
Eliminating Redundant Computation in Noisy

Quantum Computing Simulation

Gushu Li

ECE Department

University of California

Santa Barbara, USA

gushuli@ece.ucsb.edu

Yufei Ding

CS Department

University of California

Santa Barbara, USA

yufeiding@cs.ucsb.edu

Yuan Xie

ECE Department

University of California

Santa Barbara, USA

yuanxie@ece.ucsb.edu

Abstract—Noisy Quantum Computing (QC) simulation on a
classical machine is very time consuming since it requires Monte
Carlo simulation with a large number of error-injection trials to
model the effect of random noises. Orthogonal to existing QC
simulation optimizations, we aim to accelerate the simulation by
eliminating the redundant computation among those Monte Carlo
simulation trials. We observe that the intermediate states of many
trials can often be the same. Once these states are computed
in one trial, they can be temporarily stored and reused in
other trials. However, storing such states will consume significant
memory space. To leverage the shared intermediate states without
introducing too much storage overhead, we propose to statically
generate and analyze the Monte Carlo simulation simulation
trials before the actual simulation. Those trials are reordered to
maximize the overlapped computation between two consecutive
trials. The states that cannot be reused in follow-up simulation are
dropped, so that we only need to store a few states. Experiment
results show that the proposed optimization scheme can save
on average 80% computation with only a small number of
state vectors stored. In addition, the proposed simulation scheme
demonstrates great scalability as more computation can be saved
with more simulation trials or on future QC devices with reduced
error rates.

Index Terms—quantum computing, simulation, noise

I. INTRODUCTION

Quantum Computing (QC) has attracted great interest from

both academia and industry in the last decades due to its

great potential in accelerating various important applications,

such as integer factorization [1], database search [2], and

molecule simulation [3]. Recently, several Noisy Intermediate-

Scale Quantum (NISQ) devices have been released [4]–[6]

and Quantum Supremacy has been experimentally demon-

strated [7], indicating that the advantages of quantum com-

puting against classical computing is achievable.

Ideally, quantum algorithms should be executed on realistic

NISQ hardware for evaluation. However, NISQ devices require

an extreme execution environment and most of them remain

in physics laboratories. Existing QC cloud services, e.g., IBM

Quantum Experience [8], Rigetti’s QPU [9], only provide lim-

ited access which cannot satisfy the ever-increasing demand

for experiments to evaluate new NISQ algorithm/hardware de-

signs. Therefore, noisy QC simulation that could take various

This work was supported in part by NSF 1730309 and 1925717.

noise effects [10] into consideration is still a practical way for

algorithm development and evaluation in the NISQ era.

Monte Carlo simulation is widely adopted in noisy QC

simulation [9], [11], [12] but it is very time-consuming. In

such simulation, noise effects can be treated as errors that

are randomly injected during the computation. To model such

random effects, the same input quantum program needs to be

simulated for a large number of times, and in each simulation

trial, errors are randomly injected based on an error model of

the target NISQ device. Previous QC simulation optimizations,

no matter from the algorithm level [13]–[19] or the system

level [12], [20]–[24], focus on single trial simulation optimiza-

tion while little consideration has been given to the inter-trial

optimization.

Orthogonal to these prior QC simulation optimizations, we

observe that there exists significant redundant computation

which is never leveraged in existing Monte Carlo noisy QC

simulation [9], [11], [12]. For multiple error injected Monte

Carlo simulation trials, it is possible that they share the same

intermediate states. Such shared intermediate states can be

temporarily stored and reused among different trials to save

computation. However, these reusable intermediate states are

often hidden in the huge numbers of trials. It is thus critical

to have an efficient and effective heuristics for locating these

shared states and maximizing the reused computation. Mean-

while, saving a state takes significant memory space, which

may limit the size of the program that could be simulated.

Therefore, it would be desirable to remove redundant compu-

tation with the stored intermediate state as few as possible.

To this end, we propose a Monte Carlo simulation trial

reorder scheme to 1) efficiently identify and remove the

computation redundancy in the Monte Carlo noisy QC simu-

lation, 2) minimize the number of stored intermediate states.

