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Abstract—Many application scenarios such as social network
analysis and real-time financial fraud detection involve per-
forming batched updates and amalytics on a time-evolving or
streaming graph. Despite their importance, streaming graph
analytics workloads have not been systematically studied at either
the software or the architecture levels. This paper fills this gap
through three contributions.

First, we develop and open-source SAGA-Bench, a benchmark
for StreAming Graph Analytics, which puts together different
data structures and compute models on the same platform for a
fair and systematic characterization.

Second, we perform software-level characterization using
SAGA-Bench. Our profiling reveals that the best data structure
for a streaming graph depends on the per-batch degree distribu-
tion of the graph. We also observe that the incremental compute
model provides performance benefits especially for larger graphs.
Finally, we show that the graph update phase contributes at least
40% of the streaming graph processing latency in many cases.

Third, we perform workload characterization at the architec-
ture level. Our study reveals that the graph update phase exhibits
lower utilization of architecture resources than the compute
phase. Furthermore, the hardware resource utilization of the
update phase strongly depends on the underlying structure of
the batches of the graph. Finally, between compute and update
phases, the former exhibits a higher L3 cache hit ratio, whereas
the latter shows a higher L2 cache hit ratio.

I. INTRODUCTION

Streaming graph processing involves performing batched
updates and analytics on graphs that are evolving over time.
This scenario is critical in many applications such as social
network analysis [1]-[3], real-time financial fraud detection
[4], anomaly detection [5], and recommendation systems [6]—
[8]. These application scenarios require effective handling of
the streaming graph data by providing low-latency real-time
support for both: 1) update (ingestion of new edges) and
2) compute (timely analytics on freshly ingested graph data
stream). The data structures and compute models underpinning
streaming graph systems are still actively being researched.
Although many systems have been proposed, these workloads
have not been studied systematically at the software level.
Moreover, they remain unexplored at the architecture level.

At the software level, a lack of systematicness arises from
the heterogeneity of previously proposed streaming graph sys-
tems [1], [3], [9]-[16]. In addition to the core software com-
ponents (data structures and compute models), each system is

accompanied with additional optimization features (e.g., data
compression, specially designed APIs, specialized memory
allocation schemes). Moreover, measurement methods often
vary across these systems. Hence, it is difficult to perform
a fair and systematic comparison of the basic data structures
and compute models across these systems since the observed
performance differences may arise from a variety of features.

At the architecture level, streaming graphs remain unex-
plored. Prior research [17]-{35] focuses on static graphs which
assumes that a graph is built once and never changes while
algorithms are run on it. Although Dai et al. [35] address
dynamic graphs, the discussion is limited to an additional
optimization for a newly proposed design for static graph
analytics and does not consider a detailed workload char-
acterization. We recognize two reasons for which streaming
graphs have failed to receive attention at the architecture
level. First, data structures and compute models are still
being developed, indicating the lack of software-level maturity.
Second, the lack of an open-source benchmark containing the
core data structures and compute models limits microarchi-
tecture exploration. Existing open-source implementations for
streaming graphs [3], [7], [9], [13], [16] are holistic systems,
each with a specialized complex package of system-specific
optimizations. A more useful resource for microarchitecture
exploration is an open-source benchmark with the essential
software techniques (data structures and compute models) to
understand the core complexities of the workloads without
system-specific optimizations. However, such a benchmark
for streaming graphs is currently missing in the architecture
community.

Motivated by the lack of systematic software and hardware
studies, this paper presents three contributions:

Contribution 1: Development of SAGA-Bench (Section
IIT). SAGA-Bench is an open-source C++ benchmark for
StreAming Graph Analytics containing a collection of data
structures and compute models on the same platform for a
fair and systematic study. SAGA-Bench does not seek to be
yet another novel and competitive state-of-the-art streaming
graph system. Instead, it is a systematic performance analysis
platform for software and hardware studies of the essential
data structures and compute models proposed across various
existing systems. For software studies, the core data structures
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and compute models (without system-specific optimizations)
are integrated into SAGA-Bench and evaluated using the same
measurement methodology (thus alleviating the problem of
difficult-to-interpret comparisons across heterogeneous sys-
tems). At the architecture level, SAGA-Bench provides an
open-source benchmark for streaming graph workloads. Since
streaming graphs are still being actively researched at the
software level, the goal of SAGA-Bench is to remain in
active development over time through progressive integration
of future novel data structures and compute models. 7o the best
of our knowledge, our work is the first to develop a resource
for streaming graphs which simultaneously provides 1) a
common platform for performance analysis studies of software
techniques and 2) a benchmark for architecture studies (code
available at https://github.com/abasak24/SAGA-Bench).
Contribution 2: Software-level Workload Characteriza-
tion (Section V). We further use SAGA-Bench to perform
software-level profiling to provide insights on the best data
structure and compute model. This analysis is important be-
cause 1) data structures and compute models are still topics of
active research and 2) we seek to demystify the performance
trade-offs of different data structures and compute models
systematically on the same platform, as opposed to prior
difficult-to-interpret cross-system comparisons. In addition,
this software-level analysis helps identify the best software
for further architecture characterization (see Contribution 3).
Our key findings from software-level profiling are as follows:

e The best data structure for a streaming graph depends on
the per-batch degree distribution of the graph. Short-tailed
graphs perform the best on adjacency list (occasionally
Stinger [9]), whereas hash-based data structure is the most
scalable for heavy-tailed graphs.

o The incremental compute model offers performance benefits
especially for larger graphs. Although an intuitive finding,
we provide detailed supporting data to quantitatively confirm
this observation.

o The graph update phase contributes at least 40% of the
streaming graph processing latency for many workloads.

