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ABSTRACT

Graph convolutional neural networks (GNN) have achieved state-of-
the-art performance on tasks like node classification. It has become
a new workload family member in data-centers. GNN works on
irregular graph-structured data with three distinct phases: Com-
bination, Graph Processing, and Aggregation. While Combination
phase has been well supported by sgemm kernels in cuBLAS, the
other two phases are still inefficient on GPGPU due to the lack of
optimized CUDA kernels. In particular, Aggregation phase intro-
duces large volume of DRAM storage footprint and data movement,
and both Aggregation and Graph Processing phases suffer from high
kernel launching time. These inefficiencies not only decrease train-
ing throughput but also limit users from training GNNs on larger
graphs on GPGPU. Although these problems have been partially
alleviated by recent studies, their optimizations are still not suffi-
cient. In this paper, we propose fuseGNN, an extension of PyTorch
that provides highly optimized APIs and CUDA kernels for GNN.
First, two different programming abstractions for Aggregation phase
are utilized to handle graphs with different average degrees. Sec-
ond, dedicated GPGPU kernels are developed for Aggregation and
Graph Processing in both forward and backward passes, in which
kernel-fusion along with other optimization strategies are applied
to reduce kernel launching time and latency as well as exploit data
reuse opportunities. Evaluation on multiple benchmarks shows
that fuseGNN achieves up to 5.3X end-to-end speedup over state-
of-the-art frameworks, and the DRAM storage footprint is reduced
by several orders of magnitude on large datasets.

1 INTRODUCTION

In recent years, graph convolutional neural networks (GNN) that
operate on graph-structured data have achieved convincing per-
formance on tasks like node and graph classification [10, 23, 24].
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Similar to other computation-intensive workloads [2, 16, 25], GNNs
are usually trained on the Graphics Processing Unit (GPU) that has
high programmability and rich computation resources. Therefore,
developing an efficient framework for GNNs on GPU is important.

GNN has three distinct phases: Combination, Graph Processing,
and Aggregation. Combination is usually a single- or multi-layer
perceptron that updates feature vectors of each vertex. Graph Pro-
cessing processes the graph to be used in Aggregation. It usually
involves tasks like computing degree, updating or generating edge
weights, and converting graph between different sparse representa-
tions. The exact execution flow varies in different GNN algorithms.
Aggregation updates each feature vector by aggregating its neighbor
feature vectors with some aggregators like max and sum [11].

While Combination phase is well supported by sgemm (Single pre-
cision General Matrix Multiply) kernels in cuBLAS [14], the other
two phases implemented with current APIs in PyTorch or Tensor-
flow are far from efficient. We profile Graph Convolutional Network
(GCN) [10] implemented with PyTorch Geometric (PyG) [3]. The
result shows that on one hand, Aggregation phase introduces high
volume of DRAM storage footprint and data movement. For exam-
ple, dataset Reddit [6] has 114 million edges. With feature-length
128, the intermediate matrix takes up 58 GB, which is impossible
to fit in a single GPU. Besides, over 300 GB data will be read and
written between GPU cores and off-chip memory including 60 GB
atomic transactions. On the other hand, the kernel launching time
could take up to 85% of the whole execution time due to the complex
execution flow. All in all, dedicated GPU kernels and APIs for Graph
Processing and Aggregation in both forward and backward passes
are required to develop an efficient GNN framework on GPU.

In recent years, several studies have been proposed to speedup
Aggregation phase in two aspects. First, the Gather-ApplyEdge-
Scatter (GAS) abstraction used in PyG is replaced with Gather-
ApplyEdge-Reduce (GAR) abstraction to replace atomic reduction
with non-atomic reduction in shared memory or registers. Second,
due to the large variety of GNN algorithms, it is currently impossible
to develop a kernel than optimizes all the GNN models. As a result,
most of these frameworks choose to speedup one common scenario:
the edge weight is scalar and gradient doesn’t flow through the edge
weights (e.g. Graph Convolutional Network (GCN) [10] and Graph
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Isomorphism Network (GIN) [22]). For instance, neuGraph [12] de-
velops a kernel called Fused-Gather and Deep Graph Library (DGL)
[20] implements the Aggregation phase with sparse matrix-matrix
multiplication (SpMM) supported by cuSPARSE library [13].

However, these optimizations are not sufficient due to following
reasons. First of all, the GAR abstraction requires the Compressed
Sparse Row (CSR) format graph in forward pass and Compressed
Sparse Column (CSC) in backward pass, while GAS abstraction
can work on unsorted Coordinate List (COO) format graphs. On
graphs with low average degree, the execution time saved by using
GAR abstraction in Aggregation is offset by the format conversion
overhead, so GAR is not always the best choice. Second, many
GNN algorithms with attention mechanisms (e.g. Graph Attention
Network [18]) have been proposed. In these algorithms, the edge
weight is calculated based on the feature vector of source and
target vertices as well as some trainable attention parameters. As
a result, the gradient will flow through the edge weight, which is
not supported by previous studies. Last but not least, neglected by
previous studies, we find that accelerating the Graph Processing
phase is critical for accelerating GNN training on small graphs.
With these observations, in this paper, we propose fuseGNN, a
highly-optimized extension of PyTorch for GNNs on GPU. Our key
contributions are summarized below.

e Dual Aggregation Models: in Aggregation phase, we demon-
strate that when considering all overhead, GAS should be ap-
plied to graphs with low average degree and GAR is a better
choice for graphs with higher average degree.

