
DUET: Boosting Deep Neural Network Efficiency
on Dual-Module Architecture

Liu Liu
UC Santa Barbara
liu liu@ucsb.edu

Zheng Qu
UC Santa Barbara
zhengqu@ucsb.edu

Lei Deng
UC Santa Barbara
leideng@ucsb.edu

Fengbin Tu
UC Santa Barbara

fengbintu@ucsb.edu

Shuangchen Li
UC Santa Barbara

shuangchenli@ece.ucsb.edu

Xing Hu
UC Santa Barbara
xinghu@ucsb.edu

Zhenyu Gu
Alibaba DAMO Academy

zhenyu.gu@alibaba-inc.com

Yufei Ding
UC Santa Barbara

yufeiding@cs.ucsb.edu

Yuan Xie
UC Santa Barbara

yuanxie@ece.ucsb.edu

Abstract—Deep Neural Networks (DNNs) have been driving
the mainstream of Machine Learning applications. However,
deploying DNNs on modern hardware with stringent latency
requirements and energy constraints is challenging because of
the compute-intensive and memory-intensive execution patterns
of various DNN models. We propose an algorithm-architecture
co-design to boost DNN execution efficiency. Leveraging the noise
resilience of nonlinear activation functions in DNNs, we propose
dual-module processing that uses approximate modules learned
from original DNN layers to compute insensitive activations.
Therefore, we can save expensive computations and data accesses
of unnecessary sensitive activations. We then design an Executor-
Speculator dual-module architecture with support for balance
execution and memory access reduction. With acceptable model
inference quality degradation, our accelerator design can achieve
2.24x speedup and 1.97x energy efficiency improvement for
compute-bound Convolutional Neural Networks (CNNs) and
memory-bound Recurrent Neural Networks (RNNs).

Index Terms—Neural networks, accelerator architecture

I. INTRODUCTION

Deep Neural Networks (DNNs) have led to important
breakthroughs that expand the possibilities of applying artificial
intelligence (AI) to many domains, including visual and
auditory recognition [1], [21], [25], [44], natural language
processing [14], [46], autonomous driving [9], medical analysis
[16], and so forth. Although DNNs have been driving the
mainstream of AI applications, it is challenging to efficiently
deploy them on modern hardware due to their compute-
intensive and data-intensive nature.

Computing activation is at the core of DNNs computations.
However, not all the activations in DNNs need accurately
computed results. We observe that frequently used activation
functions in DNNs, such as ReLU in CNNs and sigmoid and
tanh in RNNs, are noise-resilient in particular regions. As
shown in Fig. 1, activations in the negative region of ReLU
and the saturation regions of sigmoid and tanh are resilient
to noises induced to pre-activated values. We refer to these
regions where small changes in input become negligible after
activation functions as being insensitive. In other words, these

This material is based upon work supported by the National Science
Foundations (NSF) under Grant No. 1719160, 1725447, 1730309, and 1925717.

6 4 2 0 2 4 6
0

5
(a) ReLU

6 4 2 0 2 4 6
1

0

1
(b) tanh

6 4 2 0 2 4 6
0

1
(c) sigmoid

Fig. 1. Insensitive regions (shaded green) vs. sensitive regions (white) of (a)
ReLU, (b) tanh, and(c) sigmoid nonlinear activation functions.

0 5
0.0

0.5

(a) ReLU

1 0 1
0

5
(b) tanh

0.0 0.5 1.0
0

5
(c) sigmoid

Fig. 2. Data distributions of (a) ReLU activations in pre-trained AlexNet on
ImageNet, (b) tanh and (c) sigmoid activations in pre-trained LSTM on PTB.

activations in the insensitive regions can afford approximate
results, while only the remaining activations in the sensitive
regions need accurate computations. Moreover, as shown in
Fig. 2, a large portion of activations are in the insensitive
regions. This observation motivates us to use low-cost noisy
computations on activations in the insensitive regions and only
seek to compute expensive accurate computations on activations
in the sensitive regions. While model compression techniques
exploit static redundancy elimination by pruning [24], [33],
[38] and quantizing model parameters [42], [47], [53], the
redundancy of activations is dynamic and orthogonal to static
model compression techniques. Exploiting dynamic activation
redundancy opens up opportunities at computation skipping
and memory access reduction.

To this end, we propose an algorithm-architecture co-design
to exploit dynamic redundancy elimination and boosting DNN
inference efficiency. At the algorithm level, we present the
dual-module processing method: given a pre-trained DNN
layer regarded as the accurate module, we propose to use a
lightweight module with fewer parameters and lower precision,
distilled offline from the accurate module, to approximate the

738

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00066

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

= x

= ✕

✕

x’

QDR

y’ W’y’⊙(1-m)

=⊕

0
1
0
1
m W

y

Accurate module

Approximate module

Fig. 3. Illustration of dual-module processing. The approximate module with
quantized and dimension reduced (QDR) weights W

′
and inputs x

′
spends low-

cost computations on intermediate results y
′

that are further used to generate the
dynamic switching map m. With dynamic switching, the expensive computation
and data access of executing the accurate module are saved. The final pre-
activated vector y is a mixture of accurate and approximate results.

results in the insensitive regions. We illustrate the online dual-
module processing of one layer in Fig. 3: firstly, we execute
the approximate module with a quantization and dimension
reduction step (QDR) on the input activations; secondly, we use
a threshold-based neuron-wise dynamic switching method to
precisely determine which activations can afford approximate
computation, represented with 0s in the switching map m;
then, we only run the accurate module to compute sensitive
activations, represented with 1s in m; finally, we combine the
outputs of the approximate module in the insensitive region
and the outputs of the accurate module in the sensitive region.

At the hardware level, we propose DUET, a DUal-modulE
archiTecture. DUET has a dedicated Speculator running ap-
proximate modules and an Executor running accurate modules.
Although dual-module processing could theoretically save
a significant amount of operations, it poses challenges on
accelerator architecture design when processing DNN layers.
On the one hand, the Speculator could become the new
bottleneck or increase critical path latency and degrade overall
performance. On the other hand, imbalanced workloads caused
by neuron-wise dynamic switching lead to computing resources
underutilized in the Executor. The architecture design of DUET
features fine-grained Speculator and Executor paralleling and
balanced execution in the Executor. For memory-bound DNN
layers, our design can save expensive memory accesses of
accurate module computed by the Executor.

To summarize, our work presents a general algorithm-
architecture co-design that achieves computation saving and
memory access reduction on various types of DNN including
CNN, LSTM, and GRU. We list our contributions as follows:

• We present the dual-module processing method and a
learning algorithm to distill a lightweight approximate
module from the original accurate module, i.e., the targeted
DNN layer. We also propose a threshold-based neuron-
wise dynamic switching method to choose and eliminate
activation redundancy (see Section II).

• We design a specialized dual-module architecture to
support general acceleration of DNN layers (see Section

III). We facilitate the decoupled executor-speculator design
with fine-grained pipeline to hide Speculator latency.
Moreover, for compute-bound layers, we design an online
adaptive mapping to address imbalance issue and im-
prove Executor utilization. For memory-bound layers, our
design enables dynamically skipping unnecessary memory
accesses (see Section IV).

• We further conduct experiments and analysis to evidence
the effectiveness of our solution on various models.
Compared with normal DNN execution without dual-
module design, DUET achieves 2.24x speedup and 1.97x
energy reduction on average with balanced execution
and reduced memory access. Besides, the lightweight
Speculator only consumes 6.6% of total area and less than
7% of total energy consumption (see Section V).

II. DUAL-MODULE PROCESSING

The philosophy of dual-module processing is to use approx-
imate modules for insensitive activations and only compute
accurate results for sensitive activations. We propose to learn
an approximate module from each DNN layer that is regarded
as the accurate module. The learned approximate modules
have low-volume parameters and low precision. We propose a
threshold-based dynamic switching method to decide which
activations are in the (in)sensitive regions.

We first explain the dual-module processing algorithm by
taking a Feed-forward (FF) layer as an example and then extend
it to CNNs and RNNs. For an FF layer with batch size of one,
the operation is typically formulated as z = ϕ(y),y =Wx+b,
where W is a weight matrix (W ∈ Rn×d), x is an input vector
(x ∈Rd), b is a bias vector (b ∈Rn), y is a pre-activated output
vector (y ∈ Rn), z is an activated output vector (z ∈ Rn), and
ϕ is an activation function.

