplication (MatMul), convolution (Conv), and pooling attract intensive attention in many
accelerator designs because of their importance in early NN models, such as VGG models [49].
The activation functions are also very common in NN models, such as ReLU operation in con-
volutional neural networks [27, 49, 51], and all of them are vector-like element-wise operations.
Thus, we create a category as Element-wise in Figure 7(a) for all operators performing vector-like
operations. We also create a separate category named as reduction for operators with reduction
patterns, such as the Softmax and Argmax operations. Although these five categories cover most
of the operators, we put the rest of operators into the last category as others.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:16 X. Xie et al.

We make several observations from the results of operator clustering (Figures 7(a)-7(b)). First,
convolution and matrix multiplication operators are similar to each other, and most of them have
good locality. Because of existing reduction patterns along some tensor dimensions, such as input
channels in convolution operators, these two kinds of operators possess moderate parallelism. Sec-
ond, all element-wise operators have identical parallelism while the computation intensity on each
tensor element can vary significantly. Because of fully parallel scalar operations for all elements
in element-wise operators, element-wise operators have the largest degree of parallelism (100%).
Third, operators with the same or similar functions can have very different performance features,
such as reduction and pooling operators. Clustering these operators by functions and designing
hardware accordingly would result in bottleneck misprediction.

Architecture implications of operator clusters. The application feature in our work is di-
rectly associated with the breakdown of execution time spent on different operator clusters. Since
we cluster operators according to their architecture features, i.e., locality and parallelism, opera-
tors in the same cluster could favor similar architecture designs. Specifically, operators in the first
cluster have limited parallelism and moderate locality, whose execution time contributes to R;.
These operators could benefit from the locality optimizations while they can hardly benefit from
more parallel processing elements (PEs). Operators from the second cluster have both moderate
parallelism and locality, such as matrix multiplication and convolution, whose execution time con-
tributes to R,. These operators could benefit from parallel PE design, more computation resources,
and optimizations on locality, such as the careful design of data-flow to exploit data reuse. Finally,
operators from the third cluster can be fully parallelized whose execution time contributes to Rs.
Increasing the number of PEs is helpful to exploit the parallelism while these operators will become
bounded by memory bandwidth when the number of PEs is sufficient.

From the perspective of applications, application features indicate the distribution of execu-
tion time on these operator clusters. Thus, these application features help identify the application
bottleneck from the perspective of operator clusters, which further provides architecture design
guidelines. For example, an application with a large R, indicates that its bottleneck comes from
operators in the second cluster, which could prefer architecture designs with more computation
resources or larger on-chip memory. Similarly, an application with a large R3 could prefer memory-
centric architectures for higher effective memory bandwidth, because it is bounded by operators
in the third cluster.

Observations on the application-level analysis. For the application-level analysis in
Figures 8(a)-8(b), we summarize the following observations: First, Conv, MatMul, and Element-
wise operators take up a majority of the application time in most of the applications, since most
of the applications distribute near the line R, + R3 = 1. Second, in contrast to CPU, GPU is more
likely to be bounded by Ry, due to its more powerful computing resource and higher memory
bandwidth. In addition, R; takes a larger percentage on GPU, indicating there are opportunities
for GPU memory system optimization. Third, the consideration of application scenarios reveals
additional trends. Both Figures 8(a) and Figure 8(b) label different application domains, including
computer vision (CV), natural language processing (NLP), hybrid CV and NLP (CV+NLP), infor-
mation and coding, and others. We classify applications into application domains according to the
task of applications. Applications for traditional CV or NLP tasks are labeled as CV or NLP, re-
spectively. The task of some applications is mixed by traditional CV or NLP tasks. For example,
image captioning requires image understanding and caption generation, where image feature ex-
traction is a CV task while the caption generation involving text summary is an NLP task. The
application domain of these mixed tasks is denoted as CV+NLP. In addition to these traditional CV
or NLP tasks, some tasks focus on the coding of information, such as file compression, decompres-
sion, and encryption. The application domain of these tasks related to information and coding is

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:17

labeled as Information and Coding although they could need domain knowledge related to CV or
NLP when handling corresponding information, such as image compression. The domain labeled
as Others includes the rest of the applications; most of the applications in this category belong to
applications using reinforcement learning, such as robotics applications. Most CV applications are
bounded by operations from Ry (mostly Conv and MatMul). On the contrary, most NLP applications
are bounded by operations from the Rs (mostly element-wise operators). This indicates that memory-
centric computing architectures can be helpful for these NLP applications.

