
fuseGNN: Accelerating Graph Convolutional Neural Network
Training on GPGPU

Zhaodong Chen
University of California, Santa

Barbara
chenzd15thu@ucsb.edu

Mingyu Yan
University of California, Santa

Barbara
yanmingyu@ict.ac.cn

Maohua Zhu
Lei Deng

University of California, Santa
Barbara

maohuazhu@ece.ucsb.edu
leideng@ucsb.edu

Guoqi Li
Tsinghua University

liguoqi@mail.tsinghua.edu.cn

Shuangchen Li
Alibaba Group

shuangchen.li@alibaba-inc.com

Yuan Xie
University of California, Santa

Barbara
yuanxie@ece.ucsb.edu

ABSTRACT
Graph convolutional neural networks (GNN) have achieved state-of-
the-art performance on tasks like node classification. It has become
a new workload family member in data-centers. GNN works on
irregular graph-structured data with three distinct phases: Com-
bination, Graph Processing, and Aggregation. While Combination
phase has been well supported by sgemm kernels in cuBLAS, the
other two phases are still inefficient on GPGPU due to the lack of
optimized CUDA kernels. In particular, Aggregation phase intro-
duces large volume of DRAM storage footprint and data movement,
and both Aggregation and Graph Processing phases suffer from high
kernel launching time. These inefficiencies not only decrease train-
ing throughput but also limit users from training GNNs on larger
graphs on GPGPU. Although these problems have been partially
alleviated by recent studies, their optimizations are still not suffi-
cient. In this paper, we propose fuseGNN, an extension of PyTorch
that provides highly optimized APIs and CUDA kernels for GNN.
First, two different programming abstractions forAggregation phase
are utilized to handle graphs with different average degrees. Sec-
ond, dedicated GPGPU kernels are developed for Aggregation and
Graph Processing in both forward and backward passes, in which
kernel-fusion along with other optimization strategies are applied
to reduce kernel launching time and latency as well as exploit data
reuse opportunities. Evaluation on multiple benchmarks shows
that fuseGNN achieves up to 5.3× end-to-end speedup over state-
of-the-art frameworks, and the DRAM storage footprint is reduced
by several orders of magnitude on large datasets.

1 INTRODUCTION
In recent years, graph convolutional neural networks (GNN) that
operate on graph-structured data have achieved convincing per-
formance on tasks like node and graph classification [10, 23, 24].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8026-3/20/11.
https://doi.org/10.1145/3400302.3415610

Similar to other computation-intensive workloads [2, 16, 25], GNNs
are usually trained on the Graphics Processing Unit (GPU) that has
high programmability and rich computation resources. Therefore,
developing an efficient framework for GNNs on GPU is important.

GNN has three distinct phases: Combination, Graph Processing,
and Aggregation. Combination is usually a single- or multi-layer
perceptron that updates feature vectors of each vertex. Graph Pro-
cessing processes the graph to be used in Aggregation. It usually
involves tasks like computing degree, updating or generating edge
weights, and converting graph between different sparse representa-
tions. The exact execution flow varies in different GNN algorithms.
Aggregation updates each feature vector by aggregating its neighbor
feature vectors with some aggregators like max and sum [11].

WhileCombination phase is well supported by sgemm (Single pre-
cision General Matrix Multiply) kernels in cuBLAS [14], the other
two phases implemented with current APIs in PyTorch or Tensor-
flow are far from efficient. We profile Graph Convolutional Network
(GCN) [10] implemented with PyTorch Geometric (PyG) [3]. The
result shows that on one hand, Aggregation phase introduces high
volume of DRAM storage footprint and data movement. For exam-
ple, dataset Reddit [6] has 114 million edges. With feature-length
128, the intermediate matrix takes up 58 GB, which is impossible
to fit in a single GPU. Besides, over 300 GB data will be read and
written between GPU cores and off-chip memory including 60 GB
atomic transactions. On the other hand, the kernel launching time
could take up to 85% of the whole execution time due to the complex
execution flow. All in all, dedicated GPU kernels and APIs for Graph
Processing and Aggregation in both forward and backward passes
are required to develop an efficient GNN framework on GPU.

In recent years, several studies have been proposed to speedup
Aggregation phase in two aspects. First, the Gather-ApplyEdge-
Scatter (GAS) abstraction used in PyG is replaced with Gather-
ApplyEdge-Reduce (GAR) abstraction to replace atomic reduction
with non-atomic reduction in shared memory or registers. Second,
due to the large variety of GNN algorithms, it is currently impossible
to develop a kernel than optimizes all the GNN models. As a result,
most of these frameworks choose to speedup one common scenario:
the edge weight is scalar and gradient doesn’t flow through the edge
weights (e.g. Graph Convolutional Network (GCN) [10] and Graph

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

Isomorphism Network (GIN) [22]). For instance, neuGraph [12] de-
velops a kernel called Fused-Gather and Deep Graph Library (DGL)
[20] implements the Aggregation phase with sparse matrix-matrix
multiplication (SpMM) supported by cuSPARSE library [13].

However, these optimizations are not sufficient due to following
reasons. First of all, the GAR abstraction requires the Compressed
Sparse Row (CSR) format graph in forward pass and Compressed
Sparse Column (CSC) in backward pass, while GAS abstraction
can work on unsorted Coordinate List (COO) format graphs. On
graphs with low average degree, the execution time saved by using
GAR abstraction in Aggregation is offset by the format conversion
overhead, so GAR is not always the best choice. Second, many
GNN algorithms with attention mechanisms (e.g. Graph Attention
Network [18]) have been proposed. In these algorithms, the edge
weight is calculated based on the feature vector of source and
target vertices as well as some trainable attention parameters. As
a result, the gradient will flow through the edge weight, which is
not supported by previous studies. Last but not least, neglected by
previous studies, we find that accelerating the Graph Processing
phase is critical for accelerating GNN training on small graphs.
With these observations, in this paper, we propose fuseGNN, a
highly-optimized extension of PyTorch for GNNs on GPU. Our key
contributions are summarized below.

• Dual Aggregation Models: in Aggregation phase, we demon-
strate that when considering all overhead, GAS should be ap-
plied to graphs with low average degree and GAR is a better
choice for graphs with higher average degree.

• EfficientCUDAkernels: we develop dedicated CUDAkernels
for Aggregation and Graph Processing phases in both forward
and backward passes, in which multiple optimization strategies
like kernel fusion are applied to reduce kernel launching time
as well as exploit possible data reuse opportunities to reduce
DRAM storage footprint and redundant data movement.

We evaluate our fuseGNN on multiple benchmarks and compare
it with the state-of-the-art frameworks including PyG [3], DGL
[20], and neuGraph [12]. It achieves up to 5.3× end-to-end training
speedup over PyG, and the DRAM storage footprint is reduced by
nearly 500× on Reddit dataset. Our fuseGNN makes it possible to
train GAT on entire Reddit with a single NVIDIA V100 GPU. Our
codes are publicly available at https://github.com/apuaaChen/gcnLib.

2 BACKGROUND AND RELATEDWORK
We first present an overview on the background and related studies
including the graphs, GNN, and existing frameworks for GNNs.

2.1 Graph
A graph G = (V, E) consists of two parts: vertices and edges. Let
𝑁𝑣 and 𝑁𝑒 be the number of vertices and edges, respectively. Each
vertex 𝑣𝑖 ∈ V has a feature vector 𝒙 𝒊 ∈ R1×𝑚 , and the feature
vectors are organized as a feature matrix 𝑿 ∈ R𝑁𝑣×𝑚 . Each edge
(𝑣𝑖 , 𝑣 𝑗) ∈ E can be directed or undirected, and may also have a
feature 𝑒𝑖 𝑗 . Table 1 summarizes four popular datasets for GNN.
The “×2" under “#Edge" suggests that the edge is undirected. As
illustrated in Figure 1 (a)&(b), the edges can be formulated as a
sparse adjacency matrix 𝑨 ∈ R𝑁𝑣×𝑁𝑣 . The row and column index

Table 1: Dataset information

Dataset #Vertex Feature Len. #Edge Avg. Degree
Cora (CR) 2, 708 1, 433 5, 429 × 2 4.0

Citeseer (CS) 3, 327 3, 703 4, 732 × 2 2.8
Pubmed (PB) 19, 717 500 44, 338 × 2 4.5
Reddit (RD) 232, 965 602 114, 615, 892 492

3

1a

dh

g

0
1
2
3
4

0 1 2 3 4

a

h

b

e
c

d

1

g

f
tar

src

3 2 1 1 4 4 4

0 3 4 1 2 0 1 3

0 2 1 4 3 0 1 3
a c b f d h e g

a d f b c h e g

0 0 3 4 5 8

1 4 2 4 3 1 4 1
a h b e c d g f

0 2 4 5 7 8

tarInd
srcInd
value

tarPtr
srcInd
value

srcPtr
tarInd
value

(a)

(b)

(c) COO

(d) CSR

(e) CSC

0

2
4

A

Figure 1: Graph Representations. (a) Graph; (b) Adjacentma-
trix; (c) COO format; (d) CSR format; (e) CSC format.

of each entry identify the target and source vertex, respectively.
There are three formats for the sparse matrix (Figure 1 (c), (d), (e)):

COO (Coordinate list): edges are stored in three one-dimensional
arrays including 𝑡𝑎𝑟𝐼𝑛𝑑 , 𝑠𝑟𝑐𝐼𝑛𝑑 , and 𝑣𝑎𝑙𝑢𝑒 . The corresponding en-
tries in 𝑡𝑎𝑟𝐼𝑛𝑑 and 𝑠𝑟𝑐𝐼𝑛𝑑 mark the coordinate of the non-zero
entry and 𝑣𝑎𝑙𝑢𝑒 is its value.