A. Learning Approximate Modules

The design goal of approximate modules are two-fold:
firstly, much fewer computations and memory access than the
original module; secondly, approximating the original modules
accurately. Inspired by dimension reduction algorithms from
the machine learning community [2], [37], we propose to
project the input vector(x ∈ Rd) to a lower dimensional vector
(x
′ ∈Rk), and then construct weight matrix (W

′ ∈Rn×k) of the
approximate module with significantly fewer parameters.

We use random projection as the dimension reduction
method when constructing approximate modules. We constrain
the elements in projection matrix (P ∈ Rk×d) to be ternary,
i.e.,

√
3
k · {−1,0,1}, following the recommended probability

distribution in random projection [2]. Each element in P has
1/6 probability of being any non-zero value in the above set,
and other 2/3 probability of being zero. Thus, we can perform
the dimension reduction, i.e., Ternary Random Projection,
with additions and accumulations instead of MAC operations.
Finally, the approximate module’s weights can afford aggressive
quantization as the approximate results are only used for
unimportant activations.

739

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

Optimization Object. The goal of the approximate module
is to make the estimated output results as accurate as possible.
To train the approximate module such that it is a good
approximation of the original module, we utilize the knowledge
distribution method by taking the original module as the teacher
network and the approximate module as the student network
[36]. To this end, the optimization goal should be minimizing

∑
s
||(Wx+b)− (W

′
Px+b

′
)||22 (1)

where s is the mini-batch size of inputs.
Dynamic Switching. Given the results (y

′
) from the approx-

imate module and accurate results (y). The final output vector
– a mixture of results from approximate and accurate modules
– can be assembled by

y = y�m+ y
′ � (1−m) (2)

where m ∈ {0,1}n is the switching map for determining which
output activations belong to the insensitive region, and � is
point-wise multiplication. We have{

sigmoid/tanh : i f |y′i|> θth, mi = 0; else mi = 1
ReLU : i f y

′
i < θth, mi = 0; else mi = 1

(3)

where θth is the threshold can be obtained by tuning with the
training or validation set to reach targeted saving.

B. General Applicability

Our method is generally applicable to various types of
DNNs. We have illustrated dual-module processing on Feed-
Forward (FF) layers with general matrix-vector multiplications
(GEMVs). Here, we further discuss how to extend it to
Convolutional (CONV) layers and RNNs using LSTM as an
illustrative example.

Convolutional Neural Network. For a CONV layer, We
can apply dual-module algorithm to CNN by first doing the
im2col transformation on input tensor. Then, the input and
output become matrices rather than vectors, but the overall
algorithm is the same as FF layers.

Recurrent Neural Network. Different from FF layer,
LSTM layer consists of a input-to-hidden matrix and a hidden-
to-hidden matrix and takes current step embedding vector and
previous step hidden vector as inputs. Accordingly, we revise
the dual-module processing as discussed in FF layer to construct
two low-dimensional and low-precision weight matrices in an
approximate module. When training the weight matrices of
approximate modules, we sum the loss of all time-steps in
back-propagation.

III. DUET ARCHITECTURE DESIGN

In this section, we present a dedicated dual-module ac-
celerator named DUET, to enable the proposed dual-module
processing scheme with better performance and energy ef-
ficiency. Based on DUET’s architecture, we further devise
different dataflow and mapping strategies optimized for CNNs
and RNNs, respectively.

M
C

M
C

M
C

GLB

Y-bXV =
=Tag

(row, col)

Enable

Ready

0 1

0

Data

Data
Multi-cast Controller (MC)

PE

M
C PE

M
C PE

M
C

X-bXV

PE

M
C PE

M
C PE

M
C

M
FU

M
FU

QDR Output
Speculation Unit

Neural Speculator
Switching Map

Generator

Neural Executor

Multi-Function Unit (MFU)
Local Buffer

MUL ADD EXP CMP

Fig. 4. Overall architecture with an Executor running accurate modules and a
Speculator running approximate modules.

A. Overview

The top-level block diagram of DUET is shown in Fig. 4.
Overall, the accelerator consists of three major components:
an on-chip global buffer (GLB), a specialized 2D PE array
called the Executor, and a decoupled Speculator to handle
approximate module processing. In general, the Speculator and
the Executor run in parallel. On the one hand, the Speculator
uses outputs from the Executor to perform speculation, i.e.,
running approximate modules in the Speculator, generating
approximate results and dynamic switching maps. On the
other hand, Executor leverages the switching maps to reduce
computations as well as memory access. The decoupled
architecture of Executor and Speculator further enables a
fine-grained pipeline design of the dataflow, which will be
demonstrated in Section IV.

Control: DUET has two-level of control logic. The global
control configures the whole system and is responsible for
handling traffic between on-chip GLB and off-chip DRAM,
traffic between GLB and Executor, and traffic between GLB and
Speculator. The lower-level control consists of the control logic
inside each PE and the Speculator, which runs independently.

Global Buffer: DUET has a 1MB GLB that can com-
municate with both the off-chip DRAM module and with
the on-chip computation resources (Executor and Speculator)
through the NoC. Besides the data needed for computation
(input, weight, and output), GLB also stores the data required
and generated by the Speculator. These data include the
weights for the Speculator, the switching maps to be used to
reduce computations for both CNNs and RNNs), the mapping
configuration to balance PE workloads for CNNs (see Section
IV-A) and finally the approximate speculation results (only for
RNNs, see Section IV-B). GLB provides a total bandwidth of
512B/cycle to feed the Executor and the Speculator sufficiently.
The parameters are chosen through design space exploration
and are validated via a cycle-accurate simulator.

Network-on-Chip: As shown in Fig. 4, the NoC in DUET
applies a similar design as appeared in Eyeriss [11], which has
two dimensions: Y-bus and X-bus. The vertical Y-bus interacts
17 X-buses, with 16 for the Executor and one for the Speculator.
Each PE in the Executor has a reconfigurable (row, col) ID,
and different X-buses or PEs have the same ID if they are
receiving the same data. During the data transmission, each
data loaded from the GLB is given a specific (row, col) ID. In

740

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

Quantizer

Activation
Buffer

Projection
Matrix

Alignment
Unit

Adder
Tree

Alignment
Unit

Adder
Tree

Alignment
Unit

Adder
Tree

QDR
Input
Buffer

QDR Weight
Buffer

Systolic
Array

QDR
Output
Buffer

Reorder
Unit

Speculation
ResultAccu MFU

De-Quantizer

>

Speculation
Result

Masked
Result

Reordered
Filter ID

Activation
Mask

Filter ID

Step 1
Quantization

Step 2
Dimension Reduction

Step3
Speculation

Step3
Switching Map

Generation

Step4
Adaptive
Mapping

Fig. 5. Illustration of the Speculator that runs approximate modules. The Switching Map Generator computes the dynamic switching indices for computation
skipping in the Executor while balance workloads.

order to correctly deliver the data to its destination, 17 Multi-
cast Controllers (MC) as shown in Fig. 4 are used to compare
the row ID with the row ID of each X-buses. Another 16 MCs
will match the col ID of the data with the destination’s col ID
tag. The unmatched X-buses and PEs are deactivated to save
energy.

B. Hardware Efficient Speculator Design
Fig. 5 shows the overall architecture of the Speculator.

The design target of the Speculator is – with small area
and energy consumption – to provide sufficient throughput
for generating approximate results and switching maps that
supply the Executor to reduce computations with negligible
loss of model quality. Each index in the switching map is
one-bit, indicating whether a specific neuron should use the
approximate results or need to be updated later by the accurate
results from the Executor. In other words, the Executor only
needs to compute the output neurons with switching index
equals to 1 in the switching map.

As discussed in Section II and illustrated in Fig. 5, our
dual-module processing method introduces three auxiliary
steps to generate switching maps before the layer execution:
the quantization step, the dimension reduction step, and
the speculation step. The first two steps together make the
speculation computation to be both low-dimension and low
precision (INT4). The approximate results will be further passed
through the Multi-Function Unit (MFU) to perform non-linear
activation (e.g., ReLU , tanh, and sigmoid) and generate final
approximate results. Speculation output that falls in the sensitive
region will be considered as important output and have its
switching index set to one in the switching map. Finally, after
generating switching maps, an optional analyzing step called
adaptive mapping is added afterward to process the information.
This step is essential for CNN execution to help balance the PEs’
workloads (See Section IV-A). We demonstrate the process of
the Speculator step by step below.