¢ Efficient CUDA kernels: we develop dedicated CUDA kernels
for Aggregation and Graph Processing phases in both forward
and backward passes, in which multiple optimization strategies
like kernel fusion are applied to reduce kernel launching time
as well as exploit possible data reuse opportunities to reduce
DRAM storage footprint and redundant data movement.

We evaluate our fuseGNN on multiple benchmarks and compare
it with the state-of-the-art frameworks including PyG [3], DGL
[20], and neuGraph [12]. It achieves up to 5.3X end-to-end training
speedup over PyG, and the DRAM storage footprint is reduced by
nearly 500 on Reddit dataset. Our fuseGNN makes it possible to
train GAT on entire Reddit with a single NVIDIA V100 GPU. Our

codes are publicly available at https://github.com/apuaaChen/genLib.

2 BACKGROUND AND RELATED WORK

We first present an overview on the background and related studies
including the graphs, GNN, and existing frameworks for GNNs.

2.1 Graph

A graph G = (V, &) consists of two parts: vertices and edges. Let
Ny and N, be the number of vertices and edges, respectively. Each
vertex v; € ‘V has a feature vector x; € R™*™, and the feature
vectors are organized as a feature matrix X € RNe*™ Each edge
(vi,vj) € & can be directed or undirected, and may also have a
feature e;;. Table 1 summarizes four popular datasets for GNN.
The “x2" under “#Edge" suggests that the edge is undirected. As
illustrated in Figure 1 (a)&(b), the edges can be formulated as a
sparse adjacency matrix A € RNVo*No_ The row and column index

Table 1: Dataset information

Dataset ‘ #Vertex ‘ Feature Len. ‘ #Edge ‘ Avg. Degree
Cora (CR) 2,708 1,433 5,429 X 2 4.0
Citeseer (CS) | 3,327 3,703 4,732 x 2 2.8
Pubmed (PB) | 19,717 500 44,338 X 2 4.5
Reddit (RD) | 232,965 602 114,615,892 492
(@) (c) coo
@;@\6 tarind[ 1[3] 2[ 1] 1] 4] 4] 4
srcind|0]2|1|4(3|0|1]|3
%){ij ,>® value|a|c|b|f|d|h|e|g
g d) CSR
b) A0152'°34 tarptr[0]0[3]4]5] 8
5 sreind| 03[ 4] 1]2[0]1]3]
Valueadfbche‘g‘
1 a d f (e) CSC
tar 2 b srcPtr|0]12|4|5|7|8
3 c tarind| 1|4 2] 4[3[1]4]1]
4hle g value [a|h|b|e|c|d|g|f]

Figure 1: Graph Representations. (a) Graph; (b) Adjacent ma-
trix; (c) COO format; (d) CSR format; (e) CSC format.

of each entry identify the target and source vertex, respectively.
There are three formats for the sparse matrix (Figure 1 (c), (d), (e)):

COO (Coordinate list): edges are stored in three one-dimensional
arrays including tarInd, srcInd, and value. The corresponding en-
tries in tarInd and srcInd mark the coordinate of the non-zero
entry and value is its value.

CSR (Compressed Sparse Row): edges are stored in three one-
dimensional arrays including tarPtr, srcInd, and value. Each entry
in tarPtr encodes the index in srcInd and value where the given
row starts, while srcInd and value encodes the column index and
value of each non-zero entry, respectively.

CSC (Compressed Sparse Column): this is similar to CSR, edges
are stored in three one-dimensional arrays including srcPtr, tarInd,
and value. Each entry in srcPtr encodes the index in tarInd and
value where the given row starts, while tarInd and value encodes
the row index and value of each non-zero entry, respectively.

2.2 GNN Models
Most GNN models follow neighborhood aggregation strategy [22].

Let the input feature vector of vertex v at layer k be hﬁ,k‘l) (In the
first layer, hgo) = xp), the k-th layer of GNN is formulated as

=D _ gz ® (RED) 10 Zage® ([0 pGD
n D =mrp® (nFV) R =a66¢ ({h VRN })

where N (v) is a set of nodes adjacent to vertex o, AGG™ is the
aggregator in layer k. We take GCN [10] and GAT [18] as examples.

GCN. In GCN, each edge can have an initial scalar edge weight
ejj provided by the dataset. The degree of vertex i is defined as
di = ,j eij. And the final edge weight used for aggregation is

ejj

e = ——————— 2
Y i+ 0)(d + 1) @

The aggregator of GCN is as follows:
h = e ®h{ ™, (3)

ueN(v)U{o}

where ® is element-wise multiplication.
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Figure 2: GAS Abstraction. (a) Forward; (b) Backward.
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GAT. GAT generates edge weights as follows:

exp (lReLU ([hl?"‘” ||h§."‘1)]a<’<>))

eij = dropout

Sgen; exp (lReLU ([hg"‘” ||h§1"‘1>]a<k>))
©)
where a®) is a trainable attention vector, || is the concatenate
operator. GAT uses the same rule in Equation (3) for Aggregation.
The GNNs can be trained in two settings: transductive learning
and inductive learning [6]. The former one trains the network
on a fixed graph and generalizing to unseen data is not required.
In inductive learning, in order to generalize to unseen nodes and
graphs, the network is trained on a different graph in each iteration.