Beyond prior work, 1) we provide novel insights on the
comparative performance trade-offs of various data structures
on input datasets of different structural properties and 2) we
explicitly highlight the performance limitation of the graph
update phase in terms of the latency breakdown.
Contribution 3: Architecture-level Workload Charac-
terization (Section VI). We use the best data structure
and compute model from software-level profiling to perform
architecture-level characterization of both update and compute
phases. Our key observations and insights are as follows:

« The graph update phase exhibits lower utilization of hard-
ware resources than the graph compute phase, indicating
lower thread-level parallelism (TLP) of the update phase.

e The hardware resource utilization of the update phase
strongly depends on the underlying structure of the batches
of the graph. The update of heavy-tailed graphs benefits
negligibly from larger core counts, memory bandwidth, and

13

inter-socket bandwidth. In contrast, the update of short-
tailed graphs shows higher utilization of these architecture
resources. We further provide insights that the lower TLP
of the update phase arises from 1) thread contentions in
short-tailed graphs and 2) workload imbalance in heavy-
tailed graphs.

o Compared to the update phase, the compute phase exhibits
higher L3 cache hit ratio. In contrast, the update phase
exhibits a higher L2 cache hit ratio than the compute phase.
This occurs due to 1) a data reuse relationship and 2) a
difference in working set sizes between the update and
compute phases.

To the best of our knowledge, our work is the first to perform
a comparative study between update and compute phases and
to provide novel insights on the architecture-level features of
the graph update phase. Previous architecture-level research
on graph processing [17]-[35] focuses on static graphs and
does not consider a detailed study of the graph update phase.

II. BACKGROUND AND MOTIVATION

We describe how streaming graph analytics differs from
static graph analytics in terms of execution flow, coverage in
previous work, and unique challenges.

A. Streaming vs Static Graph Analytics

As shown in Fig. 1, the input to a streaming graph analytics
system is a stream of incoming edges. Once a batch of edges
enters the system, two action phases described below are
executed, which provide newly computed results:

e Update phase: the incoming edges in a given batch are
ingested into the graph data structure.

e Compute phase: an algorithm such as PageRank is per-
formed on the freshly updated data structure.

The primary optimization target in streaming graph analytics

is timely response, i.e., low latency between the input edge

batch and the newly computed results. Hence, in the rest of

the paper, we use batch processing latency as the performance

metric for streaming graphs.

batch processing latencyy,;.p, ; =

M
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Fig. 1: Overview of streaming graph analytics

Fig. 2 shows the difference in execution flow between
static and streaming graph analytics. In the former, an entire
input file is read to build a graph usually in the Compressed
Sparse Row (CSR) format [36]. It is then assumed that the
graph topology never changes as different algorithms are run
on it. Streaming graph analytics, on the other hand, has to
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handle dynamism by performing repeated update and compute
operations on continuous batches of incoming edges!.

=

time ®

‘Build entire graph

Update
Batch o

(usually in CSR)

@ time
7] Previously studied at microarchitecture level DD Not studied at microarchitecture level

Fig. 2: Execution flow of (a) static and (b) streaming graphs

B. Coverage of Previous Studies

At the software level, there exists an abundance of both
standalone systems [48]—[53] and systematic studies [54]-[57]
for static graph processing. However, for streaming graphs,
although many novel systems have been proposed [1], [3], [9]-
[16], there is a lack of systematic and comparative study of the
techniques proposed across various systems. We fill this gap
through a systematic performance analysis of different data
structures and compute models.

Fig. 2 highlights that only the compute phase in static
graph analytics has been previously studied [17]-[35] at the
architecture level (the graph building phase has not been
considered in detail). In contrast, the entire execution flow
of streaming graph analytics still remains unexplored due to
immature software and lack of a benchmark. This paper fills
this gap by creating SAGA-Bench and performing workload
characterization at the architecture level.

C. Challenges of Streaming Graph Analytics

Streaming graph analytics possesses unique challenges be-
cause its optimization goal is different from that of static
graph analytics. In static graphs, the optimization target is the
compute phase. The graph building phase is considered to be a
fixed one-time overhead that can be amortized by performing
repeated computations. In contrast, the optimization goal in
streaming graphs is real-timeliness (Equation 1). Hence, the
graph update phase lies on the critical path for streaming
graphs and cannot be considered as a one-time overhead. This
is the primary factor which hinders smooth portability of static
graphs’ software-hardware solutions to streaming graphs.

Inefficiency of borrowing software solutions from static
graph analytics: Borrowing array-based CSR and pre-
processing techniques [58] beneficial for the compute phase
would substantially hurt the update latency. Similarly, borrow-
ing conventional algorithms [36], [59] would lead to redundant
computations because two successive compute phases may
have large overlap in vertices and edges.

Inefficiency of borrowing architecture solutions from
static graph analytics: Previous architecture optimizations
for static graph analytics ignore the update or graph building

IThe current version of SAGA-Bench 1) maintains the latest snapshot
of an evolving graph similar to [1], [9], [14] and 2) supports the model
where update and compute are interleaved (Fig. 2b) similar to [9], [11], [12],
[15], [37]1-[43]. A few existing systems maintain multiple over-time snapshots
[2], [441-47]. Two very recently proposed systems [13], [16] utilize data
structures capable of parallelizing update and compute. The multi-snapshot
model and the novel data structures will be included in the future version of
SAGA-Bench.
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phase. This is inefficient for streaming graphs because update
lies on the critical path and is interleaved with compute.
For the compute phase, previous architecture optimizations
in static graphs assume the conventional CSR data layout
and algorithms. Streaming graphs, however, rely on a set
of different data structures and compute models. Without
extensive hardware characterization of these novel underlying
software components, it is unclear whether an architecture
optimization targeted at the compute for static graphs would
work equally well in the streaming scenario.

