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a b s t r a c t

This paper summarises the theory and functionality behind Questaal, an open-source suite of codes

for calculating the electronic structure and related properties of materials from first principles. The

formalism of the linearised muffin-tin orbital (LMTO) method is revisited in detail and developed

further by the introduction of short-ranged tight-binding basis functions for full-potential calculations.

The LMTO method is presented in both Green’s function and wave function formulations for bulk and

layered systems. The suite’s full-potential LMTO code uses a sophisticated basis and augmentation

method that allows an efficient and precise solution to the band problem at different levels of

theory, most importantly density functional theory, LDA+U , quasi-particle self-consistent GW and

combinations of these with dynamical mean field theory. This paper details the technical and

theoretical bases of these methods, their implementation in Questaal, and provides an overview of

the code’s design and capabilities.
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Nature of problem: Highly accurate ab initio calculation of the electronic structure of periodic solids

and of the resulting physical, spectroscopic and magnetic properties for diverse material classes with

different strengths and kinds of electronic correlation.

Solution method: The many electron problem is considered at different levels of theory: density

functional theory, many body perturbation theory in the GW approximation with different degrees

of self consistency (notably quasiparticle self-consistent GW ) and dynamical mean field theory. The

solution to the single-particle band problem is achieved in the framework of an extension to the

linear muffin-tin orbital (LMTO) technique including a highly precise and efficient full-potential

implementation. An advanced fully-relativistic, non-collinear implementation based on the atomic

sphere approximation is used for calculating transport and magnetic properties.
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1. Introduction

Different implementations of DFT are distinguished mainly by

their basis set, which forms the core of any electronic structure

method, and how they orthogonalise themselves to the core

levels. Using these classifications most methods adopt one of

four possible combinations shown in Fig. 1. In the vast major-
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Fig. 1. 2 × 2 rubric for main classifications of basis set. Nuclei are shown as

dots. The all-electron methods APW and KKR on the right substitute (augment)

the envelope function (green) with numerical solutions of partial waves inside

augmentation spheres (blue and red). Parts inside augmentation spheres are

called ‘‘partial waves’’. The two figures on the left use a pseudopotential

allowing their envelope functions to be smooth, with no augmentation needed.

A pseudopotential’s radius corresponds to a characteristic augmentation radius.

The top two figures use plane waves for envelope functions; the bottom two

use atom-centred local basis sets. We denote localised basis sets as ‘‘KKR’’, for

the Korringa-Kohn-Rostocker method [3] as it plays a central role in this work;

but there are other kinds, for example the Gaussian orbitals widely favoured

among quantum chemists. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Fig. 2. Left: basis function in the vicinity of a nucleus, showing orthogonalisation

to core states (solid line), and corresponding basis function in a pseudopotential

(dashed line). Right: a muffin-tin potential: the potential is flat in the interstitial

region between sites, and spherically symmetric in a volume around each site.

Blue depicts an augmentation radius sR around a sphere centred at some nuclear

position R where the interstitial and augmented regions join.

ity of cases, basis sets consist of either atom-centred spatially
localised functions (lower panel of Fig. 1), or plane waves (PW)
(upper). As for treatment of the core, it is very common to
substitute an effective repulsive (pseudo) potential to simulate
its effect, an idea initially formulated by Conyers Herring [1].
Pseudopotentials make it possible to avoid orthogonalisation to
the core, which allows the (pseudo) wave functions to be nodeless
and smooth. For methods applied to condensed matter, the pri-
mary alternative method, formulated by Slater in 1937 [2], keeps
all the electrons. Space is partitioned into non-overlapping
spheres centred at each nucleus, with the interstitial region
making up the rest. The basis functions are defined by plane
waves in the interstitial, which are replaced (‘‘augmented’’) by
numerical solutions of the Schrödinger equations (partial waves)
inside the augmentation spheres. The two solutions must be
joined smoothly and differentiably on the augmentation sphere
boundary (minimum conditions for a non-singular potential).
Slater made a simplification: he approximated the potential in-
side the augmentation spheres with its spherical average, and
also the interstitial potential with a constant. This is called the
Muffin Tin (MT) approximation; see Fig. 2.

Solutions to spherical potentials are separable into radial and
angular parts, φ�(ε, r)YL(r̂). The φ� are called partial waves and
YL are the spherical harmonics. Here and elsewhere, angular
momentum labelled by an upper case letter refers to both the
� and m parts. A lower case symbol refers to the orbital index
only (� is the orbital part of L = (�,m)). The φ� are readily found
by numerical integration of a one-dimensional wave equation
(Section 2), which can be efficiently accomplished.

An immense amount of work has followed the original ideas of
Herring and Slater. The Questaal package is an all-electron imple-
mentation in the Slater tradition, so we will not further discuss

the vast literature behind the construction of a pseudopotential,
except to note there is a close connection between pseudopo-
tentials and the energy linearisation procedure to be described
below. Blöchl’s immensely popular Projector Augmented-Wave
method [4] makes a construction intermediate between pseu-
dopotentials and APWs. Questaal uses atom-centred envelope
functions instead of plane waves (Section 3), and an augmen-
tation scheme that resembles the PAW method but can be con-
verged to an exact solution for the reference potential, as Slater’s
original method did. The spherical approximation is still almost
universally used to construct the basis set, and thanks to the
variational principle, errors are second order in the nonspherical
part of the potential. The nonspherical part is generally quite
small, and this is widely thought to be a very good approximation,
and the Questaal codes adopt it.

For a MT potential (VMT taken to be 0 for simplicity), the
Schrödinger equation for energy ε has locally analytical solutions:
in the interstitial the solution can expressed as a plane wave
ei k·r, with ε = h̄2k2/2m. (We will use atomic Rydberg units
throughout, h̄ = 2m = e2/2 = 1.) In spherical coordinates
envelope functions can be Hankel functions HL(E, r) = h�(kr)YL(r̂)
or Bessel functions j�(kr)YL(r̂), except that Bessel functions are
excluded as envelope functions because they are not bounded in
space. Inside the augmentation spheres, solutions consist of some
linear combination of the φ�.

The all-electron basis sets ‘‘APW’’ (augmented plane wave) and
‘‘KKR’’ [3] are both instances of augmented-wave methods: both
generate arbitrarily accurate solutions for a muffin-tin potential.
They differ in their choice of envelope functions (plane waves
or Hankel functions), but they are similar in that they join onto
solutions of partial waves in augmentation spheres. Both basis
sets are energy-dependent, which makes them very complicated
and their solution messy and slow. This difficulty was solved
by O.K. Andersen in 1975 [5]. His seminal work paved the way
for modern ‘‘linear’’ replacements for APW and KKR, the LAPW
and Linear Muffin Tin Orbitals (LMTO) methods. By making a
linear approximation to the energy dependence of the partial
waves inside the augmentation spheres (Section 2.4), the basis
set can be made energy-independent and the eigenfunctions and
eigenvalues of the effective one-particle equation obtained with
standard diagonalisation techniques. LAPW, with local orbitals
added to widen the energy window over which the linear approx-
imation is valid (Section 3.7.3) is widely viewed to be the industry
gold standard for accuracy. Several well known codes exist:for
example FLEUR (http://www.flapw.de), and WIEN2K (http://susi.
theochem.tuwien.ac.at) and its descendants such as the Exciting
code (http://exciting-code.org). A recent study [6] established
that these codes all generate similar results when carefully con-
verged. Questaal’s main DFT code is a generalisation of the LMTO
method (Section 3), using for the envelope functions the more
flexible smooth Hankel functions (Section 3.1) instead of stan-
dard Hankels. Accuracy of the smooth-Hankel basis is also high
(Section 3.13), and though not quite reaching the standard of the
LAPW methods, it is vastly more efficient. If needed, Questaal
can add APW’s to the basis to converge it to the LAPW standard
(Section 3.10).

1.1. Questaal’s history

Questaal has enjoyed a long and illustrious history, originating
in O.K. Andersen’s group in the 1980s as the standard ‘‘Stuttgart’’
code. It has undergone many subsequent evolutions, e.g. an early
all-electron full-potential code [7], which was used in one of the
first ab initio calculations of the electron–phonon interaction for
superconductivity [8], an efficient molecules code [9] which was
employed in the first ab initio description of instanton dynam-
ics [10], one of the first noncollinear magnetic codes and the first
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ab initio description of spin dynamics [11], first implementation
of exact exchange and exact exchange+correlation [12], one of
the first all-electron GW implementations [13], and early density-
functional implementations of non-equilibrium Green’s functions
for Landauer–Buttiker transport [14]. In 2001 Aryasetiawan’s GW
was extended to a full-potential framework to become the first
all-electron GW code [15]. Soon after the concept of quasiparti-
cle self-consistency was developed [16], which has dramatically
improved the quality of GW. Its most recent extension is to
combine QSGW with DMFT. It and the code of Kutepov et al. [17]
are the first implementations of QSGW+dynamical mean field
theory (DMFT); and to the best of our knowledge Questaal has
the only implementation of response functions (spin, charge,
superconducting) within QSGW+DMFT.

1.2. Main features of the Questaal package

Ideally a basis set is complete, minimal, and short ranged. We
will use the term compact to mean the extent to which a ba-
sis can satisfy all these properties: the faster a basis can yield
converged results for a given rank of Hamiltonian, the more
compact it is. It is very difficult to satisfy all these properties at
once. KKR is by construction complete and minimal for a ‘‘muffin-
tin’’ potential, but it is not short-ranged. In 1984 it was shown
(by Andersen once again! [18]) how to take special linear com-
binations of muffin-tin orbitals (‘‘screening transformation’’) to
make them short ranged. Andersen’s screening transformation
was derived for LMTOs, in conjunction with his classic Atomic
Spheres Approximation, (ASA, Section 2.7), and screening has
subsequently been adopted in KKR methods also. The original
Questaal codes were designed around the ASA, and we develop
it first in Section 2.5. Its main code no longer makes the ASA
approximation, and generalises the LMTOs to more flexible func-
tions; that method is developed in Section 3. These functions
are nevertheless long-ranged and cannot take advantage of very
desirable properties of short-ranged basis sets. Very recently we
have adapted Andersen’s screening transformation to the flexible
basis of full-potential method (Section 2.9). Screening provides
a framework for the next-generation basis of ‘‘Jigsaw Puzzle Or-
bitals’’ (JPOs) that will be a nearly optimal realisations of the three
key properties mentioned above.

Most implementations of GW are based on plane waves (PWs),
in part to ensure completeness, but also because implementation
is greatly facilitated by the fact that the product of two plane
waves is analytic. GW has also been implemented recently in
tight-binding forms using e.g., a numerical basis [19], or a Gaus-
sian basis [20]. None of these basis sets is very compact. The
FHI AIMS code can be reasonably well converged, but only at
the expense of a large number of orbitals. Gaussian basis sets
are notorious for becoming over-complete before they become
complete. Questaal’s JPO basis – still under development – should
bring into a single framework the key advantages of PW and
localised basis sets.

Questaal implements:

1. density-functional theory (DFT) based on common LDA and
GGA exchange–correlation functionals (other LDA or GGA,
but not meta-GGA, variants are available via libxc[21]).
There is a standard full-potential DFT code, lmf (Section 3),
and also three codes (lm, lmgf, lmpg) that implement
DFT in the classical Atomic Spheres Approximation [5,18],
presented in Section 2.7. The latter use the screened, tight-
binding form (Section 2.10). lm, a descendant of Andersen’s
standard ASA package (Stuttgart code), is an approximate,
fast form of lmf, useful mainly for close-packed magnetic
metals; lmgf (Section 2.12) is a Green’s function imple-
mentation closely related to the KKR Green’s function,

parameterised so that it can be linearised. Section 2.13
shows how this is accomplished, resulting in an efficient,
energy-independent Hamiltonian lm uses. lmgf has two
useful extensions: the coherent potential approximation
(CPA, Section 2.18) and the ability to compute magnetic
exchange interactions. lmpg (Section 2.14) is a princi-
pal layer Green’s function technique similar to lmgf but
designed for layer geometries (periodic boundary condi-
tions in two dimensions). lmgf is particularly useful for
Landauer–Buttiker transport [22–25], and it includes a
nonequilibrium Keldysh technique [14];

2. density functional theory with local Hubbard corrections
(LDA+U) with various kinds of double-counting correction
(Section 3.8);

3. the GW approximation based on DFT. Questaal’s GW pack-
age is separate from the DFT code; there is an interface
(lmfgwd) that supplies DFT eigenfunctions and eigenvalues
to it. It was originally formulated by Aryasetiawan in the
ASA [26], derived from the Stuttgart ASA code; and it
was the first all-electron GW implementation. Kotani and
van Schilfgaarde extended it to a full-potential framework
in 2002 [15]. A shell script lmgw runs the GW part and
manages links between it and lmf;

4. the Quasiparticle Self-Consistent GW (QSGW ) approxima-
tion, first formulated by Faleev, Kotani and van Schilf-
gaarde [16]. Questaal’s QSGW is a descendent of Kotani’s
original code, which with some modest modifications can
be found at https://github.com/tkotani/ecalj/. QSGW also
works synchronously with lmf, yielding either a static
QSGW self-energy Σ0 which lmf reads as an effective
external potential added to the Hamiltonian, or a dynam-
ical self-energy (diagonal part) which a post-processing
code lmfgws, uses to construct properties of an interact-
ing Green’s function, such as the spectral function. See
Section 4;

5. extensions to Dynamical Mean Field Theory using a bath
based on either DFT or QSGW. Questaal does not have its
own implementation of DMFT, but has interfaces to Haule’s
CTQMC solver [27], and to the TRIQS library [28]. See
Section 5;

6. an empirical tight-binding model (tbe). The interested
reader is referred to Refs. [29,30] and the Questaal web
site; and

7. a large variety of other codes and special-purpose editors
to supply input the electronic structure methods, or to
process the output.

1.3. Outline of the paper

The aim of the paper is to provide a consistent presentation
of the key expressions and ideas of the LMTO method, and as-
pects of electronic structure theory as they are implemented in
the different codes in the Questaal suite. Necessarily this pre-
sentation is rather lengthy; the paper is organised as follows.
Section 2 describes the LMTO basis, assuming the muffin-tin and
atomic sphere descriptions of the potential. Together with tail
cancellation and linearisation this comprises therefore a deriva-
tion of the traditional (‘‘second generation’’) LMTO method. The
transformation to a short range tight-binding-like basis, and to
other representations is described. The formulation of the crys-
tal Green’s function in terms of the LMTO potential parameters
is derived, allowing the use of coherent potential approxima-
tion alloy theory. Non-collinear magnetism and fully-relativistic
LMTO techniques are presented. Section 3 describes the full-
potential code: its basis, augmentation method, core treatment
and other technical aspects are described in detail. The LDA+U
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method, relativistic effects, combined LMTO+APW, and numer-
ical precision are also discussed. Section 4 describes the GW
approximation: the importance of self-consistency, the nature of
QSGW in particular and its successes and limitations. Section 5
describes Questaal’s interface to different DMFT solvers; Section 6
discusses calculation of spin and charge susceptibilities. Our per-
spective on realising a high fidelity solution to the many-body
problem for solids is described in Section 7. Finally, software
aspects of the Questaal project are outlined in Section 8. Several
appendices are provided with a number of useful and important
relations for the LMTO methodology.

2. The muffin-tin potential and the atomic spheres approxi-
mation

As noted earlier, the KKR method solves the Schrödinger equa-
tion in a MT potential to arbitrarily high accuracy. We develop
this method first, and show how the LMTO method is related to it.
In Section 3.1 we show how the basis in lmf is related to LMTOs.
The original KKR basis set consists of spherical Hankel (Neu-
mann) functions HRL(E, r) = hR�(kr)YL(r̂) as envelope functions
with k2=E, augmented by linear combinations of partial waves
φR�(ε, r)YRL(r̂) inside augmentation spheres (Fig. 3). (See the
Appendix for definitions and the meaning of subscripts R and L.)
The envelope must be joined continuously and differentiably onto
augmentation parts, since the kinetic energy cannot be singular.
Note that for large �, φR� → const×r�. This is because the angular
part of the kinetic energy becomes dominant for large �.

2.1. One-centre expansion of Hankel functions

An envelope function HL(E, r) has a ‘‘head’’ centred at the
origin where it is singular and tails at sites around the origin. In
addition to the head, tails must be augmented by linear combina-
tions of φ�(ε, r) centred there, which require HL be expanded in
functions centred at another site. If the remote site is at R relative
to the head, the one-centre expansion can be expressed as a linear
combination of Bessel functions

HL(E, r) =
∑
M

SML(E,R)JM (E, r − R) (1)

This follows from the fact that both sides satisfy the same second
order differential equation (∇2 + E) = 0. The two functions
centred at the origin satisfying this equation are the Hankel and
Bessel functions. Hankel functions have a pole at r = 0, whereas
Bessel functions are regular there, so this relation must be true for
all r < |R|. The larger the value of r , the slower the convergence
with M .

Expressions for the expansion coefficients S can be found in
various textbooks; they of course depend on how H and J are
defined. Our standard definition is

SMK (E,R) = 4π
∑
L

CKLM (−1)k(−E)(k+m−�)/2HL(E,R) (2)

The CKLM are Gaunt coefficients (Eq. (A.8)).
To deal with solids with many sites, we write the one-centre

expansion using subscript R to denote a nucleus and r relative to
the nuclear coordinate:

HRL(E, r) =
∑
M

SR′M,RL(E)JR′M (E, r) (3)

Envelope functions then have two � cutoffs: �b for the head at R,
and �a for the one-centre expansion at R′. These need not be the
same: �b determines the rank of the Hamiltonian, while �a is a
cutoff beyond which φR′� ×φR′�′ is well approximated by const×
r�+�′ . A reasonable rule of thumb for reasonably well converged

Fig. 3. Schematic of muffin-tin potential (black) and a solution (red) in a

three-atom chain.

calculations is to take �b one number larger than the highest �
character in the valence bands. Thus �b = 2 is reasonable for
sp elements, �b = 3 for transition metal elements, �b = 4 for
f shell elements. In the ASA, reasonable results can be obtained
for �b = 2 for transition metal elements, and �b = 3 for f shell
elements. As for �a, traditional forms of augmentation usually
require �a = 2�b for comparable convergence: lmf does it in a
unique way that converges much faster than the traditional form
and it is usually enough to take �a = �b + 1 [31] (Section 3.6).

2.2. Partial waves in the MT spheres

Partial waves in a sphere of radius s about a nucleus must be
solved in the four coordinates, r and energy ε. Provided r is not
too large, v(r) is approximately spherical, v(r)≈v(r); Even if the
potential is not spherical, it is assumed to be for construction of
the basis set, as noted earlier. Solutions for a spherical potential
are partial waves φ�(ε, r)YL(r̂), where YL are the spherical har-
monics. Usually Questaal uses real harmonics YL(r̂) instead (see
Appendix for definitions).
φ�(ε, r) satisfies Schrödinger’s equation

(−∇2 + v(r) − ε)φ�(ε, r) = 0 (4)

We are free to choose the normalisation of φ and use∫ s

0

φ2(ε, r)r2dr = 1 (5)

One way to think about solutions of Schrödinger’s equation is
to imagine each nucleus, with some vR(r) around it, as a scatterer
to waves incident on it. Scattering causes shifts in the phase of the
outgoing wave. The condition that all the sites scatter coherently,
which allows them to sustain each other without any incident
wave, gives a solution to Schrödinger’s equation. This condition
is explicit in the KKR method, and forms the basis for it. Imagine
a ‘‘muffin-tin’’ potential—flat in the interstitial but with holes
carved out around each nucleus of radius s. The phase shift from a
scatterer at R is a property of the shape of φR� at its MT boundary,
φR�(ε, s). Complete information about the scattering properties
of the sphere, if v(r) = v(r), can be parameterised in terms of
φR�(ε, s) and its slope, as we will see.

For a small change in energy of the incident wave, there can be
a strong change in the phase shift. In the region near an eigenstate
of the free atom the energy dependence is much stronger for
the partial wave than it is for the incident waves striking it, so
electronic structure methods focus on the scattering properties
of the partial waves φ�. This information is typically expressed
through the logarithmic derivative function

D�(ε) ≡ D{φ�(ε)} =
(

r

φ�(ε, r)

dφ�(ε, r)

dr

)
s

(6)

Consider the change in φ�(ε, r) with ε for a given v(r). As ε
increases φ�(ε, r) acquires more curvature (Fig. 4). In the interval
between ε = ε0 where φ′

�(ε0, s) = 0 so that D� = 0, and ε2 where
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Fig. 4. Variation of φ�(ε, r) with ε for an s orbital.

φ�(ε2, s) = 0, φ′
�(ε, s) is positive. D� thus decreases monotonically,

with D� → −∞ as ε→ε2. At some ε1 in this region D� = −�−1,

which is the logarithmic derivative of a Hankel function of energy

0. ε1 is called the ‘‘band centre’’ C� for reasons to be made clear

in Section 2.5: it is close to an atomic level and in tight-binding

theory would correspond to an on-site matrix element. Increasing

from ε2, D� decreases monotonically from +∞ as shown in Fig. 4,

reaching 0 once more, passing through some ε3 where D� = +�.
This is the logarithmic derivative of a Bessel function of energy 0,

and is traditionally called V�.

Thus D� is a monotonically decreasing cotangent-like function

of ε, with a series of poles. At each pole φ�(ε, r) acquires an

additional node, incrementing the principal quantum number n.

Between poles n is fixed and there are parameters C� and V�
for each n. The linear method approximates D� with a simple

pole structure, which is accurate over a certain energy win-

dow. Similarly pseudopotentials are constructed by requiring the

pseudofunction to match D� of the free atom, in a certain energy

window.

For principal quantum number n, φ� has n − �− 1 nodes and

may vary rapidly to be orthogonal to deeper nodes. This poses no

difficulty: we use a shifted logarithmic radial mesh, with point i

given by

ri = b{ea(i−1) − 1}
Typically a few hundred points are needed for accurate integra-

tion. Core and valence waves use the same mesh.

2.3. Energy derivative of D

Consider the matrix element integrated over a sphere of ra-

dius s:

0 = 〈φ�(εν)| − ∇2 + v − ε |φ�(ε)〉
εν is some fixed energy. Taking into account the boundary con-

dition at s, we obtain

〈φ�(ε)|ε − εν |φ�(εν)〉 = −[D�(ε) − D� (εν)]sφ�(εν, s)φ�(ε, s)
from Green’s second identity. From this we obtain the energy

derivative of D� as [5]

Ḋ�(ε) ≡ lim
ε→εν

D�(ε) − D� (εν)

ε − εν
= −1

sφ2
� (ε, s)

(7)

2.4. Linearisation of energy dependence in the partial waves

An effective way to solve Schrödinger’s equation is to linearise

the energy-dependence of the partial waves φ�(ε, r), as

φ�(ε, r) ≈ φ�(εν, r) + (ε − εν)φ̇�(εν, r) (8)

This was Andersen’s most important contribution to electronic
structure theory [5]: it had a dramatic impact on the entire field.
We will make extensive use of the linear approximation here.

In the linear approximation, four parameters (φ(s), φ̇(s), and
their logarithmic derivatives) completely characterise the scatter-
ing properties of a sphere with v = v(r). Only three of them turn
out to be independent. To see this, obtain an equation for φ̇ by
differentiating Eq. (4) w.r.t. ε:

(−∇2 + v − ε)φ̇(ε, r) = φ(ε, r) (9)

With the normalisation Eq. (5), φ and φ̇ are orthogonal

〈φ(εν)φ̇(εν)〉 = 0 (10)

Using the normalisation Eq. (5), we can establish the following
relation between φ(εν, s), φ̇(εν, s), D{φ} and D{φ̇}:
1 = 〈[φ(εν)]2〉 = 〈φ(εν)| − ∇2 + v − εν |φ̇(εν)〉

= 〈φ̇(εν)| − ∇2 + v − εν |φ(εν)〉 + W {φ, φ̇}
= W {φ(s), φ̇(s)}
= [D{φ(εν)} − D{φ̇(εν)}]sφ(εν, s)φ̇(εν, s) (11)

The third line follows from Eq. (4), and the second from Green’s
second identity which adds a surface term when φ and φ̇ are
interchanged. The Wronskian W {a, b} is defined as

W {a(s), b(s)} ≡ s2
[
a(s)b′(s) − a′(s)b(s)

]
= sa(s)b(s) [D{b} − D{a}] (12)

for a pair of functions a(r) and b(r) evaluated at point s.

2.5. The traditional LMTO method

For historical reasons Anderson constructed the original LMTO
formalism with non-standard definitions for the Hankel and
Bessel functions. We follow those definitions in order to be
consistent with the historical literature. In this paper they are

named Ĥ� and Ĵ� and are defined in Appendix B. Here we follow
Andersen’s development only in the context of E ≤ 0, with
κ2 = −E. Note that E can be chosen freely and need not be
connected to the eigenvalue ε. But for exact solutions in a MT

potential, the energy of ĤL(E, r) and Ĵ�(E, r) must be chosen so
E = ε − vMTZ.

LMTO and KKR basis sets solve Schrödinger’s equation in
a muffin-tin potential, which in the interstitial reduces to the
Helmholtz equation, and have linear combinations of Hankel
functions as solutions that satisfy appropriate boundary condi-
tions. We defer treatment of the boundary conditions to the next
section and continue the analysis of partial waves for a single
scattering centre for now.

As noted, the scattering properties depend much more
strongly on the partial waves than the energy dependence of
the envelopes. In keeping with the traditional LMTO method, we
assume that the kinetic energy of the envelopes vanishes (the en-
ergy is taken to be close to the MT potential), then Schrödinger’s
equation reduces further to Laplace’s equation, whose solutions
are Hankel and Bessel functions at E = 0, which we denote
as Ĥ�(r) and Ĵ�(r). In close-packed solids there is reasonable
justification for this choice: the spacing between spheres is much
smaller than the wavelength of a low-energy solution to the wave

equation (one not too far from the Fermi level). Ĥ�(r) and Ĵ�(r) are
proportional to r−�−1 and r� respectively (see Appendix) and so
φ� can be continued into the interstitial in the vicinity of s

φ�(ε, r∼s) = φ� (ε, s)
�+ 1 + D{ε}

2�+ 1

( r

s

)�
+φ� (ε, s) �− D{ε}

2�+ 1

( s

r

)�+1

(13)
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The first term is proportional to Ĵ�(r), the second to Ĥ�(r). In the

remainder of this section we will develop expressions for the

general κ case, showing also the κ → 0 limit, and finally focus

on constructing Hamiltonians and Green’s functions with κ = 0.

2.6. Energy-dependent muffin-tin orbitals

Eq. (13) is not yet a suitable basis because it diverges as r →
∞ because of the J� term. However, we can construct a family of

‘‘muffin-tin’’ orbitals that are continuous and differentiable

χRL(ε, E, r) =YL(r̂R)×{
NR� (ε) φR� (ε, rR)+ PR� (ε) Ĵ�(E, rR) rR < sR

Ĥ�(E, rR) rR > sR
(14)

and that do not diverge for large rR. NR� and PR� are coefficients

fixed by requiring that the value and slope are continuous at

sR. Thus for r < s, χRL(ε, E, r) consists of a linear combination

of φR�(r) and ĴR�(E, r) that matches smoothly and differentiably

onto ĤR�(E, r). Apart from the ‘‘contaminating’’ ĴR� term, χRL is a

solution for a single MT potential at sphere R. It vanishes at ε

corresponding to the eigenvalue of the MT ‘‘atom’’, which occurs

at ε = C�. (Taking E = 0, ε = C� when D� = −� − 1; see

Eq. (13).) In a lattice Ĥ� must also be augmented at all R′ 
= R.

To form an eigenstate, the contaminating term must be cancelled

out by tails from χR′L′ centred elsewhere. Since any ĤR′L′ (E, r) can
be expanded as linear combinations of ĴRL(E, r), Eq. (3), it is easy

to anticipate how the ‘‘tail cancellation condition’’, which forms

the basis of the KKR method (2.6.1), comes about.

