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Abstract—Neural Networks (NNs) exhibit high redundancy
in their parameters so that pruning methods can achieve high
compression ratio without accuracy loss. However, the very high
sparsity produced by unstructured pruning methods is difficult
to be efficiently mapped onto Graphics Processing Units (GPUs)
because of its decoding overhead and workload imbalance. With
the introduction of Tensor Core, the latest GPUs achieve even
higher throughput for the dense neural networks. This makes
unstructured neural networks fail to outperform their dense
counterparts because they are not currently supported by Tensor
Core. To tackle this problem, prior work suggests structured
pruning to improve the performance of sparse NNs on GPUs.
However, such structured pruning methods have to sacrifice a
significant part of sparsity to retain the model accuracy, which
limits the speedup on the hardware. In this paper, we observe that
the Tensor Core is also able to compute unstructured sparse NNs
efficiently. To achieve this goal, we first propose ExTensor, a set
of sparse Tensor Core instructions with a variable input matrix
tile size. The variable tile size allows a matrix multiplication to be
implemented by mixing different types of ExTensor instructions.
We build a performance model to estimate the latency of an
ExTensor instruction given an operand sparse weight matrix.
Based on this model, we propose a heuristic algorithm to find the
optimal sequence of the instructions for an ExTensor based kernel
to achieve the best performance on the GPU. Experimental results
demonstrate that our approach achieves 36% better performance
than the state-of-the-art sparse Tensor Core design.

I. INTRODUCTION

Deep Neural Networks (DNNs) [1] have achieved impres-
sive progress in many different tasks, such as image recogni-
tion, speech recognition, and natural language processing [2]–
[6]. The high representational and computational cost moti-
vates both the industry and the academia to explore approaches
on increasing the efficiency of the execution, including tensor
decomposition [7], [8], data quantization [9]–[11], and net-
work pruning [12]–[16]. The matrix or tensor decomposition
generates matrices or tensors in lower rank, which are naturally
faster on the commodity hardware platforms such as CPUs,
GPUs, and ASICs. Data quantization has been supported
by general purpose processors with low-precision pipelines.
However, the network pruning is not supported efficiently by
these hardware platforms, especially the latest GPUs that are
highly optimized for dense neural networks.

Although the network pruning shrinks the model size, the
irregular sparsity in the pruned networks requires dedicated
sparse BLAS libraries. The randomness in the irregular spar-

sity exhibits imbalanced workload and introduce decoding
overhead, which affects the performance on the commodity
hardware. On the latest GPUs, the performance of the pruned
sparse model may be even worse than the original dense
counterpart if the sparsity is not sufficiently high [13], [17],
[18]. This is because the latest GPUs are equipped with ma-
chine learning accelerator, Tensor Core [19], that is specifically
designed for dense neural networks.

As such fine-grained granularity pruning is not hardware-
friendly, coarse-grained pruning methods [13], [15], [20] are
proposed to enable the pruned networks to utilize the op-
timized dense library and hardware. However, the coarse-
grained pruned networks usually have lower sparsity than the
fine-grained sparse networks and incur accuracy drop for large
datasets. To tackle this problem, sparse NN accelerators [21]–
[23] are proposed to boost the performance with specialized
hardware design for sparse workload. Due to hardware re-
source limitations, these accelerators are designed for com-
puting some specific sparse patterns that can be efficiently
computed on dot-product engines. If a tile of the sparse
weight matrix does not match the supported pattern, it will
be computed as a dense tile. Consequently, structural pruning
methods with spatial constraints must be applied to a network
to ensure the supported pattern, which usually produces much
less sparsity to retain the accuracy.

