Eliminating Redundant Computation in Noisy
Quantum Computing Simulation

Gushu Li
ECE Department
University of California
Santa Barbara, USA
gushuli@ece.ucsb.edu

Abstract—Noisy Quantum Computing (QC) simulation on a
classical machine is very time consuming since it requires Monte
Carlo simulation with a large number of error-injection trials to
model the effect of random noises. Orthogonal to existing QC
simulation optimizations, we aim to accelerate the simulation by
eliminating the redundant computation among those Monte Carlo
simulation trials. We observe that the intermediate states of many
trials can often be the same. Once these states are computed
in one trial, they can be temporarily stored and reused in
other trials. However, storing such states will consume significant
memory space. To leverage the shared intermediate states without
introducing too much storage overhead, we propose to statically
generate and analyze the Monte Carlo simulation simulation
trials before the actual simulation. Those trials are reordered to
maximize the overlapped computation between two consecutive
trials. The states that cannot be reused in follow-up simulation are
dropped, so that we only need to store a few states. Experiment
results show that the proposed optimization scheme can save
on average 80% computation with only a small number of
state vectors stored. In addition, the proposed simulation scheme
demonstrates great scalability as more computation can be saved
with more simulation trials or on future QC devices with reduced
error rates.

Index Terms—quantum computing, simulation, noise

I. INTRODUCTION

Quantum Computing (QC) has attracted great interest from
both academia and industry in the last decades due to its
great potential in accelerating various important applications,
such as integer factorization [1], database search [2], and
molecule simulation [3]. Recently, several Noisy Intermediate-
Scale Quantum (NISQ) devices have been released [4]-[6]
and Quantum Supremacy has been experimentally demon-
strated [7], indicating that the advantages of quantum com-
puting against classical computing is achievable.

Ideally, quantum algorithms should be executed on realistic
NISQ hardware for evaluation. However, NISQ devices require
an extreme execution environment and most of them remain
in physics laboratories. Existing QC cloud services, e.g., IBM
Quantum Experience [8], Rigetti’s QPU [9], only provide lim-
ited access which cannot satisfy the ever-increasing demand
for experiments to evaluate new NISQ algorithm/hardware de-
signs. Therefore, noisy QC simulation that could take various

This work was supported in part by NSF 1730309 and 1925717.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Yufei Ding
CS Department
University of California
Santa Barbara, USA
yufeiding@cs.ucsb.edu

Yuan Xie
ECE Department
University of California
Santa Barbara, USA
yuanxie @ece.ucsb.edu

noise effects [10] into consideration is still a practical way for
algorithm development and evaluation in the NISQ era.

Monte Carlo simulation is widely adopted in noisy QC
simulation [9], [11], [12] but it is very time-consuming. In
such simulation, noise effects can be treated as errors that
are randomly injected during the computation. To model such
random effects, the same input quantum program needs to be
simulated for a large number of times, and in each simulation
trial, errors are randomly injected based on an error model of
the target NISQ device. Previous QC simulation optimizations,
no matter from the algorithm level [13]-[19] or the system
level [12], [20]-[24], focus on single trial simulation optimiza-
tion while little consideration has been given to the inter-trial
optimization.

Orthogonal to these prior QC simulation optimizations, we
observe that there exists significant redundant computation
which is never leveraged in existing Monte Carlo noisy QC
simulation [9], [11], [12]. For multiple error injected Monte
Carlo simulation trials, it is possible that they share the same
intermediate states. Such shared intermediate states can be
temporarily stored and reused among different trials to save
computation. However, these reusable intermediate states are
often hidden in the huge numbers of trials. It is thus critical
to have an efficient and effective heuristics for locating these
shared states and maximizing the reused computation. Mean-
while, saving a state takes significant memory space, which
may limit the size of the program that could be simulated.
Therefore, it would be desirable to remove redundant compu-
tation with the stored intermediate state as few as possible.