Pre-Step: Data preparing. At the beginning of running
the Speculator, the ternary projection matrix P and quantized
& dimension-reduced (QDR) weights are loaded into on-chip
buffers, i.e., the Projection Matrix buffer and the QDR Weight
Buffer as shown in Fig. 5.

Step 1: Quantization. We use 16-bit fixed-point data in the
Executor’s high-dimensional execution, where the fixed-point

data are essentially INT16 with a scale in FP32. Therefore, the
output of the Executor will also be the same format. In order
to use these results as the input activation and multiply them
with the low-precision QDR weights, we need to first quantize
them from INT16 to INT4 values with the Quantizer and then
stash them into the Activation Buffer. The conversion from
16-bit to 4-bit is realized by simply truncating the 12 least-
significant bits (LSBs) and keeping the four most-significant
bits (MSBs). Accordingly, the scaling factor also needs to be
increased by 4096 (212) to maintain the same quantization
range. The rounding error caused by 16b-to-4b quantization
is inevitable, but such aggressive quantization applied in the
Speculator has negligible impact on model quality as the values
are only used in the insensitive regions.

Step 2: Dimension reduction. The dimension-reduction
step multiplies the quantized input activation with the projection
matrix P to further reduce the dimension. Since all the values in
P come from the set {−1,0,1}, we can efficiently implement
this step in hardware with addition and accumulation instead
of using multipliers. As shown in Fig. 5, the Alignment
Units first change the signs of input activations according
to the element values of P. Then the Adder Trees perform the
accumulation of sign-modified input activations. This carry-
save-adder tree structure operating in pipeline provides high
throughput for dimension reduction. The dimension-reduced
inputs are buffered in QDR Input Buffer for the next step.

Step 3: Speculation computation & Switching map gen-
eration. As shown in Fig. 5, after quantization and dimension-
reduction, the inputs and weights in low dimension and low
precision are stored in QDR Input Buffer and QDR Weight
Buffer. We then conduct the INT4 inner-product operations
using a 16×32 Systolic Array. We use systolic in the Speculator
rather than another 2D PE array to perform regular dense
GEMM operation because such design achieves better energy
efficiency with simple control. The size of the systolic array
is searched based on design space exploration in Section V-F.
The results from the Systolic Array will be accumulated
with the partial sum and sent to the Multi-Function Unit
(MFU) to calculate the final activated output. The MFU
implements different activation functions, including ReLU ,
tanh and sigmoid. Equation (3) represents how to generate
the switching map, and we further compare these approximate

741

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

Processing Element

MAC Instruction LUT

Local Controller

1 0 0
0 1 0 0 0
0 0 1 0 1
0 1 0 1 0

IMap
OMap

Tag OA IndexIA IndexFilter Index

0 (0,0)(0,0)(0,0)

1 (0,0)(0,1)(0,1)

0 (0,2)(2,2)(2,4)

0 (0,0)(0,0)(0,0)
1 (0,0)(0,1)(0,1)

0 (0,2)(2,2)(2,4)

Filter

Ifmap

Switching
Maps

Psum
MAC

Filter Weight

Ifmap
Psum

27
MACs

Fig. 6. Specialized Processing Element that handles dynamic switching to
skip computations.

results with the predetermined thresholds from the fine-tuning
phase. All the values that fall within the sensitive region will
have their switching indices to be one.

Step 4: Adaptive Mapping. As mentioned above, with the
switching maps and speculation results, the Executor only
needs to compute a small portion of accurate activations.
However, processing with sparsity information causes different
PEs to have imbalanced workloads for CNNs [20], [45]. To
tackle this problem, we further propose the Adaptive Mapping
strategy to change the order of the computation between
different output channels so that output tiles with similar
workloads are computed together. Such reordering is very
hardware efficient that can be handled directly inside the
Speculator using a dedicated Reordering Unit. We will further
demonstrate our approach in Section IV-A. As for RNNs,
our designed dataflow guarantees that there is no workload
imbalance between different PEs, and we can bypass the
reordering operation. However, we do need to store the results
for approximate activations; these 4-bit results are dequantized
to 16-bit data with the Speculator’s dequantizer and sent to
GLB.

To sum up, the Speculator produces three types of informa-
tion: firstly, the switching maps indicating which output can be
skipped by the Executor; secondly, the reordered filter ID that
the Executor follows when computing the output feature map;
thirdly, the approximate activations required by RNN models.
With decoupled Speculator and Executor design and the fine-
grained pipeline between these two components, we can hide
the latency of speculation as much as possible to increase the
overall performance. The hardware efficient quantization and
dimension reduction also greatly reduces the area and energy
overhead to process approximate modules.

C. Specialized Executor Design

The Executor processes accurate modules using 16-bit fixed-
point arithmetic. Overall, the Executor applies a typical spatial
2D PE architecture to explore different data reuse types.
Furthermore, we add specialized hardware components inside
each PE to leverage the dynamic switching maps to reduce
computation and memory access. As shown in Fig. 6, each PE

consists of dedicated buffers for different types of data, a 16-bit
pipelined multiplier and adder, and a local multiply-accumulate
micro-instruction lookup table (MAC Instruction LUT) which
is the key of skipping unnecessary computations.

On the PE level, we regard processing DNNs as orchestrating
and executing multiple MAC operations. Each MAC operation
requires two loads for input and weight values, one load for
partial sum, and one store for the updated partial sum. As
illustrated in Fig. 6, the MAC operations are represented with
micro-instructions (µinst) that stored in the MAC Instruction
LUT. Each µinst contains the input activation (IA) index,
weight (W) index, and output activation (OA) index indicating
the address of the load/store operations. Besides, an extra tag-
bit is added to enable computation saving. MAC operations
with tag bit being zero will be directly skipped. We only use
the indices to locate the relative positions of the values in the
input/weight/output tile. As long as the tile’s shape is kept the
same, these indices do not change. For a given NN layer, the
PEs are processing a static shape of input, weight, or output tile.
Therefore, the µ inst’s indices only need to be generated once
at the beginning of layer configuration, and remain unchanged
and shared by all the PEs throughout the execution of the whole
layer. The dynamic switching maps will be used to configure
the tag bits for different tiles to enable computation skipping.

We further use a simple example of CNN to demonstrate
how the PE utilizes switching maps to skip unnecessary
computations. As for RNNs, the case is even simpler. In the
example shown in Fig. 6, every step the PE is processing a
3× 5× 1 input tile, and a 3× 3× 1 filter tile to generate a
1×3×1 psum in the ofmap. Therefore, each PE is mapped
with 3×3×3= 27 MAC operations for each step. To configure
the tag-bit, we load the corresponding IMap and OMap from
GLB and stored them in PE’s local buffer. The OMap shows
whether an output activation needs to be computed by the
executor, and IMap shows whether the input activation is zero
or not. We only mentioned output switching maps (OMap) in
the previous content, but for CNNs, the ineffectual neurons are
set to zero, making the OMap become the input sparsity maps
(IMap) for the next layer. In this way, we pay the overhead of
dynamic switching once, but the switching map is used twice
for the current layer’s OMap and the next layer’s IMap. Besides,
if a predicted effectual neuron turns out to be ineffectual after
ReLU , we will update the switching index of that neuron from
1 to 0 and then send it to the GLB. With this correction step,
when the OMap is loaded as IMap for next layer, it will have
even higher sparsity to save more computations.