The P� are called ‘‘potential functions’’ and play a central

role in constructing eigenfunctions. Expressions for P� and N�
are developed in Section 2.8. Combined with the linearisation

of the partial waves, (Section 2.4), information about P can be

encapsulated in a small number of parameters; see Section 2.8.1.

Note the similarity between the χRL and the partial waves.

There is a difference in normalisation, but more importantly the

term proportional to ĴRL for rR > s in Eq. (13) must be taken out

of the MTO because it diverges for large r , as noted. Since Ĵ� is

present for r < s, χRL is not a solution of Schrödinger’s equation

for rR < s. However any linear combination of the χRL

Ψ (ε, κ, r) =
∑
RL

zRLχRL(ε, κ, r) (15)

can be taken as a trial solution to Schrödinger’s equation. The zR′L′
are expansion coefficients, which become the eigenvector if Ψ is

an eigenstate. For any zR′L′ , Ψ solves the interstitial exactly if the

potential is flat and −E is chosen to correspond to the kinetic

energy in the interstitial, E = ε−vMTZ, since each χRL individually

satisfies Schrödinger’s equation.

2.6.1. Tail cancellation

Inside sphere R there are three contributions to Ψ (ε, r): partial
waves from the ‘‘head’’ function χRL, the Bessel part of that

function, and contributions from the tails of χR′L′ centred at

other sites, which are also Bessel functions, Eq. (3). Thus, all the

contributions to Ψ inside some sphere R, in addition to the partial

wave, consist of some linear combination of Bessel functions.

We can find exact solutions for the MT potential by finding

particular linear combinations zRL that cause all the ĴRL inside each

augmentation sphere to cancel.

From the definition Eq. (14), Eq. (15), has a one-centre expan-

sion inside sphere R

φRL(ε, r)NR�(ε)zRL + ĴRL(E, r)PR�(ε)zRL −
∑
L′

SRL′,R′L(E)ĴRL′ (E, r)zRL

The one-centre expansion satisfies Schrödinger’s equation pro-
vided that the second and third terms cancel. This leads to the
‘‘tail cancellation’’ theorem∑
RL

[
PRL(ε)δR′L′,RL − SR′L′,RL(E)

]
zRL = 0 (16)

and is the fundamental equation of KKR theory. For non-trivial
solutions (|zRL| 
= 0), the determinant of the matrix P −S must be
zero. This will only occur for discrete energies εi(P) for which P−S
has a zero eigenvalue. The corresponding eigenvector zRL yields
an eigenfunction, Eq. (15), which exactly solves Schrödinger’s
equation for the MT potential in the limit L → ∞ and if E is taken
to be the proper kinetic energy in the interstitial, E = εi − vMTZ.
In general there will be a spectrum of eigenvalues εi that satisfy
Eq. (16). The quantity

gRL,RL′ (ε) = [PRLδRL,RL′ (ε) − SRL,RL′ ]−1 (17)

is called the ‘‘auxiliary Green’s function’’ and is closely related to
the true Green’s function G [32] (poles of g and G coincide). We
will develop the connection in Section 2.12. In KKR theory g is
called the ‘‘scattering path operator’’.

2.7. The atomic spheres approximation

Andersen realised very early that more accurate solutions
could be constructed by overlapping the augmentation spheres
so that they fill space. There is a trade-off in the error arising
from the geometry violation in the region where the spheres
overlap and improvement to the basis set by using partial waves
in this region rather than envelope functions. The Atomic Spheres
approximation, or ASA, is a shorthand for three distinct approxi-
mations:

• v(r) is approximated by a superposition of spherically sym-
metric vR(r), with a flat potential in the interstitial;

• the MT spheres are enlarged to fill space, so that the in-
terstitial volume is zero. The resulting geometry violations
are ignored, except that the interstitial can be accounted for
assuming a flat potential (the ‘‘combined correction’’ term).
Errors associated with the geometry violation were carefully
analysed by Andersen in his NMTO development [33]; and

• the envelope functions are Hankel functions with κ = 0,
augmented by partial waves inside MT spheres. There is no
difficulty in working with κ 
= 0, but κ = 0 is a good
average choice, as noted above. As ASA is an approximate
method, little is gained by trying to improve it in this way.
Real potentials are not muffin-tins, and the loss of simplicity
does not usually compensate for limited gain in precision.
The full-potential methods use better envelope functions
(Section 3).

2.7.1. Tail cancellation in the ASA
In the ASA the spheres fill space, making the interstitial vol-

ume null. By normalising the χ of Eq. (14) as defined there, the
eigenvectors zRL of P − S ensure that Ψ is properly normalised if∑
RL

|NR�zRL|2 = 1 (18)

This is because the Bessels all cancel, and the wave function
inside sphere R is purely φR�NR�zRL. Normalisation of zRL with the
normalisation of φ (Eq. (5)) ensures that 〈Ψ |Ψ 〉 = 1.

Making the spheres fill space is a better approximation than
choosing spheres with touching radii, even with its geometry
violation. This is because potentials are not flat and partial waves

φ� are better approximations to the eigenfunctions than the Ĥ�.
Moreover, it can be shown [34] that the resulting wave function
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is equivalent to the exact solution of the Schrödinger equation for

v(r) equal to the sum of overlapping spherical potentials v(r) =∑
R vR(r). This means v(r) is deeper along lines connecting atoms

with a corresponding reduction of v(r) along lines pointing into

voids, corresponding to the accumulation (reduction) of density

in the bonds (voids).

Ψ varies in a nonlinear way with ε, so the tail cancellation

condition entails a nonlinear problem. Once P(ε) (more precisely

1/P) is linearised (Section 2.8), the cancellation condition sim-

plifies to a linear algebraic eigenvalue problem. This provides a

framework, through the linear approximation, Eq. (8), for con-

structing an efficient, energy-independent basis set that yields

solutions from the variational principle, without relying on tail

cancellation.

2.8. Potential and normalisation functions

The tail cancellation condition Eq. (16), is conveniently con-

structed through the ‘‘potential function’’ P�(ε), P� is closely

related to the logarithmic derivative D�(ε), Eq. (6), which param-

eterises the partial wave in isolation. P� depends on both D� and

the boundary conditions, which depend on what we select for the

interstitial kinetic energy E. P�(ε) is an always increasing tangent

like function of energy, and in the language of scattering theory,

it is proportional to the cotangent of the phase shift.

If the potential were not spherical, a more general tail can-

cellation theorem would still be possible, but P would need be

characterised by additional indices: P = PL,L′ (ε) while for a

spherical potential P depends on � only. This is the only case we

consider here.

N� and P� are fixed by requiring that χ�(ε, κ, r) be continuous

and differentiable at s. Expressions for N� and P� are conveniently

constructed by recognising that any function f (r) can be ex-

pressed as a linear combination of a(r) and b(r) near s (meaning

it connects smoothly and differentiably at r = s) through the

combination

f (r) = [W {f , b}a(r) − W {f , a}b(r)]W {a, b}−1 (19)

Thus the matching conditions require N and P to be

P�(ε) = W {Ĥ�, φ�}
W {Ĵ�, φ�}

κ→0−−→ 2(2�+ 1)

(w
s

)2�+1D{φ�(ε)} + �+ 1

D{φ�(ε)} − �

(20)

N�(ε) = W {Ĵ�, Ĥ�}
W {Ĵ�, φ�}

(21)

w is an arbitrary length scale, typically set to the average value

of s.

With the help of Eq. (7) the energy derivative of P� is readily

shown to be (Eq. A21, Ref. [32])

Ṗ� = dP�

dε
= w/2

[W {Ĵ�, φ�}]2
(22)

Using the following relation between Hankels and Bessels,

W {Ĥ�, Ĵ�} = w/2

it is readily seen that

Ṗ� = 2

w

[W {Ĥ�, Ĵ�}]2
[W {Ĵ�, φ�}]2

= 2

w
N2
�

and therefore

N� =
√
Ṗ�w/2 (23)

2.8.1. Linearisation of P
In this section we consider a single � only and drop the

subscript. By linearising the energy dependence of φ, Eq. (8), it is
possible to parameterise P(ε) in a simple manner. First, we realise
P is explicitly a function of D, and implicitly depends on ε through
D ≡ D{φ�(ε)}. Writing Eq. (20) in terms of D we see that

P[D] = Ĥ(s)

Ĵ(s)
· D − D{Ĥ}
D − D{Ĵ} (24)

The linearised φ(ε, r) (Eq. (8)) may be re-expressed using D in
place of ε:

Φ(D, r) ≈ φ(εν, r) + ω[D]φ̇(εν, r) (25)

where

ω[D] = −φ(εν, s)
φ̇(εν, s)

· (D − D{φ(εν)})
(D − D{φ̇(εν)})

Eqs. (8) and (25) refer to the same object; one is parameterised
by ε while the other is parameterised by D or ω[D]. The latter is
more convenient because ω[D] and P[D] both have a simple pole
structure. That each have this structure imply that their inverses
D[ω] and D[P] also have a simple pole structure. This further
implies that if P is parameterised not by D but instead by ω[D],
P{ω[D]} will also have a simple pole structure in ω, and depends
on ω[D] as:

P{ω[D]} = P{ω[D{φ̇}]} · (ω[D] − ω[D{Ĥ}])
(ω[D] − ω[D{Ĵ}])

This relation follows from the fact that P{ω} has a pole structure

in ω, that P vanishes when D = D{Ĥ}, and 1/P vanishes when

D = D{Ĵ}. The prefactor P{ω[D{φ̇(εν)}]} follows from the fact that
when ω[D] → ∞, D → D{φ̇}.

To obtain an explicit form for P(ε) a relation between ε and
ω is required. Matrix elements and overlap for Φ[D] are readily
obtained from Schrödinger’s equation, Eqs. (4) and (9). With these
equations and normalisation relations Eq. (5) and (10), we can
find that

〈Φ[D′] | −∇2 + v − εν | Φ[D]〉 = ω[D] (26)

〈Φ[D′] | Φ[D]〉 = 1 + 〈φ̇2〉ω[D′]ω[D]
ε[D] can be obtained from the variational principle

ε[D] = 〈Φ[D] | −∇2 + v | Φ[D]〉/〈Φ2[D]〉
= εν + ω[D]{1 + ω2[D]〈φ̇2〉}−1 (27)

Linearisation of φ or Φ has errors of second order in ε − εν ,
which means the variational estimate for the energy has errors of
fourth order. From inspection of Eq. (27) we can deduce that the
following linear approximation to ε

ε̃[D] = εν + ω[D] (28)

has errors of second order in ε−εν . Thus, P can be parameterised
to second order in ε as

P(ε) ≈ P̃(ε) = 1

γ

ε − C

ε − V

where the ‘‘potential parameters’’ γ , C and V are defined as

γ = 1

P[D{φ̇}] = W {Ĵ, φ̇}
W {Ĥ, φ̇}

κ→0−−→ (s/w)2�+1

2(2�+ 1)

D{φ̇} − �

D{φ̇} + �+ 1
(29)

C − εν = ω[D{Ĥ}] = −W {Ĥ, φ}
W {Ĥ, φ̇}

κ→0−−→ −φ(s)
φ̇(s)

(D{φ} + �+ 1)

(D{φ̇} + �+ 1)

(30)

V − εν = ω[D{Ĵ}] = −W {Ĵ, φ}
W {Ĵ, φ̇}

κ→0−−→ −φ(s)
φ̇(s)

(D{φ} − �)

(D{φ̇} − �)
(31)
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A simple pole structure can be parameterised in several forms.
A particularly useful one is

P̃(ε) = (ε − C)

γ (ε − C) +Δ
=

(
Δ

ε − C
+ γ

)−1

(32)

where Δ ≡ (C−V )γ . Δ can be expressed in terms of Wronskians
as

√
Δ = −

(
2

w

)1/2

W {Ĵ, φ}
κ→0−−→ −

(w
2

)1/2 φ(s)

(2�+ 1)

s�+1

w�+1
[D{φ} − �] (33)

This last equation defines the sign of Δ1/2.
Eq. (32) is accurate only to second order because of the linear

approximation Eq. (28) for ω(ε). From the structure of Eq. (27), it
is clear that ω(ε), and thus P(ε) can be more accurately parame-
terised (to third order) by the substitution

P(ε) = P̃(ε′) (34)

ε′ = ε + (ε − εν)
3〈φ̇2(εν)〉 (35)

The third-order parameterisation requires another parameter,
sometimes called the ‘‘small parameter’’

p =
∫ s

0

φ̇2(εν, r)r
2dr = − φ̈(s)

3φ(s)
(36)

Thus P is parameterised to third order by four independent pa-
rameters. It is sometimes convenient in a Green’s function con-
text to use P and N (or equivalently Ṗ; see Eq. (23)) in place
of C and Δ. Green’s functions can be constructed without lin-
earising φ; this is the KKR-ASA method. How linearisation of φ
resolves G in an energy-independent Hamiltonian is described in
Section 2.8.3.

2.8.2. Spin orbit coupling as a perturbation
The formalism of the preceding sections can be extended

to the Pauli Hamiltonian. If we include the spin–orbit coupling
perturbatively, and include the mass–velocity and Darwin terms
the Hamiltonian becomes

−∇2 + v(r) − 1

c2
(ε − v(r))2 + ∂v(r)

∂r

∂

∂r
+ ξ (r)L̂ · Ŝ

where

ξ (r) = 2

c2
dv(r)

rdr

and

L̂ · Ŝ = 1

2

(
Lz L+−
L−+ −Lz

)
The 2 × 2 matrix refers to spin space. In orbital space,

Lz = δmm′m

L+− = δm′(m+1)

√
(�+ m + 1)(�− m)

L−+ = δm′(m−1)

√
(�+ m)(�− m + 1)

L̂ · Ŝ mixes spin components; also matrix elements of Eq. (25) and

L̂ · Ŝ depend on both � and m. We require matrix elements of the
Φ(D), analogous to Eq. (26):

〈Φ�′m′ [D′] | ξ L̂ · Ŝ | Φlm[D]〉 = ξ�[D′,D]δll′ (lm|lm′)

2.8.3. How the ASA-tail cancellation reduces to a linear algebraic
eigenvalue problem

The eigenvalue condition is satisfied when ε is varied so that

|P − S| = 0

Table 1
Potential parameters in the original LMTO-ASA method. In the tight-binding

transformation of this method these symbols become parameterised by α,

defining the transformation; see Section 2.10.1.

Name Interpretation

C Band centre Eigenvalue of MT ‘‘atom’’ and resonance

in extended system, Eq. (30)

Δ Bandwidth Bandwidth in the absence of hybridisation

with other orbitals, Eq. (33)

p Small parameter 3rd order correction to second-order

potential function P̃ , Eq. (32)

V ‘‘bottom’’ ε where D�= + � (free electrons)

γ ‘‘transformation to

orthogonal basis’’

See Section 2.9

P − S is a matrix (P − S)RL,R′L′ with P diagonal in RL, and S
Hermitian. If P is parameterised by Eq. (32)∣∣∣∣∣
(

Δ

z − C
+ γ

)−1

− S

∣∣∣∣∣ = 0

Multiply on the right by S−1 and the left by P−1∣∣∣∣ Δ

ε − C
+ γ − S−1

∣∣∣∣ = 0

Rearrange, keeping in mind that C ,Δ, and γ are real and diagonal
in RL∣∣∣−ε + C + √

Δ
(
S−1 − γ

)−1 √
Δ

∣∣∣ = 0

This has the form of the linear algebraic eigenvalue problem

h̃ψ = εψ

with

h̃ = C + √
Δ
(
S−1 − γ

)−1 √
Δ (37)

h̃ is a Hermitian matrix, with eigenvalues corresponding to the
zeros in |̃P − S|. The tilde indicates that h̃ is obtained from P̃
and is thus accurate to second order in ε − εν (C and Δ are
calculated at εν , Eqs. (30), (33)). Linear MTO’s will be constructed

in Section 2.13, and h̃ can be identified with hα − εν , Eq. (61), for
α = γ and if P is parameterised by P̃ .

2.9. ‘‘Screening’’ transformation to short-ranged, tight-binding basis

Formally, Eq. (37) is a ‘‘tight-binding’’ Hamiltonian in the sense
that it is a Hamiltonian for a linear combination of atom-centred
(augmented) envelopes χ , Eq. (14) taken at some fixed (lineari-

sation) energy εν . The Hamiltonian is long-ranged because Ĥ�(r)
is long ranged (see Eq. (B.14) for κ = 0) unless E = −κ2 is −1Ry
or deeper. But such a basis is not accurate: the optimal E falls
somewhere in the middle of the occupied part of the bands, and is
roughly + 0.3 Ry in close-packed systems; E = 0 is a compromise.

The idea behind the ‘‘screening’’ or ‘‘tight-binding’’ transfor-
mation is to keep E = −κ2 near zero but render the Hilbert space
of the χRL(ε, r) short range by rotating the basis into an equivalent
set {χRL(ε, r)} → {χαRL(ε, r)}, by particular linear combinations
which render χαRL(ε, r) short ranged (or acquire another desirable
property, e.g. be orthogonal), see Fig. 5.

Andersen sometimes called the change a ‘‘screening transfor-
mation’’ because it is analogous to screening in electrostatics.

Note that Ĥ�(E = 0, r) ∝ 1/r , has the same form as a charge
monopole, with long range behaviour. It becomes short ranged
if screened by opposite charges in the neighbourhood. The same
applies to higher order multipoles: they can become short ranged
in the presence of multipoles of opposite sign.
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Fig. 5. Contour of a screened s envelope function in a bcc lattice. Each contour

represents a reduction in amplitude by a factor of 10. Dashed lines show

contours with negative amplitude. At the ‘‘hard core’’ radius (Section 2.10.5)

on the head site a screened function has pure � character; at the ‘‘hard core’’

radius on all the tail sites the one-centre expansion of the envelope function

vanishes for � < �max.

The transformation can be accomplished in an elegant manner

by admixing to the original (‘‘bare’’) envelope (renamed from ĤRL

to Ĥ0
RL to distinguish it from the ‘‘screened’’ one) with amounts of

Ĥ0
R′L′ in the neighbourhood of R:

ĤαRL(r) =
∑
R′L′

Ĥ0
R′L′ (r)B

α
R′L′;RL (38)

Whatever prescription determines Bα
R′L′;RL, it is evident that the

Hilbert space is unchanged, and that ĤαRL→Ĥ0
RL if Bα

R′L′;RL→δR′L′;RL.
The one-centre expansion of ĤαRL in any channel R′L′ is some

linear combination of Hankel and Bessel functions, because Ĥ0
RL

are Hankels in their head channel R′L′ = RL, and linear com-

binations of Bessels in other channels R′L′ 
= RL (see Eq. (3)).

Thus every Ĥ0
RL is expanded in R′L′ by some particular linear

combination of Bessel and Hankel functions

JαR′L′ (E, r) = J0R′L′ (E, r) − αR′L′;RLĤ0
R′L′ (E, r) (39)

Bα
R′L′;RL determines αR′L′;RL, and vice-versa. α used as a superscript

indicates that it determines the screening.

A simple and elegant way to choose the screening transfor-

mation is to expand every Ĥ0
RL in channel R′L′ 
= RL, by the same

function Jα
�′ (κ, rR′ )YL′ (r̂R′ ). Then α need only be specified by two

indices, αR′L′;RL → αR′�′ .
To sum up, we specify the transformation through αR′�′ . En-

velopes ĤαRL are expanded at site R′L′ 
= RL, as linear combinations

ĤαRL(r) = −
∑
R′L′

ĴαR′L′ (r)S
α
R′L′;RL (40)

ĴαR′L′ (r) = [Ĵ0R′�′ (r) − αR′�′ Ĥ
0
R′�′ (r)]YR′L′ (r̂) (41)

The structure constants Sα
R′L′;RL are expansion coefficients that

will be determined next, but already it should be evident that

Sα
α→0−−→S0, where S0 are the structure constants of Eq. (3).

In its own ‘‘head’’ ĤαRL must have an additional irregular part.

By expressing the Bα
R′L′;RL in Eq. (38) in terms Sα

R′L′;RL as

ĤαRL(r) =
∑
R′L′

Ĥ0
R′L′ (r)

(
δR′L′;RL + αR′�′S

α
R′L′;RL

)
(42)

we can see indeed that ĤαRL(r) has the required one-centre expan-

sion, Eqs. (40), (41), provided that Sα obey a Dyson-like equation

Sα = S0 + S0αSα or

Sα
−1 = S0

−1 − α (43)

In practice Sα is calculated from

Sα = α−1
(
α−1 − S0

)−1
α−1 − α−1

It follows immediately from Eq. (43) that if there are two screen-

ing representations α and β , the structure constants connecting

them are related by

Sα
−1 + α = Sβ

−1 + β (44)

2.10. Screened muffin-tin orbitals and potential functions

In this section we develop a screened analogue of the MTO’s,

Eq. (14) potential functions, Eq. (20), normalisation Eq. (21), and

tail cancellation conditions (16). Here we mostly concern our-

selves with the ASA with κ = 0.

2.10.1. Redefinitions of symbols

We have defined a number of quantities in the context of the

original MTO basis set, Eq. (14) that will have a corresponding

definition in a screened basis set. Several previously defined

quantities are now labelled with a superscript 0 to indicate that

their definitions correspond to the unscreened α = 0 repre-

sentation: ĤRL ≡ Ĥ0
RL, ĴRL ≡ Ĵ0RL, PRL ≡ P0

RL, NRL ≡ N0
RL and

SR′L′;RL ≡ S0
R′L′;RL.

The ‘‘potential parameters’’ C , Δ, and p, Eqs. (30)–(36) and

Table 1, can also be relabelled with representation-dependent

definitions. It is unfortunately rather confusing, but the original

definitions without superscripts Eqs. (30)–(36) correspond not to

C0, Δ0, and p0, but to the particular screening representation

α = γ (dubbed the ‘‘γ representation’’). To be consistent with

the new superscript convention for P0 and N0, the appropriate

identifications are

φ(εν) ≡ φγ (εν), φ̇(εν) ≡ φ̇γ (εν), and

C ≡ Cγ , Δ ≡ Δγ , p ≡ pγ (45)

Another unfortunate artefact of the evolution in LMTO formalism

is that the meaning of many symbols changed over time. γ is

called Q−1 in Ref. [32]. In the most recent NMTO formalism,

S and B have exchanged meanings. Questaal’s ASA codes use

definitions that most closely resemble the ‘‘second generation’’

LMTO formalism perhaps most clearly expressed in Ref. [35].

Reference 16 of that paper makes correspondences to definitions

laid out in earlier papers.

2.10.2. Potential and normalisation functions for screened MTO’s

The MTO Eq. (14) is derived by augmenting the envelope

Ĥ0
R�(ε, r) by matching it smoothly onto a linear combination of

φ�(ε, r) and Ĵ0R�(r). For the screened case we match Ĥ0 to φ�(ε, r)

and ĴαR�(r), the latter defined by Eq. (39): The matching requires

Pα� (ε) = W {Ĥ0
� , φ�}

W {Ĵα� , φ�}
= P0

� (ε)

1 − α�P
0
� (ε)

(46)

Nα� (ε) = W {Ĵα� , Ĥ0
� }

W {Ĵα� , φ�}
=

√
Ṗα� w/2 (47)

Eq. (46) implies

[Pα� (ε)]−1 = [P0
� (ε)]−1 − α� → Δ�

ε − C�
+ γ� − α� (48)
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and is an obvious generalisation of P0, Eq. (32). There is also the

analogue of Eq. (44) for P:

[Pα� (ε)]−1 + α� = [Pβ� (ε)]−1 + β� (49)

Eq. (48) shows that ∂[Pα(ε)]−1/∂ε is independent of the screening

α and[
− ∂

∂ε
[Pα� (ε)]−1

]−1/2

= Pα� (ε)

[Ṗα� (ε)]1/2
= −√

2/wW {Ĥ0
� , φ�}

→ ε − C�√
Δ�

(50)

The last forms of Eqs. (48), (50) apply when P is parameterised

by P̃ , Eq. (32).

2.10.3. Screened muffin-tin orbitals

To define the analogue of the MTO, Eq. (14), in a screened

representation we write

NαR�(ε)χ
α
RL(ε, r) ={

NαR�(ε)φRL(ε, r) + ∑
R′L′

¯̂
Jα
R′L′ (r) [P

α − Sα]R′L′;RL if r ∈ {sR}
ĤαRL(κ, r) if r ∈ interstitial

(51)

The partial wave φRL(ε, r) is understood to vanish outside its

own head sphere, and P is a matrix diagonal in RL: Pα
R′L′;RL(ε) =

Pα
R′L′ (ε) δR′L′;RL.

¯̂
Jα
R′L′ is the linear combination of φ and φ̇ that matches con-

tinuously and differentiably Ĵα
R′L′ defined in Eq. (39). Eq. (51)

uses it instead of Ĵα because when we later construct energy-

independent MTO’s we can generate basis sets that accurately

solve Schrödinger’s equation in the augmentation spheres. Since

Pα and Nα depend only on values and slopes at the {sR}, the
substitution has no effect on them.

2.10.4. Tail cancellation in the tight-binding representation

The energy-dependent χαRL, Eq. (51) exactly solve the ASA-MT

potential because the trial function

Ψ (ε, r) =
∑
RL

zαRLχ
α
RL(ε, r)

that satisfy the set of linear equations∑
R′L′

(Pα − Sα)RL;R′L′z
α
R′L′ = 0 (52)

and the normalisation∑
RL

|zαRL|2 = 1 (53)

simplifies to

Ψ (ε, r) =
∑
RL

NαR�φRL(ε, r)

which is a normalised solution to the SE for v(r) = ∑
R vR(r).

In practice the solution is inexact because L summations are

truncated. The solution is rapidly convergent in the L-cutoff,

however; see Ref. [35] for an analysis.

2.10.5. Hard core radius

α can be physically interpreted as equivalent to specifying a

‘‘hard core’’ radius where the one-centre expansion ĤαRL vanishes

in a sphere centred at R′. This is evident from the one-centre

expansion Eq. (40) and the form of Ĵα� , Eq. (41). Ĵ
α
� vanishes at the

radius where

αR� = Ĵ0� (E, rR)/Ĥ
0
� (E, rR)

In his more recent developments, Andersen defined the screening
in terms of the hard core radius a� instead of α, because nearly
short-ranged basis functions can be obtained for a fixed aR� =
0.7sR, independent of κ and �.

It is easy to see how such a transformation can render en-

velope functions short-ranged. The value of ĤαR� is forced to be
zero in a sea of R′L′ channels surrounding it. Provided the aR�
are suitably adjusted, it quickly drives ĤαR�(r) → 0 everywhere
for increasing r . If the aR� → 0, the screening vanishes and

ĤαR� returns to the long-ranged Ĥ0
R�; while if the aR� becomes

comparable to sR the value on the head must be something like
0 and 1 at the same time (heads and tails meet). The damping

is too large and the ĤαR�(r) ‘‘rings’’ with increasing r . For aR� =
0.7rs or thereabouts the ringing is damped and ĤαR�(r) decays
exponentially with r , even for κ = 0.

2.11. MTO’s and second order Green’s function

Through the eigenvectors zαRL of Section 2.10.4, we can con-
struct the Green’s function. This was done in Appendix A of
Ref. [32], where the full Green’s function, including the irregular
parts, are derived. Here we will adopt a simpler development
along the lines of Ref. [5], after linearising the χαRL(ε, r).

One way to see why Pα−Sα have similar eigenvalues for any α
is to note that [Pα]−1−[Sα]−1 does not depend on α, since [Pα]−1

and [Sα]−1 are shifted by the same amount (compare Eqs. (43)
and (48)). In scattering theory [P0

� (ε)]−1 is proportional to tan-
gent of the phase shift, and we realise that the transformation
(P0, S0) → (Pα, Sα) corresponds merely to a shift of the scattering
background. The pole structures of Pα − Sα can depend on α
because of the irregular parts: Pα − Sα have the same poles as
[Pα]−1 − [Sα]−1 only where Pα and Sα have no zeros or poles.
Some care must be taken when generating the Green’s function G.