CSR (Compressed Sparse Row): edges are stored in three one-
dimensional arrays including 𝑡𝑎𝑟𝑃𝑡𝑟 , 𝑠𝑟𝑐𝐼𝑛𝑑 , and 𝑣𝑎𝑙𝑢𝑒 . Each entry
in 𝑡𝑎𝑟𝑃𝑡𝑟 encodes the index in 𝑠𝑟𝑐𝐼𝑛𝑑 and 𝑣𝑎𝑙𝑢𝑒 where the given
row starts, while 𝑠𝑟𝑐𝐼𝑛𝑑 and 𝑣𝑎𝑙𝑢𝑒 encodes the column index and
value of each non-zero entry, respectively.

CSC (Compressed Sparse Column): this is similar to CSR, edges
are stored in three one-dimensional arrays including 𝑠𝑟𝑐𝑃𝑡𝑟 , 𝑡𝑎𝑟𝐼𝑛𝑑 ,
and 𝑣𝑎𝑙𝑢𝑒 . Each entry in 𝑠𝑟𝑐𝑃𝑡𝑟 encodes the index in 𝑡𝑎𝑟𝐼𝑛𝑑 and
𝑣𝑎𝑙𝑢𝑒 where the given row starts, while 𝑡𝑎𝑟𝐼𝑛𝑑 and 𝑣𝑎𝑙𝑢𝑒 encodes
the row index and value of each non-zero entry, respectively.

2.2 GNN Models
Most GNN models follow neighborhood aggregation strategy [22].
Let the input feature vector of vertex 𝑣 at layer 𝑘 be 𝒉(𝑘−1)𝑣 (In the
first layer, 𝒉(0)𝑣 = 𝒙𝑣), the 𝑘-th layer of GNN is formulated as

�
𝒉(𝑘−1)𝑖 =𝑀𝐿𝑃 (𝑘)

(
𝒉(𝑘−1)𝑖

)
,𝒉(𝑘)𝑣 =𝐴𝐺𝐺 (𝑘)

({ �
𝒉(𝑘−1)
𝑢∈N(𝑣) ,

�
𝒉(𝑘−1)𝑣

})
,

(1)
where N(𝑣) is a set of nodes adjacent to vertex 𝑣 , 𝐴𝐺𝐺 (𝑘) is the
aggregator in layer 𝑘 . We take GCN [10] and GAT [18] as examples.

GCN. In GCN, each edge can have an initial scalar edge weight
𝑒𝑖 𝑗 provided by the dataset. The degree of vertex 𝑖 is defined as
𝑑𝑖 =

∑
𝑗 𝑒𝑖 𝑗 . And the final edge weight used for aggregation is

𝑒𝑖 𝑗 =
𝑒𝑖 𝑗√(𝑑𝑖 + 1) (𝑑 𝑗 + 1)

. (2)

The aggregator of GCN is as follows:

𝒉(𝑘)𝑣 =
∑

𝑢∈N(𝑣)∪{𝑣 }
𝑒𝑣𝑢 ⊗ �

𝒉(𝑘−1)𝑢 , (3)

where ⊗ is element-wise multiplication.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

𝒗𝒔

𝒗𝒔ᇱ

ApplyEdge ...

𝒗𝑵𝒗

...

𝒗𝟏

𝒗𝒕...

𝒗𝑵𝒗

𝒗𝒔

...

𝒗𝟏
Select

Scatter

ሺ𝒗𝒕, 𝒗𝒔ሻInput
feature

Output
feature

Grad ApplyEdge ...

𝒗𝑵𝒗

...

𝒗𝟏

𝒗𝒕...

𝒗𝑵𝒗

𝒗𝒔

...

𝒗𝟏

Select

Scatter

ሺ𝒗𝒕, 𝒗𝒔ሻInput
gradient

Output
gradient

𝒗𝒕

𝒗𝒕ᇱ

(a)

(b)

Figure 2: GAS Abstraction. (a) Forward; (b) Backward.

GAT. GAT generates edge weights as follows:

𝑒𝑖 𝑗 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡

©­­­­«

𝑒𝑥𝑝

(
𝑙𝑅𝑒𝐿𝑈

(
[�𝒉(𝑘−1)𝑖 | |�𝒉(𝑘−1)𝑗]𝒂 (𝑘)

))
∑
𝑞∈N𝑖

𝑒𝑥𝑝

(
𝑙𝑅𝑒𝐿𝑈

(
[�𝒉(𝑘−1)𝑖 | |�𝒉(𝑘−1)𝑞]𝒂 (𝑘)

))
ª®®®®¬
,

(4)
where 𝒂 (𝑘) is a trainable attention vector, | | is the concatenate
operator. GAT uses the same rule in Equation (3) for Aggregation.

The GNNs can be trained in two settings: transductive learning
and inductive learning [6]. The former one trains the network
on a fixed graph and generalizing to unseen data is not required.
In inductive learning, in order to generalize to unseen nodes and
graphs, the network is trained on a different graph in each iteration.

2.3 Previous GNN Frameworks
To speedup GNN training on GPU, several frameworks have been
proposed in recent years. As Graph Processing has much less in-
tensive computation and data access compared with the other two
phases, most existing frameworks are developed in a two-phase ab-
straction: Combination-Aggregation. For former one, sgemm kernel
in cuBLAS library is applied as it is efficient enough. ForAggregation
phase, existing frameworks take one of the following abstractions.

Gather-ApplyEdge-Scatter (GAS). GAS takes an unsorted COO
format Graph and traverses all the edges within the edge list. As
shown in Figure 2 (a), for edge (𝑣𝑡 , 𝑣𝑠) where 𝑣𝑡 is the target ver-
tex and 𝑣𝑠 is the source vertex, the feature vector of 𝑣𝑠 is selected
from the input feature matrix. After applying the edge weight, the
result is scattered to the corresponding row 𝑣𝑡 of the output fea-
ture matrix. The backward pass is illustrated in Figure 2 (b). For
each edge (𝑣𝑡 , 𝑣𝑠), the gradient on output feature vector of 𝑣𝑡 is
taken. It goes through the backward pass of the ApplyEdge function,
and scattered to the gradient matrix of input feature matrix. The
Grad ApplyEdge function will also generate the gradient of other
operands in ApplyEdge, e.g., edge weight, if necessary.

PyTorch Geometric (PyG) [3] is basically implemented with the
GAS Model. It first stacks the source feature vectors into an 𝑁𝑒 ×𝑚
intermediate feature matrix with indexSelect API in PyTorch, then
runs the ApplyEdge function on the intermediate feature matrix.At
last it uses a self-defined scatter API to generate the output features.
While indexSelect and Scatter are the backward pass of each other,

𝒗𝑵𝒗

...

𝒗𝟏

...
...

𝒗𝒔𝟐

𝒗𝒕

bu
ff
er

𝒗𝒔𝟏

...
𝒗𝑵𝒗

...

𝒗𝟏

𝒗𝒕

ApplyEdge

ሺ𝒗𝒕, 𝒗𝒔𝟏ሻ
𝒗𝒔𝟏

𝒗𝒔𝟏
ᇱ

ApplyEdge

ሺ𝒗𝒕, 𝒗𝒔𝟐ሻ

Select

Select

𝒗𝒔𝟐
ᇱ

Input
feature

Output
feature

...

𝒗𝑵𝒗

...

𝒗𝟏

𝒗𝒕

Input
gradient

𝒗𝒔

𝒗𝒔𝟐

bu
ff
er

Grad ApplyEdge

ሺ𝒗𝒕𝟏, 𝒗𝒔ሻ

Grad ApplyEdge

ሺ𝒗𝒕𝟐, 𝒗𝒔ሻ

𝒗𝒕𝟏
ᇱ

𝒗𝒕𝟐
ᇱ

𝒗𝒕𝟏

𝒗𝒕𝟐

𝒗𝒔 Output
gradient

𝒗𝑵𝒗

...