Based on the switching maps, we can easily decide whether
a specific instruction can be skipped or not. For example, as
shown in Fig. 6, the OMap shows that only the first element in
the 1×3×1 output tile needs to be computed. Therefore, all
the MAC operations related to the other two output neurons
can be discarded, leaving only nine necessary MAC operations.
Moreover, since the IMap shows that 2/3 of the input activations
are zero, we can further reduce six MAC operations. Finally,
each MAC operation is augmented with a 1-bit tag using
simple Boolean logic. PE’s local control will locate the valid

742

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

F2
C3

F2
C2

F1
C3

F1
C2

F1
C1

F2
C1

F3
C1 C2

F3
C3

F3

Same filter, different channel

Sa
m

e
ifm

ap
 c

ha
nn

el

F6F5F4F3F2F1

Layer L-1 Layer L

PE
 A

rr
ay N

S

GLB

Layer L+1
Switching

Map

Layer L+1
mapping

order

Step1

Step2

Step 0

PE0&1

PE2&3

O0,0 O0,1
TimeO0,2 O0,3

O0,0 Idle

Channel0Channel1 Channel2Channel3
Step 1

O0,0 O0,1

O0,0

Idle

O0,1 O0,2 O0,3

PE0&1

PE2&3

O0,0 O0,1
TimeO0,2 O0,3 O0,0

O0,0 O0,1O0,0 O0,1 O0,2 O0,3

Idle

(a)

Adaptive Mapping3x3x6 ofmap5x5x3 ifmap

Naive Mapping

4 1 2 4

C1

C2

C3

Six
3x3x3
Filters

(b)

Fig. 7. Illustration of (a) CNN Dataflow and (b) Adaptive Mapping Strategy. Ifmap data are shared vertically in Executor, and each PE-row computes for a
specific ofmap channel. The Speculator uses the Executor’s output to perform output speculation for the next layer. After generating switching maps, the
Speculator directly performs adaptive mapping to balance PE’s workload before execution.

MAC operation in the instruction buffer to perform necessary
computation.

IV. DATAFLOW AND MAPPING

DUET is able to support both CNNs and RNNs with a
unified architecture. The efficient hardware design presented in
Section III guarantees that different units can well handle their
required tasks. However, to achieve the expected performance
speedup and energy saving, we still need to have fine-
grained dataflow design and hardware mappings. Essentially,
we decouple the Speculator with the Executor so that they
can run in parallel and let switching maps to be generated
prior to run the Executor. Nevertheless, the data dependencies
between the current layer’s output and the next layer’s run-
ahead approximate module execution makes it challenging to
orchestrate the execution dataflow of the Executor and the
Speculator in pipeline. Therefore in this Section, we separately
describe how DUET handles CNN models and RNN models
while addressing different bottlenecks during the run-time.

A. Processing CNNs with Balanced Execution

DUET computes a CNN model layer by layer. The acceler-
ator is configured once for each layer to sequentially process
batches of ifmap. The configuration bits are generated offline
based on the layer structure and hardware constraints. During
runtime, they are loaded as a long scan chain to configure the
accelerator to process a layer in a certain tiling shape and set
up the mappings for the Executor and the Speculator.

a) Overall Pipeline: For illustrative purposes, suppose
we have a CNN layer with a 5×5×3 ifmap and six 3×3×3
filters, as shown in Fig. 7(a). Therefore, the ofmap would be
of size 3×3×6, assuming no padding. In this example, the
Executor consists of 3× 3 = 9 PEs. Each line of PEs will
together computes a specific channel of the ofmap. Within
the same PE line, different PE loads different tiles of ifmap
and filter that contribute to the same area in a specific ofmap
channel. Thus, the output partial sum will be horizontally
accumulated. Since different lines of PEs compute different
output channels, input feature maps are shared vertically within
the same column of PEs.

During the execution, the ofmap is computed step by step.
Each step the PE array generates a 1×3×3 output tile, each

line generates a 1× 3× 1 tile. Therefore, it takes 6 steps to
finish computing the ofmap. After finishing a step, we first
move along the channel dimension of the ofmap to compute
the next tile. In this example, after the first tile is generated, we
then compute the red tile as shown on the ofmap in Fig. 7(a).
In this way, when these two tiles are sent to the Speculator
as input activations to perform speculation, the speculation
results using tile1 and tile2 can be further accumulated together.
Otherwise, if tile1 and tile2 are different areas in the same
channel, the speculation output of tile1 and tile2 will be also at
different areas that cannot be accumulated. This will increase
the memory footprint of the speculation.

Therefore, the Executor computes each layer’s output tile
by tile, while the Speculator uses computed tiles to perform
sparsity speculation for the next layer. In this way, we can
pipeline the speculation with execution, hiding the latency
of speculation while lowering the memory overhead. In the
example shown in Fig. 7, while the Executor is still computing
layer L’s output, the Speculator is already using existing results
to generate switching maps for layer L+1. Therefore, when
the accelerator start to process layer L+1, it already has the
OMap to be used to skip a considerable amount of unnecessary
computations. Also, as mentioned above, the OMap of the
previous layer will be updated by the Executor and serve as
the IMap for the next layer to further reduce computations.

b) Adaptive Mapping for Balanced Execution: The key
challenge of computation skipping in CNNs is the workload
imbalance caused by irregular sparsity distribution, which
further results in PE under utilization and performance degra-
dation. Specifically, different PEs can have different numbers
of necessary MAC operations in the same computation step.
Therefore, PEs with less computations will finish earlier and
have to wait for the other PEs.

Depending on the sparsity type, there have been several
ways to balance the workloads. Prior work like [20], [41]
focus on input and weight sparsity. Since the weight sparsity
is static and generated offline during the training phase, they
adopt offline sorting based on the weight density to reorder the
computation sequence prior to the inference. This idea is not
suitable for dynamic output switching (OS), as the switching
map is generated dynamically during run-time. Online sorting
will incur longer latency and energy consumption.

743

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

Other work like [4], [45] target on output sparsity. These
work are based on a coupled executor/predictor design with
early termination mechanism. Specifically, the prediction
is indeed part of the execution process. If the prediction
results indicate the output to be zero, the execution will be
stopped here. Otherwise it will be completed. To tackle the
workload imbalance caused by output sparsity, they mainly
use two approaches. The first idea is to enable asynchronous
PE execution, so that whenever a PE finishes its current
computation, it can initiate a new computation step. However,
this approach causes significantly design and energy overhead
due to extra memory access and complicated NoC/buffer
design. The second idea is to apply an empirical approach
by expecting the computations to be evened out along a certain
input dimension. For instance in Predict [45], the authors
claim that the summation of the computations with the same
coordinate across different ofmap channels is nearly the same.
However, in order to achieve this balance, they need to increase
the tile size of each computation step, which requires larger
local buffer and memory footprint. We believe these approaches
are sub-optimal and energy inefficient, and the reason is because
their dataflow is based on single-module architecture which
cannot generate the switching maps prior to the execution.

In DUET, we solve the imbalance issue by the decoupled
speculation/execution and hardware efficient dynamic adaptive
mapping. The decoupled design ensures the switching maps
to be generated prior to its execution, which also gives us extra
time to perform online sorting using the proposed adaptive
mapping. We further design a dedicated Reorder Unit in the
hardware to reduce the mapping latency.

We use Fig. 7(b) to demonstrate our approach. Suppose
in each step, we can generate two 2× 2 switching maps
corresponded to two ofmap channels. Besides, the Executor
has 4 PEs that are organized in a 2×2 square. In the normal
dense case, output channel 0 and 2 will be mapped to row
0 (PE0&1), and output channel 1 and 3 will be mapped to
row 1 (PE2&3). Therefore, Channel 0 and 1 will be later
processed at the same time, while channel 2 and 3 are computed
together. However, due to output sparsity, the workload of these
channel are unbalanced as shown in the figure. Thus, such
naive mapping strategy will cause different row of PEs to
be under-utilized within the same step. In this case, a better
computation sequence would be to compute 0 and 3 first,
followed by channel 1,2.

Therefore, our design achieves more balanced PE workloads
by changing the order of computing different ofmap channels.
Since the switching maps are generated in advance, we can
examine the total workloads for different output channels within
several tiles. Based on these numbers, we further group the
output channels that have comparable operations together. After
this, a new sequence of ofmap channel is generated. Later when
the accelerator processes next layer, the Executor will load
filter weights according to this new sequence to have balanced
computation time.