The MTOs Eq. (51) form a complete Hilbert space for any α,
but α can be chosen to satisfy varying physical requirements. To
make short-ranged Hamiltonians it has been found empirically
that the following universal choice

αs = 0.34857, αp = 0.05303, αd = 0.010714,

α� = 0 for � > 2

yields short-ranged basis functions χαRL(r) for κ = 0, for any
reasonably close-packed system.

Another choice is α = γ . In Section 2.8.3 it was shown how
the tail cancellation condition had the same eigenvalues as a fixed
Hamiltonian, Eq. (37). We are now equipped make a connection
with the χγ basis and Eq. (37). Moreover, this connection enables
us to construct the second order Green’s function. First, Eq. (43)

enables us to recognise the quantity
(
S−1 − γ

)−1
as Sγ . Eq. (37)

then has the simple two-centre form h̃ = C +Δ1/2 Sγ Δ1/2

The Green’s function corresponding to some fixed h has the
simple form

G̃(z) = [z − h̃ − i0+]−1

for complex energy z. It is easy to see that G̃(z) can be expressed
in the following form:

G̃(z) = Δ−1/2 g̃γ Δ−1/2 (54)

where

g̃γ = [̃Pγ − Sγ ]−1 (55)

This is the analogue of Eq. (17) in the γ representation.
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P̃γ (z)− Sγ has a direct connection with z − h̃ because of P̃γ (z)

takes the simple form (z − C)/Δ. P̃γ − Sγ is linear in z since Sγ

is independent of it, and
√
Δ(̃Pγ − Sγ )

√
Δ = z − h̃.

2.11.1. Scattering path operator in other representations

To build G(ε) from general screening representations β we

need to transform the scattering path operator gγ → gβ . This

can be accomplished [35] using Eqs. (49) (44). The result is

gβ = (Pα/Pβ )gα(Pα/Pβ ) + (β − α)(Pα/Pβ )

These transformations require only Eqs. (49) and (44); they do

not depend on parameterisation of P .

Since Eq. (50) is representation-independent, (Pα/Pβ ) can

equally be written in the following forms:

Pα(ε)

Pβ (ε)
=

(
Ṗα

Ṗβ

)1/2

= 1 + (α − β)Pα(ε) (56)

2.12. The ASA Green’s function, general representation

As shown in Section 2.11 the relation between the Green’s

function G(E) and the scattering path operator g is particularly

simple when potential functions are parameterised to second

order. The relation between the ASA approximation to G and g

can be written more generally as follows. In the ASA, every point

r belongs to some sphere R with partial waves φRL(ε, r) so that

GRR′ (ε, r, r′) =
∑
LL′
φRL(ε, r)GRLR′L′ (ε)φR′L′ (ε, r′)

where

GRLR′L′ (ε) = −1

2

d ln ṖαRL(ε)

dε
+

√
ṖαRL(ε) g

α
RLR′L′ (ε)

√
Ṗα
R′L′ (ε) (57)

r and r′ (or R and R′) are the field and source points, respectively.

It was first shown in Ref. [32], for the ‘‘bare’’ representation α =
0, and for a screened representation α in Ref. [35]. The first term

cancels a pole appearing in the second term, connected to the

irregular part of G (which we do not consider here).

Pα(ε) can be computed by integration of the radial Schrödinger

equation for any ε. If this is done, and the structure constants S

are taken as energy-dependent, this is the screened KKR method.

Questaal’s lmgf and lmpg parameterise Pα(ε), to second order

(Eq. (48)), or to third order (Section 2.13.4) in ε.

Note that G does not depend on choice of α; it can be used as

a stringent test of the correctness of the implementation.

2.13. The ASA Hamiltonian: Linearisation of the muffin-tin orbitals

The energy-dependent MTO, Eq. (51), exactly solves the ASA

potential for a fixed ε. To make a fixed, energy-independent basis

set, we constrain the energy-dependent MTO, Eq. (51), to be

independent of ε. As we saw in Sections 2.8.3 and 2.11, there is

a simple energy-independent Hamiltonian Eq. (37) that has the

same eigenvalue spectrum as the second order G̃; this is χ
γ

RL(εν, r).
We can construct an energy-independent basis χαRL(r) =

χαRL(εν, r) for any α, by choosing the normalisation NαR�(ε) in such

a way that ∂χαRL(ε, r)/∂ε = 0 at ε = εν . Thus we require

∂

∂ε

[
Nα(ε)φ(ε, r) + ¯̂

Jα(r)Pα(ε)
]
ε=εν

= 0

Ṅα(ε)φ(ε, r) + Nα(ε)φ̇(ε, r) + ¯̂
Jα(r)Ṗα(ε)ε=εν = 0

Define

φα(ε, r) ≡ [Nα(ε)/Nα(εν)]φ(ε, r) (58)

Then the condition that χ̇αRL(r) vanish for all r becomes

¯̂
Jα(r) = −[φ̇α(ε, r)Nα(ε)/Ṗα(ε)]ε=εν (59)

Henceforth, when the energy index is suppressed it means

that the energy-dependent function or parameter is to be taken

at the linearisation energy εν . If J̄ is replaced by Eq. (59), Eq. (51)

becomes

χαRL(r) =
⎧⎨⎩φRL(r) +

∑
R′L′

φ̇αR′L′ (r)h
α
R′L′;RL if r ∈ {sR}

(NαR�)
−1ĤαRL(κ, r) if r ∈ interstitial

(60)

hα = −Pα(Ṗα)−1 + [Ṗα]−1/2Sα[Ṗα]−1/2 (61)

The Hilbert space of the {χαRL(r)} consists of the pair of func-

tions φR′L′ and φ̇R′L′ inside all augmentation channels R′L′. Chang-
ing α merely rotates the Hilbert space, modifying how much φR′L′
and φ̇R′L′ each χαRL contains.

Eq. (60) may be regarded as a Taylor series of χαRL(ε, r), Eq. (51),
to first order in ε−εν , with φ̇α(r) hα playing the part of χ̇α(r) (ε−
εν). The eigenvalues of hα are fact the eigenvalues of χαRL(ε, r)
to first order in ε − εν . If P is parameterised to second order,

P(ε) → P̃(ε), hα in the γ representation becomes the second

order ASA Hamiltonian, Eq. (37), when α = γ .

The relation between Nα(ε) and Pα(ε) was already established

in Eq. (47). To confirm it is consistent with Eq. (59) at εν , revisit

the definition of Nα using Eq. (59)

Nα(ε) = W {Jα, Ĥ0}
W {Jα, φ} = w/2

W {−φ̇αNα(ε)/Ṗα(ε), φ}
= Ṗα(ε)w/2

Nα(ε)W {φ̇α, φ} = Ṗα(ε)w/2

Nα(ε)

which confirms Eq. (47).

2.13.1. Potential parameters Cα , Δα , and oα

The LMTO literature suffers from an unfortunate proliferation

of symbols, which can be confusing. Nevertheless we introduce

yet another group because they offer simple interpretations of

what is happening as the basis changes with representation α,

and also to make a connection with the Green’s function. It is

helpful to remember there is a single potential function Pα(ε),

which determines the normalisation Nα(ε) though Eq. (47).

Pα(ε) can be parameterised to second order with three inde-

pendent parameters C ,Δ, and γ (Eq. (48)) and to third order with

the ‘‘small parameter’’ p (Eq. (36)).

The energy derivative of φα(ε, r) at εν is

φ̇α� (εν, r) = φ̇α� (r) = φ̇�(r) + oα� φ(r) (62)

oα� ≡ Ṅα� /N
α
� → α − γ

(α − γ )(C − εν) +Δ
(63)

The last form applies when P is parameterised to second order.

We have introduced the ‘‘overlap’’ potential parameter oα� . It

vanishes in the γ representation and consequently φ̇γ = φ̇. This

fact provides a simple interpretation of χαRL(r), Eq. (60) in the γ

representation. χ
γ

RL acquires pure φ character for its own head,

and pure φ̇ in spheres where R′ 
= R. This implies that the {χγ }
basis are orthogonal apart from interstitial contributions (ne-

glected in the ASA) and small terms proportional to p (Eq. (36)).

φ and φ̇ combine in every sphere in the exact proportion Eq. (8)

at each eigenvalue εi of h
γ . Thus eigenvalues of hγ are correct to

one order in εi − εν higher than hα 
=γ .
In the LMTO literature two other parameters are introduced to

characterise hα in a suggestive form:
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hαRL;R′L′ = (Cα − εν)R� δRL;R′L′ +ΔαR�S
α
RL;R′L′Δ

α
R′�′ (64)

where

Cα� − εν ≡ −Pα� (Ṗ
α
� )

−1 → (C − εν)

[
1 + (C − εν)(α − γ )

Δ

]
(65)

√
Δα ≡ [Ṗα]−1/2 → √

Δ

[
1 + (C − εν)(α − γ )

Δ

]
(66)

hα + εν becomes h̃ (Eq. (37)) when α = γ .

2.13.2. How hα changes with representation
From Eq. (63) implies that φ̇α transforms as

φ̇α − oαφ = φ̇β − oβφ

Dividing χα in to φ and φ̇ parts, we realise that oα + [hα]−1 is
independent of representation and therefore

oβ + [hβ ]−1 = oα + [hα]−1

2.13.3. ASA Hamiltonian and overlap matrix
χα (Eq. (60)) is an energy-independent basis set and has an

eigenvalue spectrum. Within the ASA (Section 2.7) matrix ele-
ments of the Hamiltonian and overlap are readily obtained. Using
normalisation Eqs. (5) and (36), Schrödinger’s equation for partial
waves Eq. (4), the parameterisation of φ̇α Eq. (62), and neglecting
the interstitial parts

H = 〈
χα|−∇2 + v|χα 〉

= hα(1 + oαhα) + (1 + hαoα)εν(1 + oαhα) + hα εν p h
α

O = 〈χα|χα〉
= (1 + hαoα)(1 + oαhα) + hα p hα (67)

2.13.4. Third order Green’s function
G̃(z) depends on potential parameters C and Δ. These can be

replaced with the following:

Δ = [ ˙̃Pγ (ε)]−1 and ε − C = P̃γ (ε)

˙̃Pγ (ε)
(68)

which follows from Eq. (50) with α = γ . Then the substitution
P̃ → P through the replacement ε → ε′ = ε+(ε−εν)3p, Eqs. (35)
and (36). This yields an expression for G to third order—more
accurate than the 2nd order G̃ [32,35]. Questaal codes lmgf and
lmpg permit either second or third order parameterisation.

2.14. Principal layer Green’s functions

Questaal has another implementation of ASA-Green’s function
theory designed mainly for transport. lmpg is similar in most
respects to the crystal package lmgf, except that is written as
a principal-layer technique. lmpg has a ‘special direction’, which
defines the layer geometry, and for which G is generated in
real space. In the other two directions, Bloch sums are taken
in the usual way; thus for each q in the parallel directions, the
Hamiltonian becomes one-dimensional and is thus amenable to
solution in order-N time in the number of layers N.

The first account of this method was presented in Ref. [36],
and the formalism is described in detail in Ref. [14], including its
implementation of the non-equilibrium case. Here we summarise
the basic idea and the main features.

lmpg is similar in many respects to lmgf except for its man-
agement of the layer geometry. The material consists of an active,
or embedded region, which is cladded on the left and right by left
and right semi-infinite leads.

PLATL︷ ︸︸ ︷
. . . PL − 1

∣∣ PLAT︷ ︸︸ ︷
PL 0 | . . . | PL n−1

∣∣ PLATR︷ ︸︸ ︷
PL n . . .

The end regions are half-crystals with infinitely repeating lay-
ers in one direction. All three regions are partitioned into slices,
or principal layers (PL), along the ‘special direction’. The left-
and right-end regions consist of a single PL, denoted −1 and n,
which repeat to ∓∞. Thus the trilayer geometry is defined by
five lattice vectors: two defining the plane normal to the interface
(the potential is periodic in those vectors); one vector PLAT for
the active region and one each (PLATL and PLATR) defining the
periodically repeating end regions.

Far from the interface the potential is periodic and states are
Bloch states. It is assumed that the potential in each end layer
is the same as the bulk crystal (apart from a constant shift) and
repeats periodically in lattice vectors PLATL and (PLATR) to ∓∞.

Partitioning into PL is done because ε − H = G−1 is short-
ranged. It is requirement that a PL is thick enough so that H only
connects adjacent PL. Then H is tridiagonal in the PL represen-
tation and the work needed to construct G scales linearly with
the number of PL. Moreover it is possible in this framework to
construct G for the end regions without using Bloch’s theorem.

Principal layers are defined by the user; they should be chosen
so that each PL is thick enough so that H connects to only nearest-
neighbour PL on either side. (Utility lmscell has a facility to
partition the active region into PL automatically.)

2.14.1. Green’s function for the trilayer
lmpg constructs the auxiliary g , and if needed builds G from g

by scaling (Section 2.12). In many instances g is sufficient (e.g. to
calculate transmission and reflection probabilities [14]), although
G is needed to make the charge density. Note there is a g (or G)
connecting every layer to every other one; thus g has two layer
indices, gij (i and j refer to PL here).

g = (P − S)−1 for the entire trilayer can be constructed in one
of two ways. The first is a difference-equation method, described
in Ref. [36]. The second is simply to invert (P − S) using sparse
matrix techniques. Both methods require as starting points the

diagonal element g
s,L
−1−1 for semi-infinite system (consisting of all

layers between ∞ and −1, with vacuum for all layers to the right
of the L- region) and the corresponding gs,R

nn for the R- region.
The sparse-matrix method is simple to describe. Supposing

the active region is considered in isolation; denote it as I . Then
g−1
I = (P − S)I . The effect of the leads is to modify g−1

I by adding
a self-energy to layers 0 and n:

g−1 = (P − S)I +Σ0 +Σn

Σ0 = S0,−1 g
s,L
−1−1 S−1,0

Σn = Sn−1,n g
s,R
nn Sn−1,n

g−1 is inverted by a sparse matrix technique.
lmpg implements both the difference-equation and sparse-

matrix techniques: both scale linearly with the number of layers,
in memory and in time. It has been found empirically that they
execute at similar speed for small systems, while the difference-
equation method is significantly faster for large systems.

2.14.2. Green’s functions for the end regions

To make g , the diagonal surface Green’s functions g
s,L
−1−1 and

gs,R
nn are required. lmpg implements two schemes to find them:

a ‘‘decimation’’ technique [37] and a special-purpose difference-
equation technique applicable for a periodic potential [38].

The latter method requires solution of a quadratic algebraic
eigenvalue problem, which yields eigenvalues r: they correspond
physically to wave numbers as r = eika. a is the thickness of the
PL and k the wave number in the plane normal to the interface. k
is in general complex since no boundary conditions are imposed;
it is real only for propagating states. Eigenvalues occur in pairs, r1
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Fig. 6. Representative contour integration for occupied states. Twelve points are

taken for the interval (−1, 0). The contour deformation has eccentricity = 1/2,

and a bunching parameter 1/2, giving more weight to the points near EF = 0.

and r2, and in the absence of spin–orbit coupling, r1 = 1/r∗
2 . There

is a boundary condition on the end leads for the trilayer, which
excludes states that grow into an end region. The surface Green’s
function gs can be constructed from the same eigenvectors that
make the ‘‘bulk’’ g [38].

A great advantage of this method is that its solution provides
the eigenfunctions of the system; thus the Green’s function can
be resolved into normal modes. A large drawback is the practical
problem of finding a solution to the eigenvalue problem. It can
be converted into a linear algebraic eigenvalue equation of twice
the rank; however, the resulting secular matrix can be nearly
singular (especially if S is short-ranged). Also, the pairs r1/r2
can range over a very large excursion, of unity for propagating
states and many orders of magnitude for rapidly decaying ones.
Capturing them by solving a single eigenvalue problem imposes
severe challenges on the eigenvalue solver.

Decimation is recursive and generally efficient; however prob-
lems can appear at special values of k energy where the growing
and decaying pair r1 and r2 become very close to unity. Unfor-
tunately, those ‘‘hot spots’’ are often the physically interesting
ones.

At present Questaal’s standard distribution does not have a
fully satisfactory, all-purpose method to determine gs, though one
has been developed and will be reported in a future work.

2.15. Contour integration over occupied states

Many properties of interest involve integration over the occu-
pied states. In contrast to band methods which give eigenfunc-
tions for the entire energy spectrum at once, Green’s functions
are solved at a particular energy, and must be numerically inte-
grated on an energy mesh for integrated properties. The spectral
function or density of states is related to G as

A(ε) = π−1|ImG(ε)| (69)

and in the noninteracting case is comprised of a superposition of
δ-functions at the energy levels. Thus G(ε) has lots of structure on
the real axis, which makes integration along it difficult. However,
since below the Fermi level G should have no poles in the upper
half of the complex plane, the Cauchy theorem can be used to
deform the integral from the real axis to a path in the complex
plane (Fig. 6). lmgf and lmpg use an elliptical path, with upper
and lower bounds on the real axis respectively at the Fermi level
and some energy below the bottom of the band.

A Legendre quadrature is used, but the weights can be stag-
gered to bunch points near EF where G has lots of structure. Thus
five parameters define the mesh: the number of points, the upper
and lower bounds, the eccentricity of the ellipse (between 0 for
circle and 1 for a line on the real axis) and bunching parameter
which also ranges between 0 and 1. The integrand on the contour
is smooth, except near the endpoint z → EF . Good results can be
obtained with a modest number of points, typically 12–20.

The exact potential function Pα has no poles in this half plane;
nor does the second order parameterisation but spurious poles
may appear in the third order parameterisation. These may be
avoided by working in the orthogonal representation (α = γ )
and/or by choosing fairly large elliptical eccentricities for the
contour.

2.16. Spin–orbit coupling in the Green’s function

It has been shown in Section 2.8.2 that spin–orbit coupling
(SOC) can be added perturbatively to the Hamiltonian, resulting in
the matrix elements containing ξ�[D′,D]. These matrix elements
are added to the right-hand-side of the first line in Eq. (26), while
the overlap integrals (second line in Eq. (26)) remain unchanged.
In order to construct the Green’s function with SOC, the resulting
modification of the variational energy in Eq. (27) needs to be
reformulated as a perturbation of the potential parameters.

Because the SOC operator is a matrix (see Section 2.8.2), the
exact solutions φνljκ (r) of the radial Pauli equation are linear
combinations of spherical waves |lmσ 〉 and |lm′σ ′〉 with m+σ =
m′ + σ ′ = j. However, our perturbative treatment is still based
on basis functions with definite spin that are calculated without
SOC. The energy dependence, however, is modified by allowing
the ω parameter to become a matrix, so that Eq. (25) is replaced
by

Φmσ (D↑,D↓, r) = φmσ (ενσ , r) +
∑
m′σ ′

ωmσ ,m′σ ′ (D↑,D↓)φ̇m′σ ′ (ενσ ′ , r)

(70)

where we dropped the common � superscript because the SOC
operator is diagonal in �. The summation in (70) involves at most
two terms with m + σ = m′ + σ ′.

Instead of the simple variational estimate of ε(D) in Eq. (27),
we now construct a generalised eigenvalue equation, which leads
to

ω̂ + V̂SO = ε1̂ − ε̂ν + ω̂†p̂(ε1̂ − ε̂ν)ω̂ (71)

where ω̂ is the matrix from Eq. (70), both ω̂ and V̂SO are functions
of D↑ and D↓, and p̂ and ε̂ν are diagonal matrices with elements

〈φ̇2
ν�σ 〉 and ενσ , respectively. The matrices are assumed to include

the full basis set on the given site, i.e., their dimension is 2(2�+1).
The ω̂ matrix is found by solving Eq. (71). To first order in

ε − εν , it gives ω̂ = ε1̂− ε̂ν − V̂SO, so that the matrix elements of

V̂SO are effectively added to ε̂ν . Promoting the potential function
P(ε) to a matrix and using the representation Eq. (32) and the
definitions Eqs. (29)–(31), we find that the parameters Δ and γ

are unaffected by V̂SO while C is promoted as C → Ĉ = C 1̂+ V̂SO.

However, in order to make the definition of P̂(ε) unambiguous,
we need to fix the correct order of matrix multiplication. We also
need to ensure that the poles of G(z) have unit residues. We use
the following definitions:

G(ε) = λ(ε) + μL(ε)[P(ε) − S]−1μR(ε), (72)

P(ε) =
[
γ + √

Δ(ε − Ĉ)−1
√
Δ

]−1

(73)

μL(ε) = (1 − ˆ̇VSO)
1/2[Δ+ γ (ε − Ĉ)]−1

√
Δ (74)

μR(ε) = √
Δ[Δ+ (ε − Ĉ)γ ]−1(1 − ˆ̇VSO)

1/2 (75)

λ = −1

2
μ−1

R P̈μ−1
L (76)

where ˆ̇VSO = d ˆ̇VSO/dε comes from the energy dependence of the
SOC parameters ξ�[D′,D]. Note that Ṗ = μRμL, and the structure
of G(z) guarantees that the poles of G(z) have unit residues. It is

straightforward to check that, with energy-independent V̂SO, G(z)
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Fig. 7. Benchmarks for magnetocrystalline anisotropy using lm (blue symbols

and solid curves) and lmgf (red symbols and dashed curves). (a) FePt with

the magnetic part of the exchange–correlation field scaled by a factor between

0 and 1. (b) (Fe1−xCox)2B alloy in the virtual crystal approximation, with the

cation charge varied from 26 to 27. Lower curves with squares: full three-centre

lm and lmgf with third-order potential functions. Upper curves (shifted by 2

meV/f.u. in panel (a) and by 0.5 meV/f.u. in panel (b)): two-centre approximation

in lm and second-order potential functions in lmgf. The charge density in all

calculations for the given material is taken from the full self-consistent lm
calculation (without scaling in the case of FePt).

becomes the resolvent of the second-order Hamiltonian Eq. (37),

with added V̂SO, as expected.

To third order in ε− εν and to first order in V̂SO, we find from

Eq. (71):

ω̂(3) = ε1̂ − ε̂ν + p̂(ε1̂ − ε̂ν)
3 − V̂

(3)

SO

= ε̂′ − ε̂ν − V̂
(3)

SO (77)

where ε′ is defined in Eq. (35), and

V̂
(3)

SO = V̂SO + {
V̂SO, p̂(ε1̂ − ε̂ν)

2
}

(78)

with
{
Â, B̂

} = ÂB̂+ B̂Â. Because V̂SO is defined at the fixed values

of the logarithmic derivatives, the spin–orbit coupling parameters

ξ�,σσ ′ in V̂SO are calculated with ε replaced by ε′:

ξ�,σσ ′ (ε) =〈φ�σ |ξ (r)|φ�σ ′ 〉
+ (ε′

�σ − εν�σ )〈φ̇�σ |ξ (r)|φ�σ ′ 〉
+ (ε′

�σ ′ − εν�σ ′ )〈φ�σ |ξ (r)|φ̇�σ ′ 〉
+ (ε′

�σ − εν�σ )(ε
′
�σ ′ − εν�σ ′ )〈φ̇�σ |ξ (r)|φ̇�σ ′ 〉 (79)

Of course, just as in the non-relativistic case, ε is also replaced

by ε′ where it appears explicitly in Eqs. (73)–(75). ˆ̇VSO is always

calculated as the exact energy derivative of V̂SO.

Fig. 7 shows the comparison of the magnetocrystalline

anisotropy calculated using lm and lmgf for two benchmark

systems. Two cases are displayed: lmgf with second-order po-

tential functions compared with the corresponding two-centre

approximation in lm, and lmgf with third-order potential func-

tions compared with the full three-centre lm calculation. The

agreement in both cases for FePt [panel (a)] is very good, while

for the (Fe1−xCox)2B alloy in the virtual crystal approximation it

is essentially perfect.

2.17. Fully relativistic LMTO-ASA

We have developed a fully relativistic extension of the LMTO-
ASA code within a relativistic generalisation of the density func-
tional formalism [39–43]. In the most general case, one needs to
solve the Kohn–Sham Dirac equation

HΨ (ε, r) = εΨ (ε, r) (80)

with

H = cαp + (β − I4)mc2 + V (r)I4 + μBβBeff(r)Σ (81)

where

α =
(
0 σ

σ 0

)
, β =

(
I2 0
0 −I2

)
, Σ =

(
σ 0
0 σ

)
(82)

Here, σ is the vector of Pauli matrices, p is the momentum
operator, Beff(r) is an effective spin-dependent potential acting on
electrons. It should be noted that this is a simplified form of the
relativistic Kohn–Sham equation in which the orbital contribution
to the 4-component relativistic current is neglected. This simplifi-
cation is necessary in order to avoid the significant formulaic and
computational complications that arise in the relativistic current
density formulation of the density functional theory [43].

For a spherically symmetric potential V (r) = 1/2[V↑(r) +
V↓(r)] inside a single MT sphere, the direction of the magnetic
field can be assumed to point along the z direction, Beff = B(r)ẑ,
where B(r) = 1/2[V↑(r)−V↓(r)]. Then, Eq. (81) can be written as

H = [cαp + (β − I4)mc2 + V (r)I4 + μBβB(r)Σz] (83)

The solutions of the Kohn–Sham Dirac equation (83) are linear
combinations of bispinors:

Ψμ(r, ε) =
∑
κ

Ψκμ(r, ε) (84)

Ψκμ(r, ε) =
(

gκμ(ε, r)Ωκμ(r̂)
ifκμ(ε, r)Ω−κμ(r̂)

)
(85)

Here,Ωκμ(r̂) are the spin spherical harmonics, μ is the projection
of the total angular momentum, and κ is the relativistic quantum
number, κ2 = J(J + 1) + 1/4. The radial amplitudes gκμ(ε, r)
and fκμ(ε, r) satisfy the following set of coupled differential
equations:[

d

dr
+ 1 + κ1

r

]
gκ1μ(ε, r) =

[
1 + ε − V (r) + u′B(r)

c2

]
cfκ1μ(ε, r)[

d

dr
+ 1 − κ1

r

]
cfκ1μ(ε, r) = [− (ε − V (r))− uB(r)] cgκ1μ(ε, r)

−
√
1 − u2B(r)gκ2μ(ε, r)[

d

dr
+ 1 + κ2

r

]
gκ2μ(ε, r) =

[
1 + ε − V (r) + u′′B(r)

c2

]
cfκ2μ(ε, r)[

d

dr
+ 1 − κ2

r

]
cfκ2μ(ε, r) = [− (ε − V (r))− uB(r)] cgκ2μ(ε, r)

−
√
1 − u2B(r)gκ1μ(ε, r) (86)

where

u = μ

�+ 1/2
, u′ = μ

�− 1/2
, u′′ = μ

�+ 3/2
(87)

In the general case, in the presence of a magnetic field, one
has to solve a system of two infinite sets of mutually coupled
differential equations because the magnetic field couples radial
amplitudes with different relativistic quantum numbers κ . Specif-
ically, states with κ1 to those with κ2 = κ1 and κ2 = −κ1 − 1,
i.e., states of the same �, but also states with κ1 to those with
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κ2 = 1 − κ1, i.e., states with different �’s, Δ� = ±2. To avoid
this complication, this coupling is neglected. In this case, the set
simplifies into coupled equations for each pair �μ. For |μ| =
� + 1/2, there is no coupling, so similar to the non-relativistic
case, there is only regular solution with quantum numbers κμ,
while for |μ| < �+ 1/2, we need to solve the set of four coupled
equations (86) for the four unknown radial functions gκ1μ, fκ1μ,
gκ2μ, and fκ1μ. The coefficients u, u′, and u′′ in Eq. (86) result from
matrix elements of the type 〈κμ|σz |κ ′μ〉 [43].

Physically, the neglected coupling corresponds to a magnetic
spin–orbit interaction given by a term 2c−2r−1dB/drL · S in the
weak relativistic domain [44]. Since this is proportional to the
product of two small quantities (c−2 and dB/dr) its omission is
justified in most cases.