The advantage of our methodology. We first demonstrate the advantage of the operator-
level analysis by showing how misleading bottleneck diagnosis would occur if the aforementioned
analysis is neglected. Without operator-level clustering, one has to extract the application feature
with function-based operator clustering. For example, as described by Fathom, Add operators are
clustered as the category Elementwise Arithmetic, but transpose operators are clustered as another
category, Data Movement. However, when using our operator-level analysis, these two clusters
should be in the same category (R; in our notation), since they have very similar architecture
features in terms of locality and parallelism. There would be an issue in the case where Rj is the
application’s bottleneck, but as part of Rs, neither Elementwise Arithmetic nor Data Movement indi-
vidually shows as a bottleneck. The bottleneck is then misunderstood. The described problem happens
for 15 out of 57 models in the TF Model Zoo. Taking application video_prediction_stp [18] for exam-
ple, according to the performance feature defined in Fathom, it will show Conv2D as the bottleneck
(taking 38% of total time). However, the elapsed time of operators from the R; cluster takes 52%
of total time, making R;-like operators (memory-intensive highly parallel operators) the actual
bottleneck, not Conv2D. Instead of accelerating Conv2D, which would result in more computation
resources or larger on-chip memory, our analysis recommends that the architecture should be de-
signed with higher effective memory bandwidth, such as processing-in-memory architectures [15,
22, 30, 33] for Rs-like operators, because they take the majority of the elapsed time.

Second, our benchmark process selects more diverse and representative applications. Compared
to Fathom, our method selects applications from a large application candidate pool based on ex-
tracted application features. Therefore, our analysis-based selection guarantees the diversity and
representativeness of selected applications from the viewpoint of performance features. To under-
stand the representativeness of Fathom applications on the TF Model Zoo, we go through the same
application analysis process for applications (eight applications in total) from Fathom. The results
measured on the CPU and the GPU are shown as Figures 10(a) and 10(b). Through comparisons, we
can conclude that the application selection in Fathom is fairly good due to its similar distribution
as TF Model Zoo. However, compared with Fathom, our benchmark selection in Figure 9 is more
evenly distributed, making it more representative as a general benchmark. For example, the two
selected benchmark applications in the orange circle in Figure 10(a) are too close to each other,
making one of them redundant. In addition, some applications are underrepresented, such as ap-
plications in green circles in Figure 10(a) and 10(b). The applications from Fathom in these green
circles are not sufficiently representative of the other applications with similar characteristics.

6.2 Benchmark Generation and Hardware Evaluation

We need the benchmark generation step (Section 4.2) after application selection to plug in the NN
compression setup. This step is user-customized. According to our evaluation target, we generate
our benchmark suite with three configurations: no compression (for GPU), quantized 16-bit fixed-
point (for DianNao), and 16-bit fixed-point quantized and 90%/95% pruned (for Cambricon-X).
Finally, we conduct studies on evaluating several state-of-the-art software-hardware solutions
in this section. In particular, we evaluate GPU (Titan Xp), Neurocube [33], DianNao [12], and
Cambricon-X [64] with different model compression techniques. Among these hardware platforms

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:18 X. Xie et al.

1.0 A 1.0 *
e TF Model Zoo o TF Model Zoo
Y Fathom 0(;*3 Y Fathom
0.8 - 0.8 - ° Oo('
°
* °
0.6 1 0.6 2 W *
o« < *
*\ %g
0.4 % 041 o o o g
o 08 LAY
Ex o
[]
0.2 1 ® o 0.2
o (M g
0.0 #*J 0.0
00 02 04 06 08 10 00 02 04 06 08 10
R> R
(a) CPU (b) GPU

Fig. 10. The application feature distribution of applications from our application candidate pool (TF Model
Zoo) compared to the distribution of applications in Fathom.