2.3 Previous GNN Frameworks

To speedup GNN training on GPU, several frameworks have been
proposed in recent years. As Graph Processing has much less in-
tensive computation and data access compared with the other two
phases, most existing frameworks are developed in a two-phase ab-
straction: Combination-Aggregation. For former one, sgemm kernel
in cuBLAS library is applied as it is efficient enough. For Aggregation
phase, existing frameworks take one of the following abstractions.

Gather-ApplyEdge-Scatter (GAS). GAS takes an unsorted COO
format Graph and traverses all the edges within the edge list. As
shown in Figure 2 (a), for edge (v¢, vs) where v; is the target ver-
tex and v is the source vertex, the feature vector of v is selected
from the input feature matrix. After applying the edge weight, the
result is scattered to the corresponding row v; of the output fea-
ture matrix. The backward pass is illustrated in Figure 2 (b). For
each edge (vs,vs), the gradient on output feature vector of v; is
taken. It goes through the backward pass of the ApplyEdge function,
and scattered to the gradient matrix of input feature matrix. The
Grad ApplyEdge function will also generate the gradient of other
operands in ApplyEdge, e.g., edge weight, if necessary.

PyTorch Geometric (PyG) [3] is basically implemented with the
GAS Model. It first stacks the source feature vectors into an N X m
intermediate feature matrix with indexSelect API in PyTorch, then
runs the ApplyEdge function on the intermediate feature matrix.At
last it uses a self-defined scatter API to generate the output features.
While indexSelect and Scatter are the backward pass of each other,
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Figure 3: GAR Abstraction. (a) Forward; (b) Backward.

the ApplyEdge is defined in PyTorch native functions so that its
backward pass is automatically handled.

Gather-ApplyEdge-Reduce (GAR). In forward pass, GAR works
on the CSR format Graphs where the rows indicate target vertex.
Hence, all the edges with the same target vertex are contiguous in
the edge list. For each target vertex vy, all its incoming edges are
traversed. Figure 3 (a) illustrates the forward pass of GAR model
when v; has two incoming edges. For each incoming edge (v, vs;),
the procedure is similar to GAS model. The only difference is that
instead of scattering the result to output feature matrix, the output
of ApplyEdge is reduced in an on-chip buffer (registers or user-
managed data cache). After all the incoming edges are reduced,
the content of the buffer is written to the output feature matrix in
DRAM. In backward pass, CSC format of the graph is required, so
that all the edges with the same source vertex are contiguous in the
edge list. As illustrated in Figure 3 (b), all the outgoing edges are
traversed. For each edge (vy;,v5), the gradient of vy, is selected, it
goes through the Grad ApplyEdge function, and the result is reduced
to on-chip buffer. Grad ApplyEdge function generates the gradient
of other operands in ApplyEdge just like GAS. At last, the content
in the buffer is written to gradient matrix of input features.

NeuGraph [12] and Deep Graph Library (DGL) [20] choose GAR
model. During forward pass, the source feature vectors are first
stacked to in an N, X m intermediate feature matrix and the Ap-
plyEdge is executed, which is similar to PyG. Because the graph
is stored in CSR format, the Reduce stage just slices continuous
rows in the intermediate feature matrix that share the same target
vertex and do the reduction with a custom CUDA kernel. A similar
procedure is taken for backward pass.

When ApplyEdge is just element-wisely multiplying with edge
weight, the forward pass is further optimized with kernel fusion:
DGL directly uses sparse-dense matrix multiplication under CSR
format, and neuGraph implements a Fused-Gather kernel that fuses
Gather-ApplyEdge-Reduce in a single CUDA kernel. However, these
optimizations don’t support gradient on edge weight.

3 CHARACTERIZING GNNS ON GPU

In this section, we characterize GNN training workload on GPU.
We run the forward and backward pass of a single layer GCN [10]
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Figure 4: Execution time breakdown on V100 GPU.
on single NVIDIA V100 GPU. The input feature dimension is the
native feature length of each dataset, and the output dimension is
chosen from {16, 64, 256} to cover various situations.

Execution Time Breakdown. Figure 4 illustrates the execution
time breakdown of GCN on Cora (CR), Citeseer (CS), and Pubmed
(PB). The detailed information on these datasets is summarized
in Table 1. First, when the dimension is small (e.g. 16), the GPU
is idled for more than 85% of execution time. The reason behind
that is the complex execution flow of GCN (especially in Graph
Processing Phase) invokes handful small kernels. The profiling result
shows that the launching time of each kernel on host (CPU) is even
longer than the execution time on GPU. The GPU idle problem is
less severe with higher hidden dimension (e.g. 256) or on larger
graphs (e.g. Pubmed), as the execution time on Combination and
Aggregation phases increases drastically, and the kernel launching
time can overlap with them.

Data Movement. Here we mainly focus on 3 major kernels in
forward pass of Aggregation phase: indexSelect, elementwise, and
scatterAdd, as the backward pass is symmetric in GCN. We use
Pubmed with hidden dimension 256 as benchmark, which has 88,676
edges, 19,717 vertices, and each feature vector takes 1 KiB.