The construction of the MT orbitals and the corresponding
boundary conditions proceeds along the same principles as in the
non-relativistic case described in the previous sections. The tail
cancellation condition is conveniently formulated in terms of rel-
ativistic extensions of the potential and normalisation functions:

NL(ε) = (2�+ 1)

(w
s

)�+1

g−1
L (ε, s) (DL(ε, s) − I�)−1 (88)

PL(ε) = 2(2�+ 1)

(w
s

)2�+1

× (DL(ε, s) + I� + I) (DL(ε, s) − I�)−1 (89)

The logarithmic derivative matrix being given in terms of the
small and large components of the radial amplitude:

DL(ε, r) = scfL(ε, s)g−1
L (ε, s) − κ − I (90)

κ =
(
κ1 0
0 κ2

)
For states with |μ| < � + 1/2, NL(ε), PL(ε), DL(ε), gL(ε), and
fL(ε) are 2 × 2 matrices for each subblock L = (�, μ) with the
general form

AL(ε) =
(
Aα1κ1(ε) Aα1κ2 (ε)
Aα2κ1(ε) Aα2κ2 (ε)

)
(91)

Note that the indices in this matrix have different physical mean-
ing. Although the values of index α are numerically equal to those
of κ , index α stands for different behaviour of the radial function
at the origin [42,43] while κ stands for solutions with different
quantum states. Therefore, these matrices are not symmetric and
do not commute with each other.

The linearisation can be formulated in a matrix form [in the
following we will leave out the subblock index L; all matri-
ces presented have the form of Eq. (91)]. Within second-order
approximation, the radial amplitudes are expanded around a
linearisation energy:

g(ε, r) ≈ gν(r) + (ε − εν) Iġν(r) (92)

f (ε, r) ≈ fν(r) + (ε − εν) I ḟν(r) (93)

Then, a symmetric matrix form of the linearisation of the loga-
rithmic derivative can be written as

(D(ε) − Dν)
−1 = − s

ε
gνg

T
ν + A (94)

where

A = −1

2

[
(Dν − Dν̇ )

−1 + (
Dν − DT

ν̇

)−1
]

= −1

2
s
(
ġνg

T
ν + gν ġ

T
ν

)
(95)

By direct substitution of (94) into (89) we obtain the parameter-
isation of the potential function:

P(ε) = R (V − ε)−1 RT + Q (96)

or equivalently

P−1(ε) = W (C − ε)−1 WT + γ (97)

where

V = εν + sgT
ν

[
A + (Dν − Il)−1

]−1
gν (98)

R = √
2s

(w
s

)�+ 1
2
(2�+ 1) [A (Dν − Il)+ I]−1 gν (99)

Q = 2 (2�+ 1)

(w
s

)2�+1 [
I + (2�+ I)

[
(Dν − Il)+ A−1

]−1
]
(100)

and

γ = Q−1, W = γ R, C = V + RTγ R (101)

For an arbitrary representation α:

Pα
−1

(ε) = W (C − ε)−1 WT + γ − α (102)

which is the relativistic analogue of Eq. (48). In general, the ma-
trices V , R, Q , C , γ and W are non-diagonal, some are symmetric
and some are not, so they do not all commute with each other.
This is related to the different physical origin of the matrix indices
discussed above. The parameter W is the relativistic analogue of√
Δ introduced earlier [see Eq. (33)], and Eq. (96) is analogous to

the non-relativistic Eq. (32). We should note that in the code, we
have also included a third-order parameterisation of the potential
function similar to the non-relativistic case, Eq. (35).

The physical Green function and Hamiltonian are written in
terms of the potential function and scalar relativistic structure
constants matrices after a transformation of the former from κμ
to �mms basis:

Gα = −1

2
P̈α Ṗα + 2

w
Nα

T
gαNα (103)

where

gα = (Pα − Sα)
−1

(104)

these are the relativistic analogues of Eq. (57) and the scattering
path operator.

Within the framework of the TB-LMTO and principal layer
approach, the fully relativistic version of the green function for
layered geometry is constructed straightforwardly from the site
diagonal fully relativistic potential function [43].

2.18. Coherent potential approximation

The coherent potential approximation (CPA) is a Green’s
function-based method used to describe the electronic struc-
ture of disordered substitutional alloys. Questaal’s lmgf code
implements the CPA in the Atomic Spheres Approximation, fol-
lowing the formulation of Refs. [43,45]. Any lattice site i can
be occupied by any number of components a with probabilities
(concentrations) cai , which must be supplied by the user. These
components can have different atomic sphere radii, and each has
its own charge density, atomic potential, and diagonal matrix of
potential functions Pa

i (ε). Each site with substitutional disorder
(‘‘CPA site’’) is also assigned a coherent potential matrix Pi(ε)
that has the same orbital structure as Pa

i (ε) but is off-diagonal,
with the restriction that it must be invariant under its site’s point
group. The elements of the Pi(ε) matrix are complex even if ε is
real, and it is fixed by the CPA self-consistency condition.

The configurational average of the scattering path operator is
given by

ḡ(ε, k) = [P(ε) − S(k)]−1 (105)

where the site-diagonal matrix P(ε) absorbs the coherent poten-
tial matrices for the CPA sites and the diagonal matrices of the
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conventional potential functions for the sites that are occupied
deterministically (‘‘non-CPA sites’’). The matrix in Eq. (105) is
integrated over the Brillouin zone in the usual way, and its
site-diagonal blocks ḡii are extracted.

For non-CPA sites, the full Green’s function, density matrix,
and the charge density are obtained from ḡii in the usual way.
For each CPA site i, we define the scattering path operator ḡa

i
(separately for each component a), which is the statistical average
under the restriction that site i is occupied deterministically by
component a, while all other sites in the infinite crystal are
occupied statistically, according to their average concentrations.
Such quantities are called ‘‘conditionally averaged’’. The charge
density for the component a on site i is obtained from the site-
diagonal block ḡa

ii on site i of the conditionally averaged ḡa
i . This

site-diagonal block can be found from the matrix equation on that
site:

(ḡa
ii )

−1 = ḡ−1
ii + Pa

i − Pi (106)

and the CPA self-consistency condition reads

ḡii =
∑

i

cai ḡ
a
ii (107)

Iteration to self-consistency is facilitated [43,45] by introduc-
ing the coherent interactor matrix Ωi, for each CPA site, defined
through ḡii = (Pi − Ωi)

−1. The conditionally averaged ḡa
ii is then

ḡa
ii = (Pa

i − Ωi)
−1. The latter two equations can be used to

re-express the self-consistency condition (107) in terms of Pi,
Ωi, and Pa

i without an explicit reference to the scattering path
operator:

(Pi −Ωi)
−1 =

∑
i

cai (P
a
i −Ωi)

−1 (108)

The Ωi matrices (for each required complex energy point) are
converged to self-consistency using the following procedure. At
the beginning of the CPA iteration, Eq. (108) is used to obtain Pi

for each CPA site from Ωi, and then Pi is inserted in Eq. (105).
After integration over k, the site-diagonal block ḡii is extracted
for each CPA sites and used to obtain the next approximation for
Ωi = Pi − ḡ−1

ii , closing the self-consistency loop. The output Ωi

matrices are linearly mixed with their input values. The mixing
parameter can usually be set to 1 for energy points that are not
too close to the real axis.

The CPA loop is repeated until theΩi matrices converge to the
desired tolerance, after which a charge iteration is performed. At
the beginning of the calculation, the Ωi matrices are initialised to
zero unless they have already been stored on disk. The CPA loop
can sometimes converge to an unphysical symmetry-breaking so-
lution; this can usually be avoided by symmetrising the coherent
potentials using the full space group of the crystal.

Fig. 8 illustrates one recent application of Questaal’s imple-
mentation of the CPA. A number of new, potentially high-impact
technologies, Josephson MRAM (JMRAM) in particular, performs
write operations by rotating a patterned magnetic bit. These
operations consume a significant portion of a system’s power.
One way to reduce the power consumed by write operations
is to substitute materials with smaller saturation magnetisation
Ms. The minimum useable Ms is limited by the need to maintain
large enough energy barrier to prevent data loss due to thermal
fluctuations. Low Ms can greatly reduce power particularly for
JMRAM [48], which operates at around 4k. One way to reduce Ms

in permalloy (Ni80Fe20 alloys, the most commonly used JMRAM
material), is to admix Cr into it, as Cr aligns antiferromagnetically
to Fe and Ni. Fig. 8 shows some results adapted from a recent joint
experimental and theoretical study of Py1−xCrx, [46]. The CPA
calculations of Ms track measured values fairly well. Also shown
is the CPA energy band structure for the majority spin. Alloy
scattering causes bands to broaden out, and scattering lifetimes
can be extracted. A detailed account can be found in Vishina’s PhD
thesis [47].

Fig. 8. Left: DFT magnetic moment in (Ni80Fe20)1−xCrx , compared to experiment

(films with 11 nm (crosses) and 2.5 nm (dots) thickness) at 10k. Right:

Majority-spin CPA spectral function at x = 20%.

Source: Adapted from Ref. [46] and Vishina’s PhD thesis [47].

Fig. 9. Self-consistent magnetic spin configurations of the fcc Fe-Ni alloy at the

four volumes 78.8, 73.7, 71.9, and 68.6 a.u. Red and blue arrows show magnetic

moments on Fe and Ni atoms, respectively.

Source: Taken from Ref. [50].

2.19. Noncollinear magnetism

The ASA codes lm, lmgf and lmpg are fully noncollinear
in a rigid-spin framework, meaning that the spin quantisation
axis is fixed within a sphere, but each sphere can have its own
axis. The formulation is a straightforward generalisation of the
nonmagnetic case. Potential and Hamiltonian-like objects become
2 × 2 matrices in spin space. The structure matrix S is diagonal
matrix in this space and independent of spin, while potential
functions P and potential parameters of Section 2.8.1, become
2 × 2 matrices that are diagonal in � but off-diagonal in spin.
(Alternatively, a local spin quantisation axis can be defined which
makes P diagonal in spin; then S is no longer diagonal.) How
Questaal constructs the Hamiltonian in the general noncollinear
case, and also for spin spirals, is discussed in Ref. [49].

These codes have implemented spin dynamics [11], integrat-
ing the Landau–Lifshitz equation using a solver from A. Bulgac
and D. Kusnezov [51], the spin analogue of molecular dynamics
and molecular statics. The formulation is described in detail in
Ref. [49]. Codes also implement spin statics. Torques needed
for both are obtained in DFT from the off-diagonal parts of the
spin-density matrix. A classic application is the study of INVAR.
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Fe-Ni alloys with a Ni concentration around 35 atomic % (INVAR)

exhibit anomalously low, almost zero, thermal expansion over a

considerable temperature range. In Ref. [50] it was shown that

at 35% composition, Fe-Ni alloys are on the cusp of a collinear–

noncollinear transition, and this adds a negative contribution to

the Grüneisen parameter. Fig. 9 is reproduced from that paper.

3. Full potential implementation

Questaal’s primary code lmf is an augmented-wave imple-

mentation of DFT without shape approximations. It also handles

the one-body part of the quasiparticle self-consistent GW ap-

proximation, by adding the (quasiparticlised) GW self-energy to

the DFT part. Closely related codes are lmfgwd, a driver supply-

ing input for the GW, lmfdmft, a driver supplying input for a

DMFT solver, and lmfgws, a post-processing tool that generates

quantities using the one-body part from lmf and the dynamical

self-energy from GW or DMFT. This code uses different definitions

for classical functions (see Appendix B), and we shift to those

definitions in what follows.

As for the DFT part, Questaal’s unique features are:

• it uses a three-component augmentation, following most

of the original method of Ref. [31]. The augmentation is

reviewed in Section 3.6. Ref. [52] offers a slightly different

presentation and shows how it is connected with the PAW

method [4];

• it has a more general basis set. Ordinary Hankel functions

solve Schrödinger’s equation for a MT potential, but real

potentials vary smoothly into the interstitial (Fig. 10). The

envelope function of a minimal basis set must adapt to this

potential. The traditional Questaal basis uses smooth Hankel

functions [53], which may be thought of as a convolution of

a Gaussian function and a traditional Hankel function; they

are developed in Section 3.1. This traditional basis works

very well for most systems; however when the system

is very open, it is slightly incomplete (Section 3.13). One

way to surmount the incompleteness is to combine smooth

Hankel functions with plane waves; this is the ‘‘Plane-wave

Muffin Tin’’ (PMT) basis [54] (see also Ref. [52]). While it

would seem appealing, PMT suffer from two serious draw-

backs: first, it tends to become over-complete even with a

relatively small number of plane waves, and second, it is not

compact (minimal, short ranged and as complete as possible

for the relevant energy window); and

• Questaal’s most recent development is the ‘‘Jigsaw Puzzle

Orbital’’ (JPO) basis, which uses information from the aug-

mentation to construct an optimal shape for the envelope

functions. To the best of our knowledge, JPO’s are the clos-

est practical realisation of compactness. This is particularly

important in many-body treatments where the efficacy of a

theory hinges critically on compactness. This new basis will

be presented more fully elsewhere. In Section 3.12 we show

how a transformation to a tight-binding representation can

be carried out in a full-potential framework. In the present

version the basis set is merely a unitary transformation of

the original one.

3.1. Smooth Hankel functions

In his PhD dissertation Michael Methfessel introduced a class

of functions HkL(E, rs, r). As limiting cases they encompass both

ordinary Hankel functions and Gaussian functions (see Eqs. (122)

and (124) below). They are explained in detail in Ref. [53]; here

we present enough information for development of the Questaal

Fig. 10. Radial part of smooth Hankel functions HL for s, p, d orbitals (solid

lines) and corresponding ordinary Hankel functions HL (dashed lines). Smoothing

radius and energy were chosen to be rs = +1 and E = −1, respectively. For

r � rs , HL → HL , while for r � rs , HL ∝ r� and HL ∝ r−�−1. The HL satisfy

the Helmholtz wave equation (Schrödinger equation for constant potential),

while the HL satisfy a Schrödinger equation corresponding to a potential V eff =
−4πGL/HL , as shown in the inset.

basis set. They are all connected to the smooth Hankel function

for � = 0. Its Fourier transform is

ĥ0(E, rs; q) = − 4π

E − q2
er

2
s (E−q2)/4 (109)

which is a product of Fourier transforms of ordinary Hankel

function for � = 0 with a Gaussian function of width 2/rs.

We use standard definitions of Fourier transforms

f̂ (q) =
∫

e−iq·rf (r) d3r

f (r) = 1

(2π )3

∫
e+iq·r̂f (q) d3q (110)

Thus in real space, h0(E, rs; r) is a convolution of a ordinary

Hankel function and a Gaussian function. It has an analytic rep-

resentation

h0(E, rs; r) = 1

2r
(u+ − u−) (111)

ḣ0(E, rs; r) = 1

4κ̄
(u+ + u−) (112)

u± = e∓κ̄r
[
1 − erf

(
rsκ̄

2
∓ r

rs

)]
(113)

E = −κ̄2 if E < 0 (114)

For small r , h0 behaves as a Gaussian and it evolves smoothly into

an ordinary Hankel when r � rs. ḣ0 is the energy derivative of

h0.

Questaal’s envelope functions are generalised Hankel func-

tions HL(E, rs; r). Their Fourier representation has a closed form

ĤL(E, rs; q) = YL(−iq)
−4π

E − q2
er

2
s (E−q2)/4

= YL(−iq)̂h0(E, rs; q) (115)

YL(r) is a spherical harmonic polynomial (Appendix A). Following

the usual rules of Fourier transforms this function has a real-space

representation

HL(E, rs; r) = YL(−∇)h0(E, rs; r) (116)

YL(r), r = (x, y, z) is a polynomial in (x, y, z), so is meaningful to

talk about YL(−∇). The extended family HkL(r) is defined through

powers of the Laplacian operator:

ĤkL(E, rs; q) = (−iq)2k ĤL(E, rs; q)
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HkL(E, rs; r) = ∇2k
HL(E, rs; r) (117)

A recursion relation for HL(E, rs; r) for � > 0 can be derived
from properties of Fourier transforms in spherical coordinates.
Any function whose Fourier transform factors as

F̂ (q) = f̂ (q)YL(q̂) (118)

has a real-space form

F (r) = f (r)YL(r̂) (119)

where f and f̂ are related by [53]

f (r) = 4π i�

(2π )3

∫ ∞

0

qf̂ (q) j�(qr) qr dq

f̂ (q) = 4π (−i)�
∫ ∞

0

rf (r) j�(qr) qr dr

and j� is the spherical Bessel function. We can therefore express
HL in a Slater–Koster form

HL(r) = h�(r) YL(r̂) ≡ χ�(r) YL(r) (120)

χ�(r) = (1/r�) h�(r) (121)

For envelope functions used in basis sets, e.g. HL(E, rs; r),
the radial portion of the Fourier transform does not depend on
�; therefore corresponding real-space part depends on � only
through the j�. This is a very useful fact. It is possible to derive
a recurrence relation to obtain χ� for � > 1; this provides an
efficient scheme for calculating them. The recurrence is derived
in Ref. [53] (see Eq. 6.21):

χ�+1 = 2�+ 1

r2
χ� − E

r2
χ�−1 − 4π

r2(πr2s )
3/2

(
2

r2s

)�−1

er
2
s E/4−(r/rs)

2

χ0 and χ−1 are needed to start the recursion. χ0 is written in
Eq. (111) and χ−1 can be obtained by combining Eqs. (112), (136)
and (121).

By taking limiting cases we can see the connection with fa-
miliar functions, and also the significance of parameters E and
rs.

(i) k = rs = 0: Ĥ0(E, 0; q) = −4π/(E − q2)Y00(q). This is
the Fourier transform of H0(E, 0; r) = Y00(r) exp(−κ̄r)/r ,
and is proportional to the � = 0 spherical Hankel function

of the first kind, h
(1)

� (z). For general L the relation defines
Questaal’s standard definition of ordinary Hankel functions

HL(E, 0; r) = H0L(E, 0; r)
= −i�κ̄�+1h

(1)

� (iκ̄r)YL(r̂) (122)

(ii) k = 1 and E = 0: Ĥ10(0, rs; q) = −4πe−r2s q
2/4. This is the

Fourier transform of a Gaussian function of width rs. For
general L we can define the family as

GL(E, rs; r) = YL(−∇)g(E, rs; r) (123)

g(E, rs; r) = (
πr2s

)−3/2
eEr

2
s /4e−r2/r2s (124)

Evidently ĤL(q) is proportional to the product of the Fourier
transforms of a conventional spherical Hankel function of the
first kind, and a Gaussian. By the convolution theorem, HL(r) is
a convolution of a Hankel function and a Gaussian. For r � rs,
HL(r) behaves as a Hankel function and asymptotically tends to
HL(r) → r−�−1 exp(−√−Er)YL(r̂). For r � rs it has structure of a
Gaussian; it is therefore analytic and regular at the origin, varying
as r�YL(r̂). Thus, the r−�−1 singularity of the Hankel function
is smoothed out, with rs determining the radius for transition
from Gaussian-like to Hankel-like behaviour. Thus, the smoothing
radius rs determines the smoothness of HL, and also the width of
GL.

By analogy with Eq. (117) we can extend the GL family with
the Laplacian operator:

GkL(E, rs; r) = ∇2k GL(E, rs; r) (125)

= YL(−∇)∇2kg(E, rs; r) (126)

= YL(−∇)

(
1

r

∂2

∂r2
r·
)k

g(E, rs; r) (127)

ĜkL(E, rs; q) = YL(−iq)(−q2)k er
2
s (E−q2)/4 (128)

Eq. (127) shows that GkL has the structure (polynomial of order k

in r2) × GL. Specifically [53]

GkL(E, r) = 2k+�(2k + 2�+ 1)!!
r2k+�s (2�+ 1)!! pk�(rs; r)GL(E, r)

where

pk�(rs; r) = (−1)k(2�+ 1)!!2kk!
r�s (2k + 2�+ 1)!! L

(�+1/2)

k (r2/r2s ) (129)

and

GL = (
πr2s

)−3/2
eEr

2
s /4

(
2/r2s

)�
e−r2/r2s (130)

L
(�+1/2)

k (u) are generalised Laguerre polynomials [53], which have
the following orthogonality relation∫

du L
(�+1/2)

k (u)L
(�+1/2)

k′ (u) e−uu(�+1/2) = Γ (k + �+ 3/2)δkk′

and as a consequence the GkL are orthogonal in the following
sense:∫

GkLGk′L′ e
a2r2 d3r = 23k+�k!(2k + 2�+ 1)!!

4π
(
πr2s

)3/2
r4k+2�
s

δkk′δ��′

This can be also written as∫
GkLPk′L′ d

3r = 22kk!(2�+ 1)!!
4πr2k−�s

δkk′δ��′ (131)

where

PkL(rs; r) = pk�(rs; r)YL(r) (132)

We will need this relation for one-centre expansion of the HL

around remote sites (Section 3.6) since the simple expansion
theorem Eq. (1) does not apply to them.

Comparing the last form Eq. (128) to Eq. (117) and the defini-
tion of HkL Eq. (117), we obtain the useful relations

Hk+1,L(E, rs; r) + EHkL(E, rs; r) = (∇2 + E
)
HkL(E, rs; r)

= −4πGkL(E, rs; r) (133)

This shows that HkL is the solution to the Helmholtz operator
−∇2 +E in response to a source term smeared out in the form of
a Gaussian. A conventional Hankel function is the potential from
a point multipole at the origin (see Eq. 6.14 in Ref. [53]): smearing
out the singularity makes HL regular at the origin, varying as
r� for small r instead of r−�−1. HkL is also the solution to the
Schrödinger equation for a potential that has an approximately
Gaussian dependence on r (Ref. [53], Eq. 6.30).

3.2. Gradients of smooth Hankel functions

Gradients of the HL are needed in several contexts, e.g. for
forces and for matrix elements of the momentum operator, which
enters into the dielectric function and velocity operator. Also, the
energy derivative is needed in several contexts, e.g. for integra-
tion of some matrix elements (Appendix D).

The form of Eq. (115) suggests that gradient and position

operators acting on Ĥ return functions of the same family. This
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Table 2
Index m′

i corresponding to coefficient C
(±)

i=1..2;�,m�;p in Eq. (138). Index K in C
(±)

KL;p
corresponding to m′

i is K = (k ± 1)2 + (k ± 1) + 1 + m′
i .

i p = x p = y p = z

1 m�−1 −m�−1 m�

2 m�+1 −m�+1 –

turns out to be the case, and it makes possible matrix elements
of these operators with two such functions. Consider the energy
derivative first. ĤL(E, rs; q) is readily differentiated̂̇HL(E, rs; q) = ĤL(E, rs; q)

(
1

E − q2
− r2s /4

)
(134)

In real space, the energy derivative is most easily derived from
an integral representation of h� (Eq. A5 in Ref. [53])

h�(r) = 2�+1r�√
π

∫ 1/rs

0

ξ 2�eE/(4ξ
2)e−r2ξ2dξ (135)

It is readily seen that

rh�(r) = 2ḣ�+1(r)( d

dr
− �

r

)
h�(r) = h�+1(r) (136)

Noting that the three components of the real harmonic polyno-
mials Y1m(r), Eq. (A.6) for � = 1, are (y, z, x), the gradient and
position operators can be obtained from −√

4π/3 Y1p(−∇) and√
4π/3 Y1p(r) respectively, with the appropriate permutation of

p. Using Eq. (116),

Y1p(∇)HL = −Y1p(−∇)YL(−∇)h0(E, rs; r) (137)

The operator product YL(−∇)YK (−∇) can be expanded in the
same manner as the product of polynomials YL(r)YK (r)
(Appendix A).

More generally, for a function of the form Eq. (119), it is
possible to show that

∇pf�(r)YL = f
(+)

�

∑
i=1,2

C
(+)

i;�,m�;pY�+1m′
i
+ f

(−)

�

∑
i=1,2

C
(−)

i;�,m�;pY�−1m′
i
(138)

where

f
(+)

� = [df�/dr − �

r
f�]

f
(−)

� = [df�/dr + �+ 1

r
f�] (139)

C
(±)

i;�,m�;p is a sparse representation of a linear transformation that

maps Y�,m(r) to a linear combination of two Y�+1,m′ (r) and two
Y�−1,m′ (r). It is more compact to write each sum in a standard

matrix form, as
∑

K C
(±)

KL;pYK . C
(±)

KL;p is a family of three rectangular

matrices (p = 1, 2, 3), which for a particular L, has two nonzero
elements corresponding to mi′ (Table 2). An alternative definition

of C
(±)

KL;p is given in Appendix A.

The position operator rp applied to f�(r)YK results in the same
form Eq. (138) but with radial functions f (±) → rf (r). Note
the close similarity with the gradient operator and in particular

rf� = r2(f
(+)

� − f
(−)

� )/(2�+ 1). This operator appears for optical
matrix elements of Hamiltonians with nonlocal potentials. It is
more convenient to evaluate it in reciprocal space (Appendix D).

Functions of type Eq. (119) have the Slater–Koster form with

another special property, namely that the Fourier transform f̂ (q),
Eq. (118), is independent of �, from which it follows that f�(r)
satisfies the following differential equations (Ref. [53], Eq. 4.7 and
4.20)

−f�+1(r) = ∂ f�(r)

∂r
− �

r
f�(r)

Table 3
Mapping gradient and position operators of smoothed Hankel functions to

functions in the same family.

F (r) f (r) f (+) f (−) rf (r)

YL r� 0 (2�+1)r�−1 r�+1

r−2�−1YL r−�−1 (−2�−1)r−�−2 0 r−�
HkL hkl −hk,�+1 −hk+1,�−1 2ḣ�+1

HL(E=0) Same as YL/r
2�+1

JL(E=0) Same as YL

−∇2f�−1(r) = ∂ f�(r)

∂r
+ (�+ 1)

r
f�(r)

Thus f (+)(r) = −f�+1(r) and f (−)(r) = −∇2f�−1(r).
The HkL(r) family is of this type, and moreover, ∇2HkL(r)

merely maps HkL to another member of the family (Eq. (117)).
Another useful instance is the real harmonic polynomials YL

(Eq. (A.6)). Equations in this section, e.g. Eq. (136), yield explicit

forms for f (+) and f (−) for a number of functions of interest here,
summarised in Table 3.

In general, e.g. for partial waves φ� inside augmentation
spheres, f (+) and f (−) must be determined by numerical differen-

tiation. For the pair of functions {r�, r−�−1}, f (+)

� (f
(−)

� ) for the first
(second) function vanishes. Any function can thus be matched at
some r to this pair (Eq. (12)), which determines the projection of
its gradient onto Y�∓1m′ .

3.3. Two-centre integrals of smoothed Hankels

One extremely useful property of the HkL is that the product
of two of them, centred at different sites R1 and R2, can be inte-
grated in closed form. The result is a sum of other HkL, evaluated
at the connecting vector R1 − R2. This follows from Parseval’s
(Plancharel’s) identity∫

H
∗
1(r − R1)H2(r − R2) d

3r =

(2π )−3

∫
Ĥ

∗
1(q)Ĥ2(q)eiq·(R1−R2) d3q (140)

and the fact that Ĥ∗
k1L1

(q)Ĥk2L2 (q) can be expressed as a linear

combination of other ĤkL(q), or their energy derivatives. Deriva-
tions of these and related integrals are taken up in Appendix D.

3.4. Smoothed Hankels of positive energy

The smooth Hankel functions defined in (Ref. [53]) for nega-
tive energy also apply for positive energy. We demonstrate that
here, and show that the difference between the conventional and
smooth Hankel functions are real functions.

Ref. [53] defines κ̄ in contradistinction to usual convention for
κ

κ̄2 = −ε with κ̄ > 0

and restricts ε < 0. According to usual conventions κ is defined
as

κ = √
ε, Im(κ) ≥ 0

We can define for any energy κ̄ = −iκ and therefore{
κ̄ real and positive, ε < 0

κ real and positive, ε > 0

Then

u±(ε, rs; r) = e∓κ̄rerfc (κ̄rs/2 ∓ r/rs)

= e±iκrerfc (−iκrs/2 ∓ r/rs)



20 D. Pashov, S. Acharya, W.R.L. Lambrecht et al. / Computer Physics Communications 249 (2020) 107065

The smoothed Hankels for � = 0,−1 are real

hs
0(r) = (u+ − u−)/2r

hs
−1(r) = (u+ + u−)/2κ̄

as defined in Ref. [53].