In this work, we enable the Tensor Cores [19] to efficiently
compute unstructured sparse NNs with support both from
hardware architecture and compiler. To achieve this goal, we
first propose ExTensor, an extension to the Tensor Core PTX
instruction set. The ExTensor architecture enables a sparse
Tensor Core instruction to compute a variable-sized matrix
multiplication instead of a fixed size in prior sparse Tensor
Core design [24]. This allows programmers or compilers to
mix multiple types of the ExTensor instructions to implement
a sparse matrix multiplication for better performance. To
assist the performance optimization, we further present a
performance model to estimate the latency of all the proposed
types of sparse Tensor Core instructions given an input sparse
matrix. Finally, we propose a heuristic algorithm to find the
optimal sequence of ExTensor instructions to achieve the best
performance on the GPU. It is worth noting that, our method
is orthogonal to coarse-grained or structured pruning methods.
By utilizing our model and heuristic, the structured pruning
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(a) (b)
Fig. 1. The spatial distribution of non-zero elements in (a) an unstructured
sparse neural network and (b) the corresponding part of a vector-wise pruned
sparse neural network.

method will also have performance gains.

II. BACKGROUND AND MOTIVATION

Sparse neural networks have achieved better performance
and energy efficiency than dense networks on customized
accelerators. However, much less effort has been put on GPUs,
which are the most important commodity machine learning
hardware platforms. Prior work either aims on improving the
performance of sparse neural networks on GPUs with either
unstructured sparsity or structured sparsity.

A. Directly Mapping Unstructured Sparsity on GPUs

Unstructured pruning has been popular since Deep Com-
pression [12] achieved very high compression ratio on the
commercial neural networks without accuracy loss. The high
sparsity enables many neural networks to fit into the on-
chip memories of hardware accelerators [21], [25], [26] so
that off-chip memory traffic is significantly reduced. However,
GPUs cannot exploit the sparsity in the same way because the
Streaming Multiprocessors (SMs) only communicate through
the off-chip memory. Therefore, the benefit of sparsity for
GPUs only lies in the reduction of computation and memory
footprint [13], [15], [22]. Unfortunately, the decoding overhead
of the unstructured sparse matrix formats, e.g. Compressed
Sparse Row (CSR), and the incontinuous memory accesses
make the performance gain marginal. As dedicated hardware
primitives (such as Tensor Core [19]) are introduced, the peak
GPU throughput for the dense neural networks becomes 12×
higher than the CUDA cores [19]. This makes unstructured
sparsity even more difficult to outperform the dense counter-
parts.

B. Structured Sparsity on GPUs

To efficiently improve the performance of the neural net-
works on GPUs, structured pruning has been studied from both
the hardware side and the software side. A straightforward
structured pruning method, often referred to as unified prun-
ing [13], removes entire row and columns to form a smaller
dense neural network. The neural networks generated by the
unified pruning can be computed with the highly optimized
software libraries and hardware primitives. However, the uni-
fied pruning puts too strict constraints on the positions of
the non-zero elements, which incurs significant impact on the
model’s accuracy [27]. To alleviate the accuracy drop, fine-
grained structured pruning methods [22], [24], [28] are pro-
posed. These methods put less spatial constraints on the non-
zero elements so that they could achieve moderate speedup
with acceptable accuracy loss, i.e. less than 1%. Although
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Fig. 2. The division of a weight matrix to exploit the hardware parallelism.
Each chunk is 16× 16 when the matrix is mapped to Tensor Cores. A chunk
is computed with one Tensor Core instruction.

the spatial constraints are more flexible, the sparsity achieved
by fine-grained structured pruning methods is generally much
lower than that by the unstructured pruning if the same model
accuracy is enforced. For example, Figure 1 shows the spatial
distribution of the non-zero elements in a part of a weight
matrix in an unstructured sparse ResNet-50 and that of the
corresponding part in a fine-grained structured sparse ResNet-
50 pruned by the vector-wise pruning method [24].

Both the networks have the same accuracy, but the un-
structured network exhibits 96% sparsity while the structured
one has only 75% sparsity. This is because the vector-wise
structured pruning method only aims to reduce the number of
dot product operations in the neural network so that it is more
efficient on the dot-product (DP) unit based Tensor Core [29].
However, the relatively low sparsity puts a tight theoretical
upper bound to the speedup on the GPUs. To achieve higher
speedup than the structured pruning, we explore if the high
unstructured sparsity could be efficiently mapped to the Tensor
Core with a software and hardware co-design to minimize the
number of dot product operations.