Our optimization scheme will not affect the final simulation

result since it is mathematically equivalent to the original

simulation. Specifically, instead of direct running the Monte

Carlo simulation, we first generate all the simulation trials

without actually running the simulation. We statically analyze

the generated trials and reorder them based on the locations

of the injected errors. The overlapped computation between

two consecutive trials is maximized so that more computation

results can be shared and reused. Moreover, we dynamically

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

drop the intermediate states that cannot be reused in the

follow-up computation to reduce the memory requirement for

temporary intermediate state storage.

We evaluate the noisy simulation optimization scheme on

both realistic NISQ devices models and artificial models of

larger sizes expected in the future. Experiment results show

that we can save around 80% computation on average with

only a small number of state vectors stored at most on

a realistic NISQ device model. The test on larger NISQ

device models demonstrates that our noisy QC simulation

optimization has great scalability as it could save even more

computation when simulating future NISQ devices with lower

error rates and more simulation trials.

II. RELATED WORK

In this section, we summarize related work about noisy QC

simulation and QC simulator optimizations.

Noisy QC Simulator Several existing QC simulators have

supported error modeling and noisy simulation, such as IBM

QISKit [11], QX [12], and Rigetti QVM [9]. These simulators

model a realistic quantum processor with straight forward

Monte Carlo simulation while none of them leverages the

shared computation among multiple simulation trials.

Density Matrix Simulation Another approach in noisy QC

simulation is to manipulate the density matrix of a quantum

system [23], [25]. The density matrix approach could model

the noise effect in one simulation trial but the size of the

density matrix of a N -qubit system will be 22N , which is

much larger than that of a state vector. This paper focuses

on state vector simulation which is capable of simulating a

system of more qubits with the same hardware resources.

QC Simulator Optimization Previous optimizations for

QC simulators can be summarized into two categories. Some

simulators increase the simulation capability from the al-

gorithm level [13]–[19]. These works exploited sparsity or

redundancy inside a single QC simulation trial while the pro-

posed optimization leverages the redundancy among multiple

simulation trials. The other type of optimizations is from

the computer system level, including vector instructions [12],

[20], specialized linear algebra library [22], multi-thread [12],

[20], [21], distributed system [20]–[22], GPU [23], [24]. Our

acceleration is from algorithm-level and is compatible with

these system-level approaches.

III. BACKGROUND

In this section, we present a brief review of relevant back-

ground to help understand the noisy QC simulation.

A. QC Basics

Qubit Classical computing uses bits as the basic infor-

mation unit with two deterministic states, ‘0’ and ‘1’, while

QC employs qubits with basis states denoted as |0〉 and |1〉.
The state of one qubit can be the linear combination of the

two basis states, represented by |Ψ〉 = α |0〉 + β |1〉, where

α, β ∈ C and |α|2 + |β|2 = 1. Two or more qubits can

be in a superposition of more basis states. For example,

a two-qubit system can be in the state |Ψ〉 = α00 |00〉 +
α01 |01〉 + α10 |10〉 + α11 |11〉 and represented by a four-

dimensional complex vector (α00, α01, α10, α11). In general,

a 2N -dimensional vector is required to describe the state of a

system with N qubits.

Quantum Operation The state of a QC system can be

manipulated by two main types of quantum operations. The

first type is quantum gates, which are unitary operators applied

on one or more qubits to change the state vector. The second

type of operation is the measurement, which will collapse the

superposition state to the basis states with different probabil-

ities based on the amplitudes of the state vector.

Quantum Circuit and Computation Quantum circuit is a

diagram to represent a quantum program in the well-adopted

quantum circuit model [26]. Figure 1 shows an example of

a quantum circuit and its computation. On the left is the

quantum circuit which contains two qubits and two H gates

(in the two squares). The initial state is S0 = |00〉 and its

state vector (1, 0, 0, 0) is shown on the right. To compute the

state S1, the two H gates are applied on S0 and the result is

S1 = 1

2
|00〉 + 1

2
|01〉 + 1

2
|10〉 + 1

2
|11〉. This process can be

considered as a matrix-vector multiplication since the quantum

system is linear and quantum gates are linear transformations.

The applied matrix is determined by the Kronecker product of

the applied quantum gates. To simulate a quantum circuit, we

need to apply the gates to the state vector sequentially and the

measurement output will be determined by the amplitudes in

the state vector.