To this end, we propose a Monte Carlo simulation trial
reorder scheme to 1) efficiently identify and remove the
computation redundancy in the Monte Carlo noisy QC simu-
lation, 2) minimize the number of stored intermediate states.
Our optimization scheme will not affect the final simulation
result since it is mathematically equivalent to the original
simulation. Specifically, instead of direct running the Monte
Carlo simulation, we first generate all the simulation trials
without actually running the simulation. We statically analyze
the generated trials and reorder them based on the locations
of the injected errors. The overlapped computation between
two consecutive trials is maximized so that more computation
results can be shared and reused. Moreover, we dynamically

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

drop the intermediate states that cannot be reused in the
follow-up computation to reduce the memory requirement for
temporary intermediate state storage.

We evaluate the noisy simulation optimization scheme on
both realistic NISQ devices models and artificial models of
larger sizes expected in the future. Experiment results show
that we can save around 80% computation on average with
only a small number of state vectors stored at most on
a realistic NISQ device model. The test on larger NISQ
device models demonstrates that our noisy QC simulation
optimization has great scalability as it could save even more
computation when simulating future NISQ devices with lower
error rates and more simulation trials.

II. RELATED WORK

In this section, we summarize related work about noisy QC
simulation and QC simulator optimizations.

Noisy QC Simulator Several existing QC simulators have
supported error modeling and noisy simulation, such as IBM
QISKit [11], QX [12], and Rigetti QVM [9]. These simulators
model a realistic quantum processor with straight forward
Monte Carlo simulation while none of them leverages the
shared computation among multiple simulation trials.

Density Matrix Simulation Another approach in noisy QC
simulation is to manipulate the density matrix of a quantum
system [23], [25]. The density matrix approach could model
the noise effect in one simulation trial but the size of the
density matrix of a N-qubit system will be 22, which is
much larger than that of a state vector. This paper focuses
on state vector simulation which is capable of simulating a
system of more qubits with the same hardware resources.

QC Simulator Optimization Previous optimizations for
QC simulators can be summarized into two categories. Some
simulators increase the simulation capability from the al-
gorithm level [13]-[19]. These works exploited sparsity or
redundancy inside a single QC simulation trial while the pro-
posed optimization leverages the redundancy among multiple
simulation trials. The other type of optimizations is from
the computer system level, including vector instructions [12],
[20], specialized linear algebra library [22], multi-thread [12],
[20], [21], distributed system [20]-[22], GPU [23], [24]. Our
acceleration is from algorithm-level and is compatible with
these system-level approaches.

III. BACKGROUND

In this section, we present a brief review of relevant back-
ground to help understand the noisy QC simulation.

A. QC Basics

Qubit Classical computing uses bits as the basic infor-
mation unit with two deterministic states, ‘O’ and ‘1°, while
QC employs qubits with basis states denoted as |0) and |1).
The state of one qubit can be the linear combination of the
two basis states, represented by |¥) = «|0) + 3|1), where
a,B € C and |a? + |B]> = 1. Two or more qubits can
be in a superposition of more basis states. For example,

a two-qubit system can be in the state |¥) = agp|00) +
ap1 |01) + a0 |10) + 11 |11) and represented by a four-
dimensional complex vector (agg, o1, 10, 11). In general,
a 2"V-dimensional vector is required to describe the state of a
system with N qubits.

Quantum Operation The state of a QC system can be
manipulated by two main types of quantum operations. The
first type is quantum gates, which are unitary operators applied
on one or more qubits to change the state vector. The second
type of operation is the measurement, which will collapse the
superposition state to the basis states with different probabil-
ities based on the amplitudes of the state vector.

Quantum Circuit and Computation Quantum circuit is a
diagram to represent a quantum program in the well-adopted
quantum circuit model [26]. Figure 1 shows an example of
a quantum circuit and its computation. On the left is the
quantum circuit which contains two qubits and two H gates
(in the two squares). The initial state is Sy = |00) and its
state vector (1,0,0,0) is shown on the right. To compute the
state Sp, the two H gates are applied on Sy and the result is
S1 = £00) + 4 |01) + 3 [10) + 3 [11). This process can be
considered as a matrix-vector multiplication since the quantum
system is linear and quantum gates are linear transformations.
The applied matrix is determined by the Kronecker product of
the applied quantum gates. To simulate a quantum circuit, we
need to apply the gates to the state vector sequentially and the
measurement output will be determined by the amplitudes in
the state vector.