III. SAGA-BENCH DESCRIPTION

SAGA-Bench is implemented in C++ and contains a col-
lection of 4 data structures (Section III-A), 2 compute models
(Section III-B), and 6 vertex-centric algorithms (Section III-C)
implemented in both the compute models?.

A. Data Structures for Graph Topology

SAGA-Bench contains four vertex-centric data structures
which support multithreaded edge update, as described below?,
for storing the graph topology*. As described in prior work
[9], [10], we implement each edge update only after a search
operation so that edges are ingested uniquely.

1) Adjacency List (shared style multithreading) (AS):
AS is implemented as an array of vectors where each vector
contains the neighbors belonging to a particular node. Multiple
threads update a batch of edges into AS (implemented in the
code with OpenMP). A thread responsible for an edge update
1) locks the vector corresponding to the source node, 2) scans
the vector to search for the target edge, and 3) inserts the edge
if the search is negative. Since edge update involves locking
the entire vector corresponding to a source node, there is no
parallelism in intra-node edge update. However, parallelism is
possible in updating edges for different nodes.

2) Adjacency List (chunked style multithreading) (AC):
As shown in Fig. 3, AC is an adjacency list partitioned into
multiple chunks, each chunk storing neighbors for a subset of
source vertices. Each chunk is a single-threaded data structure
and no locks are required for updating the edges inside it (the
rest of the intra-chunk operation is the same as in AS). Update
multithreading is achieved with multiple chunks.

3) Stinger: Stinger [9] is a shared-memory data structure
where multithreading is achieved with OpenMP. As shown
in Fig. 4, it contains two components. First, an array stores
information on the source node ID and its degree. Second, each
node entry in the array points to a linked list of edgeblocks
which contains the edge information for the corresponding
node. Each edgeblock accommodates a fixed number of edges
(16 in our implementation). Stinger differs from AS in two

2All implementations are done from scratch. Even when an open-source
implementation is available (e.g., Stinger [9]), it is modified to conform to the
APIs of SAGA-Bench. Closed-source software techniques are implemented
by closely following their descriptions in the corresponding published papers.

3The description assumes storing out-neighbors. For directed graphs,
there is a second copy of the data structure for storing in-neighbors.

4Vertex property values are maintained in a separate array in all cases.
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Fig. 3: Chunked adjacency list (AC)

aspects. First, unlike AS, Stinger can enjoy intra-node paral-
lelism. Due to fragmented edgeblocks, Stinger can perform
multiple edge updates for a single node by acquiring fine-
grained locks within its linked list of edgeblocks. Second,
unlike AS, Stinger requires two scans for an edge insertion
as a trade-off for its fine-grained locks. The first scan through
the linked list searches for the target edge. If not found, another
scan through the same linked list is required to find an empty
space for inserting the edge.

4) Degree-aware Hashing (DAH): As shown in Fig. 5,
DAH [10] contains two hash tables, one for low-degree
vertices and another for high-degree vertices. Multithreading
is achieved with multiple chunks of DAH, where each chunk is
single-threaded and lockless (similar to AC). Although DAH
allows amortized constant-time edge update through hashing,
it incurs an overhead from the following meta-operations due
to its degree-awareness: 1) querying the degree of each table
before deciding where to place the new edge and 2) periodic
flushing of edge information from the low-degree table to the
high-degree table.

5) Choice of data structures: To enable systematic and
insightful studies, the four data structures of SAGA-Bench
have been chosen to include variations in the following factors.
Edge update mechanism: To study the effect of the update
technique on update latency, SAGA-Bench contains a variety
of update mechanisms: 1) hash-based update (DAH), 2) update
in memory-contiguous vectors (AS, AC), and 3) update in
coarse-grained linked lists (Stinger).

Intra-node parallelism: Stinger supports intra-node parallelism
in edge update, whereas others do not possess this flexibility
(AS, AC, DAH). This allows us to study the benefit of this
extra degree of parallelism on the update latency.
Multithreading technique: SAGA-Bench contains data struc-
tures with two update multithreading techniques: 1) shared-
memory style (AS, Stinger) and 2) chunked style (AC, DAH).
We implemented adjacency list in both the techniques in order
to understand, for a given data structure, the benefit of one over
the other for datasets of different properties.

Traversal mechanism: Graph data layout and compute latency
are strongly tied because a basic operation of vertex-centric
computation is neighbor traversal for vertices. Data structures
in SAGA-Bench support a variety of traversal mechanisms in
order to study their effects on the compute latency.

B. Compute Models

SAGA-Bench supports two compute models:
Recomputation from scratch (FS). Every update phase is
considered to produce a brand-new version of the entire graph.

Fig. 4: Stinger
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Fig. 5: Degree-aware Hashing (DAH)
Algorithm 1 Incremental PageRank

Require: Streaming graph G{V, E'} which contains |V| ver-
tices and | E| edges as of the latest update phase; PageRank
scores {PR(v;)} from previous batch; array of affected
vertices affected.