𝒗𝟏

...
...

𝒗𝒕𝟏

𝒗𝒕𝟐

Select

Select

(a)

(b)

Figure 3: GAR Abstraction. (a) Forward; (b) Backward.

the ApplyEdge is defined in PyTorch native functions so that its
backward pass is automatically handled.

Gather-ApplyEdge-Reduce (GAR). In forward pass, GARworks
on the CSR format Graphs where the rows indicate target vertex.
Hence, all the edges with the same target vertex are contiguous in
the edge list. For each target vertex 𝑣𝑡 , all its incoming edges are
traversed. Figure 3 (a) illustrates the forward pass of GAR model
when 𝑣𝑡 has two incoming edges. For each incoming edge (𝑣𝑡 , 𝑣𝑠𝑖),
the procedure is similar to GAS model. The only difference is that
instead of scattering the result to output feature matrix, the output
of ApplyEdge is reduced in an on-chip buffer (registers or user-
managed data cache). After all the incoming edges are reduced,
the content of the buffer is written to the output feature matrix in
DRAM. In backward pass, CSC format of the graph is required, so
that all the edges with the same source vertex are contiguous in the
edge list. As illustrated in Figure 3 (b), all the outgoing edges are
traversed. For each edge (𝑣𝑡𝑖 , 𝑣𝑠), the gradient of 𝑣𝑡𝑖 is selected, it
goes through theGrad ApplyEdge function, and the result is reduced
to on-chip buffer. Grad ApplyEdge function generates the gradient
of other operands in ApplyEdge just like GAS. At last, the content
in the buffer is written to gradient matrix of input features.

NeuGraph [12] and Deep Graph Library (DGL) [20] choose GAR
model. During forward pass, the source feature vectors are first
stacked to in an 𝑁𝑒 ×𝑚 intermediate feature matrix and the Ap-
plyEdge is executed, which is similar to PyG. Because the graph
is stored in CSR format, the Reduce stage just slices continuous
rows in the intermediate feature matrix that share the same target
vertex and do the reduction with a custom CUDA kernel. A similar
procedure is taken for backward pass.

When ApplyEdge is just element-wisely multiplying with edge
weight, the forward pass is further optimized with kernel fusion:
DGL directly uses sparse-dense matrix multiplication under CSR
format, and neuGraph implements a Fused-Gather kernel that fuses
Gather-ApplyEdge-Reduce in a single CUDA kernel. However, these
optimizations don’t support gradient on edge weight.

3 CHARACTERIZING GNNS ON GPU
In this section, we characterize GNN training workload on GPU.
We run the forward and backward pass of a single layer GCN [10]

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

0.00

0.25

0.50

0.75

1.00

CR‐16 CR‐64 CR‐256 CS‐16 CS‐64 CS‐256 PB‐16 PB‐64 PB‐256

Ex
ec
ut
io
n
Ti
m
e

sgemm element‐wise scatter indexSelect others idle

Figure 4: Execution time breakdown on V100 GPU.
on single NVIDIA V100 GPU. The input feature dimension is the
native feature length of each dataset, and the output dimension is
chosen from {16, 64, 256} to cover various situations.

ExecutionTimeBreakdown. Figure 4 illustrates the execution
time breakdown of GCN on Cora (CR), Citeseer (CS), and Pubmed
(PB). The detailed information on these datasets is summarized
in Table 1. First, when the dimension is small (e.g. 16), the GPU
is idled for more than 85% of execution time. The reason behind
that is the complex execution flow of GCN (especially in Graph
Processing Phase) invokes handful small kernels. The profiling result
shows that the launching time of each kernel on host (CPU) is even
longer than the execution time on GPU. The GPU idle problem is
less severe with higher hidden dimension (e.g. 256) or on larger
graphs (e.g. Pubmed), as the execution time on Combination and
Aggregation phases increases drastically, and the kernel launching
time can overlap with them.

Data Movement. Here we mainly focus on 3 major kernels in
forward pass of Aggregation phase: indexSelect, elementwise, and
scatterAdd, as the backward pass is symmetric in GCN. We use
Pubmedwith hidden dimension 256 as benchmark, which has 88,676
edges, 19,717 vertices, and each feature vector takes 1 KiB.

Table 2: Data Movement (*: atomic transaction)
Kernel L2 $ Read L2 $ Write DRAM Read DRAMWrite

indexSelect 90.7 MiB 86.6 MiB 58.2 MiB 86.3 MiB
elementwise 87.7 MiB 86.6 MiB 87.1 MiB 86.2 MiB
scatterAdd 87.9 MiB 90.77* MiB 142.1 MiB 58.3 MiB

In indexSelect, the kernel stacks the source feature vectors of all
edges into a huge extended feature matrix and writes it back to
DRAM. The indexSelect is executed after the Combination phase,
so at most 6.144 MiB out of 20.2 MiB (30%) of feature vectors can
be cached. As a result, while indexSelect requires 90 MiB data, 2/3
of which will be loaded from DRAM. This matches the total 58.2
MiB read from DRAM in our profiling result. When writing the
extended feature matrix back, 88,676 edges take up 88 MiB DRAM.

In elementwise kernel, the extended feature matrix is loaded to
multiply with the edge weight and written back. The L2 cache fails
due to the long reuse distance, and the cache hit rate is almost 0.

In scatterAdd kernel, the extended feature matrix is loaded again,
then atomically scattered to the corresponding target feature vector.
When a kernel issues an atomic request, the request is transmitted
to a tag look-up unit to check whether the corresponding data
is cached. If it is not cached, then the data will be loaded from
DRAM to L2 cache. Then the atomic command is executed with an
arithmetic logic unit (ALU) residing external to the L2 cache [5].
As a result, for each edge, two feature vectors will be loaded, and
176 MiB data are required. However, as 2/3 of the target feature
vectors can be cached, the final DRAM Read should be 146 MiB,
this also matches the profiling result.

Combination

COO Fused
Kernels

Graph
Processing

𝒉𝟏
ሺ𝒌ି𝟏ሻ෫

𝒉𝑵𝒗

ሺ𝒌ି𝟏ሻ෫

COO

CSR&CSC

fused‐GAS

bu ff
e r

𝒗𝒔𝟏
ᇱ

ሺ𝒗𝒕, 𝒗𝒔𝟐ሻfused‐GAR

Aggregation

𝒉𝟏
ሺ𝒌ି𝟏ሻ

𝒉𝑵𝒗

ሺ𝒌ି𝟏ሻ

Figure 5: Design Overview of fuseGNN. The phases we opti-
mized are marked with green.

The problemwill be more severe on larger graphs. E.g. Reddit has
114,615,892 directed edges, which will consume over 58.7 GB when
feature vector length is 128, not to mention the data movement.

Conclusions. First, in small graphs with short feature vectors,
the kernel launching time has great impact on execution time. Sec-
ondly, in large graphs with long feature vectors, while the kernel
execution time is long enough to overlap with the launching time
(e.g. Pubmed 256), the large intermediate extended feature matrix
results in high volume of data movement, DRAM storage footprint
and low cache hit rate. To solve these problems, dedicated CUDA
kernels are required in which kernel fusion and other optimization
strategies are exploited to reduce the total number of kernels and
explore data reuse opportunities.

4 DESIGN OVERVIEW
Here we provide a brief overview of our design. Different from
previous studies, we use a three-phase abstraction: Combination-
Graph Processing-Aggregation as shown in Figure 5.

Input Graph Format. Compared with CSC and CSR, unsorted
COO format has the lowest cost to construct or modify. So our
framework takes unsorted COO format graphs as input.

Design of Combination. As this stage is identical to a fully-
connected layer that has been fully optimized in mainstream deep
learning frameworks, we just use the primitive class torch.nn.Linear
in PyTorch like previous studies.

Design of Graph Processing. Unlike previous studies, we take
Graph Processing as a stand-alone phase as it has distinct execution
pattern compared with the other two phases. Graph Processing
updates the edge weight of the graph, and convert the COO format
to CSR and CSC format for GAR model. As the edge weights are
updated based on different rules (e.g., Equation (2) for GCN and
Equation (4) for GAT), special CUDA kernels for each algorithm
are developed. We exploit kernel fusion technique to reduce the
total number of invoked kernels and increase on-chip data reuse.
For format conversion, we encapsulate several efficient operations
in cuSPRASE to convenient Python APIs.