S S
0) Sp=(1,0,0,0)

0) S, = (H®H)S, = (¥4,%,%,Y%)

Fig. 1. Example of Quantum Circuit and Computation

B. Noisy QC Simulation

Noisy QC simulation needs to simulate the input quantum
circuit a large number of times with error randomly injected
during the simulation. We first introduce error modeling in
QC simulation and then introduce the Monte Carlo noisy QC
simulation.

1) Error Modeling: An error model indicates how error
happens during the computation process. It consists of three
parts, error operator, error position, and error probability.

Error Operator Error operators are some special operators
that will be randomly injected in the quantum circuit in order
to model the noise effect in the QC program execution on noisy
quantum hardware. For example, the three Pauli matrices, X,
Y, and Z (given in Equation 1), are commonly used error
operators. When an error happens, an error operator will be
applied to the target qubit(s).

0 1 0 —1 1 0
il IR O I PR
Error Position Error positions are the places where an error
could possibly be injected in the simulated quantum circuit.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

Sl Sz (D Sl SZ
q1 | |
92 B \
FH— | s {EHEH

%

q2
o {EH{FEH———

Sl Sz @ Sl

SR 2§ (7 N
o2 {11

(b)

Fig. 2. Example for Computation Redundancy and Execution Reordering (Details in Section IV.A).

For gate errors, error operators can be injected after a gate.
Some other errors like decaying from high-energy state |1) to
low-energy state |0) or interacting with the environment can
happen without an operation. Such an error could appear at
any place across the quantum circuit.

Error Probability After the error operators and positions
are determined, we still need to know the probability for each
error position with each error operator. Each time when we
meet an error position during the simulation, we will randomly
inject one error operator based on the error probability for each
operator at this position.

Measurement Error Errors can also happen after a mea-
surement. An error operator can only be applied to quantum
states while the result after the measurement is a classical
bit. To model a measurement error, we directly flip the
measurement result bit with a specified probability right after
the measurement operation.

2) Monte Carlo Noisy QC Simulation: The error operator,
position, and probability can construct an error model which
can be used in the noisy QC simulation. The error injection
simulation trials will then be generated under the given error
model. We use the symmetric depolarization error channel, a
widely used standard error model [11], [12], as an example
to illustrate this procedure. Under this error model, the three
error operators are X, Y, Z. There error probability for
these three errors are equal, p = P(X) = P(Y) = P(Z2).
The error probability and the simulated circuit are shown in
Figure 3. Since the error is triggered by operations, we inject
an error operator E after each gate. On the right of Figure 3
is the final error injected circuit. We will simulate this error-
injected circuit many times. In each simulation trial, every
error operator F is replaced by X, Y, and Z with the same
probability p, or by the identity operator I with the probability
1 — 3p. These operators will be applied to the state vector to
model the noise effect. After a measurement, the classical bit
may also be flipped to model the measurement error. Finally,
the output result is recorded. Such a simulation procedure will
be repeated for all simulation trials and the final results are
averaged to show a distribution of the output on the modeled
device.

Lif—r—

Error Probability Original Circuit

9

Error Injected Circuit

Fig. 3. Depolarization Error Channel and Injection [11], [12]

IV. NOISY SIMULATION OPTIMIZATION

The redundancy among the error-injected simulations can be
leveraged to reduce the amount of computation. If two error-
injection simulation trials share the same state in the middle,
we can save this intermediate state in one simulation trial and
then reuse it in the other simulation trial to eliminate the com-
putation before this state. However, the size of a state grows
exponentially as the number of qubits increases and it takes
significant memory space to store a state vector. Thus, how
to identify and store these states efficiently must be addressed
to enable this inter-trial QC simulation optimization. In this
section, we will first start from an example to illustrate the
computation redundancy and then discuss how to efficiently
run all the simulation trials.

A. Computation Redundancy

Figure 2 shows an example to demonstrate the computation
redundancy. There are totally four error injection executions
in this example, represented by four quantum circuits. The
first one in (a) is the original error-free execution. S7 and So
are two intermediate states during the error-free execution. The
other three in (b) (labeled with D, @), and ®) are error injected
executions. Each of them has one error operator occurred,
represented by the gates Ff53y. To run the noisy QC
simulation, all these four quantum circuits will be simulated
and then averaged to obtain a distribution of the final output.
We can find that all the four quantum circuits are exactly
the same before reaching S; state. The state vector of S is
the same for all four execution since no errors are injected
before S7. As a result, the computation from the initial state
to S7 can be shared by all four executions. The state vector
at 57 only needs to be calculated and stored in one execution.
The rest three executions can start from the stored S; state
instead of starting from the beginning. Such redundancy exists
at multiple locations across the error injection Monte Carlo
executions. For example, the state vector at S5 can be also
be shared by the error-free execution and the first two error
injected executions (DQ.