S0 S1 S2

S0 = (1, 0, 0, 0)

S1 = (H H)S0 = (½,½,½,½)

Fig. 1. Example of Quantum Circuit and Computation

B. Noisy QC Simulation

Noisy QC simulation needs to simulate the input quantum

circuit a large number of times with error randomly injected

during the simulation. We first introduce error modeling in

QC simulation and then introduce the Monte Carlo noisy QC

simulation.

1) Error Modeling: An error model indicates how error

happens during the computation process. It consists of three

parts, error operator, error position, and error probability.

Error Operator Error operators are some special operators

that will be randomly injected in the quantum circuit in order

to model the noise effect in the QC program execution on noisy

quantum hardware. For example, the three Pauli matrices, X ,

Y , and Z (given in Equation 1), are commonly used error

operators. When an error happens, an error operator will be

applied to the target qubit(s).

X =

[

0 1
1 0

]

, Y =

[

0 −i

i 0

]

, Z =

[

1 0
0 −1

]

(1)

Error Position Error positions are the places where an error

could possibly be injected in the simulated quantum circuit.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

(a)((((aaa))))

S1 S2

(b)

S1 S2 S1 S2 S1S22 21 2 3

Fig. 2. Example for Computation Redundancy and Execution Reordering (Details in Section IV.A).

For gate errors, error operators can be injected after a gate.

Some other errors like decaying from high-energy state |1〉 to

low-energy state |0〉 or interacting with the environment can

happen without an operation. Such an error could appear at

any place across the quantum circuit.

Error Probability After the error operators and positions

are determined, we still need to know the probability for each

error position with each error operator. Each time when we

meet an error position during the simulation, we will randomly

inject one error operator based on the error probability for each

operator at this position.

Measurement Error Errors can also happen after a mea-

surement. An error operator can only be applied to quantum

states while the result after the measurement is a classical

bit. To model a measurement error, we directly flip the

measurement result bit with a specified probability right after

the measurement operation.

2) Monte Carlo Noisy QC Simulation: The error operator,

position, and probability can construct an error model which

can be used in the noisy QC simulation. The error injection

simulation trials will then be generated under the given error

model. We use the symmetric depolarization error channel, a

widely used standard error model [11], [12], as an example

to illustrate this procedure. Under this error model, the three

error operators are X , Y , Z. There error probability for

these three errors are equal, p = P (X) = P (Y) = P (Z).
The error probability and the simulated circuit are shown in

Figure 3. Since the error is triggered by operations, we inject

an error operator E after each gate. On the right of Figure 3

is the final error injected circuit. We will simulate this error-

injected circuit many times. In each simulation trial, every

error operator E is replaced by X , Y , and Z with the same

probability p, or by the identity operator I with the probability

1− 3p. These operators will be applied to the state vector to

model the noise effect. After a measurement, the classical bit

may also be flipped to model the measurement error. Finally,

the output result is recorded. Such a simulation procedure will

be repeated for all simulation trials and the final results are

averaged to show a distribution of the output on the modeled

device.

E

I X Y Z

1-3p
p p

p

H H E E

E E

E

Error Probability Original Circuit Error Injected Circuit

Fig. 3. Depolarization Error Channel and Injection [11], [12]

IV. NOISY SIMULATION OPTIMIZATION

The redundancy among the error-injected simulations can be

leveraged to reduce the amount of computation. If two error-

injection simulation trials share the same state in the middle,

we can save this intermediate state in one simulation trial and

then reuse it in the other simulation trial to eliminate the com-

putation before this state. However, the size of a state grows

exponentially as the number of qubits increases and it takes

significant memory space to store a state vector. Thus, how

to identify and store these states efficiently must be addressed

to enable this inter-trial QC simulation optimization. In this

section, we will first start from an example to illustrate the

computation redundancy and then discuss how to efficiently

run all the simulation trials.

A. Computation Redundancy

Figure 2 shows an example to demonstrate the computation

redundancy. There are totally four error injection executions

in this example, represented by four quantum circuits. The

first one in (a) is the original error-free execution. S1 and S2

are two intermediate states during the error-free execution. The

other three in (b) (labeled with 1 , 2 , and 3) are error injected

executions. Each of them has one error operator occurred,

represented by the gates E{1,2,3}. To run the noisy QC

simulation, all these four quantum circuits will be simulated

and then averaged to obtain a distribution of the final output.