To extend the definition to any energy we define U± as:

U± = e±iκr erfc (r/rs ± iκrs/2)

The following relations are useful:

erfc(−x∗) = 2 − erfc∗(x)
erfc(x∗) = erfc∗(x)

Then for ε < 0, iκ is real and

U+ = 2eiκr − u+
U− = u−

are also real. The difference in unsmoothed and smoothed Han-

kels is for � = 0,−1

h0 − hs
0 = [eiκr − u+/2 + u−/2]/r

= [U+/2 + U−/2]/r
h−1 − hs

−1 = [eiκr − u+/2 − u−/2]/κ̄
= [U+/2 − U−/2]/(−iκ)

For ε > 0, κ is real and U+ = U∗−. Then the difference in

unsmoothed and smoothed Hankels for � = 0,−1:

h0 − hs
0 = [U+/2 + U−/2]/r = Re(U+)/r

h−1 − hs
−1 = [U+/2 − U−/2]/(−iκ) = −Im(U+)/κ

are real, although h0 and h−1 are complex.

3.5. One-centre expansion

Ordinary Hankel functions have a one-centre expansion in

terms of Bessel functions, Eq. (1): the shape of the radial function

does not change as the vector R connecting source and field point

changes, only the expansion coefficients S. This is also true for

a plane wave. The H are more complicated: the r-dependence

depend on R, tending to Bessel functions only when |R| � rs. This

complicates the one-centre expansion of H. They can, however,

be expanded in the polynomials PkL (Eq. (132)) using the bi-

orthogonality relation Eq. (131). For any smooth function F, its

one-centre expansion can be written

F (r) =
∑
kL

CkLpk�(r)YL(r) (141)

where

CkL = 4πr2k+�s 22k

22kk!(2�+ 1)!
∫

d3r GkL(rs; r)F (r)
Expressions for integrals GkL with the H are written in Section 3.3.

Eq. (141) expands HL, which generalises Eq. (1) which expands

HL (plane waves can similarly be expanded in Bessel functions).

Eq. (141) is more cumbersome, and it introduces another cutoff

kmax. These are drawbacks of this method, but it also brings with

it a significant advantage: envelope functions of very different

types can be constructed. This adds a considerable amount of

flexibility to the method, as smooth Hankels HL and plane waves

can be combined in a uniform manner; this is the PMT basis [54].

Perhaps more important, basis functions can be tailored to the

potential. This enables them to be very accurate whilst staying

minimal. This is the JPO basis (Section 3.12).

If rs becomes small GkL becomes sharply peaked and the poly-
nomial expansion becomes a Taylor expansion about the origin.
But by allowing rs to be a significant fraction of the MT radius sR,
the error gets distributed over the entire sphere and kmax can be
set relatively low. Note that rs used for this expansion need not be
(and in practice is not) the same as rs used to make the envelope
functions.

3.6. Three-component augmentation

As noted in the introduction, the pseudopotential method
shares many features in common with augmentation. Blöchl’s
PAW method [4] makes the connection explicit. Questaal starts

from an envelope function F
(0)

RLi (r) that extends everywhere in
space, augmented as follows:

FRLi(r) = F
(0)

RLi (r) + F
(1)

RLi (r) − F
(2)

RLi (r) (142)

Index RLi labels the envelope function: R and L mark the channel
where functions are centred, and the angular momentum, while
i marks the kind of envelope function at R. General envelope
functions (e.g. plane waves) need not be atom-centred, for such
functions we adopt the labelling convention R = L = 0. Unlike
the ASA, there is typically more than radial envelope function per
R and L. (We will sometimes label F with a single Roman index,
e.g. using i to implicitly refer to the entire label RLi.), F (1) is some
linear combination of partial waves matching value and slope of
F (0)(r), and F (2)(r) is the one-centre expansion of F (0)(r). F (0), and
F (2) are truncated at some �max.

Conventional augmented methods construct matrix elements
of a local or semilocal operator X straightforwardly as

〈F (0)

i + F
(1)

i − F
(2)

i |X |F (0)

j + F
(1)

j − F
(2)

j 〉
Evaluating the cross terms is unwieldy and for that reason con-
ventional augmentation methods require Fi be expanded to very
high L. However, it has been observed independently by several
authors, the first being Soler and Williams [55] that the integrand
can be approximated in the following three-component form:

F
(0)

i XF
(0)

j + F
(1)

i XF
(1)

j − F
(2)

i XF
(2)

j (143)

Note the minus sign in the last term. The missing terms may be
written as

(F
(0)

i − F
(2)

i )X(F
(1)

j − F
(2)

j ) + (F
(1)

i − F
(2)

i )X(F
(0)

j − F
(2)

j )

Write the L projection of F as PLF . By construction PLF
(0) = PLF

(2)

so if the augmentation is carried out to L → ∞, F (0) and F (2)

are identical and the missing terms vanish identically. This form
makes it clear that not only does Eq. (143) converge to the exact
result in the limit �max → ∞, but also that the error converges
much more rapidly in �max than does conventional augmentation.

This occurs for two reasons that work synergistically. The
operator X is in practice nearly spherical, coupling parts of F with
unequal L only weakly. Consider the one-centre expansion of a
particular L of one of these components, and consider for simplic-
ity the unit overlap operator. Near the augmentation boundary all
components have the same value and slope by construction, and
the (�-projected) F (0) − F (2) or F (1) − F (2) vanishes to second order
in r − s. Second, the (�-projected) F varies as r� for large � for all
three components of F , because the angular momentum becomes
the dominant contribution to the differential operator. Thus for
large � the product of two projected functions varies as r2� for
all components, which is heavily weighted to the outer parts of
the sphere, in the region where the projections of differences
F (0) − F (2) and F (1) − F (2) are small. For such L projections of

F
(0)

i XF
(0)

j are then a good approximation to the (exact) F
(1)

i XF
(1)

j .
By truncating both local components, only the (0) component
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Fig. 11. Convergence of the total energy with respect to augmentation �-cutoff

and polynomial degree, Eq. (144).

remains, which as we have seen accurately represents the (exact)
basis function, especially near sR where it is dominant. In other
words, the projections of the envelope functions contain projec-
tions from �max + 1 to ∞, and do so with high accuracy starting
at a relatively low �max + 1; indeed convergence is very rapid as
shown in Fig. 11 (see also Fig. 3 of Ref. [31]). This explains why
the pseudopotential and PAW approximations can be truncated at
much lower � than the conventional augmented wave methods.
Indeed, the present approach has much in common with PAW,
but does not make approximations or involve pseudo-partial
waves or projector functions.

3.7. Secular matrix

To construct the secular matrix, we need matrix elements of
Hamiltonian and overlap:

Hij =
∫
χ∗
i (r)[−∇2 + V (r)]χj(r) d3r

Sij =
∫
χ∗
i (r)χj(r) d3r

At this stage we need not specify what χi is, except to note that

it has an envelope part χ
(0)

i that extends everywhere in space,
augmented in spheres taking the form Eq. (142). Specifically

χi(r) = χ0
i (r) +

∑
kL

C
(i)

kL

{
P̃kL(r) − PkL(r)

}
(144)

where C
(i)

kL are the coefficients (Eq. (141)) that expand the smooth
envelope in χ as polynomials PkL(r) (Eq. (132)) and

P̃kL(r) =
[
Aklφ�(r) + Bklφ̇�(r)

]
YL(r̂)

≡ p̃kl(r)YL(r̂) (145)

φ�(r) and φ̇�(r) are the linearised partial waves, Section 2.4.
Coefficients Akl and Bkl are chosen so that p̃kl and pkl have the
same value and slope at sR.

3.7.1. Overlap and kinetic energy, and output density
We use Eq. (143) to construct matrix elements of augmented

basis functions. Matrix elements of overlap and kinetic energy
may be written∫
χ∗
i [−∇2]χj d

3r =
∫
χ

(0)

i

∗[−∇2]χ (0)

j d3r

+
∑
kk′L

C
(i)∗
kL τkk′ lC

(j)

k′L (146)∫
χ∗
i χj d

3r =
∫
χ

(0)

i

∗
χ

(0)

j d3r +
∑
kk′L

C
(i)∗
kL σkk′�C

(j)

k′L (147)

where

τkk′� =
∫
S

{
P̃kL[−∇2]P̃k′L − PkL[−∇2]Pk′L

}
d3r (148)

σkk′� =
∫
sR

{
P̃kLP̃k′L − PkLPk′L

}
d3r (149)

The local kinetic energy matrix τkk′ l is symmetric, even while
the individual terms in Eq. (148) are not, because the integral is
confined to a sphere. However the surface terms from the true

and smooth parts cancel because P̃kL and PkL match in value and
slope there.

Note also that if φ� and φ̇� are kept frozen, e.g. computed from
a free atom as we might do to mimic a PAW or a pseudopotential
method, τkk′� and σkk′� are independent of environment. Though
we will not pursue it here, it suggests a path to constructing a
unique and transferable pseudopotential.

Matrix elements of the potential are more complicated and
will be discussed in the next section. For now we take them
as given, along with the overlap and kinetic energy. We can
diagonalise the secular matrix and obtain eigenfunctions and the
output density as a bi-linear combination of basis functions

ψn(r) =
∑

i

Zinχi(r)

nout(r) =
∑
n

wn |ψn(r)|2

=
∑
ij

{∑
n

wnZ
∗
inZjn

}
χ∗
i (r)χj(r) (150)

where the sum runs over the occupied eigenstates with wn the
occupation probability. The bi-linear product may be written in a
three-component form

χi
∗χj = χ0

i

∗
χ0
j +

∑
Rkk′LL′

C
(i)∗
RkL

{
P̃RkLP̃Rk′L′ − PRkLPRk′L′

}
C
(j)

Rk′L′ (151)

The first term yields a smooth n0 which extends everywhere, and
then two local terms, true and one-centre expansion of n0 to some
L cutoff

nval(r) = nval
0 (r) +

∑
RL

{
nval
1RL(r) − nval

2RL(r)
}

(152)

As pointed out before, we expect the higher L components
be carried accurately by nval

0 even for low �max, which provides
a simple justification for the pseudopotential and PAW approxi-
mations.

3.7.2. Core
The core levels and core density can be computed either

scalar-relativistically or fully relativistically from the Dirac equa-
tion (Section 2.17). The core density is constructed in one of two
ways: Self-consistent core: a core partial wave φc

� is integrated in
the true potential, subject to the boundary condition φc(sR) =
φ′
c(sR) = 0. It was once thought that the advantage of determining

the core in the true potential outweighed the inaccuracy originat-
ing from the artificial boundary condition at sR. Frozen overlapping
core approximation: φc

� is computed in the free atom and kept
frozen—experience shows this to be a better approximation. We
develop this case here.

The core density has three components, which add to the
valence density:

ñ0(r) = ñval
0 (r) +

∑
R

gcn
R (r)

n1R(r) = nval
1R (r) + ncore+nuc

1R (r)

ñ2R(r) = ñval
2R (r) + gcn

R (r) (153)
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where

gcn
R (r) = CG GL=0(rg ; r) + CH

HL=0(Ec; rh; r) (154)

The second term is a smooth Hankel function with CH fixed to fit

the spill-out of the core density into the interstitial. It is important

that this be taken into account when constructing the total energy

and potential. The alternative, to renormalise the core and confine

it to the sphere, is a much cruder approximation. This makes

it possible for shallow cores to be treated accurately, without

needing to include them in the secular matrix (unfortunately at

the loss of strict orthogonality between these and the valence

states).

The pseudocores gcn
R in ñ0 and ñ2R nearly cancel, but they need

to be included to construct V eff and the total energy described

below. Also the two kinds of gcn
R do not exactly cancel because it

extends into the interstitial in the former case, but is truncated

in the latter.

Smoothing radius rg must be small, so the core density is

almost completely confined to the sphere. In practice we use the

same Gaussians as for gval
R entering into the valence multipole

moments (see Eq. (155) below). In that way gcn
R and gval

R can

be merged together. The Hankel smoothing radius rh is chosen

independently, but it is also typically small, of order sR/2. The

result should depend minimally on the choice of either.

3.7.3. Local orbitals

Inside augmentation spheres, the usual Hilbert space consists

of partial waves {φ�, φ̇�}. Questaal has the ability to extend this

space by one local orbital (LO), to {φ�(εν, r), φ̇�(εν, r), φz
�(εz, r)}.

φz
� consists of a partial wave evaluated at some energy εz far

above or far below the linearisation energy εν for φ�. Addition

of a LO greatly extends the energy window over which the band

structure is valid; see for example Fig. 1, of Ref. [56], where the

band structure for Si was compared to LAPW, and to a full (non-

linearised) APW. Properties of Questaal’s LO are explained in that

reference in a GW context; here we outline the main features.

LO have one each of the following attributes:

• either core-like or high in energy, with principal quantum

number ∓ 1 that of valence φ�, respectively;

• either a conventional LO, which consists φz with some φ�
and φ̇� admixed to make the value and slope vanish at

sR [57], or an extended LO, which consists of φz with a

smooth Hankel function tail that extends continuously and

differentiably into the interstitial. The extended LO can be

applied only to the core-like case; and

• either a scalar relativistic LO, or a Dirac LO with μ = 1/2.

This is not usually important, but it can have consequences

for heavy elements; see how it affects LDA and GW gaps

in Section 3.9. This method was first introduced by Kunes̆

et al. [58].

High-lying states are not usually important for DFT, because

states above EF do not contribute to the potential. Core states of

order EF−2Ry and deeper can usually be treated quite adequately

as core levels integrated independently of the secular matrix

(Section 3.7.2). There are mild exceptions: for high resolution

such as needed for the Delta Codes project (Section 3.13), both

deep and high-lying LO were used (in the latter case, particularly

adding 4d LO to the 3d transition metals).

GW is more sensitive to states far from EF than DFT. Including

low-lying cores at EF −2Ry or even somewhat deeper with LO can

modify valence QP levels by ∼0.1 eV. High-lying states are also

more important in the GW context. ZnO is an extreme case where

they were found to shift the gap by several tenths of an eV [59],

and many high-lying LOs are required to reach convergence [60].

3.7.4. Effective potential
We seek a three-component form of the total energy func-

tional. Its variational derivative with respect to the density yields
an effective potential V eff, which should give the first-order vari-
ation of the electrostatic and exchange–correlation energy with
respect to the trial density. The density has three components,

the first interacts with a smooth potential Ṽ0, the second with the
local true potential V1R, and the third with the local projection of
the potential V2R. Correspondingly, the accumulated sums over
the first, second, and third terms produce nout

0 , nout
1R , and nout

2R ,
respectively.

Construction of V eff is complicated by the fact that the electro-
static potential at some point depends on the density everywhere.
Therefore it is not possible to construct the potential in a sphere
solely from the density inside this sphere, or the smooth potential
from nval

0 alone. We can solve this difficulty by defining a pseu-

dodensity ˜nval
0 which has the same multipole moments inside

augmentation sphere R as the true density nval
1R. Suppose the

local sphere density nval
1R −nval

2R has multipole moments qM , where
M = angular momentum. Then define

ñval
0 (r) = nval

0 (r) +
∑
R

gval
R (r)

gval
R (r) =

∑
M

qRMGRM (r) (155)

where GRM is a Gaussian of angular momentum M centred at R,
with unit moment. GM must be sufficiently localised inside sR that
the potential from the second term at sR is negligibly different
from the potential of a unit point multipole at R (typically sR/4).
Results should not depend on rg , but in practice if it is made too
small, numerical integration of the G become inaccurate, while if
too large charge is not confined to sR. Provided it is confined, the
compensating Gaussians ensure that the electrostatic potential
V es[ñval

0 ] is exact in the interstitial.

The local representation nval
2R of the smoothed density must be

equally compensated

ñval
2R = nval

2R + gval
R (156)

The qRM can be decomposed into a sum of partial moments

qRM =
∑
kk′LL′

QRkk′LL′M

QRkk′LL′M =
∫
sR

{
P̃kLP̃k′L′ − PkLPk′L′

}
rmYM (r̂) d3r (157)

By decomposing qRM this way, we can make any possible varia-
tion in the local density in the Hilbert space spanned by Eq. (151),
and obtain the potential from the electrostatic corresponding to
the variation.

Matrix elements of the local potential are determined from
variation of the electrostatic energy

π1Rkk′LL′ =
∫
sR

P̃RkLV1RP̃Rk′L′ d
3r

π2Rkk′LL′ =
∫
sR

PRkLṼ2RPRk′L′ d
3r +

∑
RM

QRkk′LL′M

∫
sR

Ṽ2RGRM d3r (158)

The true potential V1R is the response to true partial density

P̃RkLP̃Rk′L′ , and Ṽ2R the response to the smooth partial density
PRkLPRk′L′ + ∑

QRkk′LL′MGRM . These two partial densities have the
same multipole moments by construction.

We solve the Poisson equation for each of the three compo-
nents

∇2Ṽ es
0 = −8π ñ0

∇2V es
1R = −8πn1R
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∇2Ṽ es
2R = −8π

{
n2R +

∑
M

qRMGRM

}
(159)

All density components must include core (or pseudocore) con-

tributions (Section 3.7.2). Poisson’s equation for Ṽ es
0 is most easily

solved by fast Fourier transforming ñ0 to reciprocal space, scaling
each Fourier component nG by −8π/G2 and transforming back.
In principle the electrostatic potential can be calculated this way
but in practice the compensation Gaussians in ñ0 can be fairly
sharply peaked. Some parts are separated out and evaluated
analytically to keep the plane wave cutoff low, as discussed in

the next section. Ṽ es
0 (r) is exact in the interstitial region and

extends smoothly through the spheres. V es
1R and Ṽ es

2R can be solved
up to an arbitrary homogeneous solution which is determined by
the boundary condition at sR. This adds a term proportional to

rmYM (r), which is determined by resolving Ṽ es
0 into a one-centre

expansion at sR.

Pseudopotentials Ṽ es
0 and Ṽ es

2R approximately cancel each other,
but not exactly. This is in part because the latter has a finite L

cutoff, and in part because Ṽ es
0 carries the tails of the core den-

sities spilling into the interstitial. These incomplete cancellations
are the key to rapid � convergence of this method, and also allow
relatively shallow cores not to be included in the secular matrix,
with minimal loss in accuracy.

Three component total energy in DFT

The total energy in DFT is comprised of the kinetic energy,
electrostatic energy, and exchange–correlation energy

Etot = 〈T 〉 + U + Exc (160)

Questaal implements two functionals for Etot. The traditional
Kohn–Sham functional is evaluated at the output density: U and
Exc are evaluated from nout generated by the secular matrix, and
〈T 〉HKS = ∑occ

i

〈
ψi|−∇2|ψi

〉 + Tcore. Tcore = ∑
εcorei − ∫

ncoreV eff is
the kinetic energy of the core. If the core is kept frozen, it can be
evaluated from the free atom.

Harris [61] and independently Foulkes and Haydock [62]
showed that the kinetic energy can be expressed in terms of nin:
U = U[nin] and Exc = Exc[nin] and

〈T 〉HF =
occ∑
i

εvali −
∫

nval
in V eff

in + Tcore (161)

Both EHKS and EHF are calculated, though usually the latter is
preferred because it converges more rapidly with deviations from
self-consistency. It is nevertheless useful to have both energies,
because they are calculated differently in Questaal. U and Exc are
computed from different densities, but more, 〈T 〉HKS and 〈T 〉HF are
calculated in different ways. It is not trivial that at (nominal) self-
consistency EHKS = EHF. The two always differ slightly; when they
differ more than a small amount, it is an indication that some
parameter (e.g. plane-wave cutoff) is set too low. Thus, EHKS −EHF
is one measure of the convergence of the basis representing the
charge density.

In Questaal’s three-component framework, nV eff is a sum of

three terms bilinear in the three components ñ0Ṽ
es
0 , n1RV

es
1R and

ñ2RṼ
es
2R. 〈T 〉, U and Exc each have independent contributions from

three components, for example the contribution to the electro-
static energy from the valence electrons is

Ees = 1

2

∫
ñval
0 (r)Ṽ es

0 (r)+
∑
R

∫
SR

{
nval
1R V

es
1R d

3r − ñval
2R Ṽ

es
2R

}
d3r (162)

The last term cancels most of the first inside the augmentation
spheres, except the first retains L components above �max to all

orders. This is because Ṽ2R should be a one-centre expansion

of Ṽ0 up to �max, and ñval
2R should be a one-centre expansion

of ñval
0 . Because V es[ñval

0 ] is exact in the interstitial, including at

sR, and it continued inside sR by adding by V es
1R d

3r − Ṽ es
2R, the

true potential is correct everywhere. Note that the derivative of

Ees wrt coefficients C
(i)

Rk′L′ in Eq. (151) yield the local potentials

Eq. (158), so that the effective one-body Hamiltonian corresponds
to the functional derivative of the energy.

The total electrostatic energy must include the core. Write it
analogously to Eq. (162) but add the (pseudo) core and nuclear
density to nval (Section 3.7.2)

U = Ũ0 +
∑
R

{UR − ŨR} (163)

The first term is the electrostatic energy of the smooth den-
sity, evaluated on a uniform mesh. It involves a valence and
pseudo-(core+nucleus) term

Ũ0 = Ũval
0 + Ũc+n

0

Ũval
0 = 1

2

∫
d3r ñval

0 (r) Ṽ es(r)

Ũc+n
0 =

∑
R

(CG
R − ZR)V

G
R0 + CH

R VH
R

where

VG
RL =

∫
d3r GRLṼ

es[ñ0]

VH
R =

∫
d3r HR0Ṽ

es[ñ0]

Besides being needed for Uc+n
0 , VG

RL is used in assembling Ũval
0 . Ũc+n

0

and Ũval
0 must be evaluated with some care to avoid numerically

integrating sharply peaked functions (core pseudodensity and the
multipole contribution to ñ0 (Eq. (155)). VG

RL and VH
R are evaluated

by splitting the potential into two terms Ṽ es[ñ0] = Ṽ es[n0] +
{Ṽ es[ñ0]−Ṽ es[n0]}. Integrals of the second term can be performed
analytically (the interested reader is referred to Section XI of
Ref. [31]), thus avoiding integrals of sharply peaked functions. All
of the other integrals are much smoother and are evaluated on
the grid of G vectors.

UR and ŨR are readily integrated in the sphere together with
the valence parts in Eq. (162).

The exchange–correlation potential is made analogously with
the electrostatic potential:

Exc =
∫

n0εxc[n0] d3r +
∑
R

∫
sR

{
n1Rεxc[n1R] − n2Rεxc[n2R]

}
d3r

(164)

It is also divided into valence + core contributions.
We reiterate that differences

∫
n1RV

es
1R d

3r − ñ2RṼ
es
2R and∫

n1Rεxc(n1R) − n2Rεxc(n2R) converge much more rapidly with
�-cutoff than either term separately, and as a consequence the
three-component augmentation is much more efficient than the
standard one.

3.7.5. Forces
Our original formulation [31] derived a simple expression for

the derivative of HHF when a nucleus changes from R to R + δR,
assuming that the partial waves φR� shift rigidly with δR. (lmf has
a ‘‘frozen φ’’ switch, which if imposed, guarantees φR� is rigid. In
practice we have found that the differences are small.)

The original expression yielded forces that converge only lin-
early with deviations Δn = nout − nin from self-consistency.
It is possible to achieve faster convergence in Δn, by adding a
correction δVΔn, where δV is determined from a change δnin in
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Fig. 12. Harris force FOx (mRy/au) on O neighbouring Co in Co-doped TiO2. ΔQ

is a measure of the RMS change nout − nin integrated over the unit cell. Solid

and dashed lines are Eq. (165) with and without the third term. Inset shows

deviation in FOx from the converged value. Yellow lines show ΔQ and (ΔQ)2 as

guides to the eye.

nin, but there is no unambiguous way to determine δnin. If the

static susceptibility (Section 6) were calculated, a good estimate

could be made. But χ (r, r′, 0) is a second derivative of HHF: it is far

more cumbersome to make than HHF itself, and approximation of

χ by models such as the Lindhard function worked less well than

hoped. A practicable, and simple alternate ansatz is to assume

that δnin is given by a change in the Mattheis density construction

(superposition of free-atomic densities), arising from δR. This has
worked very well in practice: it dramatically improves the con-

vergence of the forces with iterations to self-consistency. Here we

omit the derivation but refer to the original paper [31], and also

to Appendix B of Ref. [52] for an alternate derivation including the

correction term. The final expression for shift of nucleus R from

R → R + δR is

δEH =
∫

Ṽ0 δg
cn
R + δR

occ∑
i

εvali + δVin(nout − nin) (165)

Ṽ0 is the sum of the smooth electrostatic and exchange–

correlation potential. This term describes the force of the smooth

density on the Gaussian lumps which represent the core and

the nucleus at each site, and is the analogue of the Hellmann–

Feynman theorem.

The eigenvalue shifts account for a change in the atom-centred

basis set in the shift in R. This is the price for taking a tailored ba-

sis whose Hilbert space changes when R shifts. Here the smooth

mesh potential is fixed and augmentation matrices τ , σ , and

π (Eqs. (148), (149) and (158)) shift rigidly with the nucleus.

Gradients only include redistribution of plane waves owing to

the shifts in envelope functions, and in the expansion coefficients

C
(j)

Rk′L′ (Eq. (144)).
The last term is the correction noted above. In future, it will

probably be replaced by an efficient calculation of χ ; mean-

while the Mattheis-shift ansatz works rather well. Fig. 12 shows

the force FOx on an O neighbouring Co substituted for Ti in a

12-atom unit cell of TiO2, as lmf iterates to self-consistency. The

deviation ΔF from the self-consistent force is vastly smaller with

the correction term (compare solid and dashed lines), and FOx is

reasonable already for the Mattheis construction (first iteration).

The inset compares the two kinds of ΔF with iteration to self-

consistency to show that without and with the correction, ΔF

scales as ΔFuncorr
Ox ∼ΔQ and ΔF corr

Ox ∼(ΔQ)2, the latter being the

same rate of convergence as the energy itself.

3.8. LDA+U

The LDA+U method, introduced originally by Anisimov et al.
[63–65] for open shell d- or f -shell materials including on-site
Coulomb and exchange interactions by means of the Hubbard
model is implemented in both the lm and the lmf codes following
the rotationally invariant approach described in [66]. Rotational
invariance means that the occupations of the different dm orbitals
are specified by a density matrix nσ = nσ

mm′ independent of the
specific choice of Cartesian axes defining the spherical harmonics.
For brevity we refer to the orbitals on which U is applied as the
d orbitals although the code is written sufficiently general that
U terms can be applied to any nl of choice and even on multiple
sets of orbitals.

The on-site Coulomb interactions are added to the LSDA total
energy and a double-counting term is subtracted.

ELDA+U [ρσ (r),nσ ] = ELSDA[ρσ (r)] + EU [nσ ] − Edc[nσ ] (166)

Several schemes for the double counting have been proposed
[63,64,66–68] and are implemented in lmf but the prevailing
approach is the fully localised limit (FLL) in which the double-
counting term and U-terms cancel for the fully localised (atomic)
limit in which the density matrix becomes a diagonal matrix with
integer occupations. This means that in principle the total energy
is already well described in the LSDA in the atomic limit but
the orbital energies are not. The task of the LSDA+U approach
is to optimise the density matrix when the orbitals on which
U is applied are allowed to hybridise with the other orbitals
in the system. It hence describes strictly speaking the orbital
polarisation in the system. Note that the total energy is then
separately a functional of the spin-dependent electron density
and the local density matrix on the orbitals for which U terms are
added. The density matrix or orbital occupations also influence
the spin-charge densities and so the two contributions are not re-
ally independent. The U terms in LSDA+U are treated in the static
mean-field Hartree–Fock approximation in contrast to the DMFT
method where they are treated dynamically. The expressions for
the EU [nσ ] part of the total energy can be found in [66] and are
given in terms of density matrices nσ

mm′ and matrix elements of

the Coulomb interaction 〈m,m′′|Vee|m′,m′′′〉. They fully take into
account the rotational aspects of the Ylm of the d-states included.
The double counting term, on the other hand, is written in terms
of average Coulomb U and exchange J parameters and involves
only the trace of the density matrix nσ = Tr(nσ ). [66] U and J
are the screened Coulomb and exchange parameters, which can
for example, be estimated by a separate self-consistent supercell
calculation treating the atoms in which the d-orbital occupation
is changed as an impurity problem [69]. or by means of the linear
response approach [70]. Most often they are treated empirically
and U is adjusted to spectroscopic splittings, for example.