C. Baseline Tensor Core Architecture

To increase the performance of the neural networks on
GPUs, Tensor Core was introduced since the Volta archi-
tecture [19]. The Tensor Core is designed to compute half-
precision floating-point matrix multiplication, which is the
core operation in neural networks. In a Tensor Core based
matrix multiplication D = A×B+C, the weight matrix A is
divided into multiple slices and chunks to be mapped to Tensor
Core instructions, as shown in Figure 2. Every 16×16×16 tile
in the weight matrix A is computed with a warp-level Tensor
Core instruction called wmma.mma. A wmma.mma instruction
is mapped to two Tensor Cores in one SM.

Figure 3 shows how a wmma.mma operation is mapped to
the Tensor Core architecture [29]. There are two octets in a
Tensor Core. An octet consists of eight Dot Product (DP)
units, each of which is able to compute a 4-dim vector dot
product in a cycle. The octet has operand buffers to feed the
DP units with the tiled data when executing the wmma.mma
instruction. The eight DP units are further divided into two
groups, and each group has a dedicated Matrix A buffer and
an accumulator buffer. The operand Matrix B buffer is shared
by the two groups for data reuse.

Since the Tensor Core architecture is based on 4-dim DP
units, the sparsity does not help to reduce the computational
latency unless all elements in a 4-dim vector are all zero.
Therefore, prior work [24] prunes each chunk to 1/4 of its
original size to cut the latency of the instruction wmma.mma
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Fig. 3. An abstract hardware architecture of Tensor Core [29]

to half of the original instruction with an algorithm-hardware
co-design. However, this vector-wise pruning enforces every
vector to have the same sparsity, in which the sparsity is bound
by the densest vector in the matrix. To further remove the
redundancy and achieve higher speedup, we aim to efficiently
map the unstructured sparsity on the Tensor Core in this work,
and use the improved Sparse Tensor Core architecture [24] as
the baseline for comparison in our experiments.

III. ENABLING ARBITRARY SPARSITY ON TENSOR CORE

Prior work in utilizing the Tensor Core to compute sparse
NNs requires a specialized vector-wise pruning method [24].
Figure 4(a) illustrates how the vector-wise sparse network is
computed with the Tensor Core. In this baseline architecture,
each 16-dim vector in a chunk is pruned to have at most 4
non-zero elements so that the number of 4-dim operations is
reduced to 25% of the dense chunk. The pruned chunk has as-
sociated coordinates of each non-zero element for fetching the
corresponding rows from the dense input matrix. This baseline
sparse Tensor Core design adds an offset-based register fetcher
to enable the 4 non-zero elements to be computed in one 4-
dim DP unit. Therefore, the hardware utilization rate of the
DP units is high. However, the vector-wise pruning could not
achieve very high sparsity since it enforces every chunk to
have the same number of non-zero elements.

A. Extension for Sparse Tensor Core Instructions

With the observation that the baseline architecture could
also be used to compute unstructured sparsity without further
hardware change, we propose ExTensor, an extension for the
Tensor Core instruction set to enable the GPU accelerator
to efficiently compute unstructured sparse neural networks.
While still being capable to compute 16 × 16 × 16 matrix
multiplications as the dense Tensor Core, ExTensor also sup-
ports a variable chunk width L, which can be any multiple of
16. The ExTensor instruction with chunk width L is denoted
as wmma.smma.L, where smma stands for sparse matrix
multiply-accumulate, and L is the chunk width computed by
the instruction. By this definition, a wmma.smma.L instruc-
tion computes a 16×16×L sparse matrix multiplication. Since
the 16 × L sparse weight matrix is unstructured, ExTensor
encodes the 16 L-width chunks to a new sparse format to
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Fig. 4. The execution flow in a group of DP units of the sparse Tensor Core.

minimize the number of phases in the execution of a warp-
level instruction. Each L-dim row in a chunk is encoded to
its non-zero elements along with their coordinates. Since the
number of non-zero elements may vary across the rows, the
tail of the shorter rows are padded with zeros to form a chunk.