Design of Aggregation. The advantage of GAR abstraction
comes from its on-chip reduction that reduces data movement and
eliminates atomic transactions. However, as the input graph is
unsorted COO format, GAR model introduces extra overhead when
converting it to CSR and CSC format. As a result, unlike previous
studies, our fuseGNN provides both GAR and GAS abstractions.
The former one is applied on graphs with high average degree (e.g.
Reddit), and the latter one is used when the average degree is low
(e.g. Cora). The forward and backward pass of both abstractions
are optimized with strategies like kernel-fusion to reduce DRAM
storage footprint as well as redundant data movement.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

5 KERNEL DESIGN
In this section, we present the detailed design of the CUDA kernels
used in fuseGNN along with the key optimization strategies.

5.1 Fused Graph Processing
Kernel fusion is one of the most popular ways of reducing ker-
nel launching time and unnecessary data movement, in which a
sequence of CUDA kernels are fused into a single one, and in-
termediate results can be stored in on-chip registers rather than
written back to DRAM [19]. As different GNN models have distinct
algorithms for Graph Processing phase, different fused kernels are
required for different algorithms. Here we use GAT [17] as an ex-
ample, the Graph Processing of which is shown in Equation (4). We

assume that 𝒂 (𝑘) ∈ R2𝑚×1 and feature vectors �
𝒉(𝑘−1)𝑖 ∈ R1×𝑚 are

concatenated at the first dimension to form �𝑯 (𝑘−1) ∈ R𝑁𝑣×𝑚 .
We first reshape 𝒂 (𝑘) to an𝑚 × 2 matrix and compute 𝒂 (𝑘) =�𝑯 (𝑘−1) × 𝒂 (𝑘) with dense matrix-matrix multiplication. Then, we

launch a single kernel, in which each thread handles a single edge.
It first computes the attention coefficient with

[�𝒉(𝑘−1)𝒊 | |�𝒉(𝑘−1)𝒋]𝒂 (𝑘) = 𝒂 (𝑘) [𝑖] [0] + 𝒂 (𝑘) [𝑗] [1], (5)

and store the result in a register. In this way, the original 𝑁𝑒 inner
products can be reduced to𝑁𝑣 . Then, leaky ReLU and exp are applied
to the attention coefficient, and the result is not only written to
DRAM as the numerator of each edge but also accumulated with
atomicAdd to calculate the denominator of Equation (4). At last, a
second kernel is launched, where each thread still handles an edge
by dividing the numerator and denominator and applying dropout.

Compared with the naive implementation with PyTorch that
has more than a dozen kernels and 𝑁𝑒 inner products, our new
implementation only takes a much smaller sgemm kernel and two
dedicated fused kernels.

5.2 Parallel Reductions
Two kinds of parallel reductions are used in ourAggregation kernels
to perform reductions of features and gradients in shared memory.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

fuseGNN: Accelerating Graph Convolutional Neural Network Training on GPU Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

assume that 𝒂 (𝑘) ∈ R2𝑚×1 and feature vectors �
𝒉(𝑘−1)𝒊 ∈ R1×𝑚 are

concatenated at the first dimension to form �𝑯 (𝑘−1) ∈ R𝑁𝑣×𝑚 .
We first reshape 𝒂 (𝑘) to𝑚×2 and compute 𝒂 (𝑘) = �𝑯 (𝑘−1) ×𝒂 (𝑘)

with dense matrix-matrix multiplication. Then, we launch a single
kernel, in which each thread handles a single edge. It first computes
the attention coefficient with

[�𝒉(𝑘−1)𝒊 | |�𝒉(𝑘−1)𝒋]𝒂 (𝑘) = 𝒂 (𝑘) [𝑖] [0] + 𝒂 (𝑘) [𝑗] [1], (5)

and store the result in a register. In this way, the original 𝑁𝑒 inner
products can be reduced to𝑁𝑣 . Then, leaky ReLU and exp are applied
to the attention coefficient, and the result is not only written to
DRAM as the fraction of each edge but also accumulated with
atomicAdd to calculate the denominator of Equation (4). At last,
a second kernel is launched, each thread still handles an edge by
dividing the fraction and denominator and applying dropout.

Compared with the naive implementation with PyTorch that
has more than a dozen kernels and 𝑁𝑒 inner products, our new
implementation only takes a much smaller sgemm kernel and two
dedicated fused kernels.

5.2 Parallel Reductions
We first introduce two kinds of parallel reductions that will be used
in our Aggregation kernels to perform reductions of features and
gradients in shared memory.

Group Reduce: Let’s consider an𝑚 × 𝑟 vector 𝒗. Each consecu-

Group reduce

Figure 5: Group Reduce
tive𝑚 entries form a group, so there are totally 𝑟 groups. Our target
is to reduce the corresponding entries of each group into the first
one:

∀𝑖 < 𝑚, 𝒗 [𝑖] =
𝑟−1∑
𝑗=0

𝑣 [𝑖 +𝑚𝑗] (6)

Figure 5 shows how group reduceworks.When 𝑟 is even, we perform
parallel reduction to havlve the number of groups. Otherwise, we
reduce the last group to the first one, until there is only one left.

Block-wide Reduce: Given vector 𝒗 ∈ R𝑟 , block-wide reduce
calculates

∑𝑟
𝑖=1 𝒗 [𝑖]. We follow the implementation in Harris, Mark

(2017) [4] in which multiple optimization strategies including loop
unrolling, divergent avoiding are applied.

5.3 fused-GAS Forward and Backward Kernels
Fused-GAS partitions the workload to thread blocks in edge-centric
way. For thread block size𝑇 and feature length𝑚, each thread block
handles the gather-applyEdge-scatter of𝑚𝑎𝑥 (⌊𝑇 /𝑚⌋, 1) consecu-
tive edges.

Forward Pass. Algorithm 1 shows the forward pass of fused-
GAS model. It takes an 𝑁𝑣 ×𝑚 input feature matrix 𝑯𝒊𝒏 and a COO
format graph. We set 𝑇 = 256 to maintain high occupancy.
Algorithm 1: fused-GAS Forward Kernel
Data: Input & output features: 𝑯𝒊𝒏,𝑯𝒐𝒖𝒕 ∈ R𝑁𝑣×𝑚 ;
COO Row & Col. Index: 𝑡𝑎𝑟𝐼𝑛𝑑, 𝑠𝑟𝑐𝐼𝑛𝑑 ∈ N𝑁𝑒 ;
Edge weight.: 𝒘𝒆 ∈ R𝑁𝑒 ; feature dim.:𝑚 ∈ N;
Block size𝑇 ∈ N.

1 begin
2 𝑡𝐼𝐷 = thread ID, 𝑏𝐼𝐷 = thread block ID.
3 if𝑚 < 𝑇 then
4 𝑠𝑡𝑟𝑖𝑑𝑒 = ⌊𝑇 /𝑚⌋, 𝑓 𝐼𝑑 = 𝑡𝐼𝐷%𝑚
5 𝐵 = ⌊ (𝑁𝑒 + 𝑠𝑡𝑟𝑖𝑑𝑒 − 1)/𝑠𝑡𝑟𝑖𝑑𝑒 ⌋
6 if 𝑡𝐼𝐷 <𝑚 × 𝑠𝑡𝑟𝑖𝑑𝑒 then
7 for 𝑒𝐼𝑑 = 𝑏𝐼𝐷 × 𝑠𝑡𝑟𝑖𝑑𝑒 + ⌊𝑡𝐼𝐷/𝑚⌋ to 𝑁𝑒
8 step 𝐵 × 𝑠𝑡𝑟𝑖𝑑𝑒 do
9 atomicAdd{&𝑯𝒐𝒖𝒕 [𝑡𝑎𝑟𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑],

10 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑] × 𝒘𝒆 [𝑒𝐼𝑑]}

11 else
12 𝑒𝐼𝑑 = 𝑏𝐼𝑑 , 𝑤 = 𝒘𝒆 [𝑒𝐼𝑑].
13 for 𝑓 𝐼𝑑 = 𝑡𝐼𝐷 to𝑚 step𝑇 do
14 atomicAdd{&𝑯𝒐𝒖𝒕 [𝑡𝑎𝑟𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑],
15 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑] × 𝑤}

If feature dimension𝑚 is smaller than block size 𝑇 , as shown
in line 3-10 in Algorithm 1, each thread block will handle 𝑠𝑡𝑟𝑖𝑑𝑒 =
⌊𝑇 /𝑚⌋ edges simultaneously. The consecutive entries in feature
vector of each edge are handled by consecutive threads. Figure 6
(A) shows a toy example in which 𝑇 = 16,𝑚 = 5. The thread block
works on 3 edges: 𝑖 , 𝑖 + 1, and 𝑖 + 2. Each of the first 15 threads loads
the corresponding entry of source feature and multiplies it with
the edge weight, then accumulates the result of multiplication to
the address that store the target feature vector with atomicAdd.