The bare Coulomb interaction matrix elements can be evalu-
ated exactly in terms of the Slater Fk(ll) integrals and combina-
tions of Gaunt coefficients as worked out for instance in Condon
and Shortley [71]. The Slater Fk(ll)-integrals,

Fk(ll) =
∫ ∫

r21dr1r
2
2dr2R�(r1)

2R�(r2)
2(rk</r

k+1
> ) (167)

where r<, r> are the smaller and larger or r1 and r2 could easily
be calculated directly in terms of the partial waves inside the
spheres. However, this would then not take into account the
screening of the Coulomb interaction by the other orbitals in the
system. Therefore it is customary to use the relation between the
average U and J to the Umm′ and Jmm′

U = 1

(2�+ 1)2

∑
mm′

Umm′ = F 0
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U − J = 1

2�(2�+ 1)

∑
mm′

(Umm′ − Jmm′ ) (168)

given by Anisimov et al. [64] and where Umm′ = 〈mm′|Vee|mm′〉,
Jmm′ = 〈mm′|Vee|m′m〉. Using the tables of Condon and Short-
ley [71] one finds for d electrons

14J = F 2(dd) + F 4(dd) (169)

and for f electrons

3J = 2

15
F 2(ff ) + 1

11
F 4(ff ) + 1

858
F 6(ff ) (170)

For p-orbitals J = F 2(pp)/5 and for s-orbitals J = 0. Examining
the tabulated values of the Slater Fk integrals from Hartree–Fock
calculations, one finds that the ratios F 4(dd)/F 2(dd) ≈ 0.625 and
F 6(ff )/F 2(ff ) ≈ 0.494, F 4(ff )/F 2(ff ) ≈ 0.668 are approximately
constant. Using these fixed ratios and the relation to the average
exchange integral J one then can fix the Fk values. The advantage
of doing it this way is that the screening of the J and U can
then be taken into account and there are only two empirical
parameters. On the other hand one finds in practice that while
U is strongly reduced from the atomic bare F 0, the J is approx-
imately unscreened, so one might as well use the unscreened
directly calculated Fk for k ≥ 2. From LDA calculated atomic wave
functions, we find F 4(dd)/F 2(dd) = 0.658 ± 0.004 for 3d atoms,
F 4(ff )/F 2(ff ) = 0.685 ± 0.001, F 6(ff )/F 2(ff ) = 0.518 ± 0.001
for rare-earth RE3+. (Until recently, Questaal used a different
convention; see note [72].)

By minimising the LDA+U total energy with respect to the
density matrix elements, one obtains a non-local potential V σ

mm′
which can also be found in [66]. In the ASA lm-version it is
straightforward to add this nonlocal potential directly to the
Hamiltonian inside the spheres because the orbitals defining the
matrix V σ

mm′ are just the single lm channel partial waves inside
the sphere. It is a little more complex in lmf. Essentially, we
now add the operator |φσlm〉V σ

mm′ 〈φσlm′ |. We add the corresponding

augmentation matrix elements both for the φ and φ̇ and for local
orbitals if these are present for this � channel.

The calculation within LDA+U starts from a set of initial
occupation numbers of them orbitals for each channel � for which
U and J parameters are provided. These define the initial density
matrix. The calculation then proceeds by making this density
matrix self-consistent simultaneously with making the standard
spin density ρσ (r) self-consistent. We note that the configuration
one converges to may depend on the starting density matrix
and hence one should in principle consider different starting
points and find the one which minimises the energy or use
guidance from physical insight. In rare-earth (RE) based systems
one finds for example that the lowest energy corresponds to the
configuration which obeys Hund’s rules [73].

We have here described only the FLL. The around-mean-field
approach [63,67] and a mixture of the two [68] are also im-
plemented and make use of the same ingredients. Recently, Ke-
shavarz et al. [74] argued that adding U to spin-unpolarised
LDA, thus LDA+U may have advantages over adding them to
LSDA, for example to extract inter-atomic exchange interactions
independent of the reference system used (AFM or FM). This is
presently not supported in the lm and lmf codes but might be
useful to add in the future. Note that in Ref. [64] also a LDA+U
rather LSDA+U approach was used.

A simpler version of the LDA+U is described by Dudarev

et al. [75]. In that case, only a single parameter, namely Ũ =
U − J comes into play. One can use this scheme in the codes

by setting J = 0 and adjusting the provided Ũ parameter. This
means essentially that we neglect the orbital polarisation due
to the anisotropic Coulomb interaction exchange terms but keep

the Hartree–Fock like feature that empty states feel a different
potential from occupied states. In fact, in this case the additional
potential is

V σmm′ = Ũ[ 1
2
δmm′ − nσmm′ ] (171)

Or if the density matrix is actually diagonal V σm = Ũ[ 1
2

− nσm].
This means that when a spin–orbital mσ on a given site is empty

it is shifted up by Ũ/2 and when it is filled, it is shifted down

by Ũ/2. This corresponds to the simplest form of the LDA+U
formalism. It allows one for example to include a shift of a fully
occupied d band. This is useful for example in Zn-containing
systems. In LDA, the binding energy of these orbitals is underes-
timated. The deeper a band lies below the Fermi level, the higher
its downward shift by the self-energy and this can be simply
mimicked by the LDA+U method in this form. It has the effect
for example of reducing the hybridisation of the Zn-3d with the
valence band maximum and slightly increases the gap, affects
things like band-offsets and the valence band maximum crystal
field and spin–orbit induced fine splitting.

One can even use this approach for s or p electrons and thereby
shift up the mostly cation-s like conduction band minimum in a
semiconductor to adjust the gap. While this is of course purely
empirical and shifting the gaps for the wrong reason, and hence
far less accurate than the QSGW approach, it is sometimes useful
in defect calculations because a defect level that would otherwise
lie as a resonance in the conduction band can now become a
defect level in the gap and allow one to properly control its
occupation for different charge states of the defect. Using a U
on p-orbitals of anions like O or N, this can also have the effect
that the empty defect levels pushed out the valence band and
localising on a single p orbital are pushed deeper into the gap. The
essential function of the LDA+U terms in these applications is to
introduce a Hartree–Fock like orbital dependence of the potential.
This is important to reduce the self-interaction error of LDA or
GGA and allows one in a simpler and much less expensive way
to simulate what a hybrid functional would do. If one picks these
shifts carefully to adjust the bulk band structure to the QSGW
bands, it provides a rather efficient way to study defects with a
corrected band gap and specific orbital self-interaction, two of the
main errors of LDA plaguing defect calculations. An example of
this can be found in Boonchun et al. [76].

3.9. Relativistic effects

The radial solvers all solve by default a scalar Dirac equation,
which incorporates the dominant relativistic effects. All the DFT
codes (lmf, lm, lmgf and lmpg) have the ability to incorporate
spin–orbit coupling perturbatively. In the band codes the pertur-
bation is straightforward (See Section 2.8.2); the Green’s function
scheme is more subtle, particularly with respect to third order
parameterisation, but a formulation is possible (Section 2.16). For
lmf, the L · S term is added to the true local potential V1R (see
Section 3.7.4). As of this writing, only the spin diagonal part of
the output density is kept in the self-consistency cycle.

Additionally the ASA codes lm, lmgf and lmpg have a fully
relativistic implementation (Section 2.17). The full-potential code
lmf does not as yet; however it does have a facility to compute
the core levels fully relativistically. It follows a method similar to
that developed by Ebert [42].

As of this writing, the QSGW code allows spin–orbit coupling
only in a very restricted manner. Typically SOC has only a minor
effect on the self-energy Σ: this is because SOC is a modification
to the kinetic energy and only affects the potential in a higher or-
der perturbation. We have found very good results by generating
QSGW self-energies leaving out SOC all together, and then as a
post-processing step include it in the band structure.
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Table 4
Spin orbit splitting Δ0 of the valence band at Γ , and energy bandgaps computed

in the LDA and by QSGW, with a scalar relativistic (SR) local orbital on the

cation and anion p states, and a Dirac p1/2 local orbital. In the zincblende

semiconductors the two band edges are at Γ , but in PbTe case they are both at

L (Fig. 13). n are the principal quantum numbers of the cation and anion local

p orbital; γ = [1 − (Z/c)2]1/2.
Material

nc
na

γc
γa

LDA QSGW

Δ0 EG Δ0 EG

GaAs (SR) 5 0.97 0.34 0.24 0.33 1.77

GaAs (p1/2) 5 0.97 0.35 0.24 0.34 1.75

GaAs (expt) 0.34 1.52 0.34 1.52

ZnSe (SR) 5 0.98 0.39 0.95 0.39 3.05

ZnSe (p1/2) 5 0.97 0.40 0.95 0.40 3.00

ZnSe (expt) 0.40 2.82 0.40 2.82

CdTe (SR) 6 0.94 0.84 0.26 0.83 1.83

CdTe (p1/2) 6 0.93 0.92 0.26 0.88 1.77

CdTe (expt) 0.90 1.61 0.90 1.61

PbTe (SR) 7 0.80 1.12 −.16 1.00 0.40

PbTe (p1/2) 6 0.93 1.30 −.57 1.06 0.22

PbTe (expt) 0.19 0.19

Additionally, lmf has a special mode where the only diagonal
parts of L · S (see Section 2.8.2) are added to the one-particle
Hamiltonian. After diagonalisation the spin off-diagonal parts are
used to modify the one-particle levels in a special kind of per-
turbation theory, as described in the Appendix of Ref. [77]. This
has the advantage that the eigenvectors are kept spin-diagonal,
which significantly reduces the cost of the GW code. Tests show
that at the LDA level the modification to the band structure is very
similar to that of the full L·S, and for purposes of determining the
effect onΣ it should be quite reliable except in very special cases.
Once a modified Σ has been found (as a one-shot correction to
QSGW computed without SOC), lmf can be run with the full L ·S,
including the modification ofΣ approximately in the manner just
described. We have found the difference to be negligible except
when elements are very heavy: CH3NH3PbI3 is the most extreme
case we have found so far: the effect of SO on the band structure
through changes in Σ reduced the gap by 0.1 eV [77]

Finally lmf has an ability to fold in approximately the effects
of the proper Dirac Hamiltonian on the valence states. The differ-
ence between the full Dirac and scalar Dirac partial waves can be
important for very small r , where the SOC contributions are the
largest (see ξ (r) in Section 2.8.2). For small r, the true Dirac wave
function varies as rγ , γ 2 = κ2 − (2Z/c)2, whereas in the scalar
Dirac case it varies as r�. As a result, matrix elements ξ (r) are
underestimated. The effect is typically very small, but it becomes
non-negligible in heavy semiconductors such as CdTe. To amelio-
rate this error, lmf has the ability to use a fully relativistic partial
wave in place of a standard local orbital, choosing μ = −1/2.
Most important is the p1/2 state with κ = 1.

SO coupling is well described for light semiconductors such as
GaAs and ZnSe (see Table 4), as Z increases γ deviates progres-
sively from unity and the discrepancy with experiment increases.
It is already significant for CdTe, and in PbTe the effect exceeds
0.1 eV. Replacing the scalar Dirac LO with the Dirac p1/2 LO
significantly decreases this error in CdTe. In PbTe, the valence
band edges are both at L: the two band edges have symmetry L+

6

and L−
6 , respectively (Fig. 13). The LDA gap is nominally positive,

but L+
6 and L−

6 are inverted very near L as can be seen by the
change in colours at the band edges; thus the gap is actually
inverted. Anticipating the discussion in Section 4, if a diagonal-
only GW were carried out on top of this, the L+

6 and L−
6 would

order properly, but the wrong topology would manifest itself as
a band crossing near L, as shown for Ge in Fig. 6 of Ref. [56].
QSGW orders L+

6 and L−
6 correctly, somewhat overestimating the

Fig. 13. Energy band structure of PbTe in eV for (left) the LDA and (right)

QSGW approximations. Colours correspond to projections onto L±
6 symmetry. L+

6

is comprised of Pb s and the t2g part of the d orbital, and Te p. L−
6 is comprised

of Te s and the t2g part of the d orbital, and Pb p. The dashed lines show the

effect of using a Dirac p1/2 local orbital instead of the usual scalar relativistic

one. Except for the addition of the Dirac p1/2 orbital, the basis is similar to that

used in Ref. [78]. It is a slight enlargement over the default basis, including g

orbitals on Pb and Te and a 6s local orbital on Te. These extra orbitals widen

the gap relative to the default basis by ∼0.1 eV.

Table 5
Nature and size of different basis configurations for the case of SrTiO3.

Basis Character of HL N(HL) + N(LO)

Null no HL 6

Hyper sp on O only 18

Small spd on all atoms 51

Large +2nd spd (spd on Ti) 81

gap [78]. Adding a Dirac p1/2 local orbital reduces the gap by

nearly 0.2 eV. In the LDA the gap at L widens as a consequence

of the fully relativistic partial wave (Table 4), another reflection

of the inversion of L+
6 and L−

6 .

3.10. The PMT method

In the introduction it was noted that the LAPW and Ques-

taal’s generalised LMTO method are essentially the same except

for the choice of envelope functions. LMTO’s are much more

compact, and require a much smaller Hilbert space, but they

suffer from problems with basis set completeness. An obvious

alternative is to combine the two basis sets; this is the ‘‘PMT

basis’’ [54]. This can be accomplished in practice quite neatly,

because Questaal’s standard HL require a one-centre expansion,

Eq. (141), more general than simple LMTO’s (Eq. (1)). Plane waves

can be expanded in polynomials PkL in a similar manner, as can

other kinds of envelope functions. Thus the method provides a

unified framework to seamlessly mix different kinds of envelope

functions. Expressions for total energy, forces, assembling output

density, etc, remain unchanged. The procedure is described in

more detail in Ref. [54]; here we focus on the primary strengths

and weaknesses of the method, using the total energy calculated

for SrTiO3 shown in Fig. 14 for discussion. It was redrawn from

Ref. [54]. Four basis sets were chosen, ranging from pure LAPW

(’null’) to a moderately large basis of 75 smooth Hankels N(HL)

+ 6 local orbitals (see Table 5).

Advantages of PMT. As expected, Questaal’s purely atom-centred

basis is vastly more compact than a pure LAPW basis (Fig. 14).

Even a tiny basis of just O sp states dramatically improves on

the convergence of the LAPW basis. PMT offers a marked advan-

taged from LAPW perspective: by augmenting that basis by a few

functions. From the atom-centred perspective Questaal’s standard
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Fig. 14. Deviation ΔE from fully converged total energy/atom, in mRy, vs total

number of basis functions (PW + HL + LO) NΓb at Γ . Black-dashed, peach-solid,

green-dashed, and blue-solid correspond respectively to the null, hyper, small,

and large basis sets. ΔE is drawn on a log–log scale as a function plane-wave

cutoff, denoted as 1/Nb. Nb is the total number of basis functions PW + HL +
LO at the Γ point. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

moderately large basis misses about 5mRy/atom in total energy,

showing that it is not complete. Finally the figure shows that

adding HL continues to dramatically improve the convergence

until the standard minimal basis of HL is reached (single spd

function on each atom). Beyond that initial rapid gain, it does not

seem to matter much whether the basis is increased by adding

PW or more HL (compare blue-solid and green-dashed lines).

Drawbacks of PMT. While they are far more efficient than ordi-

nary LAPWs, PMTs show less promise than was initially hoped

for.

• Compactness: LAPWs are not ‘‘intelligent’’, i.e. tailored to

the potential, and therefore convergence is slow in the basis

size. Also their extended range precludes the advantages of

short-ranged functions.

• Over-completeness: PMT has difficulties when HL and PWs

are both sizeable. This is because they span much the same

Hilbert space. Workarounds (reducing the Hilbert space by

projecting out parts that contribute to a small overlap) have

been implemented, but they are inefficient and somewhat

finicky—e.g. energy may not vary smoothly with the change

in a nuclear coordinate.

• InterpolatingΣ0: in QSGW context, the ability to interpolate

the QSGW self-energy Σ0 is degraded. A workaround has

been made for this problem also (Ref. [79]) by projecting

Σ0 onto the MTO part of the eigenfunctions, interpolating it,

and re-embedding. Information is lost in the projection/re-

embedding step, resulting in ambiguities. A much better

way to address difficulties with interpolation is to construct

very short-ranged, compact functions. This is shown clearly

in Section 3.12.

In summary, PMT does best when treated as a slight augmen-

tation of either the LAPW limit, or the MTO limit. Adding a few

PWs with a low cutoff (2 Ry) was useful in our participation in the

Delta Codes project (Section 3.13) particularly for the molecular

solids such as N2 which consist of 90% interstitial, or even more.

Questaal’s pure MTO basis does not handle those compounds that

accurately.

Fig. 15. Screened d envelope functions, xy, yz, 3z2 − 1, xz, and x2 − y2, for a

zincblende lattice. See also Fig. 5.

3.11. Floating orbitals

While the PMT method can make the basis nearly complete,
it causes severe difficulties when interpolating the QSGW Σ0 to
an arbitrary k. An alternative is to add ‘‘empty’’ sites — points
outside augmentation spheres where extra HL can be added to
the basis. These sites have no augmentation spheres; they only
enhance completeness in the interstitial. They are more ad hoc
than plane waves (Section 3.10) particularly because there is no
systematic path to convergence. Nevertheless they can be imple-
mented efficiently; and Questaal has an automatic procedure to
locate points to fill voids in the interstitial. In practice we use
floating orbitals to converge QSGW self-energies with respect to
the single-particle basis, in open systems. Their effect at the LDA
level is usually not large, unless systems are very open or very
accurate total energies are required. But for QSGW, where the
potential depends on unoccupied states as well as occupied ones,
it makes more of a difference, e.g correcting the fundamental gap
in Si by of order 0.1 eV. We expect that the need for floating
orbitals in such systems will be obviated by the new JPO basis.
A precursor to it is discussed next.

3.12. Screened, short-ranged orbitals in the full-potential framework

Building on the success of the ‘‘screening’’ of LMTOs in the
ASA (Section 2.9), we have developed an analogue within the
full-potential LMTO framework. As in the ASA case, ‘‘screening’’
does not alter the Hilbert space but renders basis functions short
ranged. Screening is a precursor to the next-generation JPO basis,
which will alter the Hilbert space, rendering it significantly more
accurate for the same rank of Hamiltonian. JPOs are still in de-
velopment; the method will be presented in a future work. They
have the following properties:

• they solve the SE with a (nearly) optimal number of basis
functions for a given accuracy in the four dimensions (r, E);

• they are very short ranged (see Figs. 5 and 15); and

• they are atom centred with a definite L character on their
own MT sphere.

This provides a framework for exploiting the many advantages in-
herent in a short ranged basis sets. They can be used as projectors,
replacing Wannier functions; they can be used to construct min-
imal Hamiltonians; near-sightedness can be exploited to make
very efficient O(N) solvers in DFT and O(N3) solvers in GW and
GW+BSE. That the basis functions are associated with a defi-
nite L character is important, for example, when singling out a
correlated subspace.

Screening of the HL works in a manner similar to screening
traditional HL because HL asymptotically approaches a HL for
large r (Fig. 10). HL − HL decays approximately as a Gaussian
of radius rs: for traditional values of rs (rs � 2s/3) it becomes
negligible beyond first-neighbour distances. The screened Hα

L em-
ploy the expansion coefficients Sα in the same manner as in the
ASA (Section 2.9), so they have essentially the same range. What
is sacrificed is the reinterpretation of screening in terms of hard
core radius (Section 2.10.5), but this has no effect because the
Hilbert space is unchanged. JPOs improve on the screened Hα
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Fig. 16. NiO bandgap in eV as a function of the range truncated self-energy

represented in the conventional and screened basis sets. The first point contains

onsite terms only, the second adds first neighbours etc. The conventional basis

shows erratic behaviour until at least the fourth neighbours are present.

by restoring this condition and exploiting it to make the kinetic
energy continuous everywhere.

Screening makes it possible to avoid Ewald summation oth-
erwise necessary in the unscreened FP case (Appendix C). Also,
one-centre expansions are made more efficient. By writing Hα =
{Hα − Hα} + Hα , the first term which involves H, must be ex-
panded in the more cumbersome polynomials PkL (Eq. (144)). In
the screened case the difference becomes short-ranged and can
be dealt with efficiently in real space. The latter can use the
simpler expansion Eq. (42).

A restriction in transformation is that all functions of a given
κ must share the same Hankel energy, while the traditional basis
allows arbitrary choice for each orbital. However, this restriction
is fairly mild because of the extra flexibility HL have through the
choice of rs, which the HL do not. The rs strongly affect the kinetic
energy near the MT boundary (Fig. 10), and the results are more
sensitive to that choice than to the Hankel energy.

One large advantage of the transformation is that Hα becomes
short enough ranged so that matrix elements

Σα
0;RL,R′L′ = 〈

H
α
RL|Σ0|Hα

R′L′
〉

are limited by the range of the physical Σ0(r, r′), and not by
the basis set. Σα

0;RL,R′L′ turns out not to be very long ranged, as

suggested some time ago by Zein et al. [80]. Fig. 16 shows how the
bandgap in NiO evolves with range cutoff Rcut, defined as follows.
Σα

0;RL,R′L′ is initially computed without range truncation. Then

matrix elements ofΣα
0;RL,R′L′ are set to zero for |R − R′| > Rcut, and

the band structure is calculated. As Fig. 16 shows, the bandgap EG
converges slowly with Rcut in the traditionalΣα=0

0;RL,R′L′ case, but for

Σα
0;RL,R′L′ , EG is already reasonably converged including first and

second neighbours. Note that for Rcut → ∞, the two methods
yield the same result, as the screening transformation does not
change the Hilbert space.

One powerful feature of lmf is its ability to interpolate Σ0. As
noted in Section 4.2, some compromises must be made because

the high-energy parts of Σnn′
0 do not interpolate well, and ele-

ments above an energy threshold (of order 2Ry) must be set to
zero. The screening mitigates this difficulty; it appears that the
energy threshold can be taken to ∞. The difference is not large,
but in small bandgap cases where the precision of the method
is very high, agreement with experiment may be limited by this
difference.

The short range of Σα
0;RL,R′L′ can be used to much advantage:

we realise from the properties of Fourier transforms that the
number of k points directly translates into the number of neigh-
bours in real space. Because Σα

0;RL,R′L′ is short ranged, it converges
faster in the k mesh than Σα=0

0;RL,R′L′ , which saves significantly on

computational effort. Also explicitly semilocal algorithms can be
constructed, greatly reducing the cost to make Σ0.

At present the short ranged screened smooth Hankel functions
shine the most when used to represent the QSGW self-energy
Σ(ω, q) and interpolate it at intermediate q points not directly
calculated in the heavy GW step. The interpolation process is
significantly simplified and ambiguity is removed because the
high energy Σ no longer needs diagonal approximation, there
is no need to define energy threshold and there is no loss of
information due to discarding the off-diagonal parts. This does
add to the computing effort for directly computed QSGW Σ(ω, q)
because no states are excluded and matrix sizes increase re-
spectively. To counter that, significantly fewer Σ(q) need to be
computed exactly, in our experience an equivalent result can
be achieved by using only a half or in cases even a quarter of
the original BZ sampling in each direction, for cells with few
symmetry operations the savings add up quickly considering
that the GW walks over pairs of q points (quadrupling the total
number of points for low symmetry cells). Performance can be
further improved by still utilising the diagonal approximation to
Σ(ω, q) because the interpolation is excellent and the high energy
part only weakly affects states near EF . To show the quality of
the QSGW Σ(ω, q) expansion in the new, screened basis and
the conventional unscreened, we plot the dependence of the NiO
bandgap as a function of the truncated self energy in Fig. 16.

At the LDA level, the better spatial localisation of screened
basis function paves the way to efficient, real-space assembly
of matrices (1 and 2 particle) while maintaining, and in cases
improving, accuracy. The screened functions are also significantly
less linearly dependent. The implementation is heavily vectorised
and at present can handle a couple hundred atoms on a single
node, with the scalability properly utilised the numbers can be
an order of magnitude larger. For very large systems, it will be
possible to construct O(N) methods, but empirically it appears so
far that systems of a few hundred atoms are probably still too
small for such methods to be advantageous.

To summarise, our current screening transformation offers
advantages of short-ranged basis sets. It is not yet optimally
compact. However, the JPO basis, to be reported on soon, we
believe will be nearly the most compact (optimal convergence
for a given rank of Hamiltonian, and short range). We believe
these advantages will be very significant, and obviate the need
for enhancements such as plane waves (Section 3.10) or floating
orbitals (Section 3.11) to obtain high accuracy.

3.13. Delta Codes validation exercise

The Delta Codes project [6] is a continuing effort to mutually
validate the different electronic structure codes used in con-
densed matter and materials modelling. The first comparison has
focused on the equations of state calculated for a selection of
elemental solids. The relative agreement of different codes, in-
cluding lmf, can be examined on the project site https://molmod.
ugent.be/deltacodesdft. Agreement is quantified using an aver-
age ‘‘Delta value’’—the integrated difference between equation of
state curves over a specified volume range.

The calculated equations of states (scalar relativistic and PBE-
GGA exchange–correlation are specified) agree extremely closely,
particularly among the all-electron codes. The pseudopotential
projects have also demonstrated precision very similar to the
all-electron methods.

The Delta Codes test set has been carried out for lmf with an
automatic setup, avoiding any system-specific modifications. The
main settings defining the calculations are:

Sphere radii. sR corresponding to touching spheres are used, eval-
uated at the smallest volume tested.
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Fig. 17. ‘‘Delta Codes’’ tests: integrated energy difference between the energy-

volume curves calculated by lmf and WIEN2K [81], expressed in meV/atom; the

average value is 0.62 meV/atom.

�max. The maximum � for the basis functions is 1 for H and He, 2

for Z < 18 and 3 otherwise. In each case, one higher � is included

in the partial wave expansion.

Semi-core states. Local orbitals are effective for including semi-

core states in the valence. We recommend treating states as

semicore whenever the leaked charge exceeds 0.002e, or the

eigenvalue is higher than ∼ −2Ry. For transition metals and

f-electron systems, the inclusion of high-lying � = 2 or 3 conven-

tional local orbitals can significantly improve accuracy and these

are added by default for these groups of elements.

Molecular cases. For cases where the touching muffin-tin

spheres fill less than 30% of the cell volume, an additional LAPW

basis has been included. The LMTO basis was not designed for

molecular systems — but the shortcomings of the LMTO ba-

sis can be easily rectified by the addition of small number of

plane-waves.

Basis setup. Basis parameters determined automatically as de-

scribed below.

3.13.1. Choice of basis parameters

Questaal’s full-potential code allows two LMTO basis functions

to be used per �. Each of these is defined by two parameters

which must be chosen: the Hankel energy and the smoothing

radius. Because the size of the LMTO basis is small, the choice

of basis parameters can have a significant impact on accuracy.

Different schemes for choosing basis parameters have evolved, of

which the simplest is to fit the basis functions to the free atom

wave functions. This provides one set of basis parameters for each

�. The second set is obtained from the first by shifting the Hankel

energy (typically by −0.5 to −0.8Ry). This is a heuristic approach

but it is automatic and effective and is the default.