In the structured baseline scheme, there are maximally 4
non-zero elements in each row of a chunk so that all the
elements can be computed in a 4-dim DP unit concurrently.
Different from the baseline, ExTensor does not presume the
number of non-zero elements. Therefore, the execution of
an ExTensor instruction is divided into multiple phases, in
which 4 non-zero elements are consumed by the DP units. The
number of phases M is determined by the maximum number
of the non-zero elements K in any of the 16 L-width chunks,
where M = dK/4e. For example, if a row in a 32-width
chunk has 9 non-zero elements and any other row does not
have more than 9 non-zero elements, this ExTensor instruction
will be executed in d9/4e = 3 phases.

In each phase, the 4 non-zero elements NZ [4×M ] through
NZ [4×M + 3] from each row are fetched from the register
file to the DP units. The Tensor Core input register block
size is 16 × 16 [19]. If L is greater than 16, the L × 16
input matrix has to be stored in L/16 register blocks. During
one phase of the ExTensor execution, all necessary blocks are
fetched sequentially from Block 0 to Block L/16. If there is
no coordinate between 16 × i and 16 × i + 15 in the weight
chunk of this phase, Block i will not be fetched from register
because the data in that block is not referred. Ideally, if all
the coordinates of the non-zero elements in a phase fall in the
range [16× i, 16× i + 15], only Block i will be fetched.

B. Performance Model of the Sparse Tensor Core Instructions

The latency of the ExTensor instructions depends on their
weight and input operands. Furthermore, since ExTensor sup-
ports variable L, a weight matrix can be computed with any
type of wmma.smma.L instruction. Therefore, there is an
optimal combination of the wmma.smma.L instructions of
different L that minimizes the overall latency for the compu-
tation of a weight matrix. To find the optimal combination of
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computed by an ExTensor instruction wmma.smma.64. The chunk width
L = 64 so that the chunk size is 16× 64. The corresponding L× 16 input
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the instructions, an estimation of the latency of the instruc-
tions is required during the compile time. We thus present a
performance model of the wmma.smma.L instruction to solve
this problem.

Based on the execution flow of the ExTensor instructions,
the latency of an wmma.smma.L instruction depends on the
chunk width L and the coordinates of the non-zero elements in
the 16×L weight chunk. Figure 5 shows an example to show
how a wmma.smma.64 instruction is executed on the Tensor
Core. In this example, the weight chunk size is 16 × L and
the maximum number of non-zero elements K equals 8. The
number of phases is thus determined by M = dK/4e = 2. In
Phase 1, the non-zero elements require input rows from Block
0, 1 and 3 according to their coordinates.

The Tensor Core first fetches the coordinates and elements
of the weight chunk to the buffer. The operand register bus
allows 32 operand elements to be fetched from the register to
the buffer in 2 cycles. Bound by the register access latency, it
takes at least 2 cycles to access a new operand block. Then the
coordinates are decoded in hardware to setup the data path to
fetch the indexed rows from the input operand block. When
the input rows are ready in the buffer, it takes 2 cycles to
finish the 16 4-dim DP operations associated with a row in
the chunk on the Tensor Core. Therefore, the latency of one
phase can be modeled as

PhaseLat = ΣNrow
i=1 ΣNblock−1

j=0 max(HistRowi,Blockj , 2) + 2

where Hist is the number of non-zero elements of Row i
in the chunk that fall in the range of the indices of Block j.
This model is based on the pipeline design that overlaps the
register fetch with the DP operations. The constant 2 is the
latency of the last DP operation.