Otherwise, as shown in line 11-15 in Algorithm 1, each thread
block only handles a single edge. At beginning, we load the scalar
edge weight and store it in a register for reuse. Each iteration of the
for loop at line 13 processes 𝑇 consecutive entries of the feature
vectors: it loads the source feature entry in, multiplies it with the
edge weight in the register, and writes it to output target feature
vector with atomicAdd. This process is illustrated in Figure 6 (B).

0 1 2 3 40 1 2 3 4 0 1 2 3 4

5 6 7 8 90 1 2 3 4 10 11 12 13 14

source
feature

15

blockSize=16

i i i i i i+1 i+1 i+1 i+1 i+1 i+2 i+2 i+2 i+2 i+2
edge
weight

ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ

𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ሻ 𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ା𝟏ሻ 𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ା𝟐ሻ

threads

0 1 2 3 4

5 6 7 8 90 1 2 3 4 10 11 12 13 14

source
feature

15

i i i i i
edge
weight

ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ

𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ሻ

threads

5 6 7 8 9 10 11 12 13 14 15

i i i i i i i i i i i

ൈ
16 17 18 19

ൈ ൈ ൈ ൈ

𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ሻ

i i i i

(A)

(B)

0 1 2 3

iteration1 iteration2

Figure 6: Forward kernel of fused-GAS module. (A): when
feature length 𝒎 < 𝑻 ; (B)when feature length 𝒎 ≥ 𝑻 .

Backward Pass. When the gradient for edge weight is not re-
quired, we can directly use the forward kernel for backward pass
by replacing input 𝑯𝒊𝒏,𝑯𝒐𝒖𝒕 with 𝑮𝒐𝒖𝒕 , 𝑮𝒊𝒏 and switching the
𝑠𝑟𝑐𝐼𝑛𝑑 and 𝑡𝑎𝑟𝐼𝑛𝑑 . Otherwise, we use the kernel in Algorithm 2.

2020-04-28 02:18. Page 5 of 1–9.

Figure 6: Group Reduce
GroupReduce: For an𝑚×𝑟 vector 𝒗, each consecutive𝑚 entries

form a group, so there are totally 𝑟 groups. Our target is to reduce
the corresponding entries of each group into the first one: ∀𝑖 <
𝑚, 𝒗 [𝑖]+ =

∑𝑟−1
𝑗=1 𝑣 [𝑖+𝑚𝑗]. Figure 6 shows how group reduce works.

When 𝑟 is even, we perform parallel reduction to halve the number
of groups. Otherwise, we reduce the last group to the first one, until
there is only one left.

Block-wide Reduce: Given vector 𝒗 ∈ R𝑟 , block-wide reduce
calculates

∑𝑟
𝑖=1 𝒗 [𝑖]. We follow the implementation in Harris, Mark

Algorithm 1: fused-GAS Forward Kernel
Data: Input & output features: 𝑯𝒊𝒏,𝑯𝒐𝒖𝒕 ∈ R𝑁𝑣×𝑚 ;
COO Row & Col. Index: 𝑡𝑎𝑟𝐼𝑛𝑑, 𝑠𝑟𝑐𝐼𝑛𝑑 ∈ N𝑁𝑒 ;
Edge weight.: 𝒘𝒆 ∈ R𝑁𝑒 ; feature dim.:𝑚 ∈ N;
Block size𝑇 ∈ N.

1 begin
2 𝑡𝐼𝐷 = thread ID, 𝑏𝐼𝐷 = thread block ID.
3 if𝑚 < 𝑇 then
4 𝑠𝑡𝑟𝑖𝑑𝑒 = ⌊𝑇 /𝑚⌋, 𝑓 𝐼𝑑 = 𝑡𝐼𝐷%𝑚
5 𝐵 = ⌊ (𝑁𝑒 + 𝑠𝑡𝑟𝑖𝑑𝑒 − 1)/𝑠𝑡𝑟𝑖𝑑𝑒 ⌋
6 if 𝑡𝐼𝐷 <𝑚 × 𝑠𝑡𝑟𝑖𝑑𝑒 then
7 for 𝑒𝐼𝑑 = 𝑏𝐼𝐷 × 𝑠𝑡𝑟𝑖𝑑𝑒 + ⌊𝑡𝐼𝐷/𝑚⌋ to 𝑁𝑒
8 step 𝐵 × 𝑠𝑡𝑟𝑖𝑑𝑒 do
9 atomicAdd{&𝑯𝒐𝒖𝒕 [𝑡𝑎𝑟𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑],

10 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑] × 𝒘𝒆 [𝑒𝐼𝑑]}

11 else
12 𝑒𝐼𝑑 = 𝑏𝐼𝑑 , 𝑤 = 𝒘𝒆 [𝑒𝐼𝑑].
13 for 𝑓 𝐼𝑑 = 𝑡𝐼𝐷 to𝑚 step𝑇 do
14 atomicAdd{&𝑯𝒐𝒖𝒕 [𝑡𝑎𝑟𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑],
15 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑] × 𝑤}

0 1 2 3 40 1 2 3 4 0 1 2 3 4

5 6 7 8 90 1 2 3 4 10 11 12 13 14

source
feature

15

blockSize=16

i i i i i i+1 i+1 i+1 i+1 i+1 i+2 i+2 i+2 i+2 i+2
edge
weight

ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ

𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ሻ 𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ା𝟏ሻ 𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ା𝟐ሻ

threads

0 1 2 3 4

5 6 7 8 90 1 2 3 4 10 11 12 13 14

source
feature

15

i i i i i
edge
weight

ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ ൈ

𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ሻ

threads

5 6 7 8 9 10 11 12 13 14 15

i i i i i i i i i i i

ൈ
16 17 18 19

ൈ ൈ ൈ ൈ

𝐚𝐭𝐨𝐦𝐀𝐝𝐝ሺ&𝐭𝐚𝐫𝐢ሻ

i i i i

(a)

(b)

0 1 2 3

iteration1 iteration2

Figure 7: Forward kernel of fused-GAS module. (a): when
feature length 𝒎 < 𝑻 ; (b) when feature length 𝒎 ≥ 𝑻 .
(2017) [8] in which multiple optimization strategies including loop
unrolling, divergent avoiding are applied.

5.3 fused-GAS Forward and Backward Kernels
Fused-GAS partitions the workload to thread blocks in edge-centric
way. For thread block size𝑇 and feature length𝑚, each thread block
handles the GAS of𝑚𝑎𝑥 (⌊𝑇 /𝑚⌋, 1) edges.

Forward Pass. Algorithm 1 shows the forward pass of fused-
GAS model. It takes an 𝑁𝑣 ×𝑚 input feature matrix 𝑯𝒊𝒏 and a COO
format graph. We set 𝑇 = 256 to maintain high occupancy.

If feature dimension𝑚 is smaller than block size 𝑇 , as shown
in line 3-10 in Algorithm 1, each thread block will handle 𝑠𝑡𝑟𝑖𝑑𝑒 =
⌊𝑇 /𝑚⌋ edges simultaneously. The consecutive entries in feature
vector of each edge are handled by consecutive threads. Figure 7
(a) shows a toy example in which 𝑇 = 16,𝑚 = 5. The thread block
works on 3 edges: 𝑖 , 𝑖 + 1, and 𝑖 + 2. Each of the first 15 threads loads
the corresponding entry of source feature and multiplies it with
the edge weight, then accumulates the result of multiplication to
the address that stores the target feature vector with atomicAdd.

Otherwise, as shown in line 11-15 in Algorithm 1, each thread
block only handles a single edge. At beginning, we load the scalar
edge weight and store it in a register for reuse. Each iteration of the
for loop at line 13 processes 𝑇 consecutive entries of the feature
vectors: it loads the source feature entry in, multiplies it with the
edge weight in the register, and writes it to output target feature
vector with atomicAdd. This process is illustrated in Figure 7 (b).