An alternative method chooses smoothing radii directly from

the potential. The gradient of the smoothed Hankel functions at

typical muffin-tin sizes is sensitive to rs and variational freedom

is obtained by differentiating the two sets of basis functions by

rs instead of the Hankel energy. The smoothing radius describes

the point where the basis function begins to deviate from the

exponential, Hankel-like tail: this is similar to the behaviour of

atomic eigenfunctions at their classical turning points.

Associating the smoothing radius with the classical turning

point allows basis functions to be constructed that resemble

atomic-like states at energies different to the atomic eigenvalues

and the question of choosing suitable rs is translated into a

determining a pair of reference energies—one each for the two

basis sets per L. Energies of the valence states are typically in

the range 0 to −2Ry, and choices for the reference energies of

E1 = −0.5 and E2 = −2.0 result in accurate basis sets for

most materials. In this scheme, the Hankel energy remains a free

parameter but similar results are found for Hankel energies in the

range −0.1 to −1Ry.

The choice of reference energies can be automated by express-
ing them in terms of the atomic potential at the muffin-tin radius.
One basis set is chosen with a higher reference energy, giving a
more diffuse basis function, the other is setup at a smaller, more
negative, energy which yields a smaller rs and a more tightly
bound basis function. Because v(sR) varies significantly across
elements and materials, a proportional scheme is more suitable:
e.g., v(r1s ) = 2v(sR) and v(r

2
s ) = 1

2
v(sR); this algorithm is used for

automating the DeltaCodes tests.

3.13.2. Comparison with LAPW results
Fig. 17 shows the ‘‘Delta values’’ for Questaal with respect to

the LAPW code WIEN2K. The level of agreement is typical (or
better) than most all electron methods involved in the validation
exercise. In particular, the transition elements are extremely well
represented by the smooth Hankel basis. Some of the first period
and group VII cases involve molecular problems for which the
muffin-tins fill a small fraction of the unit cell: the performance
of the LMTO basis in these cases becomes sensitive to rs and
E choices. We do not attempt to choose optimal parameters,
instead we include an additional LAPW (see Section 3.10), with
cut-off 2 Ry or 4Ry depending on the packing fraction. Au and
group VI are outliers: in both cases the automatic basis setup
generates basis functions that are rather too smooth to describe
the tightly bound states in these elements. If necessary, improved
performance can be obtained, thereby converging V0 with respect
to the basis, by adding plane waves.

In addition to confirming that the smooth Hankel basis is ca-
pable of high precision, the testing procedure also demonstrates
that the automatic procedure for setting up the basis and setting
various numerical parameters is highly reliable.

4. GW And QSGW

The GW approximation (G = Green’s function, W = screened
Coulomb interaction) is the first-order term in the formally exact
diagrammatic expansion around some one-particle Hamiltonian
H0 [82].

Questaal’s GW formalism is explained in some detail in Ref.
[83], and its implementation of quasi-particle self-consistent GW
(QSGW ) is explained in Ref. [84]. Here we recapitulate only the
main points. From an implementation point of view, GW re-
quires two-point functions, such as the susceptibility from which
W is made (Section 6). This entails an auxiliary product basis
of wave function products. Most commonly plane waves are
used to implement GW. In such a case the same basis for two-
particle objects can be used, because a product of plane waves
is another plane wave, but for all-electron methods this is not
possible. Representation of these objects requires a basis span-
ning the Hilbert space of wave function products. Four-centre
integrals (e.g. Eq. (183)) can be evaluated as integrals of pairs of
product basis functions. This was first accomplished by Aryaseti-
awan [85] in an ASA framework, and extended by us [15] into a
full-potential scheme.

In the ab initio context, GW has traditionally referred to a
perturbation around the LDA: i.e. H0 = HLDA so that GW =
GLDAW LDA, though in recent years hybrid functionals or LDA+U
have become popular. It has become increasingly recognised that
results depend rather strongly on the choice of H0, or equivalently
the Vxc entering into it, by which we mean the beyond-Hartree
parts of the effective potential. Thus the self-energy of H0 is
Σ = Vxc in the language of many-body perturbation theory.
The implications of starting point dependence are profound: the
quality of GW depends on the quality of the reference. Moreover
it is increasingly accepted that HLDA is only a good choice for H0

for a very restricted materials class.
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GW is a perturbation theory, and usually only the lowest order
perturbation (diagonal part of Σ in the basis of the reference
Hamiltonian) is kept. As a result eigenfunctions are not perturbed
and the change in QP level εkn is

δεkn = Zkn[〈Ψkn|Σ(r, r′, εkn) − V LDA
xc (r)|Ψkn〉] (172)

Zkn is the quasi-particle (QP) renormalisation factor

Zkn =
[
1 − 〈Ψkn| ∂

∂ε
Σ(r, r′, εkn)|Ψkn〉

]−1

(173)

and accounts for the fact that Σ is evaluated at εkn rather than
at the QP energy εkn + δεkn. Eq. (172) is the customary way QP
energies are evaluated in GW calculations. In Sec. VI of Ref. [56],
we show that omitting the Z factor is an approximate way to
incorporate self-consistency, and thus should be a better choice
than including it. As a practical matter it is also the case that
results improve using Z = 1.

Ref. [56] notes a serious drawback in the diagonal-only ap-
proximation: when levels in the reference Hamiltonian are
wrongly ordered as they are, e.g. at the Γ point in Ge, InN, and
CuInSe2, and the L point in PbTe [78] the wrong starting topology
results in an unphysical band crossing in the GW QP levels. (See,
for example an illustration for Ge in Fig. 6 of Ref. [56]). Something
similar will happen for PbTe (Fig. 13). Moreover, the off-diagonal
parts of Σ can significantly modify the eigenfunctions and result-
ing charge density. This reflects itself in many contexts, e.g. strong
renormalisation of the bandgaps in polar insulators such as TiSe2
and CeO2 [56]. It modifies orbital character of states near the
Fermi energy in La2CuO4, and significantly affects how the metal–
insulator transition comes about, when GW is combined with
DMFT [86].

4.1. Need for self-consistency

The arbitrariness in the starting point means that there is
no unique definition of the GW approximation. Errors in the
theory (estimated by deviations from experiment) can be fairly
scattered for a particular choice of reference, e.g. LDA, making it
unclear what the shortcomings of GW actually are. Arbitrariness
in the starting point can be surmounted by iterating G to self-
consistency, that is, by finding a G generated by GW that is
the same as the G that generates it (Gout = Gin). But it has
long been known that full self-consistency can be quite poor
in solids [87,88]. A recent re-examination of some semiconduc-
tors [89] confirms that the dielectric function (and concomitant
QP levels) indeed worsen when G is self-consistent, for reasons
explained in Appendix A in Ref. [84]. Fully scGW becomes more
problematic in transition metals [90]. Finally, even while scGW
is a conserving approximation in the Green’s function G, in W
it is not: it violates the sum rule [91] and loses its usual physical
meaning as a response function. As a result it washes out spectral
functions in transition metals [90], often yielding worse results
than the LDA.

A simple kind of self-consistency is to update eigenvalues but
retain LDA eigenfunctions, as was first done by Aryasetiawan and
Gunnarsson [92]. This greatly improves GW, especially in systems
such as NiO where the LDA starting point is very poor. But it
is only adequate in limited circumstances. In TiSe2 it strongly
overestimates the bandgap (see below), as it does in NiO [92].
An extreme case is CeO2 where the position of the Ce 4f levels
is severely overestimated; see Fig. 3 in Ref. [83]. The off-diagonal
elements in Σ , which are needed to modify the eigenfunctions,
can be very important.

Questaal employs quasiparticle self-consistency [16,83,84]: by
construction, the reference H0 is determined within GW as in
the fully self-consistent case. But the proper Σ = iGW cannot

Fig. 18. TiSe2 energy bands in eV for the undistorted P 3̄c1 structure. (a): solid

lines are LDA results, with red and green depicting a projection onto Ti and Se

orbital character, respectively. Blue dashed line shows shifts calculated in the

GW approximation based on the LDA. (b): blue dashed line shows results from

GW based on the LDA (same self-energy as in panel (a)), with an extra potential

ΔV LDA deriving from a charge density shift computed from the rotation of the

LDA eigenvectors. Solid lines are QSGW results, with the same colour scheme as

in panel (a). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

be used because it is energy dependent and non-Hermitian, thus
falling outside of an independent particle picture. This causes GW
to degrade, and higher-order diagrams are needed [87] to restore
the quality of GW. But by quasiparticlisingΣ we can stay within a
framework of perturbation around H0 but choose H0 in an optimal
manner. QSGW quasiparticlises Σ(ε) by approximating it by a
static Hermitian potential as

Σ0 = 1

2

∑
ij

|ψi〉
{
Re[Σ(εi)]ij + Re[Σ(εj)]ij

} 〈ψj| (174)

which is the QSGW form for a static Vxc. This process is carried out
to self-consistency, until Σout

0 = Σ in
0 . Given Σ0, a new effective

Hamiltonian can be made, which generates a new Σ0:

Σ0 → G0 → Σ = iG0W [G0] → Σ0 . . . (175)

Σ0 is nonlocal with off-diagonal components; both of these fea-
tures are important.

TiSe2 is an interesting case where self-consistency becomes
critical. It is a layered diselenide with space group P 3̄m1. Below
Tc = 200 K, it undergoes a phase transition to a charge density
wave, forming a commensurate 2 × 2 × 2 superlattice (P 3̄c1) of
the original structure. It has attracted a great deal of interest in
part because the CDW may to be connected to superconductivity.

How the CDW affects the energy band structure is a source of
great controversy. It is accepted experimentally that in the P 3̄c1
phase, TiSe2 is semiconductor with a gap of ∼0.15 eV. Above Tc
whether intrinsic TiSe2 has a gap is not settled. On the theoretical
side, the CDW makes TiSe2 an unusual materials system: DFT
predicts a metal in both P 3̄m1 and P 3̄c1, as expected, but a recent
GLDAW LDA calculation [93] predicts P 3̄m1 to have a small positive
gap. We have revisited this problem and confirmed the findings
of Ref. [93] at the GLDAW LDA level. However, at the QSGW level,
TiSe2 is a metal in the ideal P 3̄m1 phase. This is atypical for insu-
lators: usually self-consistency widens the gap, as has long been
known (see Fig. 1 in Ref. [83]). The origin can be traced to the
modification of the LDA eigenfunctions by off-diagonal elements
Σn
=n′ , which modify the density n(r). To see approximately the
effect of the density change, assume LDA adequately describes
δV eff/δn (this is the inverse susceptibility, the charge analogue
of Eq. (180)). For a fixed Σ0, we can estimate the effect of the
change δn renormalising the V eff through the change

δΣ ≈ {
Σ0 − V LDA

xc [nLDA]} + V LDA
xc [nGW ]

This is accomplished in a natural way with the Questaal package.
The quantity in curly brackets is generated by GW in the first
QSGW cycle, and lmf treats this term as an external perturbation.
Running lmf to self-consistency allows the system to respond to
the potential and screen it, yielding nGW .
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Fig. 19. Energy band structure, in eV, of majority-spin MnAs (left), minority-spin

MnAs (middle) and nonmagnetic FeTe (right) in (a) the QSGW approximation

(orange solid lines), GLDAW LDA (dashed blue lines), and the LDA (light dashed

grey lines). GLDAW LDA was calculated from the LDA, but including the off-

diagonal components of Σ with Z = 1. It is the 0th iteration of the QSGW

self-consistency cycle.

The result of this process is shown as a dashed line in
Fig. 18(b). It bears a close resemblance to the full QSGW result,
including the negative gap. We will show elsewhere that TiSe2 is
an insulator in the P 3̄c1 phase only as a consequence of lattice
displacements relative to the symmetric P 3̄m1 phase.

GW is used less often in metals. As in the insulating case,
GW based on DFT can sometimes work well, as it apparently
does for SrVO3 [94]. But the range of applicability is limited, and
indeed GLDAW LDA can yield catastrophically bad results. Two cases
in point are MnAs and FeTe. Fig. 19 shows LDA, GLDAW LDA, and
QSGW energy bands near EF ; they are mostly of Mn or Fe 3d
character. In the GLDAW LDA case, EF must be adjusted to conserve
charge. (The shift is large, of order 1 eV.) Consider MnAs first. The
majority and minority 3d bands lie at about −1.5 eV and +1 eV
in the LDA. This exchange splitting is underestimated: QSGW
increases the splitting, putting bands at about (−2.5,1.5) eV while
GLDAW LDA does the opposite, reducing the splitting relative to
LDA. Also, the Fermi surface topology is poor: the hole pocket at
Γ disappears, and the one at K is similar to the LDA. FeTe fares no
better. GLDAW LDA is somewhere intermediate between LDA and
QSGW. Most important is the unphysical, dispersionless band at
EF on the X-M line, which yields a nonsensical Fermi surface. In
both of these materials, the LDA describes the electronic structure
better than GLDAW LDA.

Ambiguities in the starting point make it difficult to know
what errors are intrinsic to the theory and which are accidental.
The literature is rife with manifestations of this problem; see
e.g. Ref. [95]. Self-consistency (mostly) removes the starting-point
dependence so that the errors intrinsic to the GW approximation
can be best elucidated. Moreover, QSGW should yield better RPA
total energies on average than those calculated from other start-
ing points, because the path of adiabatic connection is optimally
described through QSGW [84]. To better illustrate these points
Fig. 20 shows the ionisation potential of 3d transition metal atoms
and the heat of formation of 3d-O dimers, computed by the molgw
code [96]. We focus on these properties because it is known,
e.g. from Ref. [97], that the RPA tends to systematically overbind,
and the error is connected with short-ranged correlations. The
ionisation potential and the dimer formation energy, both of
which benefit from partial cancellation of such errors, are much
better described.

Note the dramatic difference between choice of a Hartree–
Fock or the PBE functional. As for the superiority of QSGW,
Fig. 20 generally bears this argument out, though there are some
surprises, e.g. the heat of formation from RPA@PBE deviates
less from CCSD(T) results than QSGW. QSGW does not describe
Cr well, probably because spin fluctuations are important there
(Section 4.4), which skews the statistics with this small sample.

Fig. 20. Ionisation potential, IP, of TM atom and heat of formation ΔE of

transition-metal dimers computed within the RPA, using the molgw code

selecting various choices of starting point. Note the dramatic difference between

Hartree–Fock and the PBE starting points. Of the common semi-empirical

functionals, HSE06 (not shown) is the closest to QSGW. Data were compared

to reference CCSD(T) for the ionisation potential and experiment for ΔE.

The discrepancies are small enough that incomplete convergence

in the basis set (results in Fig. 20 were obtained with a triple-

ζ basis) are of the same order and could account for some of

the results. The ionisation potential of simple sp atoms was

analysed in Ref. [98], where it was computed from RPA total

energy differences, compared to the eigenvalue of the GW one-

particle Hamiltonian. There also it was shown QSGW significantly

improves on RPA@HF, and also that QSGW is slightly biased

towards Hartree–Fock, reflecting a slight tendency to underesti-

mate screening. This is consistent with the tendency for QSGW

to overestimate bandgaps. Koval et al. [99] found somewhat

different results for small, second-row molecules.

QSGW -RPA is not accurate enough to reach quantum chemical

accuracy, ∼1 kcal/mol. The addition of ladders should consid-

erably improve on the RPA’s known inadequacy in describing

short-ranged correlations. It has long been known that ladders

dramatically improve the dielectric function ε(ω) (ε(ω) and G

enter in the coupling constant integration for total energy) and

it would be interesting to explore if such low-order diagrams in

a QSGW framework are sufficient to capture total energy to this

accuracy.

While self-consistency does largely surmount starting-point

dependence (it was recently shown to be the case for some

insulators using Hartree–Fock and LDA as starting points [100]),

but it is not strictly true that it does. The QSGW H0 or G0 has a

Hartree–Fock structure, and it can get stuck in metastable valleys

in the same way as Hartree–Fock; an example are the dual low-

spin and high-spin states found for FeSe (Section 4.4). Also, in

strongly correlated systems Σ(ε) can vary rapidly with energy.

There can be more than one εi that forms a stationary point. This

happens, for example, in CuO. It is usually an indication that the

ground state is not well described by a single Slater determinant.

QSGW restricts G0 to a single determinant, and there is no longer

an unambiguously optimal choice when there are two or more

equally strongly competing ones.
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Fig. 21. Questaal’s QSGW cycle. lmf generates a new self-consistent density

and noninteracting H0 for a fixed Σ0; lmfgwd generates information about the

eigenfunctions Ψ corresponding to H0, and lmgw receives the output of lmfgwd
and uses it to make a new Σ0. lmgw can also generate response functions

and the fully dynamical self-energy Σnn(ω). lmfgws is a post-processing code

that yields observables computed from the interacting G, where G−1 = G0
−1 +

Σnn(ω) −Σ0
nn .

There is no unique prescription for quasiparticlisation, but
Eq. (174) minimises the difference between the full G and G0 ac-
cording a particular choice of norm. Recently it was shown [101]
that Eq. (174) minimises the absolute value of the gradient of
the Klein functional over all possible spaces of non-interacting
Green’s functions. There are formal reasons (Z factor cancel-
lation [84] and conserving sum rule [91]) why quasiparticlisa-
tion should be better; there is also abundant empirical evidence,
that quasiparticle self-consistency performs better than full self-
consistency [89,90,102], and the particular construction Eq. (174)
is an optimum one.

QSGW has been implemented in numerous electronic struc-
ture packages, e.g. the spex code [103], the Abinit code [104],
VASP [105], recently in the Exciting code [100], and also in
molecules codes such as molgw [96] and NWChem [99]. For solids
perhaps the most rigorous implementation is the spex code,
which can use a local Sternheimer method to rapidly converge the
calculation of the dielectric function [106]. As attempts to make
efficient schemes that are also well converged, e.g. to calculate
the RPA total energy, the local Sternheimer method will likely
emerge as being very significant over time.

4.2. Questaal’s QSGW implementation

Questaal’s implementation of QSGW evolved from the ecalj
package, developed by Kotani and coworkers in the early 2000’s
out of Aryasetiawan’s GW -ASA code [13], which in turn was
developed from the ‘‘Stuttgart’’ LMTO code. The original ecalj
package can now be found at https://github.com/tkotani/ecalj/. As
of this writing we maintain the GW code as a separate branch
(Fig. 21). In its present form the GW part of Questaal’s QSGW
implementation operates independently, receiving information
about eigenfunctions and eigenvalues, and returning response
functions or a self-energy. As for the QSGW cycle, one cycle
occurs in three parts.

Rather than storing Σ0 on disk, Σ0 − Vxc is stored (Vxc usually
being the LDA potential). Thus lmf generates its customary LDA
Hamiltonian, and adds Σ0 − Vxc to it. In practice this is accom-
plished by reading Σ0 −Vxc on the mesh of k points where it was
generated, and inverse Bloch-summing to make Σ0 − Vxc in real
space. Then Σ0 − Vxc can be interpolated to any k by a forward
Bloch sum. This is a unique and powerful feature, as it makes it
possible to generate QSGW eigenfunctions and eigenvalues at any
k. There are some subtleties in this step: the interpolation does

not work well if all the 〈n|Σnn′
0 |n′〉 are included. It is solved by

rotating to the LDA eigenfunctions, and zeroing out Σ
n
=n′
0 for n

or n′ whose energy exceeds a threshold, Ecut; i.e. diagonal-only

Fig. 22. Self-consistent charge density in antiferromagnetic NiO (left) and CoO

(right), in the plane normal to [001], computed by QSGW. The Ni (Co) nucleus

lies at the centre of the Figure.

approximation for high-energy subblocks of Σ0. Ecut is typically

∼2Ry; convergence can be checked by varying Ecut. The prescrip-

tion is explained in detail in Sec. IIG of Ref. [84]. The error is

connected to the relatively long range of the smooth Hankel en-

velopes. Preliminary tests using short-ranged, screened Hankels

indicate that this truncation is no longer needed.

Typically Σ0 is a smoother function of k than the kinetic

energy. Thus the k mesh on which Σ0 is made can usually be

coarser than the k mesh. Because of its ability to interpolate, lmf
and lmgw operate with independent meshes.

4.3. Successes of QSGW

QSGW has the ability to calculate properties for a wide variety

of materials classes in a manner that no other single theory can

equal. It consistently shows dramatic improvement relative to

DFT and extensions such as hybrid functionals or LDA-based GW.

Atomic ionisation potentials [98], quasiparticle (QP) levels, Dres-

selhaus coefficients in semiconductors [107–109]; band offsets at

the Si/SiO2 interface [104], magnetic moments and spin wave ex-

citations [110,111]; tunnelling magnetoresistance [112]; impact

ionisation [113]; electric field gradients and deformation poten-

tials [114], spectral functions [115], and dielectric response [116].

Its superior ability to yield QP levels and DOS made it possible

to accurately determine valence maximum in SrTiO3 [117]. In

contrast to GLDAW LDA, QSGW is uniformly reliable with systematic

errors (see Section 4.4). Fundamental gaps are usually in very

good agreement with experiments, though they are systemati-

cally overestimated (see Fig. 1 in Ref. [83]), even in the strongly

correlated M1 phase of VO2 [118–120], where spin fluctuations

are not important. It properly narrows the bandwidth of localised

d bands and widens it in wide-gap semiconductors [117] and

graphene [121].

QSGW can predict properties inaccessible to GLDAW LDA, such

as magnetic ground state [115] and charge density. Fig. 22 shows

the density calculated by QSGW in the plane normal to [001]

for antiferromagnetic NiO and CoO. Two prominent features are

seen: (1) NiO is much more spherical than CoO, and the density

contours for CoO are elongated along the [110] line. Both of these

findings are consistent with γ ray measurements [122,123].

It was noticed early on [83] that QSGW has a systematic

tendency to overestimate bandgaps in semiconductors and in-

sulators. To what extent dispersions are well described is much

less discussed, in part because there is a limited amount of

experimental data reliable to the precision needed. Perhaps the

best materials family to serve as a benchmark are the zincblende

semiconductors, where critical-point analysis of the dielectric

function has been used to accurately measure in most zincblende

semiconductors, not only the Γ -Γ (E0) transition but also the

L-L (E1) and X-X (E2) transitions, as indicated in Fig. 23, which
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Fig. 23. QSGW energy band structure of GaAs compared with ellipsometry data

and photoemission data (open and closed circles). Dashed Grey lines are LDA

bands.

presents the QSGW and LDA bands compared with ellipsometry
and photoemission data.

Fig. 24 shows that tendency to overestimate E0 and E1 is
systematic and uniform, but there is less uniformity in E2. Usually
E0 can be precisely measured; similarly for E1 because there is a
sizeable volume of k near L where valence and conduction bands
disperse in a parallel manner. E2 is more difficult, and values are
less certain. That being said, the data suggest E0−E2 is, on average,
about 0.1 eV below experiment. We have found that this error
is, at least in part, due to the necessity of truncating high-lying
parts of the off-diagonal Σ0; see Ecut, Section 4.1. It has recently
become possible to re-evaluate this because a short-range basis
was recently developed (Section 3.12) appears to interpolate Σ0

allowing Ecut → ∞.
Also reliably measured are the electron effective mass m∗

e

(hole masses are much less well known), and for some systems,
the nonparabolicity parameter α, characterising deviations from
parabolicity near Γ , and defined as k2/m∗ = ε(k)[1 − αε(k)]
where ε is the band energy relative to the conduction band
minimum. α is an important quantity in several contexts, par-
ticularly hot-electron semiconductor electronics. Unfortunately
α is difficult to measure, and values reported are usually some
scalar average of the second rank tensor, where it has been
measured. QSGW (or scaled QSGW, Eq. (176)) seems to predict α

Table 6
GaAs: fundamental gap, effective masses, nonparabolicity α and location of 5/2

and 3/2 Ga 3d core states relative to the valence band maximum. Units are

eV. The measurement of α was taken from Ref. [124], which is within 1% of a

subsequent measurement [125]. Photoemission data taken from Ref. [126].

EG m∗/m α Ga 3d

QSGW 1.78 0.076 −0.71 18.5, 18.0

Eq. (176) 1.47 0.067 −0.82 17.8, 17.3

LDA 0.24 0.020 −4.0 15.2, 14.8

Expt 1.52 0.067 −0.83 19.3, 18.6

to within the experimental resolution; see e.g. Table 6 for GaAs.

Fig. 25 compares QSGW and experimental effective masses for

various semiconductors. Conduction band masses are well de-

scribed, although there is a systematic tendency to underestimate

it, connected to the tendency to overestimate EG.

Most of this error can be traced to the RPA approximation

to the dielectric function. The optical dielectric constant ε∞
(Eq. (191)) in the ω → 0 limit is uniformly too small by a

factor ∼0.8 for many kinds of semiconductors and insulators

(Fig. 26). Plasmon peaks in Imε(ω) are almost universally blue

shifted [127,128] because the RPA omits the attraction between

electron–hole pairs in their virtual excitations. A simple Kramers–

Kronig analysis shows that as a consequence, ε∞ = Re ε(ω → 0)

should be underestimated. Indeed we find that to be the case,

but remarkably ε∞ is consistently underestimated, by a nearly

universal factor of 0.8. This is what motivated a hybrid of LDA

and QSGW functionals [107]

Σ scaled
0 = 0.8Σ0 + 0.2 V LDA

xc (176)

The reasoning is since W is dominated by the q → 0, ω → 0

limit, scaling W by 0.8 justifies Eq. (176). In practice, it seems

that the tendency to overestimated bandgaps is almost com-

pletely ameliorated in these systems (compare red and blue cir-

cles, Fig. 24, as is the tendency to underestimate m∗
c . Exceptions

are the small-gap InAs in InSb, where relative errors in bandgaps

are still not small even with the 0.8 scaling.

The hybrid scheme does a stellar job in many contexts: it

improves on bandgaps in semiconductors (Fig. 24) and predict-

ing the Dresselhaus splitting in sp semiconductors [107]. But

the scheme is empirical, and it is limited. It does not properly

correct the blue shifts in ε(ω) or take into account other ex-

citonic effects and fails to bring bandgaps in close agreement

with experiment in systems with strong spin fluctuations such

as CoO or La2CuO4, and deep states such as the Ga 3d shift

farther from experiment (see Table 6). Recent work [102,129]

Fig. 24. Transitions E0, E1 and E2 transitions in a zincblende semiconductor compared with critical point measurements. Red and blue circles are QSGW results, and

QSGW with Σ scaled
0 (Eq. (176)), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)



34 D. Pashov, S. Acharya, W.R.L. Lambrecht et al. / Computer Physics Communications 249 (2020) 107065

Fig. 25. Conduction band effective masses of selected zincblende compounds

compared against experiment. Red and blue circles are QSGW results, and QSGW

with Σ scaled
0 ; black circles are experimental values.

Fig. 26. Dielectric constant ε∞ compared to experiment. Blue are QSGW results;

red are LDA results. Also shown are the ladder diagrams that modify bubbles in

the polarisability, left out in the RPA.

shows that the great majority of the error in charge susceptibility
can be accounted for by ladder diagrams. (In the case of polar
semiconductors there can also be a significant renormalisation
of the gap from the Frölich interaction [130,131]; the electron–
phonon interaction has a modest effect in other semiconductors,
especially compounds with second row elements [132], diamond
being the largest.) Without ladders the low-frequency dielectric
constant is – almost universally – about 80% of experiment [133].
As we will show elsewhere [129] the addition of ladders in W
seem to dramatically improve on the charge channel even in
strongly correlated cases such as CoO. VO2 is an excellent test
bed for optics: it has strong correlations in the monoclinic phase;
yet, the conductivity is well described by nonmagnetic QSGW,
provided ladders are taken into account [119].