We can find that all the four quantum circuits are exactly

the same before reaching S1 state. The state vector of S1 is

the same for all four execution since no errors are injected

before S1. As a result, the computation from the initial state

to S1 can be shared by all four executions. The state vector

at S1 only needs to be calculated and stored in one execution.

The rest three executions can start from the stored S1 state

instead of starting from the beginning. Such redundancy exists

at multiple locations across the error injection Monte Carlo

executions. For example, the state vector at S2 can be also

be shared by the error-free execution and the first two error

injected executions 1 2 .

The motivating example above has shown the computation

redundancy among Monte Carlo executions. We can store

some state vectors when we first reach such states and the

results will be reused in the following executions. However,

the maximal number of state vectors we can store is limited

since one state vector has 2n amplitudes (n is the number

of qubits). Although several techniques have been proposed

to store the state vector in a compressed form [18], [19],

the memory requirement will still grow exponentially as the

number of qubits increases. To allow circuits with more

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Trial Reorder(S, n)

Input: Trials S, error index n

Output: Ordered Trials S′

1 if S has only one trial then

2 return S;

3 end

4 Order the trials in S based on the location of nth

injected error;

5 Divide the trials into Groups based on the nth error;

6 for Trial Group i do

7 Si = all the trials in Group i;

8 Trial Reorder(Si, n+ 1);
9 end

intermediate states to be simulated efficiently, we introduce

an execution reorder technique to reduce the maximal number

of concurrently maintained state vectors without loss of the

benefit from the computation redundancy elimination.

B. Trial Reorder

Different execution order can significantly affect the number

of states that need to be stored. For the example in Figure 2

(b), 1 2 3 is an inefficient Monte Carlo execution order.

When running 1 , both the states S1 and S2 need to be

stored so that 2 can start from S2 and 3 can start from

S1. An optimized execution order for this example can be

3 2 1 . When executing 3 , we only need to store state S1.

The execution of 2 can directly start from the stored S1

and then S1 can be dropped since it is no longer used in

the follow-up executions. During the execution of 2 , S2 will

be stored and finally used when executing 1 . Consequently,

only one state vector needs to be stored during the entire

simulation process. An optimized execution order reduced

50% of memory requirement (from two state vectors to one

state vector) compared with a straight-forward order in this

example.

We propose to find the optimized execution order with a trial

reorder algorithm (shown in Algorithm 1), which is explained

as follows. We first generate the Monte Carlo execution

trials without actually running the simulation. The simulated

quantum circuit is divided into layers, in which any two

quantum operations are not applied to the same qubit. Error

operators will only be injected at the end of each layer (shown

in Figure 3). One execution trial will record the location and

operator of each injected error. These trials will be ordered

by the location of the first injected error. The trials with the

first error injected in the first layer (e.g., 3 in Figure 2) will

appear at the beginning of the execution order, followed by

those trials with the first error injected in the second layer (e.g.,

2 in Figure 2), and so on.

After ordering the trials based on the location of the first

error, we can further improve the ordering based on the

location of the next error. If two or more error trials share

the same first error (injected on the same qubit with the same

error operator), these trials will be grouped. The simulation for

these trials can be further optimized if we recurrently reorder

the trials in the same group based on the location of the second

injected error. Similarly, we reorder trials which share the first

two injected errors based on the third one, and so on. This

recurrent order will stop when there is only one trial left.

After the ordering procedure above, we begin our simulation

by executing the first layer of the circuit with no error injected

and store the state as S1. This part of computation can be

shared by all Monte Carlo trials. After finishing the trials

with the first error in the first layer, we can execute one

more layer without error and store the new state as S2. Now

S1 can be dropped as no executions remaining will rely on

it. Additional memory space is only required when recurrent

reordering happens because these trials sharing the first error

operator need to store the state vector after the shared error

to help eliminate the computation redundancy among them.

The maximal number of state vectors we need to store is the

recursion depth during the reordering, which is small because

the probability for two independently and randomly generated

trials to have m shared error operators decreases exponentially

as m increases.

This execution reorder technique leverages the inter-trial

computation redundancy and can cooperate with existing QC

simulation optimizations which focus on the execution of one

simulation trial. The final simulation result will not be changed

since the output of all trials are calculated and averaged, which

makes our optimized simulation mathematically equivalent to

the original one.