Table 2: Data Movement ( *: atomic transaction)
Kernel ‘ L2 $ Read ‘ L2 $ Write ‘ DRAM Read ‘ DRAM Write

indexSelect | 90.7 MiB 86.6 MiB 58.2 MiB 86.3 MiB
elementwise | 87.7 MiB 86.6 MiB 87.1 MiB 86.2 MiB
scatterAdd 87.9 MiB 90.77* MiB 142.1 MiB 58.3 MiB

In indexSelect, the kernel stacks the source feature vectors of all
edges into a huge extended feature matrix and writes it back to
DRAM. The indexSelect is executed after the Combination phase,
so at most 6.144 MiB out of 20.2 MiB (30%) of feature vectors can
be cached. As a result, while indexSelect requires 90 MiB data, 2/3
of which will be loaded from DRAM. This matches the total 58.2
MiB read from DRAM in our profiling result. When writing the
extended feature matrix back, 88,676 edges take up 88 MiB DRAM.

In elementwise kernel, the extended feature matrix is loaded to
multiply with the edge weight and written back. The L2 cache fails
due to the long reuse distance, and the cache hit rate is almost 0.

In scatterAdd kernel, the extended feature matrix is loaded again,
then atomically scattered to the corresponding target feature vector.
When a kernel issues an atomic request, the request is transmitted
to a tag look-up unit to check whether the corresponding data
is cached. If it is not cached, then the data will be loaded from
DRAM to L2 cache. Then the atomic command is executed with an
arithmetic logic unit (ALU) residing external to the L2 cache [5].
As a result, for each edge, two feature vectors will be loaded, and
176 MiB data are required. However, as 2/3 of the target feature
vectors can be cached, the final DRAM Read should be 146 MiB,
this also matches the profiling result.

RTICD = i
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Figure 5: Design Overview of fuseGNN. The phases we opti-
mized are marked with green.
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The problem will be more severe on larger graphs. E.g. Reddit has
114,615,892 directed edges, which will consume over 58.7 GB when
feature vector length is 128, not to mention the data movement.

Conclusions. First, in small graphs with short feature vectors,
the kernel launching time has great impact on execution time. Sec-
ondly, in large graphs with long feature vectors, while the kernel
execution time is long enough to overlap with the launching time
(e.g. Pubmed 256), the large intermediate extended feature matrix
results in high volume of data movement, DRAM storage footprint
and low cache hit rate. To solve these problems, dedicated CUDA
kernels are required in which kernel fusion and other optimization
strategies are exploited to reduce the total number of kernels and
explore data reuse opportunities.

4 DESIGN OVERVIEW

Here we provide a brief overview of our design. Different from
previous studies, we use a three-phase abstraction: Combination-
Graph Processing-Aggregation as shown in Figure 5.

Input Graph Format. Compared with CSC and CSR, unsorted
COO format has the lowest cost to construct or modify. So our
framework takes unsorted COO format graphs as input.

Design of Combination. As this stage is identical to a fully-
connected layer that has been fully optimized in mainstream deep
learning frameworks, we just use the primitive class torch.nn.Linear
in PyTorch like previous studies.

Design of Graph Processing. Unlike previous studies, we take
Graph Processing as a stand-alone phase as it has distinct execution
pattern compared with the other two phases. Graph Processing
updates the edge weight of the graph, and convert the COO format
to CSR and CSC format for GAR model. As the edge weights are
updated based on different rules (e.g., Equation (2) for GCN and
Equation (4) for GAT), special CUDA kernels for each algorithm
are developed. We exploit kernel fusion technique to reduce the
total number of invoked kernels and increase on-chip data reuse.
For format conversion, we encapsulate several efficient operations
in cuSPRASE to convenient Python APIs.

Design of Aggregation. The advantage of GAR abstraction
comes from its on-chip reduction that reduces data movement and
eliminates atomic transactions. However, as the input graph is
unsorted COO format, GAR model introduces extra overhead when
converting it to CSR and CSC format. As a result, unlike previous
studies, our fuseGNN provides both GAR and GAS abstractions.
The former one is applied on graphs with high average degree (e.g.
Reddit), and the latter one is used when the average degree is low
(e.g. Cora). The forward and backward pass of both abstractions
are optimized with strategies like kernel-fusion to reduce DRAM
storage footprint as well as redundant data movement.
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5 KERNEL DESIGN

In this section, we present the detailed design of the CUDA kernels
used in fuseGNN along with the key optimization strategies.

5.1 Fused Graph Processing

Kernel fusion is one of the most popular ways of reducing ker-
nel launching time and unnecessary data movement, in which a
sequence of CUDA kernels are fused into a single one, and in-
termediate results can be stored in on-chip registers rather than
written back to DRAM [19]. As different GNN models have distinct
algorithms for Graph Processing phase, different fused kernels are
required for different algorithms. Here we use GAT [17] as an ex-
ample, the Graph Processing of which is shown in Equation (4). We

assume that a'*) € R2™*1 and feature vectors hgk_l) € R™™ are

concatenated at the first dimension to form H (k=1 ¢ RNoXm
We first reshape a® to an m x 2 matrix and compute a(k) =
H*=1 x a%) with dense matrix-matrix multiplication. Then, we

launch a single kernel, in which each thread handles a single edge.
It first computes the attention coefficient with

(B R 1a® = a® o] +a® (j11], )

and store the result in a register. In this way, the original N, inner
products can be reduced to Ny. Then, leaky ReLU and exp are applied
to the attention coefficient, and the result is not only written to
DRAM as the numerator of each edge but also accumulated with
atomicAdd to calculate the denominator of Equation (4). At last, a
second kernel is launched, where each thread still handles an edge
by dividing the numerator and denominator and applying dropout.