With the latency of each phase of an instruction, the total la-
tency of the ExTensor instruction can be calculated by adding
them together. Given an input weight chunk, this performance
model can be used to find the optimal set of instructions
to compute this chunk. For example, a 16 × 48 chunk can
be computed with (1) one wmma.mma.48 instruction, or (2)
one wmma.mma.32 followed by one wmma.mma.16, or (3)
one wmma.mma.16 followed by one wmma.mma.32, or (4)
three wmma.mma.16 instructions. The latency varies across
the four approaches and we can use our performance model to

Algorithm 1: Heuristic optimization for ExTensor
code generation.

input : Coordinates of the sparse weight matrix, Coord;
Number of Tensor Cores, T ;
Maximum allowed chunk width, maxL.

output: A list of chunk width, L.
1 slices = reshape(Coord, Coord.shape [0] /16, 16, −1)
2 Ntc = T/slices.shape[0]
3 for each s in slices do
4 chunks = list([s[:, i : i + 16], i=0,16,32,...,s.shape[1] )
5 converged = False
6 while not converged do
7 converged = True
8 gain = 0
9 idx = 0 for i in range(chunks.length − 1) do

10 c = merge(chunks[i], chunks[i + 1])
11 g = latency(chunks[i]) + latency(chunks[i + 1]) -

latency(c)
12 if g > gain and c.width ≤ maxL then
13 idx=i
14 gain=g
15 converged=False
16 end
17 end
18 if chunks.length ≤ Ntc then
19 converged=True
20 end
21 if not converged then
22 c = merge(chunks[idx], chunks[idx + 1])
23 chunks[idx]=c
24 remove(chunks[idx + 1])
25 end
26 end
27 end
28 return chunks

estimate the latency for each approach and pick the one with
the shortest modeled latency.

IV. OPTIMIZING KERNEL EXECUTION LATENCY

A dense Tensor Core instruction wmma.mma computes a
16 × 16 matrix multiplication so that a weight matrix is
divided to 16 × 16 chunks as shown in Figure 2. On the
contrary, the ExTensor instruction wmma.smma.L computes
a variable-size 16 × L matrix multiplication. As a result, a
16-row slice in a weight matrix can be computed by any
sequence of the ExTensor instructions wmma.smma.Li, if
only ΣiLi equals to the matrix width. As the latency of a
wmma.mma.L instruction depends on the coordinates and the
L, a compiler or programmer has to optimize the sequence for
shorter total latency. Ideally, the sequence with the shortest
latency is the optimal solution to the optimization problem.
However, enumerating all the sequences is NP-complete and
thus prohibited by the time complexity during the compilation
time.

To optimize the instruction sequence in an acceptable time,
we propose a heuristic algorithm to search the “optimal”
sequence that minimizes the GPU kernel latency. This heuristic
algorithm is hardware-dependent since it aims to improve the
performance of a kernel on a target GPU. Similar to the
wmma.mma, a wmma.smma.L instruction is executed by two
Tensor Cores regardless of L. Assuming a GPU has T Tensor
Cores, each 16-row slice of a weight matrix will be mapped to
Ntc = T

Nslice
in parallel. Therefore, the goal of the heuristic is
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to minimize the longest accumulated latency of the instructions
mapped to a Tensor Core.

Algorithm 1 shows how the optimization method generates
the instructions. The initial state of the algorithm divides each
16-row slices to 16× 16 chunks (Line 4). Then the optimizer
evaluates the latency of each chunk with the proposed perfor-
mance model. It is worth noting that each chunk is computed
with only one ExTensor instruction. The optimizer tries to
find a merge of two adjacent chunks so that it returns the
maximum latency reduction, which is defined by Line 11. If
the maximum latency reduction is positive, the optimizer will
merge the corresponding two chunks to one larger chunk. The
optimization will stop when no further performance gain could
be achieved or the number of the chunks is no more than the
number of Tensor Cores. At last, the optimizer returns a list
of chunks (Line 28) and every chunk in it is consumed by
a wmma.smma.L instruction, where L is the width of that
chunk.

V. EVALUATION

To evaluate the performance of the ExTensor architecture
and the code optimizer, we picked three popular neural
networks, VGG-19 [2], ResNet-50 [3], and NMT [30] and
simulated our design with a Tensor Core enabled NVIDIA
Titan V GPU configuration in GPGPU-Sim [29].