The motivating example above has shown the computation
redundancy among Monte Carlo executions. We can store
some state vectors when we first reach such states and the
results will be reused in the following executions. However,
the maximal number of state vectors we can store is limited
since one state vector has 2" amplitudes (n is the number
of qubits). Although several techniques have been proposed
to store the state vector in a compressed form [18], [19],
the memory requirement will still grow exponentially as the
number of qubits increases. To allow circuits with more

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Trial_Reorder(S,n)
Input: Trials S, error index n
Output: Ordered Trials S’
1 if S has only one trial then
2 ‘ return S
3 end
4 Order the trials in S based on the location of n'”
injected error;
5 Divide the trials into Groups based on the nt" error;
6 for Trial Group i do
7 S; = all the trials in Group i;
8 Trial_Reorder(S;,n+ 1);
9 end

intermediate states to be simulated efficiently, we introduce
an execution reorder technique to reduce the maximal number
of concurrently maintained state vectors without loss of the
benefit from the computation redundancy elimination.

B. Trial Reorder

Different execution order can significantly affect the number
of states that need to be stored. For the example in Figure 2
(b), 2B is an inefficient Monte Carlo execution order.
When running D, both the states S; and S need to be
stored so that @ can start from Sy and Q) can start from
S1. An optimized execution order for this example can be
B®2D. When executing @), we only need to store state S;.
The execution of @ can directly start from the stored S
and then S; can be dropped since it is no longer used in
the follow-up executions. During the execution of @), Sy will
be stored and finally used when executing (D. Consequently,
only one state vector needs to be stored during the entire
simulation process. An optimized execution order reduced
50% of memory requirement (from two state vectors to one
state vector) compared with a straight-forward order in this
example.

We propose to find the optimized execution order with a trial
reorder algorithm (shown in Algorithm 1), which is explained
as follows. We first generate the Monte Carlo execution
trials without actually running the simulation. The simulated
quantum circuit is divided into layers, in which any two
quantum operations are not applied to the same qubit. Error
operators will only be injected at the end of each layer (shown
in Figure 3). One execution trial will record the location and
operator of each injected error. These trials will be ordered
by the location of the first injected error. The trials with the
first error injected in the first layer (e.g., @ in Figure 2) will
appear at the beginning of the execution order, followed by
those trials with the first error injected in the second layer (e.g.,
@ in Figure 2), and so on.

After ordering the trials based on the location of the first
error, we can further improve the ordering based on the
location of the next error. If two or more error trials share
the same first error (injected on the same qubit with the same

error operator), these trials will be grouped. The simulation for
these trials can be further optimized if we recurrently reorder
the trials in the same group based on the location of the second
injected error. Similarly, we reorder trials which share the first
two injected errors based on the third one, and so on. This
recurrent order will stop when there is only one trial left.

After the ordering procedure above, we begin our simulation
by executing the first layer of the circuit with no error injected
and store the state as Sj. This part of computation can be
shared by all Monte Carlo trials. After finishing the trials
with the first error in the first layer, we can execute one
more layer without error and store the new state as Sy. Now
Sp can be dropped as no executions remaining will rely on
it. Additional memory space is only required when recurrent
reordering happens because these trials sharing the first error
operator need to store the state vector after the shared error
to help eliminate the computation redundancy among them.
The maximal number of state vectors we need to store is the
recursion depth during the reordering, which is small because
the probability for two independently and randomly generated
trials to have m shared error operators decreases exponentially
as m increases.

This execution reorder technique leverages the inter-trial
computation redundancy and can cooperate with existing QC
simulation optimizations which focus on the execution of one
simulation trial. The final simulation result will not be changed
since the output of all trials are calculated and averaged, which
makes our optimized simulation mathematically equivalent to
the original one.