Compared with the naive implementation with PyTorch that
has more than a dozen kernels and N, inner products, our new
implementation only takes a much smaller sgemm kernel and two
dedicated fused kernels.

5.2 Parallel Reductions

Two kinds of parallel reductions are used in our Aggregation kernels
to perform reductions of features and gradients in shared memory.

Group reduce m
Data: shared memory: buffere RT, r,m,tID ™M
1 begin m
2 while r > 1 do
3 __syncthreads() m|
4 if tID < m && r%2 == 1 then ml
5 buffer[tID]+ =
buffer[tID+mx (r—1)] m
6 r/=2 m
7 if tID < m X r then m)
8 | buffer[tID]+ = buffer[tID + mr] m

Figure 6: Group Reduce

Group Reduce: For an mXr vector v, each consecutive m entries
form a group, so there are totally r groups. Our target is to reduce
the corresponding entries of each group into the first one: Vi <
m, v[i]+ = Z;;ll v[i+mj]. Figure 6 shows how group reduce works.
When r is even, we perform parallel reduction to halve the number
of groups. Otherwise, we reduce the last group to the first one, until
there is only one left.

Block-wide Reduce: Given vector v € R”, block-wide reduce
calculates }.7_,; v[i]. We follow the implementation in Harris, Mark

Algorithm 1: fused-GAS Forward Kernel

Data: Input & output features: H;p, Hour € RNoxm,
COO Row & Col. Index: tarInd, srcInd € NNe;
Edge weight.: w, € RNe; feature dim.: m € N;
Block size T € N.
begin
tID = thread ID, bID = thread block ID.
if m < T then
stride = |T/m], fId = tID%m
B = | (Ne +stride — 1) /stride]
if tID < m X stride then
for eld = bID X stride + [tID/m] to N,
step B X stride do
t atomicAdd{& Hoyt [tarInd|[eld]][fId],

P R R

H;,[srcindleld]][fId] x we|eld]}

=
e

1 else
12 eld = bld, w = we[eld].

13 for fId = tID tom step T do
14 atomicAdd{&Houtftarlnd[eld]] [fId],
15 Hiyn[srcInd|eld]][fId] x w}

(a) blockSize=16

threads © 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T 1 T T T T T T T T 1

T T
source|0l1lzl;l4lol1lzlsl4lol1lzlzl4l

feature
edge XAOXIXIXIXIXIXTXIXTXIX X XXX
weight [ i | i |6| i | i !m[mlmlMl|~1!1~2[l~z|m[m[nz!

| | |
atomAdd(&tar;) |atomAdd(&tar;, ) atomAdd(&tar;,; )|
(b) 1 1 1

iterationl iteration2

threads © 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 70 1 2 3
T T T T T T T T T T T T T T T 1

|0|1|2|3|4|5|5|7|8|9|10|11|11|13|14|15| |16|17|18|19|
edge X;X;X;X;X;X;X;X;X;X;X;X;X;X;X;X X;X;X;X
weightl‘I'I-I'l'l'l'lél‘l'l'l'l'l'l‘l‘ll‘l‘]@ilil
atomAdd(&tar;) atomAdd(&tar;)
Figure 7: Forward kernel of fused-GAS module. (a): when
feature length m < T; (b) when feature lengthm > T.

source
feature

(2017) [8] in which multiple optimization strategies including loop
unrolling, divergent avoiding are applied.

5.3 fused-GAS Forward and Backward Kernels

Fused-GAS partitions the workload to thread blocks in edge-centric
way. For thread block size T and feature length m, each thread block
handles the GAS of max(|T/m], 1) edges.

Forward Pass. Algorithm 1 shows the forward pass of fused-
GAS model. It takes an Ny X m input feature matrix H;, and a COO
format graph. We set T = 256 to maintain high occupancy.

If feature dimension m is smaller than block size T, as shown
in line 3-10 in Algorithm 1, each thread block will handle stride =
[ T/m] edges simultaneously. The consecutive entries in feature
vector of each edge are handled by consecutive threads. Figure 7
(a) shows a toy example in which T = 16, m = 5. The thread block
works on 3 edges: i, i + 1, and i + 2. Each of the first 15 threads loads
the corresponding entry of source feature and multiplies it with
the edge weight, then accumulates the result of multiplication to
the address that stores the target feature vector with atomicAdd.

Otherwise, as shown in line 11-15 in Algorithm 1, each thread
block only handles a single edge. At beginning, we load the scalar
edge weight and store it in a register for reuse. Each iteration of the
for loop at line 13 processes T consecutive entries of the feature
vectors: it loads the source feature entry in, multiplies it with the
edge weight in the register, and writes it to output target feature
vector with atomicAdd. This process is illustrated in Figure 7 (b).
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Algorithm 2: fused-GAS Backward Kernel

Algorithm 3: fused-GAR Forward Kernel

Data: Output & input gradient: Gpy, Goys € RNO¥™;
Input feature: H;,, € RNoX™;
COO Row & Col. Index: tarInd, srcInd € NNe;
Edge weight.: w, € RVe; Edge weight gradient: g, € R™Ve
feature dim.: m € N; Block size T € N.