V. EVALUATION

In this section, we evaluate the computation saving and

memory consumption of the optimized noisy simulation. We

conducted two groups of experiments to give a full test of

our accelerated noisy QC simulation: 1) small-scale circuits

with realistic device error model, 2) large-scale circuits with

artificial error models. In the first group of experiments,

we will show that our noisy QC simulation scheme can

accelerate state-of-the-art NISQ device modeling. In the later

one, we focus on testing the scalability of the proposed noisy

simulation scheme by varying the error rate of the modeled

NISQ device and the input circuit size.

Baseline The baseline noisy QC simulation strategy is to

execute the randomly generated error injection trials directly

without ordering them. During the execution of each trial,

errors are injected based on the error model and only the

final result is stored. All the trials are treated individually,

and the shared intermediate states are not considered. Such

a strategy is widely adopted in full-state QC simulators,

including Rigetti’s QVM [27], QX [12], etc.

Metrics In order to perform a fair evaluation of our noisy

simulator optimization, the metrics in this section are chosen

to be independent of implementation and platform. For the

computation time, we use the number of basic operations

(matrix-vector multiplication) in the full-state QC simulation

to indicate the computation amount normalized to the baseline.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
BENCHMARK CHARACTERISTICS

Name Qubit # Single # CNOT # Measure #

rb 2 9 2 2

grover 3 87 25 3

wstate 3 21 9 3

7x1mod15 4 17 9 4

bv4 4 8 3 3

bv5 5 10 4 4

qft4 4 42 15 4

qft5 5 83 26 5

qv n5d2 5 44 12 5

qv n5d3 5 74 21 5

qv n5d4 5 100 30 5

qv n5d5 5 130 36 5

For the memory consumption, we use the number of Main-

tained State Vectors (MSVs) during the noisy simulation

since the memory space for the state vectors, which will grow

exponentially as the number qubits increases, dominates the

memory consumption. Note that MSV is an overhead purely

for our approach since the baseline does not maintain any

intermediate states.

A. Realistic NISQ Device Error Modeling

The first group of experiments is performed on the error

model of a realistic NISQ device, IBM’s 5-qubit supercon-

ducting quantum processor. We generate various numbers of

trials (from 1024 to 8192) to test the computation saving under

different simulation configurations.

Benchmarks Table I shows the 12 quantum programs used

in this experiment. They are collected from IBM OpenQASM

benchmarks [28] and prior work [29]. These benchmarks in-

clude Bernstein-Vazirani algorithm (bv) [30], Quantum Fourier

Transform (qft) [26], Quantum Volume (qv) [31], Grover

algorithm [2], Randomized Benchmarking (rb) [32], Modular

Multiplication (7x1mod15) [11], and W-state [33]. All the

benchmarks are compiled and mapped to this IBM’s 5-qubit

device with the Enfield compiler [29] to determine the actual

physical qubits. The four columns on the right in Table I show

the numbers of qubits and quantum operations in the post-

compilation programs for each benchmark. “Single” stands for

single-qubit gate and “CNOT” stands for CNOT gate, the only

supported two-qubit gate on this device.

Q0

Q1

Q2

Q3

Q4

2.72

3.77

4.18

3.97

3.62

3.51

Two-qubit Gate Error (10
-2

)

Single-qubit Gate

Error (10
-3

)

Measurement

Error (10
-2

)

1.37 2.40Q0

1.37 2.60Q1

2.23 3.00Q2

1.72 2.20Q3

0.94 4.50Q4

Fig. 4. Error Rates on IBM Yorktown Chip [8]

Error Model Figure 4 shows the error probability of

IBM’s 5-qubit Yorktown quantum processor. For the error

operator and position, we use the symmetric depolarization

model (shown in Figure 3), in which the error probability

is distributed to three Pauli operators equally and errors are

injected after each gate. This a standard model employed in

most noisy simulators [11], [12].

0

0.2

0.4

0.6

1024 trials 2048 trials 4096 trials 8192 trials

Fig. 5. Normalized Computation in Realistic Error Model Experiments

0.2

0.4

0.6

0.8

2

3

4

5

6

7

Fig. 6. Memory Consumption (MSVs) in Realistic Error Model Experiments

Results Figure 5 shows the computation saving for all

benchmarks with different numbers of trials. The proposed

optimization can save about 75% ∼ 85% of computation on

average with the number of trials increases from 1024 to 8192.