Logic Die Logic Die

»| Control
7| Pprocessor Computation Unit

1
»| Control ¢ !
Processor Computation Unit :
1—----- 1

|

Vault Sparsity

Vault
Controller

Controller

Buffer

Memory Interface

Memory Interface
z
@
]
:
Neural Functional Unit (NFU)

Fig. 11. The architecture overview of (a) Neurocube, (b) DianNao, and (c) Cambricon-X to distinguish key
architecture differences among them: (a) an NDP design, (b) a compute-centric design, and (c) a compute-
centric design with the support for sparsity.

we evaluated, GPU is a representative many-core processor exploiting the massive parallelism in
tensor operators. Neurocube is an NDP design that exploits an internal memory bandwidth of
memory cubes to accelerate memory-bound operators, while DianNao is a compute-centric accel-
erator design with on-chip computation and data movements tailored for NN applications. Both
of these two platforms are designed for computing fixed-point arithmetic, which needs the help
of NN model quantization from the software-level. Cambricon-X has a similar design as DianNao,
except that its design is intensively customized to exploit the sparsity of NN models, which needs
the help of NN model pruning. For the purpose of architecture comparison, Figure 11 shows the
architecture of Neurocube, DianNao, and Cambricon-X.

Table 4 includes comparisons among these platforms in terms of power, performance, and area.
These numbers are collected from official product specifications or their original papers. Due to
the lack of detailed power models and area models on these platforms, such as the off-chip DRAM
power and area data of DianNao and Cambricon-X, we only estimate the performance in our case
studies. We use our system-level simulator to estimate the performance of these platforms com-
pared to the CPU baseline implementation. According to the performance results presented in the
original papers, we derive an analytical model based on the roofline model [57] to estimate the per-
formance of each supported tensor operators on accelerators. Results on the GPU are profiled and
measured from the execution on a real machine. We assume that these heterogeneous platforms

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:19

Table 4. The Description of Hardware Platforms

Platform GPU Nuerocube DianNao Cambricon-X
Peak Comp (GOPs) | 12,100 1324 482 528
Peak Mem (GB/s) 547.7 320 250 250
TDP (W) 250 21.5 0.485! 0.954!
Area (mm?) 471 68 3.02! 6.381
Tech Node (nm) 16 15 65 65

IThese power and area data are from their original papers without considering the power
consumption and area cost of DRAM dies.

10000 10000 10000
GPU Nuerocube DianNao ~ m Cambricon-X (90%) ~ ® Cambricon-X (95%)
1000 1000 1000

Fig. 12. The speedups over CPU baseline of applications on (a) GPU without any model compression,
(b) Neurocube with models quantized into 16-bit fixed-point, (c) DianNao with models quantized into 16-
bit fixed-point, Cambricon-X (90%) with models further pruned 90% weights, and Cambricon-X (95%) with
models further pruned 95% weights.

are connected to a host CPU, Intel Xeon E5-2680 CPU, through PCle, and any unsupported oper-
ator will be offloaded into the CPU for computation. The time of execution on the host CPU and
data transfers triggered by offloading unsupported operators will be counted in the final elapsed
time. However, we exclude the time used for transferring input data and model weights into these
platforms, because transferring different batches of input data can overlap in real-world inference
stage, and loading trained weights into these platforms is a one-time overhead.

Our simulation results are shown in Figure 12. The original application set is evaluated on
the GPU, and results are shown in Figure 12(a). Figure 12(b) presents the performance results on
Neurocube for applications quantized into 16-bit fixed-point data-type. Figure 12(c) presents the
performance results for DianNao and Cambricon-X. Applications executed on DianNao are also
quantized into 16-bit fixed-point. We evaluate two pruning strategies for applications executed on
Cambricon-X, which prunes 90% and 95% weights of models, denoted as Cambricon-X (90%) and
Cambricon-X (95%), respectively.