1 begin

2 shared buffer[T —1: 0]

3 tID = thread ID, bID = thread block ID, buffer[tID] = 0
4 if m < T then

5 stride = |T/m]

6 B = [ (Ne +stride — 1) /stride], step = stride X B
7 N = [ (Ne — bID X stride + step — 1) /step]

8 fId=tID%m, gld=|tID/m |, eld=bIDxstride+gld
9 for i = bID X stride to N X step + bID X stride
10 step step do

11 __syncthreads()

12 if tID < stride x m && eld < N, then

5 2 = Gout [ tarInd[eld]][f1d]

14 atomicAdd{&Gn [srcInd[eld]][fId], g X w}
15 buffer[gld + fId X stride] =

g X Hip[srcInd|eld]][f1Id]

16 __syncthreads()

17 group reduce(buffer, m, stride)

18 __syncthreads()

19 if tID < stride && i + tID < N, then

20 L geli+tID] =buffer[tID]

21 | buffer[tID] =0, eld+ = stride
22 else

23 eld = bld, w = we|eld]

24 for fId = tID tom step T do

25 g = Gout[tarInd|eld]][fId]

26 atomicAdd{&Gn [srcInd[eld]][fId], g X w}
27 | buffer[tID]+ =g X H;p[srcInd[eld]][f1d]
28 __syncthreads()

29 block-wide reduce(buﬂer)

30 if tID =

31 L 9ge eId] buj_‘fer

ololo @ ( Group Reduce (m=3,r=5) )

Figure 8: Illustration of line 15 & 17 in Algorithm 2

Backward Pass. When the gradient for edge weight is not re-
quired, we can directly use the forward kernel for backward pass
by replacing input H;pn, Hout With Goyt, Gin and switching the
srcInd and tarInd. Otherwise, we use the kernel in Algorithm 2.
Line 9-14 and 24-26 calculate the gradient matrix of input features.
They are basically the same as line 6-9 and 13-14 in Algorithm 1
with changed inputs and different looping way. Line 15-21 and line
27-31 calculates the gradient of each scalar edge weight with three
steps:1) save the gradient contributed by each entry in a buffer
in shared memory (line 15 & 27); 2) do reduction to generate the
gradient of edge weight (line 17 & 29);3) write the result to DRAM
(line 20 & 31).

As | T/m] edges are handled simultaneously when m < T, we
store the gradients in an interleaved fashion (line 15 in Algorithm
2) as shown in Figure 8. Then we calculate the gradient of each edge
weight with group reduce under group size | T/m| and number of
group m. The major benefit brought by the interleaved fashion is
that in step 2) and 3), all the active threads are consecutive, therefore
we can avoid warp divergence (different threads of the same warp
take different branch) [7] to the most extent. When we have m > T,
as the thread block only handles a single edge, we store the gradient

Data: Input & output features: H;p, Hour € RNoxm,
CSR Row Ptr & Col. Index: tarPtr € NNo+! srcInd € NNe;
Edge weight.: w, € R™Ne, Self-loop weight: wg; € RN?;
feature dim.: m € N; Block size T € N; Grid size: B € N.
1 begin

2 tID = thread ID, bID = thread block ID.

3 start = tarPtr[bID], stop = tarPtr[bID + 1]

4 if m < T then

5 shared buffer[T —1: 0]

6

7

8

stride = |T/m], fId = tID%m buffer[tID] =0
for eld = start + [tID/m] to stop step stride do
| buffer[tIDW=H;,[srcInd|eld]]|fId] Xwe leld]

9 group reduce(buffer, min(m, stop — start), m
10 if tID < m then
1 | Hout[bID][fId] = Hi,, [ID][fId] X wep+buffer[tID]
12 else
13 w = wgy [bId]
14 for fId = tID tom step T do
15 buffer= H;, [bID][fId] X w
16 for eld = start to stop step1d
17 | buffer+ = Hip [srcInd[eId]] [fId] X we[eld]
18 Hout [bID][fId] =buffer

contributed by each entry consecutively (line 27 in Algorithm 2)
and do block-wide reduction (line 29 in Algorithm 2).

5.4 fused-GAR Forward and Backward Kernels

Fused-GAR kernel partitions the workload to thread blocks in the
vertex-centric way. Each thread block will handle all the edges with
the same target vertex in forward pass and all the edges with the
same source vertex in backward pass.

Forward Pass. First of all, the thread block identifies the index
to the first and last edge it handles based on tarPtr (line 3). Similar
to the fused-GAS forward kernel, we can process |T/m| edges
simultaneously when m < T (line 4-11).

As all the edges share the same target vertex, we can do on-
chip reduction: consecutive m threads form a thread group, and
the edges are partitioned evenly to the thread groups. Each thread
group processes the edges assigned to it in sequence (loop at line
7). After all the partial results are stored in the buffer in shared
memory, we apply group reduce (line 9) to the buffer under group
size m and number of group | T/m| to get the final output feature
vector. When we have m > T, as all the threads work on the same
edge in each iteration, we just use a single register for each thread
to do reduction (line 12-18).

Backward Pass. Similar to fused-GAS, the forward kernel can be
used for backward when gradient on edge weights are not required.
Otherwise, the same strategy in fused-GAS backward kernel is
applied. Specifically, to generate gradient on edge weight, when
m < T, the gradient contributed by each entry is stored in shared
memory in an interleaved fashion and reduced with group reduce.
Otherwise, the gradient are stored consecutively and reduced with
block-wide reduction. The gradient on input feature vectors is
calculated in the symmetric way of forward pass.