In the worst case when the benchmark is large (‘qv n5d5’),

the computation amount saving still achieves 57% with 8192

trials. We can also see that the more trials we execute, the

more computation we will save because more overlapped

computation can be identified. Figure 6 shows the number

of MSVs in experiments with 1024 trials and this result does

not significantly change when the number of trials increases

from 1024 to 8192. The number of MSVs is 3 for the smallest

benchmark ‘rb’ and only 6 in the largest benchmarks ‘qft5’

and ‘qv n5d5’. As discussed in Section IV, the number of

MSVs will grow slowly since the probability for two trials to

share the same m injected errors decays exponentially as m

increases.

B. Artificial Error Model for Scalability Test

In this scalability test, we choose input circuits of larger

sizes and increase the number of simulation trials to 106.

Benchmarks We use Quantum Volume (qv) benchmark,

one type of random circuit proposed by IBM [31], to test

the scalability of the proposed noisy simulation scheme since

random circuit is widely-used in benchmarking QC simu-

lators [15], [20]A group of qv programs is generated with

various numbers of qubits (from 10 to 40) and circuit depth

(from 5 to 20) to test the computation saving and memory con-

sumption as the input circuit scales. For example, “n10,d10”

means 10 qubits with circuit depth 10. The largest circuit used

in this experiment with 40 qubits and depth of 20 is already

close to the limit of existing full state QC simulators [15].

Error Model We construct error models for larger ar-

tificial NISQ devices expected in the future. We still use

the symmetric depolarizing gate error model for the error

operator and position. The error probabilities of single-qubit

gates ranges from 10−3 to 10−4. 10−3 represents state-of-

the-art superconducting quantum circuit technology and 10−4

reflects extrapolations of progress in hardware. The error

rates of two-qubit gates and measurement operations are set

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

to be 10× of single-qubit gates. We assume that all the

qubits and qubit pairs share the same error probabilities since

small error probability variance will not significantly affect

the computation saving in the proposed noisy QC simulation

scheme.

Results Figure 7 shows the computation amount for all

benchmarks with different error probabilities. On average,

we can save about 79% computation. In the worst case, for

a quantum volume circuit of the largest size and highest

error rate, we can still save about 31% computation. The

computation amount drops dramatically with lower error rates

which can be expected in future devices. Figure 8 shows the

number of MSVs, which grows slowly as the circuit depth

increases. On average we need to store about 6 intermediate

state vectors. When the number of qubits increases, the number

of MSVs decreases because there are more potential error

positions which reduce the probability for two trials to share

the same injected error.

0

0.2

0.4

0.6

0.8

n10,d5 n10,d10 n10,d15 n10,d20 n20,d20 n30,d20 n40,d20

10^-3/10^-2 5X10^-4/5X10^-3 2X10^-4/2X10^-3 10^-4/10^-3

Fig. 7. Normalized Computation in Scalability Experiments

0

5

10

n10,d5 n10,d10 n10,d15 n10,d20 n20,d20 n30,d20 n40,d20

10^-3/10^-2 5X10^-4/5X10^-3 2X10^-4/2X10^-3 10^-4/10^-3

Fig. 8. Memory Consumption (MSVs) in Scalability Experiments

VI. CONCLUSION

Although simulating quantum computing on a classical ma-

chine is ultimately not scalable, it is still of great interest due

to its practical usage. In this paper, we propose to accelerate

the time-consuming noisy QC simulation by eliminating the

redundancy among the Monte Carlo simulation trials. By

analyzing the Monte Carlo error injection simulation trials

before actually running the simulation, we identify shared

intermediate states among these trials and then reorder them

to maximize the overlapped computation between two con-

secutive simulation trials. The number of saved intermediate

states is also reduced since states that will no-longer be used

are dropped immediately. Experiment results show that we

can achieve around 80% computation saving on average with

only a small number of state vectors maintained at the same

time. The proposed simulation scheme also demonstrates great

scalability when modeling larger size future QC devices as

more computation can be saved with more simulation trials or

on future device models with reduced error probabilities.

REFERENCES

[1] P. W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–
332, 1999.