Insights from the result. By evaluating three representative accelerator designs with various
compression configurations, we make the following observations from Figure 12: First, GPU can
benefit these applications with a higher R, ratio in their performance features. These applications
are usually computation-bound. Since applications on the x-axis are ordered by the increasing
order of R,, applications closer to the right direction along the x-axis spend more time in the
second cluster operators, of which most are convolution and matrix multiplication operations. As
shown in Figure 12(a), GPU obtains higher speedups on applications on the right side of the x-axis.
Second, near-data computing architectures favor applications (mostly NLP related) with a higher
Rs ratio. Figure 12(b) shows that Neurocube achieves higher speedups on applications on the left
side of the x-axis. Finally, we found that weight pruning is less attractive for NLP applications than
it is for CV applications. Figure 12(c) shows the comparison of DianNao and Cambricon-X in terms

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:20 X. Xie et al.

of performance benefits from pruning NN model weights, which reduces the computation and
memory workloads of matrix multiplication and convolution operations. Comparing Cambricon-
X (90%) to DianNao, Cambricon-X can achieve higher speedups than DianNao, which mainly
benefits from the reduction of computation and memory workloads due to pruned models. Such
speedups are more significant for computation-bound applications as opposed to memory-bound
applications. The results of models with different sparsities, Cambricon-X (90%) and Cambricon-X
(95%), indicate that pruning more weights can have slight benefits on memory-bound applications
while significant benefits on computation-bound applications.

7 DISCUSSION

Software-hardware co-design in MLPerf. Neural network applications, especially the inference
stage, benefit from the hardware-software co-design methodology. Thus, our work urges taking
the whole software-hardware co-design solution as a benchmark object instead of benchmarking
pure hardware designs by providing a fixed set of applications. The recently released MLPerf
inference benchmark [44] includes an Open Division under the same motivation as our study,
although they are a preliminary release and the rules of Open Division are immature. Compared
to the immature rules in this preliminary release, our methodology provides a concrete interface
to take the model compression techniques as the input and generate the compressed models as
the output. Our work takes model compression techniques as the software optimizations in the
end-to-end methodology, and our case studies reveal new insights for the impact of software
optimizations on hardware designs. We still need to further refine stages in our methodology to
embrace a larger scope of software solutions varying model architectures for the same prediction
task, which is an important perspective of our future work.

Extensibility of our benchmark methodology. There are many configuration choices in our
case study, which should be configured case-by-case. For example, we use locality and parallelism
as operator features to capture various architecture designs. They are sufficient to indicate the
overall architecture demand, such as compute-centric vs. memory-centric designs, because these
two metrics are major considerations among different architecture designs to capture memory
access patterns and computation intensity. However, these two metrics are not able to capture
finer-grain locality and parallelism characteristics. When finer-grain operator characteristics are
needed, the operator-level analysis phase needs to be adapted to new features, such as adding the
reuse distance [17] to reflect the average distance between data reuses. Another example is adding
new application features. We consider time breakdowns in application features because we think
inter-operator parallelism is usually implemented in software frameworks, such as TensorFlow [2],
for a higher flexibility of scheduling. However, when designing an accelerator taking the whole
computation graphs as inputs and exploiting inter-operator parallelism at the hardware-level, the
characteristics of computation graphs, such as the average of node degrees, can be added to the
application features. In summary, configurations in our benchmark methodology are not fixed and
some of them are tailored to our case study. We expect this benchmark methodology to be used by
varying configurations case-by-case. Despite the change of configurations, such as adding reuse
distance into the operator features, the key principles of our benchmark methodology, selecting
applications quantitatively and benchmarking software-hardware co-designs, remain the same.