1: Initialize: two queues Qcyrr, Quext; Visited bitvector of
size |V|; triggering threshold € = 1077,

2: for v; in V do

3 if v; is a new vertex then

4 PR(v;) =1/|V]|

5:

6: # pragma omp parallel for

7: for ¢ in range(|V|) do

8: if affected[i] == true then

9: old_score = PR(v;)

10: Re-calculate PR(v;)

11: if |old_score — PR(v;)| > € then
12: for v; in v;’s out-neighbors do
13: if visited|j] == false then
14: if CAS(visited[j], false,true) then
15: Qnegt-push_back(v;)
16:

17: chrr = Qnemt
18: Qnezt-clear()
19: while Q. is not empty do

20: visited < {false}

21: # pragma omp parallel for
22: for v; in Qcyrr do

23: Re-do lines 9-15.

24: chrr = Qnemt

25: Qnext-clear()

All vertex values are reset to the initial values and an entirely
new computation is started on this fresh graph, i.e., the current
computation is oblivious of the computation performed in the
previous batch. This compute model is implemented using
conventional algorithms for static graphs (borrowed from GAP
[36]) during each successive compute phase. We implement
Max Computation and Single Source Widest Paths (Section
IMI-C) since they are not implemented in GAP.

Incremental computation (INC). This compute model con-
siders the fact that there may be sharing of vertices and
edges between two successive compute phases. Hence, the
amount of work may be saved by 1) reusing the outcome
of the computations performed in the previous batch and by
2) performing computation on only the portion of the graph
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TABLE I: Vertex functions for algorithms

TABLE II: Evaluated datasets. BatchCount computed

with batch size of 500K (see Section IV-B).

Alg Vertex function

BES v.depth < MmiNeern Bages(v) (€-s0urce.depth + 1) [11] Dataset vertices edges batchCount

cc v.value < min(v.value, Minee pages(v) €-other.value) [60] Livejournal (LJ) | 4,847,571 | 68,993,773 138

MC | v.value < max(v.value, max.c rnEages(v) (€. s0urce.value)) [11] Orkut 3,072,441 | 117,185,083 235

PR virank < 015 1 U85+ 5. cromagasta - 0urcerank [60] _ RMAT | 32118308 | 500,000,000 | 1000
SSSP h = 9 h i 11 wiki-topcats (Wiki) | 1,791,489 28,511,807 58

v.path < Mil.crnEdges(v) (€-S0urce.path + e.weight) [11] wikitalk (Talk) 2394385 | 5.021410 T

SSWP | w.path < maX.cinEdges(v) (Min(e.source.path, e.weight)) [11]

affected (directly and indirectly) by the latest update phase.

We implement incremental algorithms in SAGA-Bench using

two techniques introduced in previous work (pseudocode in

Algorithm 1):

e Processing amortization [11], [60]: Work is saved by start-
ing the computation from the vertex values right before the
latest update, i.e., the vertex values produced by the compute
phase on the previous batch (lines 2-4). These intermediate
values have been shown to be closer to the final results,
allowing faster convergence to the final results in cases of
many algorithms.

o Selective triggering [1], [15]: Computation starts from a
subset of vertices affected by the latest update (line 8), and
large enough changes (decided by a triggering condition in
line 11) are progressively propagated iteration-by-iteration
to neighboring vertices. These iterations continue until no
more vertices are triggered (lines 19-25). The goal is to cut
computation costs by operating on only a fraction of the
graph affected (directly and indirectly) by the latest update
instead of on the entire graph.

C. Algorithms

As summarized in Table I, SAGA-Bench contains six
vertex-centric algorithms implemented in both FS and INC
compute models: 1) Breadth First Search (BFS), 2) Connected
Components (CC), 3) Max Computation (MC), 4) PageRank
(PR), 5) Single Source Shortest Path (SSSP), and 6) Single
Source Widest Path (SSWP).

D. API and extensibility

The API of SAGA-Bench is general enough to accommo-
date future software techniques. The API includes functions
that define batched updates, graph traversal, and algorithm ex-
ecution (specific functions: update(), in_neigh(), out_neigh(),
and performAlg()). A new data structure, compute model, or
graph algorithm can be added in the future by implementing
these API functions.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental platform,
methodology, and datasets.
A. Platform

Characterization is performed on a dual-socket Intel Xeon
Gold 6142 (Skylake) server with 16 physical cores per socket
and 2-way simultaneous multithreading per physical core (total
of 64 hardware execution threads in the system). The server
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contains 32KB private L1 data and instruction caches per
physical core, 1MB private L2 cache per physical core, 22MB
shared last-level cache (LLC) per socket, and 768GB DRAM
with maximum per-socket memory bandwidth of 128GB/s.
Three QuickPath Interconnect (QPI) links provide 136.2GB/s
of inter-socket communication (68.1GB/s in each direction).

B. Methodology

SAGA-Bench is compiled with gcc-7.3.1. All experiments
(except for studies on core scaling in Section VI) are per-
formed with 64 threads, the maximum number of hardware
execution threads. To make our analysis reproducible, we turn
off the Turbo Boost feature for all experiments. In addition,
we pin software threads to hardware threads to exclude per-
formance variations due to OS thread scheduling.

Graph datasets (Section IV-C) are first randomly shuffled to
break any ordering in the input files. This is done to ensure the
realistic scenario that streaming edges are not likely to come
in any pre-defined order. The shuffled input file is then read
in batches of 500K edges (similar batch size value has been
considered in [9], [12]-[14]).