Note that, adaptive mapping only changes the order of
computing the ofmap channels. In other words, it only affects

Reorder Unit

1-Bit
Adder
Tree

>
Bucket0

Bucket1

Bucket15

OMaps for
Different
Ofmap

Channels

C
on

ca
te

na
te

Reconfigurable
Thresholds

>

>

Filter IDs
In a Sequential

Order

Reordered
Filter IDs

0 1

0
Filter ID

0 1

0
Filter ID

Fig. 8. Reorder Unit implements adaptive mapping for balanced execution. The
output switching maps for different channels are summed up separately and
divided into several groups. The IDs of different filters with similar workloads
are stored together in a same bucket and sent out together.

the sequence of loading the filter data, while the ifmap access
and data reuse pattern are not influenced. Also, the output
are sequentially stored in the GLB according to their original
sequence. For example, even though Channel 0,3 are computed
together at first, and Channel 1,2 comes later, in the GLB they
are still stored as Channel 0,1,2,3. In this way we can keep
the ID unchanged for the next layer when loading the ifmap
data.

Our adaptive mapping only considers the imbalance issue
caused by output sparsity so that different rows of PEs
are balanced. Inside each row, there will still be imbalance
within the PEs due to input sparsity. However, we observe
with our experiments that, it is negligible compared with
output imbalance. Besides, further enabling more complicated
mapping and reordering strategy will considerably increase the
sorting overhead.

c) Architecture Support for Adaptive Mapping: In our
design, the adaptive mapping is done inside the Speculator’s
Reorder Unit. As tiles of switching maps are sequentially
generated, we send them to the Reorder Unit in addition to
writing them back to the GLB. The design of the Reorder Unit
is shown in Fig. 8, it consists of multiple 1-bit adder trees that
will sum up all the switching indices corresponded to a specific
output channel. Each output channel will have a total count
of estimated computations. Note that, this number does not
represent the workloads for the whole channel, but for the tile
that will be processed within one computation step. Then, we
compare the sum with preset interval thresholds and write the
channel IDs to the corresponding buffers, i.e., Buckets shown
in Fig. 8.

Using the same example in Fig. 7(b), each of the four output
channels will have a sum indicating its computation quantity. In
this case, the sums are 4,1,2,4 for channel 0,1,2,3. Since there
are two PE lines in the Executor, there will be two Buckets
in the Reorder Unit. In this case, the channel that has more
than two valid output elements will be stored in Bucket0, and
others that contain less valid output will be stored in Bucket1.
To do so, we only need to compare the four sums with a preset
threshold 2, and channel ID 0,3 are grouped together, while
ID 1,2 will be stored in the second Bucket. During execution,
the Executor will load the filter data in the order of Bucket0,

744

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

Bucket1, which gives us the optimal computation sequence as
demonstrate above.

B. Reduceing Memory Accesses and Computations on RNNs

Finally, we describe how DUET handles RNN models.
Compared with CNN models, processing RNNs is more
memory-bound. For instance, given an input vector of length
1024, the weight matrix used for computing each gate in an
RNN cell would be 1024× 1024, which requires a 2MB of
memory space. Furthermore, although the weights are shared
between different input elements, the recurrent data dependency
requires us to compute the previous hidden state before we
can process the next one. Therefore, during the execution, we
have to constantly and cyclically load each weight matrix from
the off-chip DRAM. This motivates us to focus on reducing
the off-chip memory access with the proposed mechanism,
while keeping the dataflow simple enough to ease the control
overhead and avoid workload imbalance.

a) Overall Dataflow: For illustrative purpose, we consider
an LSTM network with two recurrent LSTM Cells L1,L2 and an
input sequence with 3 elements x1,x2,x3, as shown in Fig. 9(a).
The inference is executed element by element and then layer
by layer. To be more specific, as demonstrated by Fig. 9(b), for
the first element x1, the weights of L1 are fetched from DRAM.
Due to the limited on-chip memory capacity, each time we can
only load part of the weight matrix corresponded to a specific
gate. After the first hidden state of L1 is computed, we use the
results and x2 to compute the second hidden state. To do so,
we need to reload L1’s weight from DRAM. Finally, after all
three input elements are passed through L1, the same process
is repeated for L2.

Inside each layer, the computation is also handled in a
sequential pattern. Using the same example in Fig. 9(b),
suppose we are passing x1 through L1. We first compute the
input gate i and then the forget gate f , followed by the update
gate g to compute cell state C, and finally, we compute the
output gate o to get the hidden state h. The computation is
mainly matrix-vector multiplication and vector accumulation
and activation functions.

b) Gate-level Dual-Module Pipeline: With the baseline
dataflow, we further introduce how to utilize the Speculator to
perform speculations for RNN models and hide the speculation
latency. In DUET , we speculate the output of each gate before
its execution. As illustrated by Fig. 9(b), we start with x1
and L1 and perform quantization and dimension reduction for
the input gate i. Similar to CNN, this will give us a binary
switching map indicating the important neurons that need to
be updated with accurate results from the Executor. What’s
different is that, apart from the switching maps, we also store
the approximated results for those ineffectual output neurons in
the GLB. After the sparse high-precision computation for gate i
is finished in the Executor, we add the two vectors together. As
a result, in the final output vector, the approximate activations
are generated by the Speculator, while the effectual activations
are computed in the Executor. With the switching maps, for
the weight matrix and bias vector, only the rows related to the

accurate output activations need to be fetched from DRAM.
Our approach saves memory accesses and computations.

During the Executor’s execution of input gate i, the Specu-
lator can start the speculation for the forget gate f , since we
only need x1 and h0 as our input to perform the speculation.
Similarly, the speculation of the other gates can also be hidden
with the Executor’s computation. Throughout the processing
of each layer, only the speculation for input gate i cannot be
hidden due to data dependencies.

c) Reducing Off-chip Memory Access and On-chip Compu-
tations with OMap: As shown by Fig. 9(c)(d), each PE line in
the Executor is mapped with a specific row of the weight matrix
to be multiplied with the input vector to generate a single output
value. Therefore, if the switching map indicates that a specific
output neuron is ineffectual, then we can completely skip the
computations related to this neuron during the execution. More
importantly, there is no need to load the corresponding row in
the weight matrix from the DRAM. Saving weight data access
is especially crucial as the profiling results show that off-chip
memory access greatly influences the overall performance and
energy consumption. With the proposed dual-module processing
mechanism, we can directly reduce the amount of data to be
loaded from DRAM to GLB and from GLB to Executor. The
overall computation complexity and processing time are also
reduced, further boosting the performance of executing RNN
models.

V. EVALUATION

In this section, we evaluate the dual-module processing
algorithm and the supporting accelerator architecture of our
co-design for improved inference efficiency of DNNs. At the
algorithm level, we present the trade-off between inference
quality and efficiency in terms of FLOPs reduction and data
access reduction. At the architecture level, we demonstrate
the improved efficiency with DUET and compare DUET with
state-of-the-art DNN accelerators with computation skipping.

A. Algorithm Evaluation

Benchmarks. We evaluate our method on a set of machine
learning tasks. We choose AlexNet, ResNet18, and ResNet50
to perform image classification on the ImageNet dataset. We
also evaluate RNN-based models on language modeling with
LSTM and GRU using the PTB dataset and machine translation
with GNMT using the WMT16 en-de dataset.

Quality and Efficiency trade-off. Our dual-module pro-
cessing method provides a trade-off model inference quality
with improved efficiency. With acceptable quality degradation,
DUET can boost DNN execution efficiency that could be
critical in latency and energy-constrained application scenarios.
In Fig. 10 (a) and (b), we show the FLOPs reduction at
different levels of accuracy loss in both top-1 and top-5. With
1% top-1 accuracy loss according to MLPerf, our method
can reduce operations by 3.33x and 5.15x using AlexNet
and ResNet18, respectively. Comparing with prior methods
computation skipping in CNNs, namely SnaPEA [4], FBS [19],

745

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

(b)

(d)

LSTM
Cell 1

LSTM
Cell 0

L2

L1 LSTM
Cell 0

LSTM
Cell 1

LSTM
Cell 0

x1 x2 x3

(a)

(c)

Mapping

LSTM
Cell 1

Skipped

Skipped
Skipped

1
1
0
1
0
0

Weight Matrix Input VectorOMap

x

X1, L1 X2, L1 X3, L1 X1, L2 X2, L2 X3, L2

i
Speculator

Executor f g C o h
i f g o o

Overall

Time

Switching Map

PE PE PE

PE PE PE

PE PE PE

Executor

Fig. 9. Illustration of (a) sample LSTM network, (b) RNN Dataflow and (c)&(d) Executing GEMV with reduced computations and memory access. We apply
a gate level speculation/execution pipeline to hide the speculation latency. Each PE-row in the Executor is mapped with a dot product between a row of weight
matrix and the input vector. Each PE-row will finally generate a single output value. Therefore, if the switching index is zero, we can directly skip a complete
dot-product operation.