NNBench-X for new NN workloads. Because of the promising results from NN techniques,
there are new algorithms developed for challenges in various applications. In these fast-growing
algorithm studies, our benchmark methodology is feasible to characterize new NN workloads to
provide insights for accelerator designs. For example, Bayesian neural networks (BNNs) [9, 39]
attract attention due to their ability to deal with uncertainty during the estimation. In our bench-
mark methodology, we decompose BNN models into operators and go through the application

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:21

Table 5. The Performance of Image Classification Models on the CPU and FPGA of Amazon Web
Service F1 Instance for Processing a Single Image with the Size 224 x 224 (Width x Height)

Models bvlc_googlenet | resnet50_v1 | squeezenet vggl6

CPU (8 vCPUs) 103.92 ms 91.71 ms 42.41 ms | 324.08 ms

FPGA (Xilinx Virtex UltraScale+) 1.57 ms 3.82 ms 143 ms | 10.11 ms
Speedup 66.19 24.01 29.66 32.06

set selection flow to understand their characteristics. The only class of operators in BNN mod-
els different from existing NN models in the TF Model Zoo is sampling to generate the learned
distribution of weights. Because each element in weights is sampled independently from its dis-
tribution in BNNs, these sampling operators have 100% parallelism. Thus, these operators belong
to the third cluster in Figure 7(b) and their execution time contributes to R;. BNN models with
these sampling operators will have a larger R; than NN models with the same NN architecture.
As a result, BNN models could have a larger demand on memory bandwidth, which is the same as
most of the workloads bounded by Rs. If the performance of BNN models is significantly bounded
by these sampling operators, efficient sampling implementations in the accelerator should also be
considered [8]. These architectural implications will be helpful when designing new accelerators
for BNN models.

NNBench-X for FPGA software-hardware co-designs. In addition to ASIC accelerators,
FPGA is a promising platform to efficiently support various NN models. One promising software-
hardware co-design among FPGA solutions is optimizing RTL templates for several widely used
operators and developing a compilation flow to generate FPGA designs based on these templates
on a given NN model represented by a computation graph. Similar to other software-hardware
co-designs in ASICs, our benchmark methodology is able to be used to evaluate these FPGA so-
lutions. To demonstrate how to use NNBench-X to evaluate FPGA solutions, we conduct a case
study on Xilinx xXDNN [60] in this section. We assume hardware designers are developing FPGA
software-hardware co-designs for image classification applications. In the first stage of NNBench-X,
our benchmark methodology takes a pool of image classification models as the input and selects
representative ones from them. In this case study, we compose an application candidate pool in-
cluding 10 image classification models, and the first stage of NNBench-X produces an application
set with 4 of them (bvlc_googlenet [51], resnet50_v1 [27], squeezenet [29], and vgg16 [49]). In the
second stage of NNBench-X, we pass these 4 models to the second stage to quantize models. At the
end of these stages, quantized models are generated according to the quantization methods pro-
vided by xfDNN middleware, which is the software optimization part of the xDNN co-design [60].
In the last stage of NNBench-X, we run these quantized models generated by the second stage
on FPGA hardware. Specifically, we run these quantized models on Amazon Web Service (AWYS)
f1.2xlarge instance, which has eight vCPUs and one Xilinx Virtex UltraScale+ FPGAs [5]. Experi-
mental results are shown in Table 5. These results demonstrate a significant performance benefit
of the FPGA co-design over the CPU baseline. In summary, we demonstrate that the benchmark
methodology developed in this work is general to evaluate FPGA software-hardware co-designs
through this case study. We hope our benchmark methodology can be helpful to improving future
FPGA solutions for NN workloads.

8 CONCLUSION

In this article, we propose a novel end-to-end benchmarking method for NN accelerator designs.
To select the most representative NN applications and evaluate software-hardware co-designs,
our benchmark method is composed of three stages: application set selection, benchmark suite

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

31:22 X. Xie et al.

generation, and hardware evaluation. The application set selection stage selects representative
NN applications according to quantitative metrics to ensure the diversity of the benchmark suite.
The benchmark suite generation and hardware evaluation stages refine the selected applications
according to user-provided model compression techniques and evaluate the compressed models on
accelerator designs. We conduct a study of benchmarking several state-of-the-art NN accelerator
designs to demonstrate the usage of our benchmark method. We analyze applications from the
TensorFlow Model Zoo and observe that applications from the same application domains have
similar bottlenecks. Moreover, we evaluate several state-of-the-art software-hardware co-design
solutions, including hardware designs for quantized and pruned NN models. From our case studies,
we observe that computation-centric and memory-centric architectures can have different benefits
for different application domains. Also, we find that pruning NN models provides little benefit to
memory-bound applications. Through our case studies and observations, we are convinced that
our benchmark method is practical and feasible to provide insightful guidance to NN accelerator
designs.