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: fused-GAS Backward Kernel
Data: Output & input gradient: 𝑮𝒊𝒏,𝑮𝒐𝒖𝒕 ∈ R𝑁𝑣×𝑚 ;
Input feature: 𝑯𝒊𝒏 ∈ R𝑁𝑣×𝑚 ;
COO Row & Col. Index: 𝑡𝑎𝑟𝐼𝑛𝑑, 𝑠𝑟𝑐𝐼𝑛𝑑 ∈ N𝑁𝑒 ;
Edge weight.: 𝒘𝒆 ∈ R𝑁𝑒 ; Edge weight gradient: 𝒈𝒆 ∈ R𝑁𝑒

feature dim.:𝑚 ∈ N; Block size𝑇 ∈ N.
1 begin
2 shared buffer [𝑇 − 1 : 0]
3 𝑡𝐼𝐷 = thread ID, 𝑏𝐼𝐷 = thread block ID, buffer [𝑡𝐼𝐷] = 0
4 if𝑚 < 𝑇 then
5 𝑠𝑡𝑟𝑖𝑑𝑒 = ⌊𝑇 /𝑚⌋
6 𝐵 = ⌊ (𝑁𝑒 + 𝑠𝑡𝑟𝑖𝑑𝑒 − 1)/𝑠𝑡𝑟𝑖𝑑𝑒 ⌋, 𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑟𝑖𝑑𝑒 × 𝐵
7 𝑁𝑠 = ⌊ (𝑁𝑒 − 𝑏𝐼𝐷 × 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑠𝑡𝑒𝑝 − 1)/𝑠𝑡𝑒𝑝 ⌋
8 𝑓 𝐼𝑑 =𝑡𝐼𝐷%𝑚, 𝑔𝐼𝑑 = ⌊𝑡𝐼𝐷/𝑚⌋, 𝑒𝐼𝑑 =𝑏𝐼𝐷×𝑠𝑡𝑟𝑖𝑑𝑒+𝑔𝐼𝑑
9 for 𝑖 = 𝑏𝐼𝐷 × 𝑠𝑡𝑟𝑖𝑑𝑒 to 𝑁𝑠 × 𝑠𝑡𝑒𝑝 + 𝑏𝐼𝐷 × 𝑠𝑡𝑟𝑖𝑑𝑒

10 step 𝑠𝑡𝑒𝑝 do
11 __syncthreads()
12 if 𝑡𝐼𝐷 < 𝑠𝑡𝑟𝑖𝑑𝑒 ×𝑚 && 𝑒𝐼𝑑 < 𝑁𝑒 then
13 𝑔 = 𝑮𝒐𝒖𝒕 [𝑡𝑎𝑟𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑]
14 atomicAdd{&𝑮𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑], 𝑔 × 𝑤 }
15 buffer [𝑔𝐼𝑑 + 𝑓 𝐼𝑑 × 𝑠𝑡𝑟𝑖𝑑𝑒] =

𝑔 × 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑]
16 __syncthreads()
17 group reduce(buffer,𝑚, 𝑠𝑡𝑟𝑖𝑑𝑒)
18 __syncthreads()
19 if 𝑡𝐼𝐷 < 𝑠𝑡𝑟𝑖𝑑𝑒 && 𝑖 + 𝑡𝐼𝐷 < 𝑁𝑒 then
20 𝒈𝒆 [𝑖 + 𝑡𝐼𝐷] =buffer [𝑡𝐼𝐷]
21 buffer [𝑡𝐼𝐷] = 0, 𝑒𝐼𝑑+ = 𝑠𝑡𝑟𝑖𝑑𝑒

22 else
23 𝑒𝐼𝑑 = 𝑏𝐼𝑑 , 𝑤 = 𝒘𝒆 [𝑒𝐼𝑑]
24 for 𝑓 𝐼𝑑 = 𝑡𝐼𝐷 to𝑚 step𝑇 do
25 𝑔 = 𝑮𝒐𝒖𝒕 [𝑡𝑎𝑟𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑]
26 atomicAdd{&𝑮𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑], 𝑔 × 𝑤 }
27 buffer [𝑡𝐼𝐷]+ = 𝑔 × 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑]
28 __syncthreads()
29 block-wide reduce(buffer)
30 if 𝑡𝐼𝐷 == 0 then
31 𝒈𝒆 [𝑒𝐼𝑑] =buffer [0]

00 0 Group Reduce (m=3, r=5)

0 1 2 3 40 1 2 3 40 1 2 3 4

0 1 2 3 40 1 2 3 4 0 1 2 3 4

buffer

Figure 8: Illustration of line 15 & 17 in Algorithm 2
Backward Pass. When the gradient for edge weight is not re-

quired, we can directly use the forward kernel for backward pass
by replacing input 𝑯𝒊𝒏,𝑯𝒐𝒖𝒕 with 𝑮𝒐𝒖𝒕 , 𝑮𝒊𝒏 and switching the
𝑠𝑟𝑐𝐼𝑛𝑑 and 𝑡𝑎𝑟𝐼𝑛𝑑 . Otherwise, we use the kernel in Algorithm 2.
Line 9-14 and 24-26 calculate the gradient matrix of input features.
They are basically the same as line 6-9 and 13-14 in Algorithm 1
with changed inputs and different looping way. Line 15-21 and line
27-31 calculates the gradient of each scalar edge weight with three
steps:1) save the gradient contributed by each entry in a buffer
in shared memory (line 15 & 27); 2) do reduction to generate the
gradient of edge weight (line 17 & 29);3) write the result to DRAM
(line 20 & 31).

As ⌊𝑇 /𝑚⌋ edges are handled simultaneously when𝑚 < 𝑇 , we
store the gradients in an interleaved fashion (line 15 in Algorithm
2) as shown in Figure 8. Then we calculate the gradient of each edge
weight with group reduce under group size ⌊𝑇 /𝑚⌋ and number of
group𝑚. The major benefit brought by the interleaved fashion is
that in step 2) and 3), all the active threads are consecutive, therefore
we can avoid warp divergence (different threads of the same warp
take different branch) [7] to the most extent. When we have𝑚 ≥ 𝑇 ,
as the thread block only handles a single edge, we store the gradient

Algorithm 3: fused-GAR Forward Kernel
Data: Input & output features: 𝑯𝒊𝒏,𝑯𝒐𝒖𝒕 ∈ R𝑁𝑣×𝑚 ;
CSR Row Ptr & Col. Index: 𝑡𝑎𝑟𝑃𝑡𝑟 ∈ N𝑁𝑣+1, 𝑠𝑟𝑐𝐼𝑛𝑑 ∈ N𝑁𝑒 ;
Edge weight.: 𝒘𝒆 ∈ R𝑁𝑒 , Self-loop weight: 𝒘𝒔𝒍 ∈ R𝑁𝑣 ;
feature dim.:𝑚 ∈ N; Block size𝑇 ∈ N; Grid size: 𝐵 ∈ N.

1 begin
2 𝑡𝐼𝐷 = thread ID, 𝑏𝐼𝐷 = thread block ID.
3 𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑎𝑟𝑃𝑡𝑟 [𝑏𝐼𝐷], 𝑠𝑡𝑜𝑝 = 𝑡𝑎𝑟𝑃𝑡𝑟 [𝑏𝐼𝐷 + 1]
4 if𝑚 < 𝑇 then
5 shared buffer [𝑇 − 1 : 0]
6 𝑠𝑡𝑟𝑖𝑑𝑒 = ⌊𝑇 /𝑚⌋, 𝑓 𝐼𝑑 = 𝑡𝐼𝐷%𝑚, buffer [𝑡𝐼𝐷] = 0
7 for 𝑒𝐼𝑑 = 𝑠𝑡𝑎𝑟𝑡 + ⌊𝑡𝐼𝐷/𝑚⌋ to 𝑠𝑡𝑜𝑝 step 𝑠𝑡𝑟𝑖𝑑𝑒 do
8 buffer [𝑡𝐼𝐷]+=𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑]×𝒘𝒆 [𝑒𝐼𝑑]
9 group reduce(buffer,𝑚𝑖𝑛 (𝑚,𝑠𝑡𝑜𝑝 − 𝑠𝑡𝑎𝑟𝑡) , m)

10 if 𝑡𝐼𝐷 <𝑚 then
11 𝑯𝒐𝒖𝒕 [𝑏𝐼𝐷] [𝑓 𝐼𝑑] = 𝑯𝒊𝒏 [𝑏𝐼𝐷] [𝑓 𝐼𝑑] × 𝒘𝒔𝒍+buffer [𝑡𝐼𝐷]
12 else
13 𝑤 = 𝒘𝒔𝒍 [𝑏𝐼𝑑]
14 for 𝑓 𝐼𝑑 = 𝑡𝐼𝐷 to𝑚 step𝑇 do
15 buffer= 𝑯𝒊𝒏 [𝑏𝐼𝐷] [𝑓 𝐼𝑑] × 𝑤
16 for 𝑒𝐼𝑑 = 𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑡𝑜𝑝 step 1 do
17 buffer+ = 𝑯𝒊𝒏 [𝑠𝑟𝑐𝐼𝑛𝑑 [𝑒𝐼𝑑]] [𝑓 𝐼𝑑] × 𝒘𝒆 [𝑒𝐼𝑑]
18 𝑯𝒐𝒖𝒕 [𝑏𝐼𝐷] [𝑓 𝐼𝑑] =buffer

contributed by each entry consecutively (line 27 in Algorithm 2)
and do block-wide reduction (line 29 in Algorithm 2).

5.4 fused-GAR Forward and Backward Kernels
Fused-GAR kernel partitions the workload to thread blocks in the
vertex-centric way. Each thread block will handle all the edges with
the same target vertex in forward pass and all the edges with the
same source vertex in backward pass.