Besides, we fully exploit the data reuse opportunities. In back-
ward pass, as all the edges share the same source vertex, the feature
vector of which will be used to generate the gradient of all the edge
weight. So we cache it at the beginning in registers whenm < T
or shared memory otherwise. Besides, the gradient of the target
vertex is required for both input feature gradient and edge weight
gradient, so it is cached in a register for reuse.
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5.5 Discussion on Kernel Design

Optimization Strategies. First of all, as consecutive threads work
on consecutive entries in feature vectors, and each thread block
handles consecutive edges, the kernels can achieve good DRAM
transaction coalescing and high atomic transaction bandwidth as
they are in the same cache line [15]. Second, the DRAM transac-
tions are further reduced with extensive data reuse. For instance,
as the three stages of Aggregation are fused in the single kernel,
the data that will be used multiple times are cached with shared
memory or registers. Moreover, giving the credit to interleaved
fashion in Figure 8, reduction strategies, as well as the looping
strategy in backward kernels (e.g. line 9 in Algorithm 2), the active
threads are always kept consecutive to avoid warp divergence to
the most extent. Last but not least, multiple edges can be handled
concurrently so that our kernels can maintain high occupancy even
with short feature vectors.

Flexibility vs. Performance. Although fused kernels have much
lower latency and memory footprint, their re-usability are limited.
As aresult, it is impractical to produce libraries consisting of already-
fused kernels [4]. Previous studies solve this problem by following
“Make the Common Case Fast" idea. The “common case" in them
refers to Aggregation phase in which ApplyEdge is element-wise
operation and gradient on edge weight is not required. For example,
models like GCN [10], GIN [22], SGC [21], and GraphSAGE [6]
(except for LSTM aggregator) directly use a scalar edge weight. For
these common cases, neuGraph provides the Fused-Gather kernel
while DGL exploits SpMM in cuSPARSE library [13]. Other uncom-
mon cases are still implemented with simple and re-usable kernels
like PyG.

While “Make the Common Case Fast" strategy is also exploited in
our fuseGNN, the “common case" in our work is relaxed to Aggrega-
tion phase in which ApplyEdge is element-wise operation, because
gradient on edge weight is supported. Therefore, recent models
with complex attention mechanism like GAT [18] and AGNN [17]
treated as uncommon case in previous studies are included into
“common case" in our fuseGNN.

Besides, unlike DGL that uses APIs in closed source library cuS-
PARSE, fused kernels in our Aggregation phase are developed in
neighborhood aggregation fashion [3] so that they can be used as
templates when developing new Aggregation kernels.

6 EVALUATION

In this section, we evaluate the performance of our fuseGNN and
compare it with state-of-the-art studies on a single NVIDIA V100
GPU [9]. The benchmarks are denoted as “Model-Dataset-Hidden".
For “Model", we pick GCN [10] and GAT [18] to cover GNNs with
simple and complex Graph Processing. “Dataset" includes Cora,
Pubmed, and Reddit to cover various scale and average degree.
“Hidden" (output dimension of Combination phase) is chosen from
{16, 64,128, 256,512}. Both transductive learning and inductive
learning are evaluated, where the Graph Processing phase is ex-
ecuted at each iteration or the result is cached in DRAM in the first
execution and reused in later iterations, respectively.

6.1 Latency

As our first motivation is to reduce latency of GNN training, here we
first evaluate the latency of our fuseGNN on several benchmarks.
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Figure 9: Speedup of fused GAR and fused GAS over PyG
under different configurations.
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Figure 10: Latency of fused GAR and fused GAS on Reddit.

GAS v.s. GAR. Figure 9 summarizes the relative end-to-end
speedup over PyG [3] achieved under different configurations. It
shows that the speedup provided by our study is consistent and
significant. On small graphs like Cora, fused GAS could achieve
higher speedup compared with fused GAR abstraction. Figure 10
compares the latency of fused GAR and fused GAS on Reddit. It
shows that fused GAR module is more effective than fused GAS on
graphs with high average degree like Reddit.
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Figure 11: Latency of Aggregation and format conversion

To further justify this, Figure 11 shows the execution time of
aggregation and graph format conversion on different benchmarks.
First, on graphs with short feature vector and low average degree,
fused GAS has lower Aggregation latency, this is because its kernel is
simpler than fused GAR so that fewer registers are used and higher
occupancy can be achieved. On graphs with long feature vectors and
high average degree, fused GAR achieves lower Aggregation latency
which outweighs the additional overhead of format conversion.
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With all these observations, empirically, one should select fused-
GAR for graphs with high average degree and fused-GAS for others.
While a dedicated performance models can be built in future studies,
as our fused-GAS and fused-GAR share the same interface, the user
can just try both of them and pick the better one.

Table 3: Comparison of Training Latency (in millisecond) be-
tween DGL and our implementation.

hidden=16 hidden=64 hidden=512
DGL [ Ours [ DGL [ Ours | DGL | Ours

Dataset | Model

Cora GCN 2.35 1.05 2.37 1.09 2.51 1.10
GAT 7.46 1.65 7.59 1.68 8.07 1.70

Pubmed GCN 2.69 1.07 2.79 1.11 3.61 3.00
GAT | 775 | 172 | 785 | 172 | 1043 | 3.74

Reddi GCN 22.5 29.2 58.9 71.9 452.9 | 6904
eddit | GaT | oom | 1200 | 0OM | 3143 | 0OM | 825.3

Comparison to DGL [20]. We choose single layer GCN and
GAT on Cora, Pubmed, and Reddit under dimension 16, 64, and 512
as benchmarks. The results are summarized in Table 3. For “Ours",
the lower one in the latency of GAR and GAS is taken.