All the experiments are repeated three times and each
experiment provides batchCount (see Table II) values. To an-
alyze the over-time effect of changing graph size and sparsity
in streaming graphs, we divide the total number of batches
in a given experiment into three equal stages. Experimental
results contain three representative data points P1, P2, and
P3, which are the averages for early, middle, and final stages,
respectively. The average for a given stage (P1, P2, or P3) is
computed by taking into account 1) the corresponding one-
third of batchCount values and 2) the fact that the experiment
has been repeated three times. For example, for BFS run in the
incremental compute model on the Orkut dataset on the AS
data structure, the batch processing latency at P1 is the average
of 1/3 x Orkut’s batchCount x 3 latency values produced
from the three repeated experiments. All the averages are
computed with 95% confidence intervals. Despite three runs,
our confidence intervals are tight because each run produces
batchCount values which are taken into account (as described
above) for the calculation of the average.

Architecture-level profiling of memory, caches, and inter-
socket bandwidth (Section VI) is performed with Intel Pro-
cessor Counter Monitor (PCM) [61].
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TABLE III: Best combination of data structure and compute
model and the corresponding absolute batch processing latency
(in seconds). Conclusion for each entry is derived by compar-
ing 4 data structures X 2 compute models=8 averages with
95% confidence intervals. [x/y=x is the best average but x and

y are competitive].

Alg Datset P1 (early stage) P2 (middle stage) P3 (final stage)
INC/FS+AS INC+AS INC+AS
BES LJ 0.1705 0.1502 0.1407
INC+AS INC+AS INC+AS
BES Orkut 0.1521 0.1445 0.2003
INC+AS INC+AS INC+AS
BES T 0.2220 0.2029 0.2190
i INC/FS+Stinger INC/FS+DAH INC+DAH
BES Wiki 0.2587 0.4063 0.3757
BFS Talk INC/FS+DAH/Stinger INC/FS+DAH INC/FS+DAH
0.3406 0.3330 0.3225
INC+AS INC+AS INC+AS
N 0.1818 0.1513 0.1374
INC+AS INC+AS INC+AS
Ceoa 0.1486 0.1614 0.1932
INC+AS INC+AS INC+AS
c« T 0.2453 0.2517 0.2757
. INC+Stinger INC+DAH INC+DAH
CC Wiki 0.2731 0.4082 0.3728
INC+DAH/Stinger INC+DAH INC+DAH
CC Talk 0.3525 0.3438 0.3315
MC LT FS/INC+AS INC/FS+AS INC/FS+AS
0.3109 0.3552 0.4097
FS/INC+AS/Stinger INC+AS INC/FS+AS
ME Orm 0.3204 0.4094 0.5208
INC+AS/Stinger INC+AS/Stinger INC/FS+AS/Stinger
MCRMAL 09772 1.9038 2.5754
. FS/INC+Stinger FS/INC+DAH/Stinger INC/FS+DAH
MG Yk 0.3435 0.6448 0.7657
MC Talk FS/INC+DAH/Stinger INC/FS+DAH INC/FS+DAH
0.3806 0.3856 0.3901
PR LJ INC+Stinger INC+Stinger INC+Stinger
0.3864 0.4397 0.4536
INC+Stinger INC+AS/Stinger INC+AS
PR Orkut 0.3091 0.3234 0.3578
RMAT INC+Stinger INC+Stinger INC+Stinger
PR 0.4347 0.4319 0.4582
§ INC+Stinger INC+Stinger INC+DAH
FRA 04311 0.6478 0.7669
PR Talk INC/FS+Stinget/DAH INC/FS+DAH INC/FS+DAH
0.4969 0.6649 0.6175
SSSP LY FS+AS/Stinger FS+Stinger/AS FS/INC+Stinger/AS
0.2664 0.2971 0.3384
FS+Stinger INC+AS/Stinger INC+AS
SSSP Orkut 02785 0.3761 0.4254
INC+Stinger/AS INC+AS/Stinger INC+AS/Stinger
SSSP RMAT 04919 0.6074 0.5069
. INC/FS+Stinger FS+DAH/Stinger FS+DAH
SSSP Wiki 0.3345 0.5756 0.5718
FS/INC+DAH/Stinger FS+DAH FS/INC+DAH
¥Rk 0.3478 0.3471 0.3735
INC+AS/Stinger INC+AS INC+AS
Ll 0.2408 0.2078 0.2045
INC+Stinger/AS INC+AS/Stinger INC+AS
BENER Orait 0.2064 0.2896 0.3309
INC+Stinger INC+AS INC+AS
SSWE RMAT 0.2770 0.3070 0.3212
. FS/INC+Stinger FS+DAH/Stinger FS+DAH
ST Wik 0.2863 0.5603 0.5935
INC/FS+DAH/Stinger ES/INC+DAH INC/FS+DAH
SSWP Talk 0.3531 0.3841 0.3524

C. Datasets

The datasets in Table II are taken from SNAP [62], with
the exception of synthetic RMAT [63] for which we used
parameters a=0.55, b=0.15, ¢=0.15, d=0.25. Livejournal and
Orkut are online social networks, Wiki-topcats is Wikipedia
hyperlink graph, and Wiki-talk is Wikipedia communication
network. All the datasets are directed except for Orkut.

V. SOFTWARE-LEVEL PROFILING

We perform a systematic characterization of the data
structures and the compute models on the same platform
to measure their impact on update, compute, and batch-
processing latencies for a range of algorithms and datasets.

A. Best Combination of Data Structure and Compute Model

Table III shows, for a given algorithm and dataset, the com-
bination of data structure and compute model which provides
the lowest batch processing latency. Moreover, the table shows
the best combination over time in the early, middle, and final
stages. The observed trends are summarized below.