[2] L. K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory

of computing, pages 212–219. ACM, 1996.
[3] A. Peruzzo et al. A variational eigenvalue solver on a photonic quantum

processor. Nature communications, 5:4213, 2014.
[4] J. Kelly. A Preview of Bristlecone, Google’s New Quantum

Processor. https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-
googles-new.html, 2017.

[5] W. Knight. IBM Raises the Bar with a 50-Qubit Quantum Com-
puter. https://www.technologyreview.com/s/609451/ibm-raises-the-bar-
with-a-50-qubit-quantum-computer/, 2017.

[6] N. M. Linke et al. Experimental comparison of two quantum comput-
ing architectures. Proceedings of the National Academy of Sciences,
114(13):3305–3310, 2017.

[7] Frank Arute et al. Quantum supremacy using a programmable super-
conducting processor. Nature, 574(7779):505–510, 2019.

[8] IBM. https://quantumexperience.ng.bluemix.net/qx/devices, 2018.
[9] Rigetti. https://www.rigetti.com/qpu, 2018.

[10] J. Preskill. Quantum computing in the nisq era and beyond. arXiv

preprint arXiv:1801.00862, 2018.
[11] G. Aleksandrowicz et al. Qiskit: An open-source framework for quantum

computing, 2019.
[12] N. Khammassi et al. Qx: A high-performance quantum computer

simulation platform. In 2017 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 464–469. IEEE, 2017.
[13] G. F. Viamontes et al. High-performance quidd-based simulation

of quantum circuits. In Proceedings of the conference on Design,

automation and test in Europe-Volume 2, page 21354. IEEE, 2004.
[14] G. F. Viamontes et al. Quantum circuit simulation. Springer Science &

Business Media, 2009.
[15] J. Chen et al. Classical simulation of intermediate-size quantum circuits.

arXiv preprint arXiv:1805.01450, 2018.
[16] I. L. Markov and Y. Shi. Simulating quantum computation by contracting

tensor networks. SIAM Journal on Computing, 38(3):963–981, 2008.
[17] S. Aaronson and D. Gottesman. Improved simulation of stabilizer

circuits. Physical Review A, 70(5):052328, 2004.
[18] S. Anders and H. J. Briegel. Fast simulation of stabilizer circuits using

a graph-state representation. Physical Review A, 73(2):022334, 2006.
[19] A. Zulehner and R. Wille. Advanced simulation of quantum compu-

tations. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2018.
[20] M. Smelyanskiy et al. qhipster: the quantum high performance software

testing environment. arXiv preprint arXiv:1601.07195, 2016.
[21] D. S. Steiger et al. Projectq: an open source software framework for

quantum computing. Quantum, 2:49, 2018.
[22] D. Wecker and K. M. Svore. Liqui| > : A software design architecture

and domain-specific language for quantum computing. arXiv preprint

arXiv:1402.4467, 2014.
[23] B. Tarasinski. https://gitlab.com/quantumsim/quantumsim, 2018.
[24] T. Jones et al. Quest and high performance simulation of quantum

computers. arXiv preprint arXiv:1802.08032, 2018.
[25] TE O’brien et al. Density-matrix simulation of small surface codes under

current and projected experimental noise. npj Quantum Information,
3(1):39, 2017.

[26] Michael A Nielsen and Isaac L Chuang. Quantum computation and
quantum information. UK: Cambridge University Press, 2010.

[27] Rigetti. https://pyquil.readthedocs.io/en/stable/noise.html, 2019.
[28] A. W. Cross et al. Open quantum assembly language. arXiv preprint

arXiv:1707.03429, 2017.
[29] UFMG Compilers Laboratory. http://cuda.dcc.ufmg.br/enfield/, 2018.
[30] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal

on computing, 26(5):1411–1473, 1997.
[31] N. Moll et al. Quantum optimization using variational algorithms

on near-term quantum devices. Quantum Science and Technology,
3(3):030503, 2018.

[32] Emanuel Knill et al. Randomized benchmarking of quantum gates.
Physical Review A, 77(1):012307, 2008.

[33] J. Joo et al. Quantum teleportation via a w state. New Journal of Physics,
5(1):136, 2003.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 02,2020 at 15:04:20 UTC from IEEE Xplore. Restrictions apply.