Forward Pass. First of all, the thread block identifies the index
to the first and last edge it handles based on 𝑡𝑎𝑟𝑃𝑡𝑟 (line 3). Similar
to the fused-GAS forward kernel, we can process ⌊𝑇 /𝑚⌋ edges
simultaneously when𝑚 < 𝑇 (line 4-11).

As all the edges share the same target vertex, we can do on-
chip reduction: consecutive𝑚 threads form a thread group, and
the edges are partitioned evenly to the thread groups. Each thread
group processes the edges assigned to it in sequence (loop at line
7). After all the partial results are stored in the buffer in shared
memory, we apply group reduce (line 9) to the buffer under group
size𝑚 and number of group ⌊𝑇 /𝑚⌋ to get the final output feature
vector. When we have𝑚 ≥ 𝑇 , as all the threads work on the same
edge in each iteration, we just use a single register for each thread
to do reduction (line 12-18).

Backward Pass. Similar to fused-GAS, the forward kernel can be
used for backward when gradient on edge weights are not required.
Otherwise, the same strategy in fused-GAS backward kernel is
applied. Specifically, to generate gradient on edge weight, when
𝑚 < 𝑇 , the gradient contributed by each entry is stored in shared
memory in an interleaved fashion and reduced with group reduce.
Otherwise, the gradient are stored consecutively and reduced with
block-wide reduction. The gradient on input feature vectors is
calculated in the symmetric way of forward pass.

Besides, we fully exploit the data reuse opportunities. In back-
ward pass, as all the edges share the same source vertex, the feature
vector of which will be used to generate the gradient of all the edge
weight. So we cache it at the beginning in registers when𝑚 < 𝑇
or shared memory otherwise. Besides, the gradient of the target
vertex is required for both input feature gradient and edge weight
gradient, so it is cached in a register for reuse.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

5.5 Discussion on Kernel Design
Optimization Strategies. First of all, as consecutive threads work
on consecutive entries in feature vectors, and each thread block
handles consecutive edges, the kernels can achieve good DRAM
transaction coalescing and high atomic transaction bandwidth as
they are in the same cache line [15]. Second, the DRAM transac-
tions are further reduced with extensive data reuse. For instance,
as the three stages of Aggregation are fused in the single kernel,
the data that will be used multiple times are cached with shared
memory or registers. Moreover, giving the credit to interleaved
fashion in Figure 8, reduction strategies, as well as the looping
strategy in backward kernels (e.g. line 9 in Algorithm 2), the active
threads are always kept consecutive to avoid warp divergence to
the most extent. Last but not least, multiple edges can be handled
concurrently so that our kernels can maintain high occupancy even
with short feature vectors.

Flexibility vs. Performance. Although fused kernels havemuch
lower latency and memory footprint, their re-usability are limited.
As a result, it is impractical to produce libraries consisting of already-
fused kernels [4]. Previous studies solve this problem by following
“Make the Common Case Fast" idea. The “common case" in them
refers to Aggregation phase in which ApplyEdge is element-wise
operation and gradient on edge weight is not required. For example,
models like GCN [10], GIN [22], SGC [21], and GraphSAGE [6]
(except for LSTM aggregator) directly use a scalar edge weight. For
these common cases, neuGraph provides the Fused-Gather kernel
while DGL exploits SpMM in cuSPARSE library [13]. Other uncom-
mon cases are still implemented with simple and re-usable kernels
like PyG.

While “Make the Common Case Fast" strategy is also exploited in
our fuseGNN, the “common case" in our work is relaxed to Aggrega-
tion phase in which ApplyEdge is element-wise operation, because
gradient on edge weight is supported. Therefore, recent models
with complex attention mechanism like GAT [18] and AGNN [17]
treated as uncommon case in previous studies are included into
“common case" in our fuseGNN.

Besides, unlike DGL that uses APIs in closed source library cuS-
PARSE, fused kernels in our Aggregation phase are developed in
neighborhood aggregation fashion [3] so that they can be used as
templates when developing new Aggregation kernels.

6 EVALUATION
In this section, we evaluate the performance of our fuseGNN and
compare it with state-of-the-art studies on a single NVIDIA V100
GPU [9]. The benchmarks are denoted as “Model-Dataset-Hidden".
For “Model", we pick GCN [10] and GAT [18] to cover GNNs with
simple and complex Graph Processing. “Dataset" includes Cora,
Pubmed, and Reddit to cover various scale and average degree.
“Hidden" (output dimension of Combination phase) is chosen from
{16, 64, 128, 256, 512}. Both transductive learning and inductive
learning are evaluated, where the Graph Processing phase is ex-
ecuted at each iteration or the result is cached in DRAM in the first
execution and reused in later iterations, respectively.

6.1 Latency
As our first motivation is to reduce latency of GNN training, here we
first evaluate the latency of our fuseGNN on several benchmarks.

0

1

2

3

Sp
ee

du
p

GCN fused GAR fused GAS

0

2

4

16 64 12
8

25
6

51
2 16 64 12
8

25
6

51
2 16 64 12
8

25
6

51
2 16 64 12
8

25
6

51
2

Inductive Transductive Inductive Transductive

Cora Pubmed

Sp
ee

du
p

GAT

Figure 9: Speedup of fused GAR and fused GAS over PyG
under different configurations.

0
500

1000
1500
2000
2500

16 64 12
8

25
6

51
2 16 64 12
8

25
6

51
2 16 64 12
8

25
6

51
2 16 64 12
8

25
6

51
2

Inductive Transductive Inductive Transductive

GCN GAT

Ex
ec
ut
io
n
Ti
m
e(
m
s)

fused GAR fused GAS

Figure 10: Latency of fused GAR and fused GAS on Reddit.
GAS v.s. GAR. Figure 9 summarizes the relative end-to-end

speedup over PyG [3] achieved under different configurations. It
shows that the speedup provided by our study is consistent and
significant. On small graphs like Cora, fused GAS could achieve
higher speedup compared with fused GAR abstraction. Figure 10
compares the latency of fused GAR and fused GAS on Reddit. It
shows that fused GAR module is more effective than fused GAS on
graphs with high average degree like Reddit.

Dataset Hidden Model Aggregation Format
GAR 0.0234 0.346
GAS 0.006154 0
GAR 0.051 0.346
GAS 0.014469 0
GAR 0.150251 0.346
GAS 0.049193 0
GAR 0.073504 0.4468
GAS 0.027105 0
GAR 0.130449 0.4468
GAS 0.115778 0
GAR 0.423064 0.4468
GAS 0.553721 0
GAR 29.06 289.8377
GAS 72.48 0
GAR 69.655 289.8377
GAS 201.98 0
GAR 324.36 289.8377
GAS 941.03 0

Reddit

16

64

256

16

64

256

Cora

Pubmed

16

64

256

0

0.3

0.6

0.9

G
AR G
AS

G
AR G
AS

G
AR G
AS

G
AR G
AS

G
AR G
AS

G
AR G
AS

16 64 256 16 64 256

Cora Pubmed

Ex
ec
ut
io
n
Ti
m
e
(m

s) Aggregation COO to CSR/CSC

0

300

600

900

G
AR G
AS

G
AR G
AS

G
AR G
AS

16 64 256

Reddit

Figure 11: Latency of Aggregation and format conversion

To further justify this, Figure 11 shows the execution time of
aggregation and graph format conversion on different benchmarks.
First, on graphs with short feature vector and low average degree,
fused GAS has lowerAggregation latency, this is because its kernel is
simpler than fused GAR so that fewer registers are used and higher
occupancy can be achieved. On graphswith long feature vectors and
high average degree, fused GAR achieves lower Aggregation latency
which outweighs the additional overhead of format conversion.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

With all these observations, empirically, one should select fused-
GAR for graphs with high average degree and fused-GAS for others.
While a dedicated performance models can be built in future studies,
as our fused-GAS and fused-GAR share the same interface, the user
can just try both of them and pick the better one.

Table 3: Comparison of Training Latency (inmillisecond) be-
tween DGL and our implementation.

Dataset Model hidden=16 hidden=64 hidden=512
DGL Ours DGL Ours DGL Ours

Cora GCN 2.35 1.05 2.37 1.09 2.51 1.10
GAT 7.46 1.65 7.59 1.68 8.07 1.70

Pubmed GCN 2.69 1.07 2.79 1.11 3.61 3.00
GAT 7.75 1.72 7.85 1.72 10.43 3.74

Reddit GCN 22.5 29.2 58.9 71.9 452.9 690.4
GAT OOM 120.0 OOM 314.3 OOM 825.3

Comparison to DGL [20]. We choose single layer GCN and
GAT on Cora, Pubmed, and Reddit under dimension 16, 64, and 512
as benchmarks. The results are summarized in Table 3. For “Ours",
the lower one in the latency of GAR and GAS is taken.