V. EVALUATION

In this section, we evaluate the computation saving and
memory consumption of the optimized noisy simulation. We
conducted two groups of experiments to give a full test of
our accelerated noisy QC simulation: 1) small-scale circuits
with realistic device error model, 2) large-scale circuits with
artificial error models. In the first group of experiments,
we will show that our noisy QC simulation scheme can
accelerate state-of-the-art NISQ device modeling. In the later
one, we focus on testing the scalability of the proposed noisy
simulation scheme by varying the error rate of the modeled
NISQ device and the input circuit size.

Baseline The baseline noisy QC simulation strategy is to
execute the randomly generated error injection trials directly
without ordering them. During the execution of each trial,
errors are injected based on the error model and only the
final result is stored. All the trials are treated individually,
and the shared intermediate states are not considered. Such
a strategy is widely adopted in full-state QC simulators,
including Rigetti’s QVM [27], QX [12], etc.

Metrics In order to perform a fair evaluation of our noisy
simulator optimization, the metrics in this section are chosen
to be independent of implementation and platform. For the
computation time, we use the number of basic operations
(matrix-vector multiplication) in the full-state QC simulation
to indicate the computation amount normalized to the baseline.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
BENCHMARK CHARACTERISTICS

Name Qubit # | Single # | CNOT # | Measure #
b 2 9 2 2
grover 3 87 25 3
wstate 3 21 9 3
7x1mod15 4 17 9 4
bv4 4 8 3 3
bv5 5 10 4 4
qft4 4 42 15 4
qft5 5 83 26 5
qv_n5d2 5 44 12 5
qv_n5d3 5 74 21 5
qv_n5d4 5 100 30 5
qv_n5d5 5 130 36 5

For the memory consumption, we use the number of Main-
tained State Vectors (MSVs) during the noisy simulation
since the memory space for the state vectors, which will grow
exponentially as the number qubits increases, dominates the
memory consumption. Note that MSV is an overhead purely
for our approach since the baseline does not maintain any
intermediate states.

A. Realistic NISQ Device Error Modeling

The first group of experiments is performed on the error
model of a realistic NISQ device, IBM’s 5-qubit supercon-
ducting quantum processor. We generate various numbers of
trials (from 1024 to 8192) to test the computation saving under
different simulation configurations.

Benchmarks Table I shows the 12 quantum programs used
in this experiment. They are collected from IBM OpenQASM
benchmarks [28] and prior work [29]. These benchmarks in-
clude Bernstein-Vazirani algorithm (bv) [30], Quantum Fourier
Transform (qft) [26], Quantum Volume (qv) [31], Grover
algorithm [2], Randomized Benchmarking (rb) [32], Modular
Multiplication (7x1mod15) [11], and W-state [33]. All the
benchmarks are compiled and mapped to this IBM’s 5-qubit
device with the Enfield compiler [29] to determine the actual
physical qubits. The four columns on the right in Table I show
the numbers of qubits and quantum operations in the post-
compilation programs for each benchmark. “Single” stands for
single-qubit gate and “CNOT” stands for CNOT gate, the only
supported two-qubit gate on this device.

Single-qubit Gate Measurement
Error (10°) Error (107)
Qo 1.37 2.40
Q 1.37 2.60
Q, 2.23 3.00
Q3 1.72 2.20
Two-qubit Gate Error (10?) QA 0.94 4.50

Fig. 4. Error Rates on IBM Yorktown Chip [8]

Error Model Figure 4 shows the error probability of
IBM’s 5-qubit Yorktown quantum processor. For the error
operator and position, we use the symmetric depolarization
model (shown in Figure 3), in which the error probability
is distributed to three Pauli operators equally and errors are
injected after each gate. This a standard model employed in
most noisy simulators [11], [12].