REFERENCES

[1] MLPerf. 2018. MLPerf. Retrieved from https://mlperf.org/.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI’18), Vol. 16. 265-283.

[3] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2016. Fathom: Reference workloads
for modern deep learning methods. In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC’16). IEEE, 1-10.

[4] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and Andreas Moshovos. 2016.
Cnvlutin: Ineffectual-neuron-free deep neural network computing. In Proceedings of the ACM/IEEE 43rd International
Symposium on Computer Architecture (ISCA’16). IEEE, 1-13.

[5] Amazon. 2020. Amazon EC2 F1 Instances. Retrieved from https://aws.amazon.com/ec2/instance-types/f1/.

[6] Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalamanchili. 2019. Eridanus: Efficiently running infer-
ence of DNNs using systolic arrays. IEEE Micro 39, 5 (2019), 46-54.

[7] Baidu. 2018. DeepBench. Retrieved from https://github.com/baidu-research/DeepBench.

[8] SubhoS.Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2019. AcMC 2: Accelerating Markov chain Monte
Carlo algorithms for probabilistic models. In Proceedings of the 24th International Conference on Architectural Support
for Programming Languages and Operating Systems. 515-528.

[9] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. 2015. Weight uncertainty in neural net-
works. arXiv preprint arXiv:1505.05424 (2015).

[10] Geoffrey W. Burr, Robert M. Shelby, Severin Sidler, Carmelo Di Nolfo, Junwoo Jang, Irem Boybat, Rohit S. Shenoy,
Pritish Narayanan, Kumar Virwani, Emanuele U. Giacometti, Bulent N. Kurdi, and Hyunsang Hwang. 2015. Experi-
mental demonstration and tolerancing of a large-scale neural network (165,000 synapses) using phase-change mem-
ory as the synaptic weight element. IEEE Trans. Electron Dev. 62, 11 (2015), 3498-3507.

[11] Tianshi Chen, Yunji Chen, Marc Duranton, Qi Guo, Atif Hashmi, Mikko Lipasti, Andrew Nere, Shi Qiu, Michele
Sebag, and Olivier Temam. 2012. BenchNN: On the broad potential application scope of hardware neural network
accelerators. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC’12). IEEE, 36—
45.

[12] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 269-284.

[13] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui
Sun, and Olivier Temam. 2014. Dadiannao: A machine-learning supercomputer. In Proceedings of the 47th IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 609-622.

[14] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. IEEE ¥. Solid-State Circ. 52, 1 (2017), 127-138.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

https://mlperf.org/
https://aws.amazon.com/ec2/instance-types/f1/
https://github.com/baidu-research/DeepBench

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:23

(15]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. Prime:
A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In
Proceedings of the 43rd International Symposium on Computer Architecture. IEEE Press, 27-39.

PyTorch Core team. 2017. PyTorch. Retrieved from http://pytorch.org/.

Chen Ding and Yutao Zhong. 2003. Predicting whole-program locality through reuse distance analysis. In ACM Sig-
plan Not., Vol. 38. ACM, 245-257.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. 2016. Unsupervised learning for physical interaction through video
prediction. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 64-72.
Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Logan Adams, Mahdi Ghandi et al. 2018. A configurable cloud-scale DNN processor for real-time
AL In Proceedings of the ACM/IEEE 45th International Symposium on Computer Architecture (ISCA’18). IEEE, 1-14.
Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature hierarchies for accurate object de-
tection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
580-587.

Google. 2018. TensorFlow Models. Retrieved from https://github.com/tensorflow/models.

Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang, Dimin Niu, and Yuan Xie. 2020. iPIM: Pro-
grammable in-memory image processing accelerator using near-bank architecture. In Proceedings of the ACM/IEEE
47th International Symposium on Computer Architecture (ISCA’20). IEEE, 804-817.

Kaiyuan Guo, Song Han, Song Yao, Yu Wang, Yuan Xie, and Huazhong Yang. 2017. Software-hardware codesign for
efficient neural network acceleration. IEEE Micro 37, 2 (2017), 18—-25.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. 2016. EIE:
Efficient inference engine on compressed deep neural network. In Proceedings of the 43rd International Symposium on
Computer Architecture. IEEE Press, 243-254.

Song Han, Huizi Mao, and William J. Dally. 2015. Deep compression: Compressing deep neural networks with prun-
ing, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015).

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural
network. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 1135—
1143.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770-778.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer.
2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint
arXiv:1602.07360 (2016).

Yu Ji, Youyang Zhang, Xinfeng Xie, Shuangchen Li, Peiqi Wang, Xing Hu, Youhui Zhang, and Yuan Xie. 2019. FPSA:
A full system stack solution for reconfigurable ReRAM-based NN accelerator architecture. In Proceedings of the 24th
International Conference on Architectural Support for Programming Languages and Operating Systems. 733-747.

Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel
Shor, and George Toderici. 2017. Improved lossy image compression with priming and spatially adaptive bit rates for
recurrent networks. arXiv preprint arXiv:1703.10114 (2017).

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Hurt Dan, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James
Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire
Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia
Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-
datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th International Symposium on
Computer Architecture. ACM, 1-12.

Duckhwan Kim, Jaecha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. 2016. Neurocube: A pro-
grammable digital neuromorphic architecture with high-density 3D memory. In Proceedings of the ACM/IEEE 43rd
International Symposium on Computer Architecture (ISCA’16). IEEE, 380-392.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

http://pytorch.org/
https://github.com/tensorflow/models

31:24 X. Xie et al.

(34]

(35]

[36]

(37]

(38]

(39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]
[50]

[51]

[52]

(53]

[54]

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. 2015. Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015).
Ryan Kiros, Yukun Zhu, Ruslan R. Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.
2015. Skip-thought vectors. In Proceedings of the International Conference on Advances in Neural Information Processing
Systems. 3294-3302.

H. T. Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing sparse convolutional neural networks for efficient
systolic array implementations: Column combining under joint optimization. In Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and Operating Systems. 821-834.

Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna.
2019. Understanding reuse, performance, and hardware cost of DNN dataflow: A data-centric approach. In Proceedings
of the 52nd IEEE/ACM International Symposium on Microarchitecture. 754-768.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. 2017. Bridging the gap between value and
policy based reinforcement learning. In Proceedings of the International Conference on Advances in Neural Information
Processing Systems. 2772-2782.

Radford M. Neal. 2012. Bayesian Learning for Neural Networks. Vol. 118. Springer Science & Business Media.

Nvidia. 2017. cuDNN. Retrieved from https://developer.nvidia.com/cudnn.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song,
Yu Wang, and Huazhong Yang. 2016. Going deeper with embedded FPGA platform for convolutional neural network.
In Proceedings of the ACM/SIGDA International Symposium on Field-programmable Gate Arrays. ACM, 26-35.
Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: Imagenet classification
using binary convolutional neural networks. In Proceedings of the European Conference on Computer Vision. Springer,
525-542.

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu Lee, José Miguel
Hernandez-Lobato, Gu-Yeon Wei, and David Brooks. 2016. Minerva: Enabling low-power, highly-accurate deep neu-
ral network accelerators. In Proceedings of the 43rd International Symposium on Computer Architecture. IEEE Press,
267-278.

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C. Wu, B. Anderson, M. Breughe, M. Charlebois, W.
Chou, R. Chukka, C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner, I. Hubara, S. Idgunji, T. B.
Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne, G.
Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou. 2020. MLPerf inference benchmark. In Proceedings of the ACM/IEEE
47th International Symposium on Computer Architecture (ISCA’20). 446-459.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-time object detection with
region proposal networks. In Proceedings of the International Conference on Advances in Neural Information Processing
Systems. 91-99.