On small datasets like Cora and Pubmed, our implementation con-
sistently achieves much lower latency. The major speedup comes
from kernel-fusion applied to Graph Processing phase. For example,
in Cora-GAT, 52 kernels are invoked in DGL, while our fused-GAS
only launches 24 kernels.

On GCN-Reddit where Aggregation phase becomes the major
bottleneck, DGL has lower latency due to two major reasons. First,
unlike ourmodel,DGL does the COO to CSR/CSC conversion offline,
so that this overhead is not included in their latency. Second, DGL
directly exploits the CSR SpMM kernels in cuSPARSE library [13]
that is optimized by more experienced experts of NVIDIA in SASS.
However, compared with the closed source cuSPARSE library, our
kernel can be easily modified to support new GNN algorithms.

On GAT-Reddit, as gradient on edge weight is not support by the
SpMM implementation, DGL suffers from OOM with hidden=16.
Oppositely, our framework can even support hidden=512.

Comparison to NeuGraph [12]. As the authors haven’t yet
released their code, it is hard to have a thorough comparison across
multiple benchmarks. However, first, the backward kernel for fused-
Gather is not provided, so the high volume memory storage foot-
print and data movement remain unsolved for models like GAT.
Second, their fused-Gather kernel is also less effective compared
with our fused-GAR kernel under certain scenarios. We implement
the fused-Gather kernel based on their description and compare it
on benchmark GCN-Reddit-16. As shown in Table 4, when dimen-
sion is 16, our fused-GAR kernel processes 8 edges simultaneously
to fully exploit the thread block size 128. On the other hand, the
fused-Gather kernel doesn’t involve such design, so only 16 threads
in each thread block are activated. As a result, it has much fewer
active warps per SM which leads to lower thread-level parallelism
and low DRAM Bandwidth [1]. Besides, our fused-GAR reduces the
number of steps to process 𝑛 edges from 𝑂 (𝑛) to 𝑂 (⌈𝑛/𝑟⌉ + log 𝑟),
𝑟 = ⌊𝑇 /𝑚⌋ where 𝑇 is thread block size and𝑚 is the dimension.

Table 4: Comparison on GCN-Reddit-16
Kernel Latency Active Warps Occupancy DRAM Bandwidth

fused-GAR 13.6 ms 63.13 / SM 98.6% 327.1 GB/s
fused-Gather[12] 23.5 ms 30.28 / SM 47.3% 196.1 GB/s

1.00E+00

1.00E+02

1.00E+04

1.00E+06

Cora Pubmed Reddit Cora Pubmed Reddit

GCN GAT

Pe
ak
 D
RA

M
 U
sa
ge

(M
B)

PyG DGL fused‐GAS (ours) fused‐GAR (ours)

Figure 12: Peak DRAM usage of the first layer of GCN/GAT
with output dimension 128. The red line marks 16 GB.

Table 5: Data Movement (*: atomic transactions)
Kernel L2 $ Read L2 $ Write DRAM Read DRAMWrite

GCN-Pubmed-256
fused-GAS 92.5 MiB 90.78* MiB 107.8 MiB 57.0 MiB
fused-GAR 107.6 MiB 19.3 MiB 61.6 MiB 20.9 MiB

GCN-Reddit-128
PyG(theoretical) 178 GiB 118 + 58* GiB 222 GiB 161 GiB

fused-GAS 59.4 GiB 58.7* GiB 100.9 GiB 50.2 GiB
fused-GAR 55.5 GiB 113.8 MiB 47.1 GiB 116.4 MiB

6.2 Memory
Here we evaluate the DRAM storage footprint and data movement
reduction with our fuseGNN over existing studies.

Peak DRAMUsage. Figure 12 compares the peak DRAMUsage
of different frameworks with hidden dimension 128. Our fuseGNN
reduces the storage footprint by several orders. In particular, the
peak DRAM usage is reduced by 95× and 26× on GAT-Reddit-128
compared with PyG and DGL, respectively. This makes it possible
to fit all these models in a single V100 GPU.

Data Movement. Table 5 summarizes the data movement in
our fused-GAS/GAS forward kernels under the same benchmark
in Table 2. On GCN-Pubmed-256, the fused-GAS kernel reduces
non-atomic L2 transactions (read and write) by 4.75× and DRAM
transactions by 3.14×. On the other hand, the non-atomic L2 and
DRAM transaction of fused-GAR are reduced by 3.46× and 6.28×,
and the atomic transactions are eliminated. First, transaction related
to the intermediate extended feature vectors are eliminated. Second,
while the L2 cache hit rate of element-wise kernel is around 0%,
our kernels has around 30%, as a larger portion of the input feature
matrix can be cached compared with the huge extended feature
matrix. On GCN-Reddit-128, fused-GAR can reduce the L2 cache
write transaction by more than 1, 500×.

7 CONCLUSIONS
In this paper, we provide a highly optimized extension library for
PyTorch for GNN training on GPU. Attributed to our dual abstrac-
tion design (GAR and GAS) and dedicated CUDA kernels, our work
not only significantly improves the training throughput but also
reduces DRAM storage footprint, which makes it possible to train
GNN on larger graphs without adding more hardware. The designs
can be easily extended to multi-GPU or CPU+GPU scenarios, in
which the graph is partitioned and assigned to each GPU.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation
(Grant No. 1817037, 1725447, and 1730309).

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] C CUDA. [n.d.]. Best Practices Guide-CUDA Toolkit Documentation.
[2] Yangdong Deng, Bo David Wang, and Shuai Mu. 2009. Taming irregular EDA

applications on GPUs. In Proceedings of the 2009 International Conference on
Computer-Aided Design. 539–546.

[3] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[4] Jiří Filipovič, Matúš Madzin, Jan Fousek, and Luděk Matyska. 2015. Optimizing
CUDA code by kernel fusion: application on BLAS. The Journal of Supercomputing
71, 10 (2015), 3934–3957.

[5] David B Glasco, Peter B Holmqvist, George R Lynch, Patrick R Marchand, Karan
Mehra, and James Roberts. 2012. Cache-based control of atomic operations in
conjunction with an external ALU block. US Patent 8,135,926.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[7] Tianyi David Han and Tarek S Abdelrahman. 2013. Reducing divergence in
GPGPU programs with loop merging. In Proceedings of the 6th Workshop on
General Purpose Processor Using Graphics Processing Units. 12–23.

[8] Mark Harris et al. 2007. Optimizing parallel reduction in CUDA. Nvidia developer
technology 2, 4 (2007), 70.

[9] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-
secting the nvidia volta gpu architecture via microbenchmarking. arXiv preprint
arXiv:1804.06826 (2018).

[10] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[11] Guohao Li, Matthias Müller, Guocheng Qian, Itzel C Delgadillo, Abdulellah
Abualshour, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns: Making gcns go
as deep as cnns. arXiv preprint arXiv:1910.06849 (2019).

[12] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. Neugraph: parallel deep neural network computation on large
graphs. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19).
443–458.

[13] M Naumov, LS Chien, P Vandermersch, and U Kapasi. [n.d.]. Cusparse library.
[14] CUDA Nvidia. 2008. Cublas library. NVIDIA Corporation, Santa Clara, California

15, 27 (2008), 31.

[15] Lars Nyland and Stephen Jones. 2013. Understanding and using atomic memory
operations. In 4th GPU Technology Conf.(GTC’13), March.

[16] Hao Qian and Yangdong Deng. 2011. Accelerating RTL simulation with GPUs.
In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 687–693.

[17] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. 2018.
Attention-based graph neural network for semi-supervised learning. arXiv
preprint arXiv:1803.03735 (2018).

[18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[19] GuibinWang, YiSong Lin, andWei Yi. 2010. Kernel fusion: An effectivemethod for
better power efficiency on multithreaded GPU. In 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications & Int’l Conference on Cyber, Physical
and Social Computing. IEEE, 344–350.

[20] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. ICLR
Workshop on Representation Learning on Graphs and Manifolds (2019). https:
//arxiv.org/abs/1909.01315

[21] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying Graph Convolutional Networks. In International
Conference on Machine Learning. 6861–6871.

[22] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=ryGs6iA5Km

[23] Mingyu Yan, Zhaodong Chen, Lei Deng, Xiaochun Ye, Zhimin Zhang, Dongrui
Fan, and Yuan Xie. 2020. Characterizing and Understanding GCNs on GPU. IEEE
Computer Architecture Letters (2020).

[24] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. 2020. HyGCN: A GCN Accelerator with
Hybrid Architecture. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[25] Hongbo Zhang, Tan Yan, Martin DF Wong, and Sanjay J Patel. 2011. Accelerating
aerial image simulation with GPU. In 2011 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 178–184.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:01:21 UTC from IEEE Xplore. Restrictions apply.