On small datasets like Cora and Pubmed, our implementation con-
sistently achieves much lower latency. The major speedup comes
from kernel-fusion applied to Graph Processing phase. For example,
in Cora-GAT, 52 kernels are invoked in DGL, while our fused-GAS
only launches 24 kernels.

On GCN-Reddit where Aggregation phase becomes the major
bottleneck, DGL has lower latency due to two major reasons. First,
unlike our model, DGL does the COO to CSR/CSC conversion offline,
so that this overhead is not included in their latency. Second, DGL
directly exploits the CSR SpMM kernels in cuSPARSE library [13]
that is optimized by more experienced experts of NVIDIA in SASS.
However, compared with the closed source cuSPARSE library, our
kernel can be easily modified to support new GNN algorithms.

On GAT-Reddit, as gradient on edge weight is not support by the
SpMM implementation, DGL suffers from OOM with hidden=16.
Oppositely, our framework can even support hidden=512.

Comparison to NeuGraph [12]. As the authors haven’t yet
released their code, it is hard to have a thorough comparison across
multiple benchmarks. However, first, the backward kernel for fused-
Gather is not provided, so the high volume memory storage foot-
print and data movement remain unsolved for models like GAT.
Second, their fused-Gather kernel is also less effective compared
with our fused-GAR kernel under certain scenarios. We implement
the fused-Gather kernel based on their description and compare it
on benchmark GCN-Reddit-16. As shown in Table 4, when dimen-
sion is 16, our fused-GAR kernel processes 8 edges simultaneously
to fully exploit the thread block size 128. On the other hand, the
fused-Gather kernel doesn’t involve such design, so only 16 threads
in each thread block are activated. As a result, it has much fewer
active warps per SM which leads to lower thread-level parallelism
and low DRAM Bandwidth [1]. Besides, our fused-GAR reduces the
number of steps to process n edges from O(n) to O([n/r] +logr),
r = |T/m] where T is thread block size and m is the dimension.

Table 4: Comparison on GCN-Reddit-16

Kernel ‘ Latency ‘ Active Warps ‘ Occupancy ‘ DRAM Bandwidth
fused-GAR | 13.6ms | 6313/SM | 98.6% | 327.1 GB/s
fused-Gather[12] | 235ms | 30.28/SM | 473% | 196.1 GB/s
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Figure 12: Peak DRAM usage of the first layer of GCN/GAT
with output dimension 128. The red line marks 16 GB.

Table 5: Data Movement ( *: atomic transactions)

Kernel  [L2$Read | L2$ Write | DRAM Read | DRAM Write
GCN-Pubmed-256

fused-GAS | 925MiB | 90.78"MiB | 107.8MiB | 57.0 MiB
fused-GAR [ 1076 MiB | 193MiB [ 61.6MiB | 20.9 MiB
GCN-Reddit-128
PyG(theoretical) | 178 GiB | 118 + 58" GiB 222 GiB 161 GiB
fused-GAS 59.4 GiB 58.7° GiB 100.9 GiB 50.2 GiB
fused-GAR 555GiB | 113.8 MiB 47.1 GiB 116.4 MiB
6.2 Memory

Here we evaluate the DRAM storage footprint and data movement
reduction with our fuseGNN over existing studies.

Peak DRAM Usage. Figure 12 compares the peak DRAM Usage
of different frameworks with hidden dimension 128. Our fuseGNN
reduces the storage footprint by several orders. In particular, the
peak DRAM usage is reduced by 95X and 26X on GAT-Reddit-128
compared with PyG and DGL, respectively. This makes it possible
to fit all these models in a single V100 GPU.

Data Movement. Table 5 summarizes the data movement in
our fused-GAS/GAS forward kernels under the same benchmark
in Table 2. On GCN-Pubmed-256, the fused-GAS kernel reduces
non-atomic L2 transactions (read and write) by 4.75x and DRAM
transactions by 3.14X. On the other hand, the non-atomic L2 and
DRAM transaction of fused-GAR are reduced by 3.46x and 6.28X,
and the atomic transactions are eliminated. First, transaction related
to the intermediate extended feature vectors are eliminated. Second,
while the L2 cache hit rate of element-wise kernel is around 0%,
our kernels has around 30%, as a larger portion of the input feature
matrix can be cached compared with the huge extended feature
matrix. On GCN-Reddit-128, fused-GAR can reduce the L2 cache
write transaction by more than 1, 500%.

7 CONCLUSIONS

In this paper, we provide a highly optimized extension library for
PyTorch for GNN training on GPU. Attributed to our dual abstrac-
tion design (GAR and GAS) and dedicated CUDA kernels, our work
not only significantly improves the training throughput but also
reduces DRAM storage footprint, which makes it possible to train
GNN on larger graphs without adding more hardware. The designs
can be easily extended to multi-GPU or CPU+GPU scenarios, in
which the graph is partitioned and assigned to each GPU.
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