1 2 3 4 5 6
FLOPs reduction

70

80

90

To
p-

5
ac

cu
ra

cy
 (%

) (a) ImageNet

AN (DUET)
RN18 (DUET)
RN50 (DUET)
AN (CGNet)
AN (SnaPEA)

1 2 3 4 5 6
FLOPs reduction

60

70

To
p-

1
ac

cu
ra

cy
 (%

) (b) ImageNet

AN (DUET)
RN18 (DUET)
RN50 (DUET)
RN18 (CGNet)
RN18 (FBS)

1.0 1.5 2.0 2.5
Data access reduction

82.5

85.0

87.5

Pe
rp

le
xi

ty

(c) PTB
LSTM
GRU

1.0 1.5 2.0
Data access reduction

21.5

22.0

22.5

23.0

BL
EU

 sc
or

e

(d) WMT16 E-G
GNMT

Fig. 10. Model inference quality vs. savings. Dual-module processing of
DUET achieves better quality and saving trade-off and supports a wide range
of DNN models.

and CGNet [27], our approach can achieve better quality and
operation reduction trade-off.

As shown in Fig. 10(c), our method can reduce off-
chip weight data access by 1.89x while achieving negligible
quality degradation with one perplexity increase from baseline.
Similarly, as shown in Fig. 10(d), serving online translation
with GNMT is latency-sensitive because of the memory-bound
nature of accessing weights of different LSTM layers at each
time-step. With unnoticeable translation quality by users such as
one BLEU score loss, our method can achieve 2.22x reduction
on off-chip weight data access of the four-layer decoder in
GNMT.

B. Architecture Evaluation Methodology

To evaluate our design, we develop a cycle-level simulator
based on the architecture as in the state-of-the-art CNN accel-
erator [11]. Because dual-module processing is data-dependent,
we adopt a hybrid simulation methodology: we integrate the
cycle-level simulator with a deep learning framework, i.e.,
PyTorch. The input data to the simulator, including input
activations, model parameters for Executor, and Speculator
parameters, are all extracted from PyTorch. We use results
from RTL synthesis by DesignCompiler under 45nm technology

Alex
Net

ResN
et1

8

ResN
et5

0
LST

M
GRU

GNMT

Geo
Mea

n
0

1

2

(a) Overall improvement

Speedup
Energy Efficiency

Ey
eri

ss

Cnv
lut

in

Sn
aP

EA
Pre

dic
t

Cnv
+Pre

d
DUET

0

2

4
(b) Comparison w/ SOTA

Latency
Energy

EDP

Fig. 11. (a) Overall performance speedup and energy efficiency; (b)
Comparison with other accelerators.

for DUET control logic. We use CACTI and Micron Power
Calculators for SRAM and DRAM estimation. Table I lists
the area of major components in our design. The primary area
consumption comes from the on-chip memory buffers, while
the Executor accounts for 40.0% of the total chip area, and
the Speculator only accounts for 6.6% of the area.

Comparison baselines. We first use single-module architec-
ture with only the Executor as the baseline architecture. We
also compare DUET’s performance, energy consumption, and
energy-delay-product (EDP) with state-of-the-art accelerator
when running the same workload. Specifically, we extend and
validate the simulator to support Eyeriss [11], Cnvlutin [5],
SnaPEA [4], and Prediction [45]. These architectures span
over dataflow optimization and computation skipping of sparse
activations, which sufficiently supports the evaluation of DUET.
We first illustrate the imbalanced execution caused by neuron
sparsity and how our proposed adaptive mapping can mitigate it.
Then we use other sparsity-oriented works to demonstrate the
advantages of the proposed dual-module architecture design.

C. Performance speedup analysis

Overall speedup. We first show the overall speedup in
Fig. 11(a). Compared with the single-module baseline design,
DUET achieves 2.24x average speedup on typical CNN and
RNN models. The performance improvements mainly come
from three aspects: firstly, total computations are reduced with
dual-module processing; secondly, hardware-efficient adaptive
mapping ensures balanced execution and high PE utilization
in the Executor; finally, advanced switching map generation

746

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

con
v1
con

v2
con

v3
con

v4blk
0
blk

1
blk

2
blk

3
blk

4
blk

5
blk

6
blk

7 GM
0
1
2
3
4
5

(a) Layer-wise speedup
OS
BOS

IOS
DUET

con
v1
con

v2
con

v3
con

v4blk
0
blk

1
blk

2
blk

3
blk

4
blk

5
blk

6
blk

7 GM
0

25

50

75

(b) Layer-wise MAC utilization (%)
OS
BOS

IOS
DUET

con
v1
con

v2
con

v3
con

v4blk
0
blk

1
blk

2
blk

3
blk

4
blk

5
blk

6
blk

7 GM
0.0

0.5

1.0

1.5

2.0

(c) Executor and speculator latency (ms)

Exec (BASE)
Exec (DUET)
Spec (DUET)

LST
M

GRU

GNMT-0

GNMT-1

GNMT-2

GNMT-3

Geo
Mea

n
0.0

0.2

0.4

0.6

0.8

(d) Memory and compute latency (ms)
Mem (BASE)
Exec (BASE)

Mem (DUET)
Exec (DUET)

con
v1
con

v2
con

v3
con

v4blk
0
blk

1
blk

2
blk

3
blk

4
blk

5
blk

6
blk

7
LST

M
GRU

GNMT0
GNMT1

GNMT2
GNMT3

0.00

0.25

0.50

0.75

1.00
(e) Overall energy breakdown

Mem (BASE)
On-chip (BASE)

Mem (DUET)
On-chip (DUET)

con
v1
con

v2
con

v3
con

v4blk
0
blk

1
blk

2
blk

3
blk

4
blk

5
blk

6
blk

7
LST

M
GRU

GNMT0
GNMT1

GNMT2
GNMT3

0.00

0.25

0.50

0.75

1.00
(f) On-chip energy breakdown

GLB (BASE)
Exec (BASE)
GLB (DUET)

Exec (DUET)
Spec (DUET)

Fig. 12. Breakdown analysis for DUET. (a) Layer-wise speedup improvement applying different techniques in DUET. (b) Layer-wise MAC utilization
improvement. (c) Latency comparison between the Executor, the Speculator, and the baseline single Executor design. (d) Memory and compute latency for
RNN models. (e) Overall energy breakdown (w/ off-chip memory access). (f) On-chip energy breakdown (w/o off-chip memory access).

greatly reduced off-chip memory access for memory-bound
workloads.

Layer-wise breakdown for different techniques. To fur-
ther give more insights to the evaluation results, we provide
a layer-wise breakdown for the CONV layers of AlexNet
and ResNet18, and we show the effectiveness of our schemes
in four stages. The comparison baseline is to only use the
Executor with the same mapping and basic dataflow. As
shown in Fig. 12(a), skipping computations given output
switching map (OS) without adaptive mapping can only
obtain 1.20x speedup on average due to imbalanced execution.
Enhanced by adaptive mapping, i.e., Balanced Output Switching
(BOS), the performance speedup can achieve 1.93x. Moreover,
with integrated input and output switching maps (IOS), the
performance can be boosted to 2.36x as more computations can
be skipped. Finally, the integrated input and output switching
maps (DUET) design with adaptive mapping can achieve a
3.05x average speedup.

We use the layer-wise MAC utilization of CONV layers, from
AlexNet and VGG16, in Fig. 12(b) as the metrics to evaluate
execution efficiency. For example, CONV5 in AlexNet has
65.5% computation sparsity when using OS, which could have
2.9x speedup, yet only achieves 1.36x. The gap between actual
speedup and theoretical computation reduction indicates the
severe imbalanced execution caused by coupled OS speculation.
The average MAC utilization of OS only is less than 50%,
again, due to imbalanced execution. While integrating the
input sparsity with output sparsity (IOS) could have more
computation reduction than using OS only, PEs are more
under-utilized – on average, 30% in Fig. 12(b). We observe
higher speedups on CONV layers with more channels. DUET
can have more balanced execution with output switching and
adaptive mapping. Compared with imbalanced OS, the average

utilization of balanced OS can be improved from 47% to
76%; the average performance speedup is increased from 1.20x
to 1.93x. Similarly, IOS boosted with our adaptive mapping
(DUET), the average MAC utilization and the speedup of
CONV layers increase from 30% to 39% and from 2.36 to
3.05x, respectively.