A. Experimental Methodology

In the experiments, we extended the wmma PTX code model
in the GPGPU-Sim simulator [29], [31]–[33]. We implemented
the wmma.smma.L instructions with L = 16, 32, 48, 64. The
wmma.smma.16 is the baseline architecture [24] shown in
Figure 4(a). The simulated Titan V GPU has 80 SMs with
640 Tensor Cores. On the software side, we implemented the
sparse matrix multiplication kernels based on CUTLASS [34],
which is an open-source high-performance template library
for matrix multiplication. The ExTensor based kernels are
similar to the wmma.mma based kernels, but the wmma.smma
instructions are called.

The benchmarks are pruned with the unstructured pruning
method in Deep Compression [12] to 90% sparsity and 96%
sparsity, respectively, to show the performance of different
sparsity levels. The 90% sparse benchmarks have better ac-
curacy than their dense counterparts, while the 96% sparse
benchmarks exhibit more than 1% accuracy drop. We first
evaluated the baseline with the three NN benchmarks. The
baseline is reported to be 49% faster than the dense Tensor
Core on average [24]. In our ExTensor design, the baseline is
a special case when the sparse matrix multiplication is only
computed with wmma.smma.16 instructions. To compare
the extended instructions with the baseline, we evaluated
the benchmarks with wmma.smma.32 and wmma.smma.64,
respectively. Then we further optimized the kernels by enumer-
ating L in the range [16, 64] for each slice. That is, we compute
a slice with different Lś and statically select the L with the
best performance. And finally we dynamically optimized the
instructions in the compiling time with Algorithm 1.
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Fig. 6. The overall speedup over the baseline sparse Tensor Core architecture.

B. Evaluation Results

Figure 6 shows the normalized performance over the base-
line, in which every Tensor Core instruction computes a
16 × 16 × 16 matrix multiplication. When L = 32, all
the chunks are 16 × 32 and computed with wmma.mma.32
instructions. Since the positions of the non-zero elements vary
across different layers and workloads, the speedup numbers are
also different for the benchmarks. Similarly, the L = 64 results
are the performance with only wmma.smma.64 instructions.
The statically optimized results are always better than the
single-instruction results because this approach picks the best
performing L for each slice in each layer. With our heuristic
algorithm, the performance is further improved to 1.36× on
average for the 90% sparse benchmarks with no accuracy
drop compared with the dense counterparts. If the sparsity is
increased to 96%, the speedup becomes 1.37×, which is still
better than any other schemes.

From Figure 6(a), we observe that the performance of the
single-L schemes are similar on the 90% sparse benchmarks.
The observation indicates that the unstructured sparsity does
not favor any specific chunk size so that we have to optimize
the kernel by mixing the instructions. For very sparse bench-
marks in Figure 6(b), there is no unique single-L solution to
all benchmarks, either. However, sparser networks generally
favor larger L. Our heuristic optimizer outperforms the static
optimizer because it allows multiple L’s within a slice. Espe-
cially, the benchmarks favor the dynamic optimization when
they are less sparse because they have more diverse structures.

VI. CONCLUSION

In this work, we observe that the Tensor Core on the latest
GPUs can also be used to compute sparse neural networks.
To efficiently map sparse neural networks to the Tensor Core
hardware, we propose ExTensor, an instruction set extension
to the wmma PTX APIs. The ExTensor sparse Tensor Core
instructions support 16×L× 16 sparse matrix multiplications
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where L is a multiple of 16. The variable L allows a pro-
grammer or compiler to have multiple options to implement
a matrix multiplication kernel by mixing different types of
the ExTensor instructions. To find the optimal sequence of
instructions to implement a matrix multiplication, we then
propose a performance model to estimate the latency of an
ExTensor instruction given its operands. However, searching
the optimal sequence based on the latency model is an NP-
complete problem. We thus design a heuristic optimization
problem to improve the performance of a ExTensor based
kernel in the compiling time. This algorithm can optimize the
code in a reasonable time span and produce a faster kernel for
popular NN workloads. Experimental results demonstrate that
it is 1.36× faster than the state-of-the-art sparse Tensor Core
design.
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