0.4 I
el M B s | |
o I s 1o l I
Q X (2 » Nl el > o v < > H N
N «o& ‘_,(5\ Ob\’ < < & & g?b Q‘)b Q%b éob d@%
@ & /\Q& &7 &7 &7 &7 o:%o

W 1024 trials W 2048 trials 4096 trials 8192 trials

Fig. 5. Normalized Computation in Realistic Error Model Experiments

Fig. 6. Memory Consumption (MSVs) in Realistic Error Model Experiments

Results Figure 5 shows the computation saving for all
benchmarks with different numbers of trials. The proposed
optimization can save about 75% ~ 85% of computation on
average with the number of trials increases from 1024 to 8192.
In the worst case when the benchmark is large (‘qv_n5d5’),
the computation amount saving still achieves 57% with 8192
trials. We can also see that the more trials we execute, the
more computation we will save because more overlapped
computation can be identified. Figure 6 shows the number
of MSVs in experiments with 1024 trials and this result does
not significantly change when the number of trials increases
from 1024 to 8192. The number of MSVs is 3 for the smallest
benchmark ‘rb’ and only 6 in the largest benchmarks ‘qft5’
and ‘qv_n5d5’. As discussed in Section IV, the number of
MSVs will grow slowly since the probability for two trials to
share the same m injected errors decays exponentially as m
increases.

B. Artificial Error Model for Scalability Test

In this scalability test, we choose input circuits of larger
sizes and increase the number of simulation trials to 10°.

Benchmarks We use Quantum Volume (qv) benchmark,
one type of random circuit proposed by IBM [31], to test
the scalability of the proposed noisy simulation scheme since
random circuit is widely-used in benchmarking QC simu-
lators [15], [20]JA group of qv programs is generated with
various numbers of qubits (from 10 to 40) and circuit depth
(from 5 to 20) to test the computation saving and memory con-
sumption as the input circuit scales. For example, “n10,d10”
means 10 qubits with circuit depth 10. The largest circuit used
in this experiment with 40 qubits and depth of 20 is already
close to the limit of existing full state QC simulators [15].

Error Model We construct error models for larger ar-
tificial NISQ devices expected in the future. We still use
the symmetric depolarizing gate error model for the error
operator and position. The error probabilities of single-qubit
gates ranges from 1073 to 10~ 1072 represents state-of-
the-art superconducting quantum circuit technology and 10~4
reflects extrapolations of progress in hardware. The error
rates of two-qubit gates and measurement operations are set

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

to be 10x of single-qubit gates. We assume that all the
qubits and qubit pairs share the same error probabilities since
small error probability variance will not significantly affect
the computation saving in the proposed noisy QC simulation
scheme.

Results Figure 7 shows the computation amount for all
benchmarks with different error probabilities. On average,
we can save about 79% computation. In the worst case, for
a quantum volume circuit of the largest size and highest
error rate, we can still save about 31% computation. The
computation amount drops dramatically with lower error rates
which can be expected in future devices. Figure 8 shows the
number of MSVs, which grows slowly as the circuit depth
increases. On average we need to store about 6 intermediate
state vectors. When the number of qubits increases, the number
of MSVs decreases because there are more potential error
positions which reduce the probability for two trials to share
the same injected error.

0.8

0.6

0.4

, 1l l
n10,d5 n10,d10 n10,d15 n10,d20 n20,d20 n30,d20 n40,d20
m107-3/10"-2 m5X107-4/5X107-3 2X107-4/2X107-3 101-4/101-3

Fig. 7. Normalized Computation in Scalability Experiments

10

0 II II || ‘l || II II

n10,d5 n10,d10 n10,d15 n10,d20 n20,d20 n30,d20 n40,d20
m107-3/10"-2 m5X107-4/5X107-3 2X107-4/2X107-3 107-4/107-3

w

Fig. 8. Memory Consumption (MSVs) in Scalability Experiments

VI. CONCLUSION

Although simulating quantum computing on a classical ma-
chine is ultimately not scalable, it is still of great interest due
to its practical usage. In this paper, we propose to accelerate
the time-consuming noisy QC simulation by eliminating the
redundancy among the Monte Carlo simulation trials. By
analyzing the Monte Carlo error injection simulation trials
before actually running the simulation, we identify shared
intermediate states among these trials and then reorder them
to maximize the overlapped computation between two con-
secutive simulation trials. The number of saved intermediate
states is also reduced since states that will no-longer be used
are dropped immediately. Experiment results show that we
can achieve around 80% computation saving on average with
only a small number of state vectors maintained at the same
time. The proposed simulation scheme also demonstrates great
scalability when modeling larger size future QC devices as
more computation can be saved with more simulation trials or
on future device models with reduced error probabilities.