As Executor and Speculator compute for important neurons
and unimportant neurons to deliver final activated results,
balancing the processing time of Executor and Speculator is
critical to achieving better performance rather than having the
Speculator become the new bottleneck. The latency results of
Executor and Speculator are shown in Fig. 12(c). Compared
with baseline Executor without computation skipping enabled
by the dynamic switching from Speculator, DUET can reduce
Executor average latency from 1.06 ms to 0.29 ms with dynamic
switching and adaptive mapping. On average, Speculator
latency is 0.20 ms that can be hidden with the latency of
Executor with pipelined processing.

For memory-bound RNN layers, we focus on the latency
of off-chip memory access and on-chip computations. As
shown in Fig. 12(d), BASE processing is severely bounded
by accessing weight data from off-chip memory. Enabled
by dynamic switching in DUET , the off-chip weight data
accessing latency is reduced to 0.30 ms from 0.65 ms.

D. Energy efficiency analysis

Overall energy savings. As shown in Fig. 11(a), DUET
can achieve 1.95x energy saving on average using Executor-
Speculator dual-module processing compared with baseline
single-module processing. The energy saving is achieved by
cutting on-chip computations and buffer access as well as
cutting off-chip data access. Specifically, for Executor, the
computations and local buffer access are greatly reduced by

747

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I
AREA BREAKDOWN.

Units Parameters Area (mm2)
Global Buffer 1MB 5.655
Executor 256 (16-bit) 4.236
Speculator 0.699

Align. & Adder Trees 4096 (4-bit) 0.378
Systolic Array 16x32 (4-bit) 0.318
Activation Buffer 8KB 0.023
Projection Buffer 32KB 0.090
QDR Input Buffer 4KB 0.011
QDR Weight Buffer 128KB 0.352
QDR Output Buffer 4KB 0.011
Multi-Func. Unit 16 (4-bit) 0.034
Reorder Unit 16 Buckets (32B) 0.014

taking advantage of the prepared switching maps. For the
Speculator, although we need to load QDR weights and store
the computed approximate data, we make sure the computations
are low-dimension and low-precision, which keeps the cost of
these extra memory accesses as low as possible. Besides, the
approximated results for the insensitive activations are reused
to save energy consumption further.

Energy Breakdown. To further interpret the energy effi-
ciency of DUET , we show the layer-wise energy breakdown
in Fig. 12(e) and (f). For compute-bound layers such as CONV
layers, the energy saving benefits are mostly from the reduction
of MAC computations and local buffer accesses in the Executor.
For memory-bound layers such as RNNs, reducing weight
data accesses from off-chip memory enabled by DUET helps
energy efficiency. These results support the above analysis
and demonstrated our initial optimization targets. We show
the on-chip energy breakdown in Fig. 12(f). The Speculator’s
energy consumption only consumes a small portion, ranging
from 3.5% to 6.3% for CONV layers and less than 1% for
RNNs compared with the total on-chip energy of baseline.

E. Comparison with SOTA CNN Accelerators

A special case of dua-module processing is ReLU-based
output sparsity prediction typically appeared in CNNs. While
the focus of DUET is supporting computation and memory
accesses reduction in general DNN models, we compare with
state-of-the-art CNN accelerators, i.e., Eyeriss [11], Cnvlutin
[5], SnaPEA [4], and Predict [45], with computation skipping
to demonstrate the benefits of our architecture design choices.
We scale all designs to have the same number of MACs and
similar on-chip memory size, and we normalize all results to
DUET , as shown in Fig. 11(b). DUET achieves better results
in terms of latency, energy, and energy-delay-product (EDP).

Performance comparison. Performance-wise speaking, Ey-
eriss equals a dense baseline as it only supports power-
gating to save energy but computation skipping to improve
performance; thus, it has the worst latency among others.
Equipped with either input sparsity detection or output sparsity
prediction mechanisms, Cnvlutin, SnaPEA, and Predict can
reduce processing latency from computation skipping, the
performance improvements are limited by only single-source
computation skipping from either input or output. The workload

8x
8

8x
16

16
x1

6

16
x3

2

32
x3

2
0.0

0.5

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p

(a) Speculator Size

AlexNet

ResNet18

INT16 INT8 INT4 INT2
45

50

55

60

65

70

T
o
p
-1

 a
cc

u
ra

cy
 (

%
) (b) Speculator Precision

AlexNet

ResNet18

Fig. 13. Design space exploration of (a) Speculator size and (b) Speculator
Precision.

imbalance caused by irregular sparse activations as in Cnvlutin
and SnaPEA compromises the performance.

Energy efficiency comparison. Cnvlutin, SnaPEA, and
Prediction use only one level of on-chip buffer and have no
local data reuse, thus those designs consume 1.77x, 2.21x,
and 2.21x more energy than DUET, as shown in Fig. 11(b).
Even though those three designs support computation skipping,
the energy consumption is at the same level as Eyeriss.
Since buffer accessing is the major source of on-chip energy
consumption [11], accelerators without data reuse at the local
buffer level would inevitably consume much more energy to
access global buffer. DUET uses the same two-level on-chip
memory hierarchy as in Eyeriss with local data reuse to improve
energy efficiency.

Energy-delay-product comparison. To better compare dif-
ferent architectures, we show the comparison on energy-delay-
produce (EDP) in Fig. 11(b). The EDP of SnaPEA and Predict
are 3.98x and 2.21x more than DUET , respectively. While other
designs with computation skipping from both input and output
activations, i.e., Predict+Cnvlutin, can achieve comparable
performance than DUET , our design demonstrates 1.81x and
2.03x better in energy efficiency and EDP, respectively.

F. Design Space Exploration

Speculator Size. Here we investigate the impact on perfor-
mance when choosing different sizes of the Speculator while
fixing the size of the Executor. Specifically, we modify the
systolic array size and scale other components in the Speculator
accordingly. The two benchmarks we use are AlexNet and
ResNet18. As shown in Fig. 13(a), when the Speculator is
small, e.g. 8x8, 8x16, the performance improvements are
sub-optimal. This is because the Speculator cannot provide
sufficient throughput to support the Executor, processing of
Speculator becomes the performance bottleneck. Besides, when
increasing the size of Speculator to 32x32, the performance
merely improves, meaning the latency of the Speculator is
already hidden by the Executor. We need to increase the size
of Executor if we want to have more speedups. Therefore, we
choose the systolic array size to be 16x32.

Speculator Precision. We also study how compute precision
affects the approximation quality of the Speculator, which helps
us decide the trade-off between hardware consumption and
model accuracy. With the same benchmarks, we show in Fig. 13
that INT4 is a preferred precision with negligible accuracy
loss indicating good approximation quality. With 4-bit data

748

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

representation and computation, we are able to achieve area
and energy-efficient approximation, as demonstrated above.

VI. RELATED WORK

Academia and industry have proposed various architectures
for the acceleration of DNNs [8], [10], [11], [12], [15], [17],
[18], [28], [29], [31], [35], [43], [49], and here we focus on
algorithm-architecture co-design to save computations and data
accesses.

While our work focuses on dynamic redundancy elimination
leveraging noise-resilience in DNN activations, an orthogonal
line of research is statically pruning weights to decrease
memory footprint and data access. Fine-grained weight sparsity
was integrated into DNN accelerators through compressed
storage and computation skipping of zero weights [20], [22],
[23], [26], [41], [51]. Coarse-grained weight sparsity was
further proposed to mitigate the indexing overhead and irregular
access [13], [32], [48], [54]. While we do not use pruned models
in our evaluation, dual-module processing can be combined
with other model compression techniques by taking compressed
layers as accurate modules.