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence sum-
marization. arXiv preprint arXiv:1509.00685 (2015).

Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra, and
Hadi Esmaeilzadeh. 2016. From high-level deep neural models to FPGAs. In Proceedings of the 49th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO’16). IEEE, 1-12.

Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. 2016. Benchmarking state-of-the-art deep learning soft-
ware tools. In Proceedings of the 7th International Conference on Cloud Computing and Big Data (CCBD’16). IEEE,
99-104.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Proceed-
ings of the International Conference on Advances in Neural Information Processing Systems. 3104-3112.

Christian Szegedy, Wei Liu, Yangging Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1-9.

Jin-Hua Tao, Zi-Dong Du, Qi Guo, Hui-Ying Lan, Lei Zhang, Sheng-Yuan Zhou, Cong Liu, Hai-Feng Liu, Shan Tang,
Allen Rush, Willian Chen, Shao-Li Liu, Yun-Ji Chen, and Tian-Shi Chen. 2017. BENCHIP: Benchmarking intelligence
processors. arXiv preprint arXiv:1710.08315 (2017).

George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, and Michele Covell.
2016. Full resolution image compression with recurrent neural networks. arXiv preprint (2016).

Peiqi Wang, Dongsheng Wang, Yu Ji, Xinfeng Xie, Haoxuan Song, XuXin Liu, Yonggiang Lyu, and Yuan Xie. 2019.
QGAN: Quantized generative adversarial networks. arXiv preprint arXiv:1901.08263 (2019).

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

https://developer.nvidia.com/cudnn

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs 31:25

(55]

[56]

(57]

(58]

[64]

[65]

Peiqi Wang, Xinfeng Xie, Lei Deng, Guoqi Li, Dongsheng Wang, and Yuan Xie. 2018. HitNet: Hybrid ternary recurrent
neural network. In Proceedings of the International Conference on Advances in Neural Information Processing Systems.
604-614.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning structured sparsity in deep neural
networks. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 2074~
2082.

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model
for multicore architectures. Commun. ACM 52, 4 (2009), 65-76.

Xinfeng Xie, Dayou Du, Qian Li, Yun Liang, Wai Teng Tang, Zhong Liang Ong, Mian Lu, Huynh Phung Huynh, and
Rick Siow Mong Goh. 2017. Exploiting sparsity to accelerate fully connected layers of CNN-based applications on
mobile SoCs. ACM Trans. Embedd. Comput. Syst. 17, 2 (2017), 1-25.

Xinfeng Xie, Xing Hu, Peng Gu, Shuangchen Li, Yu Ji, and Yuan Xie. 2019. NNBench-X: Benchmarking and under-
standing neural network workloads for accelerator designs. IEEE Comput. Archit. Lett. 18, 1 (2019), 38-42.

Xilinx. 2020. Xilinx xDNN Processing Engine. Retrieved from https://github.com/Xilinx/ml-suite.

Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott Mahlke. 2017. Scalpel:
Customizing DNN pruning to the underlying hardware parallelism. In Proceedings of the 44th International Symposium
on Computer Architecture. ACM, 548-560.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based accel-
erator design for deep convolutional neural networks. In Proceedings of the ACM/SIGDA International Symposium on
Field-programmable Gate Arrays. ACM, 161-170.

Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. 2018. Caffeine: Toward
uniformed representation and acceleration for deep convolutional neural networks. IEEE Trans. Comput.-aided Des.
Integ. Circ. Syst. 38, 11 (2018), 2072-2085.

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016.
Cambricon-X: An accelerator for sparse neural networks. In Proceedings of the 49th IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO’16). IEEE, 1-12.

Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. 2018.
DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs. In Proceedings
of the IEEE/ACM International Conference on Computer-aided Design (ICCAD’18). IEEE, 1-8.

Received October 2019; revised July 2020; accepted August 2020

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 31. Publication date: November 2020.

https://github.com/Xilinx/ml-suite