Best data structure. The best data structure depends on
the dataset. AS and Stinger are the most competitive data
structures over P1, P2, and P3 for LJ, Orkut, and RMAT. For
Wiki and Talk, on the other hand, DAH consistently shows
good scalability over time, i.e., DAH is the best data structure
at P3. Wiki and Talk also exhibit strong over-time variation in
the best data structure. Although Stinger starts out being the
best or competitive to DAH in P1, DAH finally takes over by
the time P3 is reached.

Best compute model. The incremental compute model (INC)
is predominantly optimal. However, the recomputation from
scratch model (FS) is competitive in a few cases: 1) Wiki and
Talk which are small datasets; 2) MC algorithm; and 3) SSSP
algorithm except for SSSP on the large RMAT dataset.

B. Impact of Data Structure

Primary Observation: The best data structure for a
streaming graph depends on the per-batch degree distribution
of the graph. Short-tailed graphs perform the best on AS
(occasionally Stinger), whereas DAH is the most scalable data
structure for heavy-tailed graphs.

Fig. 6(a) shows, for each algorithm (at the best compute
model) and dataset, the total batch processing latency of each
data structure normalized to AS at P3. The most striking trend
is the flipped relative performance benefits of AS and DAH for
different datasets. For LJ, Orkut, and RMAT, AS (occasionally
Stinger) provides the lowest batch processing latency and DAH
provides the highest latency (1.66x-4.14x higher than AS).
For Wiki and Talk, on the other hand, AS is the lowest-
performing data structure with 5.6x-12.8 x higher latency than
DAH, the best-performing data structure. Fig. 6(b) and 6(c)
further confirm that this difference is caused by the update
phase. Although the relative benefits of AS and DAH are con-
sistent for all datasets in the compute phase, the update phase
shows flipped behavior for Wiki and Talk. To understand the
graph structural property which affects this behavior, we define
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model (P3 column of Table IIT). The compute model is kept to be the best to isolate the impact of only the data structure. We
show only BEFS in (b) because the same trend is observed for other algorithms (update is independent of the running algorithm).

short (heavy)-tailed graphs. Short (heavy)-tailed graphs are
graphs with batches containing low (high) maximum degree,
indicating a short (heavy) tail in the degree distribution of the
batch®. As shown in Table IV, in contrast to the three other
datasets, Wiki and Talk are heavy-tailed graphs with much
higher per-batch maximum degree, i.e., a heavier tail in each
edge batch’s degree distribution. Therefore, in contrast to the
other datasets, Wiki and Talk have to undergo a much higher
maximum per-node edge updates in each batch. AS suffers
from coarse-grained locks (the entire vector for a source node
is locked) and a lack of intra-node parallelism (Section III-A1).
These cause substantial lock contention overhead and update
serialization in case of heavy-tailed graphs with a high count
of edge updates for the high-degree node. On the other hand,
DAH is lockless due to chunked multithreading and offers
a fast hash-based update mechanism, which becomes highly
beneficial for heavy-tailed graphs. In contrast, for shorter-
tailed graphs like LJ, Orkut, and RMAT, DAH becomes lower
performing (Fig. 6(b)) because the overhead due to its meta-
operations (Section III-A4) overpowers any other benefits.
Hence, AS takes over as the higher-performing data structure
since the number of edge updates for the high-degree node is
low enough to not cause substantial lock contention.

In addition to the above primary observation, we provide
insights on the relative strengths of different data structures

50ur definition is with respect to a batch because it directly impacts
the streaming graph processing latency (Equation 1). However, in our setup,
the degree distribution of the entire dataset is generally reflected in a typical
batch (batch size = 500K) due to random shuffling of the datasets (Section
IV-B). Table IV shows that Wiki and Talk are heavy-tailed across the entire
dataset as well as in a typical batch. All our datasets and their corresponding
edge batches show power-law degree distribution, and the maximum degree
indicates the heaviness of the tail of the degree distribution.
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TABLE IV: Max in/out degree for each dataset

Dataset Entire Dataset One Batch (Batch size = 500K)
Max In-degree | Max Qut-degree | Max In-degree | Max Out-degree
Ly 13906 20293 106 147
Orkut 33313 33313 144 144
RMAT 8016 7997 10 10
Wiki 238040 3907 4174 70
Talk 3311 100022 330 9957

for both update and compute phases:

Update latency for short-tailed L J, Orkut, and RMAT. Fig.
6(b) provides evidence of the following relative ordering of the
four data structures for update latency (from highest to lowest):
DAH > AC > Stinger > AS®. Stinger exhibits 1.57x-1.76x
higher update latency than AS because it requires two passes
to insert edges for a particular node. In addition, each pass
involves occasional pointer-chasing, whereas AS contains per-
node edge information in a contiguous vector. Compared to
AS, AC exhibits 2.2x-2.6x higher latency and DAH exhibits
2.3x-3.2x higher latency. Between AC and DAH, the latter
incurs higher latency due to meta-operations such as degree-
querying and inter-hash-table flushing during edge update.
Update latency for heavy-tailed Wiki and Talk. Fig. 6(b)
shows the following ordering of the four data structures for
update latency (from highest to lowest): AS > AC > Stinger >
DAH. Averaged over Wiki and Talk, AS shows 12.6x%, 3.9x,
2.6x higher update latency compared to DAH, Stinger, and
AC, respectively. The benefit of DAH over AS for Wiki and
Talk has been discussed above. Stinger and AC perform much
better than AS as well. This is because Stinger offers fine-

6 Although confidence intervals of DAH/AS and AC/AS overlap for Orkut,
we report DAH > AC because this relation holds strictly for 2 out of 3 cases.
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grained locks and intra-node parallelism, which can parallelize
edge updates for the high-degree node in heavy-tailed graphs.
The benefit of AC comes from its chunked and lockless fea-
ture. Hence, unlike AS, it does not suffer from lock contention
overheads in the case of heavy-tailed graphs. Thus, the choice
of multithreading technique is important for the update phase.
For adjacency list, heavy-tailed graphs exhibit lower update
latency on the lockless chunked-style AC, whereas short-tailed
graphs perform better on the shared-style AS.