Other studies propose dynamic redundancy elimination base
on certain criteria. One scenario is leveraging ReLU-induced
activation sparsity as either input sparsity detection [3], [5], [20],
[23], [30], [39], [50], [54], [55] or output sparsity prediction [4],
[7], [34], [45]. Exploiting ReLU-induced activation sparsity
is only a special case of our dual-module processing. The
approximate results are useful in the insensitive regions instead
of only for prediction and then discarded. Besides neuron-wise
computation skipping, channel-wise feature map suppressing
and gating can reduce computations leveraging the multi-
channel feature of CONV layers [19], [27], [48]. However,
those studies are limited to saving computations of CONV
layers while our design can also save memory access of FC and
RNN layers. Computation skipping in RNNs is also proposed
leveraging the particular cell structure and the temporal input
similarity [6], [40], [52]. However, those methods depend on
certain applications and lack of evaluation on NLP tasks such
as machine translation.

VII. CONCLUSION

In this paper, we present an algorithm-architecture co-design
to boost the execution efficiency of DNNs. Firstly, our dual-
module algorithm uses lightweight approximate modules to
compute insensitive activations and seeks to accurate modules
to compute sensitive activations with skipped computations and
data accesses. Secondly, our DUET design with specialized
and decoupled Executor and Speculator supports balanced
execution and memory accesses reduction. Compared with
standard single-module processing, DUET can achieve 2.24x
performance speedup and 1.97x energy efficiency improvement.

REFERENCES

[1] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,
“Convolutional neural networks for speech recognition,” IEEE/ACM
Transactions on audio, speech, and language processing, vol. 22, no. 10,
pp. 1533–1545, 2014.

[2] D. Achlioptas, “Database-friendly random projections,” in Proceedings of
the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. ACM, 2001, pp. 274–281.

[3] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco,
S.-C. Liu, and T. Delbruck, “Nullhop: A flexible convolutional neural
network accelerator based on sparse representations of feature maps,”
IEEE transactions on neural networks and learning systems, no. 99, pp.
1–13, 2018.

[4] V. Aklaghi, A. Yazdanbakhsh, K. Samadi, H. Esmaeilzadeh, and R. Gupta,
“Snapea: Predictive early activation for reducing computation in deep
convolutional neural networks.” ISCA, 2018.

[5] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2016, pp. 1–13.

[6] V. Campos, B. Jou, X. G. i Nieto, J. Torres, and S.-F. Chang, “Skip
RNN: Learning to skip state updates in recurrent neural networks,” in
International Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=HkwVAXyCW

[7] S. Cao, L. Ma, W. Xiao, C. Zhang, Y. Liu, L. Zhang, L. Nie, and Z. Yang,
“Seernet: Predicting convolutional neural network feature-map sparsity
through low-bit quantization,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 11 216–11 225.

[8] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynami-
cally configurable coprocessor for convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 38, no. 3, pp. 247–257,
2010.

[9] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Computer
Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015,
pp. 2722–2730.

[10] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284,
2014.

[11] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
2017.

[12] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, 2014, pp. 609–622.

[13] C. Deng, S. Liao, Y. Xie, K. K. Parhi, X. Qian, and B. Yuan,
“Permdnn: Efficient compressed dnn architecture with permuted diagonal
matrices,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 189–202.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” Proceedings
of NAACL-HLT, 2019.

[15] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, vol. 43, no. 3.
ACM, 2015, pp. 92–104.

[16] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

[17] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “Neuflow: A runtime reconfigurable dataflow processor for
vision,” in 2011 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPR Workshops 2011). IEEE,
2011, pp. 109–116.

[18] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable
and efficient neural network acceleration with 3d memory,” ACM SIGOPS
Operating Systems Review, vol. 51, no. 2, pp. 751–764, 2017.

[19] X. Gao, Y. Zhao, ukasz Dudziak, R. Mullins, and C. zhong Xu,
“Dynamic channel pruning: Feature boosting and suppression,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=BJxh2j0qYm

[20] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“Sparten: A sparse tensor accelerator for convolutional neural
networks,” in Proceedings of the 52Nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York,

749

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

NY, USA: ACM, 2019, pp. 151–165. [Online]. Available: http:
//doi.acm.org/10.1145/3352460.3358291

[21] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Acoustics, speech and signal processing
(icassp), 2013 ieee international conference on. IEEE, 2013, pp. 6645–
6649.

[22] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W. J. Dally, “Ese: Efficient speech recognition
engine with sparse lstm on fpga,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2017, pp. 75–84.

[23] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on. IEEE, 2016, pp. 243–254.

[24] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in neural
information processing systems, 2015, pp. 1135–1143.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[26] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher,
“Ucnn: Exploiting computational reuse in deep neural networks via weight
repetition,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2018, pp. 674–687.

[27] W. Hua, Y. Zhou, C. De Sa, Z. Zhang, and G. E. Suh, “Boosting
the performance of cnn accelerators with dynamic fine-grained
channel gating,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New
York, NY, USA: ACM, 2019, pp. 139–150. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358283

[28] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th Annual International Symposium on Computer Architecture, 2017,
pp. 1–12.

[29] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–12.

[30] D. Kim, J. Ahn, and S. Yoo, “A novel zero weight/activation-aware
hardware architecture of convolutional neural network,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, March
2017, pp. 1462–1467.

[31] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 380–392.

[32] H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolutional
neural networks for efficient systolic array implementations: Column
combining under joint optimization,” arXiv preprint arXiv:1811.04770,
2018.

[33] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Advances
in Neural Information Processing Systems, 2017, pp. 2181–2191.

[34] Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag, “Predictivenet: an energy-
efficient convolutional neural network via zero prediction,” in Circuits
and Systems (ISCAS), 2017 IEEE International Symposium on. IEEE,
2017, pp. 1–4.

[35] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “Pudiannao: A polyvalent machine learning accelerator,”
in ACM SIGARCH Computer Architecture News, vol. 43, no. 1. ACM,
2015, pp. 369–381.

[36] L. Liu, L. Deng, Z. Chen, Y. Wang, S. Li, J. Zhang, Y. Yang, Z. Gu,
Y. Ding, and Y. Xie, “Boosting deep neural network efficiency with dual-
module inference,” in International Conference on Machine Learning
(ICML), 2020.

[37] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie, “Dynamic
sparse graph for efficient deep learning,” in Seventh International
Conference on Learning Representations (ICLR), 2019.

[38] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5058–5066.

[39] M. Mahmoud, K. Siu, and A. Moshovos, “Diffy: a déjà vu-free differential
deep neural network accelerator,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 134–147.

[40] D. Neil, J. H. Lee, T. Delbruck, and S.-C. Liu, “Delta networks for
optimized recurrent network computation,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 2584–2593.

[41] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
ACM SIGARCH Computer Architecture News, vol. 45, no. 2. ACM,
2017, pp. 27–40.

[42] E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization
for deep neural networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5456–5464.

[43] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2016, pp. 267–278.

[44] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” arXiv
preprint, 2017.

[45] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li, “Prediction based execution
on deep neural networks,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 752–763.

[46] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based lstm
for aspect-level sentiment classification,” in Proceedings of the 2016
conference on empirical methods in natural language processing, 2016,
pp. 606–615.

[47] Y. Xu, Y. Wang, A. Zhou, W. Lin, and H. Xiong, “Deep neural network
compression with single and multiple level quantization,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[48] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware parallelism,”
in ACM SIGARCH Computer Architecture News, vol. 45, no. 2. ACM,
2017, pp. 548–560.

[49] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[50] J. Zhang, C. Lee, C. Liu, Y. S. Shao, S. W. Keckler, and Z. Zhang,
“Snap: A 1.67 21.55tops/w sparse neural acceleration processor for
unstructured sparse deep neural network inference in 16nm cmos,” in
2019 Symposium on VLSI Circuits, 2019, pp. C306–C307.

[51] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
The 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Press, 2016, p. 20.

[52] X. Zhang, C. Xie, J. Wang, W. Zhang, and X. Fu, “Towards memory
friendly long-short term memory networks (lstms) on mobile gpus,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Oct 2018, pp. 162–174.

[53] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, “Improving neural
network quantization without retraining using outlier channel splitting,”
in International Conference on Machine Learning, 2019, pp. 7543–7552.

[54] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen,
and Y. Chen, “Cambricon-s: Addressing irregularity in sparse neural
networks through a cooperative software/hardware approach,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 15–28.

[55] J. Zhu, J. Jiang, X. Chen, and C.-Y. Tsui, “Sparsenn: An energy-efficient
neural network accelerator exploiting input and output sparsity,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2018, pp. 241–244.

750

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 14:37:38 UTC from IEEE Xplore. Restrictions apply.