[1]

[2]

[3]
[4]

[5

—_

[6]

[7]
[8]
[9]
[10]
[11]

[12]

[13]

[14]
[15]
[16]
[17]
[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]
[28]

[29]
[30]

[31]

[32]

[33]

REFERENCES

P. W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303—
332, 1999.

L. K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 212-219. ACM, 1996.

A. Peruzzo et al. A variational eigenvalue solver on a photonic quantum
processor. Nature communications, 5:4213, 2014.

J. Kelly. A Preview of Bristlecone, Google’s New Quantum
Processor. https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-
googles-new.html, 2017.

W. Knight. IBM Raises the Bar with a 50-Qubit Quantum Com-
puter. https://www.technologyreview.com/s/609451/ibm-raises-the-bar-
with-a-50-qubit-quantum-computer/, 2017.

N. M. Linke et al. Experimental comparison of two quantum comput-
ing architectures. Proceedings of the National Academy of Sciences,
114(13):3305-3310, 2017.

Frank Arute et al. Quantum supremacy using a programmable super-
conducting processor. Nature, 574(7779):505-510, 2019.

IBM. https://quantumexperience.ng.bluemix.net/qx/devices, 2018.
Rigetti. https://www.rigetti.com/qpu, 2018.

J. Preskill. Quantum computing in the nisq era and beyond.
preprint arXiv:1801.00862, 2018.

G. Aleksandrowicz et al. Qiskit: An open-source framework for quantum
computing, 2019.

N. Khammassi et al. Qx: A high-performance quantum computer
simulation platform. In 2017 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 464-469. IEEE, 2017.

G. F. Viamontes et al. High-performance quidd-based simulation
of quantum circuits. In Proceedings of the conference on Design,
automation and test in Europe-Volume 2, page 21354. IEEE, 2004.

G. F. Viamontes et al. Quantum circuit simulation. Springer Science &
Business Media, 2009.

J. Chen et al. Classical simulation of intermediate-size quantum circuits.
arXiv preprint arXiv:1805.01450, 2018.

I. L. Markov and Y. Shi. Simulating quantum computation by contracting
tensor networks. SIAM Journal on Computing, 38(3):963-981, 2008.
S. Aaronson and D. Gottesman. Improved simulation of stabilizer
circuits. Physical Review A, 70(5):052328, 2004.

S. Anders and H. J. Briegel. Fast simulation of stabilizer circuits using
a graph-state representation. Physical Review A, 73(2):022334, 2006.
A. Zulehner and R. Wille. Advanced simulation of quantum compu-
tations. [EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018.

M. Smelyanskiy et al. ghipster: the quantum high performance software
testing environment. arXiv preprint arXiv:1601.07195, 2016.

D. S. Steiger et al. Projectq: an open source software framework for
quantum computing. Quantum, 2:49, 2018.

D. Wecker and K. M. Svore. Liqui| > : A software design architecture
and domain-specific language for quantum computing. arXiv preprint
arXiv:1402.4467, 2014.

B. Tarasinski. https://gitlab.com/quantumsim/quantumsim, 2018.

T. Jones et al. Quest and high performance simulation of quantum
computers. arXiv preprint arXiv:1802.08032, 2018.

TE O’brien et al. Density-matrix simulation of small surface codes under
current and projected experimental noise. npj Quantum Information,
3(1):39, 2017.

Michael A Nielsen and Isaac L Chuang. Quantum computation and
quantum information. UK: Cambridge University Press, 2010.

Rigetti. https://pyquil.readthedocs.io/en/stable/noise.html, 2019.

A. W. Cross et al. Open quantum assembly language. arXiv preprint
arXiv:1707.03429, 2017.

UFMG Compilers Laboratory. http://cuda.dcc.ufmg.br/enfield/, 2018.
E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal
on computing, 26(5):1411-1473, 1997.

N. Moll et al. Quantum optimization using variational algorithms
on near-term quantum devices. Quantum Science and Technology,
3(3):030503, 2018.

Emanuel Knill et al. Randomized benchmarking of quantum gates.
Physical Review A, 77(1):012307, 2008.

J. Joo et al. Quantum teleportation via a w state. New Journal of Physics,
5(1):136, 2003.

arXiv

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