Impact of data structures and their traversal mechanisms
on compute latency. As shown in Fig. 6(c), DAH shows
higher compute latency (up to 4.7x) compared to AS in all
cases. DAH has an expensive neighbor traversal due to degree-
query meta-operations to locate the right hash table for edge
retrieval. It performs particularly poorly in PR because we
normalize the rank of an incoming neighbor by its out-degree,
requiring another degree-query in addition to the one involved
in neighbor traversal. AC and Stinger are competitive to AS
in multiple cases because all three data structures are based
on adjacency list with similar traversal mechanisms. However,
in some cases, both show up to 2x higher latency than AS.
For example, in Stinger this occurs due to occasional pointer
chasing during edge traversal.

C. Impact of Compute Model
Observation: Larger graphs benefit more from the

incremental compute model.

As shown in Fig. 7, for a given algorithm (BFS, CC, PR,
SSSP, and SSWP), at any given stage (P1, P2, or P3), RMAT
(the largest graph) is the largest beneficiary of INC, whereas
Wiki and Talk (the smallest graphs) are the smallest benefi-
ciaries. For RMAT at P3, INC improves compute performance
by 15x, 40x, 18x, 5%, and 17x in BFS, CC, PR, SSSP, and
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SSWP, respectively. In comparison, for Wiki at P3, INC shows
only 2.4x, 7.7x, 1.9%, 0.6x, and 0.8x improvements for
BFS, CC, PR, SSSP, and SSWP, respectively. In addition, the
benefit of INC is higher for later stages P2 and P3 where the
graph becomes larger. For example, for BFS on RMAT, INC
improves the compute performance by 6x, 13x, and 15x at
P1, P2, and P3, respectively. Hence, the incremental compute
model offers performance advantages in the compute phase
for larger graphs, i.e., a larger dataset at a given stage (RMAT
versus Wiki at P3) or the same dataset becoming larger over
time (RMAT at P1 versus P2 and P3). For larger graphs, INC
saves substantial amount of computations by operating on only
a small fraction of the graph’.

D. Latency Breakdown

Observation: The graph update operation is an important
performance limiter in streaming graphs. The update phase
contributes at least 40% of the batch processing latency for
many workloads.

Fig. 8 shows that the update phase is expensive in many
cases such as BFS, CC, and SSWP across all the three stages
P1, P2, and P3. For small datasets such as Wiki and Talk, the
amount of computation during the compute phase is small and
the bottleneck shifts to the update phase. However, the large
contribution of the update phase is not limited to only small
datasets. Larger datasets LJ, Orkut, and RMAT also show near
or more than 40% latency contribution of the update phase in
most cases. This provides quantitative evidence that the update
phase is as important as the compute phase in the case of
streaming graph analytics.

7TMC is an exception which shows small benefit over INC because FS
and INC implementations in MC are similar. In SSSP, FS is competitive
to INC (except for the large RMAT dataset) because the delta-stepping FS
implementation [36] is highly optimized.
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VI. ARCHITECTURE LEVEL PROFILING

We quantitatively study the impact of different architecture
resources on the performance of both update and compute
phases. Architecture-level characterization is performed with
the predominantly best data structure and compute model
identified in software-level study (Section V). We use the
incremental compute model (INC) for all the algorithms and
categorize the results into two groups:

o SThil: Average across short-tailed graphs LJ, Orkut, and
RMAT on AS across six algorithms.

o HTail: Average across heavy-tailed graphs Wiki and Talk
on DAH across six algorithms.

A. Update Phase vs Compute Phase

Observation and insight: Compared to the compute
phase, the update phase exhibits lower utilization of
hardware resources, such as higher core counts and memory
and _inter-socket bandwidths. This trend indicates lower
thread-level parallelism (TLP) of the update phase. This
observation opens opportunities for inter-phase optimizations
in streaming graphs where, unlike in static graph analytics,
update and compute phases are interleaved (e.g., the slack
in resource utilization in one phase could be leveraged to
optimize the other phase). To support our observation, we
highlight the following results:

Performance Scalability to Core Counts. In contrast to the
compute phase, the update phase shows lower performance
scalability to larger core counts. Fig. 9(a) shows that the
performance scalability curves of the update phase flatten at
earlier core counts than that of the compute phase. At each
4-hop increment in core count (4-8, 8-12, etc.), the update
phase undergoes a lower incremental performance improve-
ment than the compute phase. Taking the example of STail, the
incremental performance improvement for the update phase is
52% (from 4 to 8 cores) and 17% (from 8 to 12 cores), beyond
which the incremental improvement diminishes substantially
(6%, 5%, 6%, and 2% for each successive 4-hop increment in
core count). In contrast, the STail compute phase shows 100%,
43%, 16%, 19%, 9.7%, and 6% incremental performance
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improvements for each successive 4-hop increment from 4 to
28 core count.

Memory and Inter-Socket Bandwidth Utilization. The up-
date phase utilizes lower memory and inter-socket bandwidths
than the compute phase. As shown in Fig. 9(b), the update
memory bandwidth utilizations in STail are 13GB/s, 24GB/s,
and 32GB/s at P1, P2, and P3, respectively. In contrast,
the corresponding compute phase utilizes 43GB/s, S1GB/s,
and 54GB/s, respectively. Fig. 9(c) shows similar difference
between the update and compute phases for QPI link utiliza-
tion. STail update utilizes 14%, 24%, and 31% inter-socket
bandwidth at P1, P2, and P3, respectively. In contrast, STail
compute utilizes 32%, 38%, and 41% of the available QPI
bandwidth at P1, P2, and P3.

These experiments provide evidence that the update phase
possesses lower TLP than the compute phase. Even the best
data structure for a given category of datasets (AS for LlJ,
Orkut, RMAT and DAH for Wiki, Talk) suffers from low
parallelism in the update phase. Consequently, the update
phase is unable to 1) leverage a large number of cores to
improve performance and 2) generate a large number of local
and remote memory requests to consume sufficiently large
memory and inter-socket bandwidths. The next section further
elucidates the reasons behind the poor TLP in the update
phase.

B. Graph Structure and Update Phase

Observation and insight: The hardware resource utilization
of the update phase strongly depends on the underlying
structure of the batches of the graph. The update of
heavy-tailed graphs on the best data structure (DAH) benefits
negligibly from larger core counts, memory bandwidth, and
inter-socket bandwidth. In contrast, the update of short-tailed
graphs on the corresponding best data structure (AS)
shows higher utilization of these architecture resources. This
observation, together with the previous one in Section VI-A,
supports that the low TLP of the update phase arises from
1) thread contention in short-tailed graphs on AS and 2)
workload imbalance in heavy-tailed graphs on DAH. This
observation indicates that the parallelism bottleneck of the
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update phase can be addressed with better work distribution
technique among threads either to reduce thread contentions or
workload imbalance, depending on the specific data structure.
Fig. 9(a) shows that, in contrast to STail update, HTail update
performance scales worse with large core counts. HTail update
shows 17% incremental performance improvement for 4 to 8
cores, beyond which the incremental performance improve-
ment drops below 10%. STzil update, on the other hand, shows
52% and 17% incremental performance improvements up to 12
cores. In addition, Fig. 9(b) and 9(c) show that, in contrast to
STail update, HTail update exhibits particularly poor utilization
of both memory bandwidth (about 5GB/s across P1, P2, and
P3) and QPI bandwidth (about 4% across P1, P2, and P3).
HTail update on DAH (the best data structure for Wiki and
Talk) suffers from low TLP due to workload imbalance, i.e.,
a large amount of edge updates for a very high-degree node
as discussed in SectionV-B. The thread corresponding to the
DAH chunk which accommodates the high-degree node is
doing most of the work in the update phase. We note that DAH
chunks are single-threaded (SectionIlI-A4), eliminating the
possibility of low TLP due to thread contentions. As to STail
update, although it exhibits higher TLP than HTail update, it
still shows lower TLP than the compute phase (SectionVI-A).
In this case, low TLP arises from the thread contentions in
AS where multiple threads share the edge data of the same
source node. Workload imbalance is not an extremely serious
issue for STail because the datasets are not as heavy-tailed or
highly imbalanced as HTail (SectionV-B).

C. On-Chip Caches

Observation and insight: Compared to the update phase,
the compute phase exhibits higher L3 cache hit ratios. In
contrast, the update phase exhibits higher L2 cache hit ratios
than the compute phase. This occurs due to 1) a data reuse
relationship and 2) a difference in working set sizes between
the two phases.

Fig. 10(a) shows that, for the shared LLC, the compute
phase shows a higher hit ratio than the update phase (com-
parison between “Update LLC” and “Compute LLC”). This is
because 1) the compute phase can reuse the edge data freshly
brought into LLC by the update phase and 2) the compute
phase has a larger working set size because of accesses to
vertex property values in addition to the edge data and can
therefore leverage the large shared LLC capacity. Moreover,

®)
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the LLC hit ratio for the compute phase increases over time
from P1 to P3 as the graph becomes less sparse and more
connected, leading to the possibility of higher reuse.

On the other hand, for the private L2 cache, the update phase
shows a higher hit ratio than the compute phase (comparison
between “Update L2” and “Compute 1.2”") because of the
smaller working set size of the former. The update operation
affects only a part of the edge data whose reuse can be
captured by the L2 cache. However, the L2 cache provides
low benefit for the compute phase because of its large working
set size consisting of edge data and vertex property values
whose reuse cannot be captured by the L2 cache (such an
observation matches prior work for the compute phase in static
graph analytics [34]).

Besides aggregate hit ratios, we measure misses per kilo
instructions (MPKI) in Fig. 10(b) and 10(c) to further confirm
our findings. The L2 cache does a better job at servicing
memory requests in the update phase than in the compute
phase. This is confirmed by the lower update L2 MPKI (3-9)
in Fig. 10(b) compared to the compute L2 MPKI (12-16) in
Fig. 10(c). The LLC is effective for the compute phase and is
capable of reducing the MPKI from 15 (average) to 6 (average)
between the L2 and LLC levels (Fig. 10(c)).

VII. CONCLUSION

This paper develops SAGA-Bench for streaming graph
analytics and characterizes these workloads at the software
and the architecture levels. The software-level study shows
that 1) the best data structure depends on the per-batch degree
distribution of the graph; 2) larger graphs benefit more from
the incremental compute model; and 3) the update phase
occupies more than 40% of the latency in many cases. The
architecture-level study reveals that the update phase shows
lower utilization of architecture resources due to lower TLP
arising from thread contentions or workload imbalance. Fi-
nally, between update and compute phases, the former shows
a higher L2 cache hit ratio, whereas the latter benefits more
from the LLC.
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