Below we present more detailed properties of the band struc-
ture obtained from classical QSGW on a single system, selecting
GaAs because reliable measurements are available and it is rep-
resentative of results obtained for the entire family of zincblende
semiconductors (Table 6). We observe the following:

1. dispersions Γ -L and Γ -X are mostly well described, and
vastly better than the LDA (which predicts the Γ -X disper-
sion to be 1 eV);

2. the valence bands match photoemission data to within
experimental resolution;

Fig. 27. QSGW band structure (in eV) of nonmagnetic La2CuO4 (left) and

antiferromagnetic LaCu2O4 (right). Colours reflect the orbital character of the

bands as follows: Cu dx2−y2 (red); Cu d3z2−1 (green), near −2 eV in QSGW ; O-pxy
(blue), between −3 eV and −5 eV in QSGW ; O-pz (orange), between −3 eV and

−5 eV in QSGW. The band near 3.3 eV at Y has significant Cu s character, and

it also admixes into the Cu dx2−y2 near EF . (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this

article.)

3. the Ga 3d (see Table 6) is pushed down relative to the LDA

and also relative to GLDAW LDA. Binding of shallow core-like

states on e.g. Cd, Zn, and Cu is underestimates by ∼0.4 eV;

for deeper states such as Ga 3d it is larger. It was shown

in Ref. [134] that a low-order vertex correction to GW
accounts for most of this discrepancy, at least for shallow

core-like levels;

4. conduction bands are slightly overestimated and the mass

slightly too large; and

5. the nonparabolicity parameter α was calculated along the

[001], [110], and [111] directions. It varies ∼30% for differ-

ent directions, but since only scalar quantities are reported,

we take a geometrical average. α is very sensitive to m∗, so
we can expect it to be underestimated a little; this turns

out to be the case. Using Eq. (176) all three quantities align

well with experiment.

Other discrepancies become apparent in the rare earths: split-

ting between occupied and unoccupied 4f levels is too large

[135], and multiplet splittings, which are significant for 4f , lie
beyond the scope QSGW.

As we will show elsewhere [129] most of the systematic errors

noted above are largely corrected when ladders are included in

W . Kutepov [102] showed that the bandgaps significantly im-

prove, but the improvement extends to a wide range of properties

and very diverse kinds of materials systems. See for example, the

excellent description of optical conductivity in VO2 [119].

Metals and local-moment magnetic systems are similarly well

described; see for example the excellent description of known

properties of Fe in the Fermi liquid regime in Ref. [115], and the

electronic structure of NiO and MnO in Ref. [16].

In summary, absent strong spin fluctuations, and a few other

mild exceptions, QSGW with some low-order extensions (ladders

and a low-order vertex for narrow semicore states), describe

a wide range of materials throughout the periodic table with

uniform accuracy and reliability that cannot be matched by any

other method.

4.4. Limitations of QSGW

The greatest failings appear in QSGW for systems where spin

fluctuations are large. This is not surprising since the main many-

body effect in GW are plasmons. GW has no diagrams in spin

beyond the Fock exchange. When spin fluctuations become im-

portant, the first effect is to reduce the average moment [136,

137]. As they increase, states begin to lose their coherence: the
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Table 7
dxz/dyz and dxy QP levels (meV) near EF in tetragonal phase of FeSe (reference

is the Fermi energy). LDA and QSGW data are calculated nonmagnetically; the

line marked +DMFT following each is the result with DMFT added [139], as

discussed in Section 5. Line SQS is a QSGW calculation in a ferrimagnetic SQS

structure, as described in the text.

ARPES Γ M Z

9 −18 −22 −42 7 34

LDA 109 113 −204 −337 254 141

+DMFT 30 45 −110 −125 42 65

QSGW 41 44 −107 −202 131 56

+DMFT 1 10 −21 −40 10 32

SQS6 60 45 −52 −70 31 68

band picture and QSGW both begin to break down. A good
example of this is La2CuO4 (Fig. 27). Undoped La2CuO4 under-
goes a paramagnetic to an antiferromagnetic insulator transition
upon cooling below 325 K [138]. Fig. 27 shows QSGW calcula-
tions in the nonmagnetic state, and the antiferromagnetic one.
Approximating the paramagnetic state by nonmagnetic state is
an inadequate approximation, though it is often done. In this
approximation La2CuO4 is predicted to be metallic, with a single
Cu dx2−y2 band crossing EF . In the antiferromagnetic state La2CuO4

is found to be an insulator with a 3.5 eV bandgap. Experimentally
La2CuO4 is an insulator with a gap ∼2 eV.

QSGW severely overestimates the optical gap in La2CuO4.
There is a similar mismatch for CoO: the gap is overestimated
by ∼2 eV in these cases, but not in NiO. Particularly telling is
how for VO2 nonmagnetic QSGW does describe the M1 phase
very well when both V–V pairs dimerise [119], but not the M2
phase where only one of them does. (A gap opens up when M2
is calculated antiferromagnetically, but M2 is probably paramag-
netic at room temperature.) M1 and M2 differ mainly through
the V–V dimerisation, which suppresses spin fluctuations. As we
will show elsewhere [129], including ladders considerably im-
proves all of these antiferromagnetic insulators, but discrepancies
remain particularly for La2CuO4. We believe this to be an artefact
of the interaction between spin and charge fluctuations.

FeSe is a heavily studied superconductor with large spin fluc-
tuations: it provides an excellent testbed to compare LDA and
QSGW. Nonmagnetic calculations for LDA and QSGW are shown
in Table 7. QSGW improves on the LDA, but discrepancies with
ARPES are much larger than for, e.g. elemental Fe [115]. That
LDA and QSGW should be different is readily seen from the k
dependence of the Z factor, shown in Fig. 28. Local potentials such
as the LDA cannot incorporate such an effect.

Spin fluctuations are important, but QSGW does not ade-
quately capture them. They can be incorporated in a mean-field
manner by constructing a Special QuasiRandom Structure [140]
with, in this case, three spin-up and three spin-down Fe atoms.
Two magnetic solutions can be stabilised: a low-moment and
high-moment solution. Quasiparticle spectra in the latter case
are far removed from experiment, so we consider only the low-
moment solution. The moments on each Fe site are different, with
a range |m| = 0.2± 0.15μB. The addition of magnetic terms shift
QP levels closer to ARPES measurements, but a significant dis-
crepancy with experiment remains. In Section 5 these results are
revisited where local, high-order diagrams in spin are included.

These two systems show concretely how the shortcomings of
GW become apparent when spin fluctuations are important. The
simplest diagram beyond GW, the T matrix, was first considered
in an ab initio framework by Aryasetiawan and Karlsson [141];
more recently it was implemented in the spex code [142]. If spin
fluctuations are not strong, as seems to be the case for Fe and Ni,
such an approach seems to describe spin excitations fairly well,
though comparisons with experiments are too sparse to draw

Fig. 28. The orbitally resolved quasiparticle renormalisation (Z) factors for FeSe

Fe-3d orbitals along the high-symmetry Z-A line in tetragonal Brillouin zone; dxy

(black), dyz (blue), dz2 (green), dxz (magenta), dx2−y2 (red). (For interpretation of

the references to colour in this figure legend, the reader is referred to the web

version of this article.)

any strong conclusions yet. For strong spin fluctuations, e.g. in
La2CuO4 or other unconventional superconductors such as FeSe, it
seems probable that many kinds of diagrams are needed, though
the effective vertex entering into those diagrams is expected to
be mostly local. Dynamical Mean Field Theory is ideally situated
to address such cases; it is discussed in Section 5.

Our view is that QSGW with ladders in W are sufficient for
reliable description of susceptibilities within the charge channel,
especially when ladders are included in the self-consistency cy-
cle [102,129] to make the QSGW H0. In the spin channel DMFT
contributes the dominant missing diagrams to the self-energy,
and the susceptibilities can be reliably determined from local
vertices, connected to k-dependent bubble diagrams.

5. DFT+DMFT and QSGW+DMFT

Hartree–Fock and DFT are band structure theories: electrons
are treated as though they are independent; in solids electron
states are Bloch waves. GW includes correlations that go be-
yond the Bloch picture; still it is a perturbation around the
Bloch description. In Landau Fermi-liquid theory, electrons are
replaced by ‘quasi-particles’ which are adiabatically connected to
the single-particle Bloch-wave representation of electrons. This,
by construction, is a theory for excited states that adds per-
turbative corrections to the band picture. In Landau adiabatic
theory electrons can have an effective mass, which is different
from its free mass, and additionally, lifetime broadening effects
far from the Fermi energy. One extreme case of this scenario is
when the low-energy quasi-particle vanishes (without magnetic
ordering) and the atomic-like, high-energy excitation emerges
and effective mass at the Fermi energy tends to ∞. In effect,
this is an emergent, non-adiabatic, feature where single-particle
spectral weight flows to higher energies to conserve the total
spectral weight and subsequently leads to suppression of low-
energy quasi-particles. Popular rigid-band techniques [143–150]
would catch the physics of suppression of quasi-particles at Fermi
energy, however, would fail to conserve the spectral weight since
a dynamic self-energy (Σ(ω)) is absent from those theories.

DMFT was formulated as an effective theory that smoothly
interpolates between the Bloch-wave limit and atomic limit. It
is formulated as a local impurity embedded self-consistently in
a medium or bath, and was introduced in a seminal work by
Metzner and Vollhardt [151] in late 80s. Several other works
from Mueller-Hartmann [152], Brandt and Mielsh [153], Jarrell
et al. [154] and Georges et al. [155] helped to build a strong
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foundation for DMFT. The formulation and the implementation
became popular through the seminal work by Georges et al. [156]
and later emerged as a way to study strong correlations in real
systems, supplementing an ab initio LDA framework by em-
bedding a model Anderson impurity hamiltonian inside an LDA
bath [157].

An implementation of DMFT has three components: the parti-
tioning of the Hamiltonian into impurity + bath, a means to solve
the impurity problem, and the bath-impurity self-consistency.
The bath is essential because correlated states of interest have
both atomic-like and Bloch-like properties with interesting low-
and high-energy excitations. Through self-consistency the impu-
rity feeds back on the bath, and ensures that all the symmetries
of the entire system are preserved. In Questaal, QSGW or DFT
can act as the bath. We have interfaces to two local solvers:
the hybridisation expansion flavour of continuous time Quantum
Monte Carlo (CT-QMC) from TRIQS [28] and the CT-QMC written
by Kristjan Haule [27].

For the partitioning, some correlated subspace must be iden-
tified and this is done using projectors. Usually the subspace
is derived from atomic-like d- or f -states of a transition metal
or f shell element. For projectors maximally-localised Wannier
orbitals have been widely used [158,159]. We have so far adopted
the projection into partial waves of a particular � in an augmenta-
tion sphere [160]. There are strong reasons to prefer this scheme:
the basis set is atom-centred and very localised with a definite �,
which is the Hilbert space where the correlations are strong. The
less localised the basis, the more it contains weakly correlated
components (e.g. O-p states in transition metal oxides). Too much
population of the correlated subspace with uncorrelated parts
conflicts with the physical interpretation of separation of bath
and interacting subspace and can reduce the reliability of the
method [161]. Moreover, very localised basis functions have a
much weaker energy-dependence. As a consequence, with a very
local projector it is possible to construct an effective interaction
over a wide energy window, reducing the frequency-dependence
of the effective interaction, and essentially recovering the par-
tial waves in augmentation spheres [17]. Partial waves closely
resemble atomic orbitals, so solving a purely locally correlated
Hamiltonian with the approximation of single-site DMFT (local
self energy) is a good approximation.

The thorniest issue is how to construct the effective local
Hamiltonian. It requires three related quantities: definition of the
local Green’s function, an effective Coulomb interaction U , which
is partially screened by the bath, and the double counting (DC)
correction.

In a fully ab initio QSGW + DMFT theory, these quantities must
be computed from the theory itself, but how to accomplish this
is far from a settled issue. Questaal can estimate the Hubbard U
and J using the constrained random-phase approximation [162]
where the internal transitions between states included in the
DMFT subspace are removed. A fully internally consistent theory
requires a frequency-dependent U(ω), but available solvers can
only solve the local impurity problem with such a U in the
density–density channel. Haule’s prescription for excluding states
in a large energy window partially mitigates this issue, since U
is closer to bare and nearly energy-independent [17]. (It makes
another approximation, namely that not all the states excluded
from screening are included in the impurity problem; these states
are effectively treated only at the bath level.)

5.1. Questaal’s implementation of DMFT

Questaal does not have its own DMFT solver. It has an interface
to Haule’s CTQMC solver [27] and to the TRIQS library [28].
Haule’s CTQMC solver uses singular value decomposition (SVD)

Fig. 29. U(ω) and J(ω) computed using our c-RPA scheme for Ni 3d orbitals

starting from a QSGW bath.

Fig. 30. QSGW + DMFT spectral functions for La2CuO4 (left) and metallic QSGW

+ DMFT spectral functions for doped (x = 0.12) La2−xSrxCuO4 (right) which

shows the classic three-peaked structure with upper and lower Hubbard bands

at around ±2 eV, and an almost dispersionless band at EF .

and TRIQS uses Legendre polynomial basis as compact represen-
tations for single-particle propagators.

A fully ab initio implementation is a work in progress, that will
be reported on elsewhere. Within Questaal U, J can be calculated
within constrained RPA, following Ersoy et al. [163]. It has been
tested on several materials; for instance, the Hubbard U and
Hund’s J for Ni are shown in Fig. 29 which agrees well with
Ref. [163]. The Hubbard U for FeSe using QSGW gives U(0) =
3.4 eV, also close to what has been found in the literature [162].
In practical calculations today, we use a static U and adopt the
fully localised limit (FLL) for double counting (Section 3.8).

We have used QSGW+DMFT to study single- and two-particle
properties of the hole doped cuprate, La2−xSrxCuO4. The parent
compound at x = 0 is a Mott insulator; while QSGW calcu-
lated non-magnetically leads to a metallic band structure, and
an insulator with a wide gap when done antiferromagnetically
(Fig. 27). The spins on the Cu in La2CuO4 fluctuate strongly and
corresponding spin fluctuation diagrams are missing from QSGW.
DMFT incorporates the local spin fluctuation diagrams with an
exact solver (typically CTQMC), for the prescribed local Hamil-
tonian, and it can in principle, and indeed does, open a Mott
gap [17,86] (charge blocking without magnetic ordering). The five
Cu-3d partial waves in the augmentation spheres comprise the
correlated subspace, and the 3dx2−y2 splits off to form the gap
(Fig. 30), which is the paramagnetic analogue to the antiferro-
magnetic QSGW band structure (Fig. 27). We solve the correlated
impurity Hamiltonian in the Cu-3d orbitals using the single-
site CT-QMC solver within paramagnetic DMFT. Embedding local
Green’s functions into the QSGW bath, we can compute the non-
local Green’s functions dressed by the local DMFT self energy.
They can be used to make spectral functions and the bubble
diagrams entering into response functions (Section 6.3).

On doping, La2−xSrxCuO4 undergoes a metal–insulator tran-
sition when x is sufficiently large. At high temperatures, the x
= 0.12 system is known to be metallic. We recover a metallic
solution in our QSGW+DMFT for x = 0.12, using a virtual crystal
approximation for x. We find the classical three peak spectral
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feature with atomic-like upper and lower Hubbard bands and a

low energy incoherent quasi-particle peak at EF (Fig. 30). This

structure is typical to strongly correlated metals in proximity of a

localisation–delocalisation transition [156,164]. Comparing with

the insulating case at x = 0, the spectral features for x = .12 has

a natural explanation in the fact that spectral weight flows to low

energies under doping.

Single-site DMFT incorporates the local spin fluctuation

diagrams through a local self energy. It cannot explain Fermi-

arc features of weakly hole-doped cuprates and momentum-

dependent suppression of electron pockets in de-twinned FeSe. In

weakly hole-doped cuprates Fermi arc emerges, most likely, due

to spin fluctuations which are longer ranged in nature and the

corresponding diagrams are absent from single-site DMFT. Simi-

larly, in FeSe, there are nematic fluctuations (which are inherently

nonlocal), and the corresponding diagrams are absent from our

theory. To incorporate such diagrams one needs to go beyond the

single-site DMFT; cluster DMFT [165] or diagrammatic techniques

like Dual Fermions [166].

6. Susceptibilities

Susceptibilities play a central role in many kinds of mate-

rial properties. In the static limit they reduce to the second

derivative of the total energy with respect to the correspond-

ing perturbation. This section presents some general properties

of linear susceptibilities, focusing on the transverse spin sus-

ceptibility χ+−, which is the magnetic analogue of the better

known charge susceptibility. The formalism of the latter is very

similar, but it is simpler as it concerns the response to a scalar

potential. Also in the spin case, there is no analogue to the

lowest order diagram (time-dependent Hartree approximation)

in the charge case. To characterise the magnetic susceptibility

beyond the noninteracting case requires a vertex such as the T

matrix [141].

Here we outline some general features; other sections explain

how they are implemented in Questaal. The spin susceptibility

relates the induced moment δm to a perturbation δB:

δm(r, t) = −
∫

dt ′d3r ′χ (r, r′, t − t ′)B(r′, t ′) (177)

χ is a three-component tensor, χαβ with α and β Cartesian

coordinates. The charge susceptibility has the same form, only the

perturbing potential is the scalar electric potential, which induces

a (scalar) charge density. In general, there can be cross-coupling

between spin and charge, so that the full χ is a 4 × 4 matrix

connecting spin and magnetisation.

We restrict ourselves to linear perturbations around an equi-

librium point, where the unperturbed system is time invariant. χ

is a function only of the difference t − t ′, so its Fourier transform

depends on a single frequency ω. If in addition the reference

system is in a periodic lattice, its Fourier transform space depends

only on the difference in translation vectors, whose Fourier trans-

form has a single q within the Brillouin zone with r and r′ limited

to a unit cell. Denoting χ̂ (q, r, r′, ω) as χ Fourier transformed

in both space and time, χ̂ is typically what is measured by

spectroscopy.

6.1. Spin susceptibility

A perturbation causes the system to generate an internal field

Bxc, which adds to the total field, Btot = Bext + Bxc

δBαtot = δBαext +
∑
β

δBαxc

δmβ
δmβ (178)

In collinear spin structures (all spins parallel to z), transverse and

longitudinal components are decoupled. Moreover, by rotating

from (x, y) to x+− = x ± iy, the three-component χ becomes

diagonal with transverse elements χ+−, χ−+, and longitudinal

element χ zz . Eq. (177) also applies to the charge channel with

the substitution B → V and m → n, so that the full χ becomes

a 4 × 4 matrix, as noted above. In general χ zz is coupled to

the charge channel, while χ+− and χ−+ are not. Also if the

equilibrium system is nonmagnetic, χ+− = χ zz . In this work we

are concerned only with χ+− and the charge susceptibility χQ ,

or alternatively the dielectric function.

The ‘‘magnetic’’ kernel Ixc = ∂Bxc/∂m is in general a function

of (r, r′, ω), though it must satisfy a sum rule [110]. In many-body

perturbation theory, the analogue of I is the most challenging

quantity to obtain, but in the adiabatic time-dependent LDA it is

static and local, and is written in the transverse case as

I+−
xc (r) = Bxc(r)

m(r′)
δ(r − r′) (179)

Eq. (177) relates m to either Bext or Btot

δm = χ0 δBtot = χ δBext (180)

when χ0 and χ are the bare (noninteracting) and full susceptibil-

ities, respectively. The preceding equations imply the relation

[χ (r, r′, ω)]−1 = [χ0(r, r′, ω)]−1 − Ixc(r, r′, ω) (181)

The noninteracting susceptibility can be computed by linearising

Dyson’s equation for the perturbation δBext

−χ+−
0 (r1, r2, ω) = G↑(r1, r2, ω) ⊗ G↓(r1, r2,−ω) (182)

⊗ indicates frequency convolution: f (ω) ⊗ g(ω) = i/2π
∫ ∞

−∞ dω

f (ω − ω′)g(ω′). We use ↓ for spin 1 and ↑ for spin 2. Similar

equations with permutations of ↑ and ↓ may be written for the

other components of χ0. In the Lehmann representation χ+−
0

involves the product of four eigenfunctions

χ+−
0 (q, r1, r2, ω) =

occ∑
kn↓

unocc∑
k′n′↑

Ψ ∗
kn↓(r1)Ψk′n′↑(r1)Ψ ∗

k′n′↑(r2)Ψkn↓(r2)
ω − (εk′n′↑ − εkn↓) + iδ

+
unocc∑
kn↓

occ∑
k′n′↑

Ψ ∗
kn↓(r1)Ψk′n′↑(r1)Ψ ∗

k′n′↑(r2)Ψkn↓(r2)
−ω − (εkn↓ − εk′n′↑) + iδ

(183)

where k′ = q + k. We note in passing, that in a proper MBPT

formulation of susceptibility, e.g. the T-matrix [141,142], is a

four-point quantity: χ is solved by a Bethe–Salpeter equation

involving W and a four-point analogue of Eq. (183), which at the

end is contracted to two coordinates.

The Questaal code at present does not yet have a perturbative

(T matrix) approach for the spin susceptibility, although one was

recently reported in a QSGW framework [167]. It does have the

ability to include the charge analogue of ladder diagrams to solve

a Bethe–Salpeter equation for the dielectric function [116]. DMFT

can also be used to build a two-particle Green’s function (or

susceptibility), including all local diagrams, from which a local

four-point vertex can be extracted that replaces I .

The first QSGW implementation of magnetic response func-

tions [110] was designed for local moment systems, by which

is meant systems with rigid spins (RSA): when perturbed by

a transverse δB⊥
ext m rotates rigidly without changing shape.

(Archetypal examples are Fe, NiO, and MnAs [110].) In such a case

the representation of χ+−(r, r′, ω) simplifies to

m(r)χ+−(ω)m(r′) (184)
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and I can be completely determined by the sum rule [110],

thus avoiding a diagrammatic calculation for it. This is Questaal’s

present perturbative approach to computing χ .

In the RSA χ+−(r, r′, ω) is discretised to a lattice model and

can be written as χ+−
R,R′ (ω). This makes it convenient to construct

a Heisenberg model

H =
∑
RR′

JRR′δmRδm′
R (185)

and extract JRR′ from χ as

JRR′ = δ2E

δmRδmR′
= [χ+−

R,R′ (ω = 0)]−1 (186)

The δm are understood to be transverse tomR. Thus QSGW can be

used to determine coefficients JRR′ entering into the Heisenberg

model. This basic idea, with some enhancements, is what is

described in Ref. [110].

6.1.1. Magnetic exchange interactions in the ASA

Section 6 presents general formulations of the spin and charge

susceptibility. In the ASA, the static transverse susceptibility is

implemented in the lmgf code in a formulation essentially sim-

ilar to the rigid-spin approximation described there, with an

additional ‘‘long-wave’’ approximation [168]

χ (q) ≈ I χ−1(q) I (187)

Using the sum rule, I need not be calculated but inferred from χ0.

It is possible to compute χ0 from the full Green’s function,

Eq. (57). But lmgf implements the classic Lichtenstein formula

[169], in which exchange parameters JRR′ are derived in terms

of the auxiliary g and the ‘‘magnetic force’’ theorem. This latter

says that the change in total energy upon spin rotation simplifies

to the change in eigenvalue sum; it is a special instance of

the Hellmanm–Feynman theorem. It was realised sometime later

[168] that the Lichtenstein formula is correct only in the q →
0 limit (the long-wave approximation), beginning to deviate at

around k = 0.25·2π/a in elemental 3d magnets. In the notation

of this paper, Lichtenstein’s formula reads

J�
⊥
RR′ = 1

2π

∫ εF

dε ImTrL

[
δPR�

(
g

↑
RLR′L′ g

↓
R′L′RL + g

↓
RLR′L′ g

↑
R′L′RL

)
δPR′�′

]
(188)

Questaal implements it for crystals, and for alloys within the CPA.

See Refs. [49,170,171] for a detailed description.

6.1.2. Comparing QSGW and LDA spin response functions

The GW code has an implementation of spin response func-

tions within the rigid spin approximation as described Section 6.

This avoids direct calculation of the vertex, and is very simple,

but is restricted to local-moment systems. Ref. [110] applied this

approach to NiO, MnO and MnAs, with excellent results.

Questaal has the ability to compute spin waves (SWs) di-

rectly, or to extract parameters J entering into the Heisenberg

model, Eq. (185). One application – MnxGa1−xAs alloys – are

particularly instructive because they continue to attract inter-

est as a spintronics material. Here we will compare the (ASA)

Lichtenstein formula against full-potential, rigid-spin result using

both LDA and QSGW Hamiltonians. Computing properties for

random alloys of any x is feasible within the ASA, via either

the Lichtenstein formula or relaxing large structures using spin

statics, Section 2.19. But a similar study is not feasible today in

QSGW, so instead we consider four-atom Special QuasiRandom

Structures [140] to simulate Mn0.25Ga0.75As and Mn0.75Ga0.25As,

and also the x = 1 case. Mn’s large local moment of around

Fig. 31. Left: spin waves in Zb-MnAs (eV) calculated in the GW code with

QSGW potential (green) and LDA potential (blue), and also in the ASA-LDA

with the Lichtenstein formula, Eq. (188). Right: Red diamonds show Heisenberg

parameters J Eq. (185) calculated in the ASA with Lichtenstein formula for a

MnGa3As4 SQS structure (top), MnGa2As2 SQS structure (middle), and Zb-MnAs

(bottom), as a function of neighbour distance. In the SQS structures, there can be

inequivalent neighbours with the same connecting vector. LDA results calculated

from the GW machinery look similar. Green squares: same parameters in ZB-

MnAs using as QSGW potential. J is in mRy. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this

article.)

4μB makes the approximations in Questaal’s QSGW magnetic

response good ones.

DFT predicts MnxGa1−xAs to become a spin glass when x �
0.35, though Tc depends on what fraction of Mn go into inter-

stitial sites, and how the Mn are ordered on the Ga sublattice.

One application of the Questaal code was to show how Mn in

alloys that favour ordering on the (201) orientation can optimise

Tc [172]. In the pure Zb-MnAs case, x = 1, LDA predicts to be

strongly antiferromagnetic, with negative spin wave frequencies

everywhere in the Brillouin zone (left panel, Fig. 31). The figures

show SWs calculated in the ASA using the Lichtenstein formula,

Eq. (188). Its long-wave approximation should be accurate for

small q, but it underestimates the strength of J for large q [168].

This is apparent in Fig. 31, comparing the LDA and Lichtenstein

formulas.

This finding seems to contradict a measurement on a quantum

dot of Zb-MnAs (Ref. [173]), which predicts it to be ferromagnetic.

Indeed, QSGW calculations of the same system show that spin

wave frequencies are everywhere positive (left panel, Fig. 31). Tc
based on Heisenberg parameters extracted magnon peaks in the

SW spectrum is positive, of order 600k (somewhat larger than

what Okabayashi observed).

Exchange parameters J were extracted for three compositions,

in LDA and for the pure MnAs case, in QSGW (right panel, Fig. 31).

At 25% composition J is still positive, but the nearest-neighbour

J is already very small. At 50%, J is negative on average, and

a spin glass is predicted. In pure Zb-MnAs, J oscillate in sign

with neighbour distance, but the nearest neighbours (particularly

along [001]) are strongly antiferromagnetic, leading to negative

frequencies in the SW spectrum. QSGW shows a marked contrast.

Only the NN is important, with J > 0. QSGW and LDA are so

different because the LDA underestimates the exchange splitting

between spin-up and spin-down 3d states, by ∼1 eV. This pushes

the minority d too close to EF , and gives rise to long-range,

antiferromagnetic interactions.

6.2. Optical response functions in Questaal

The linear optical response is described by the imaginary

part of the dielectric response function ε2(ω) or equivalently
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the real part of the frequency dependent conductivity σ1(ω) =
−iωε2(ω)/4π at frequencies in the ultraviolet–visible (UV–VIS)

range. From it one can obtain the real part ε1(ω) by the Kramers–

Kronig relation and hence other relevant functions such as the

complex index of refraction ñ(ω) = √
ε1(ω) + iε2(ω) = n(ω) +

iκ(ω) with κ(ω) the extinction coefficient and n(ω) the real part

of the index of refraction. The reflectivity R(ω) is then obtained

via the Fresnel equations. For instance, the normal incidence

reflectivity

R(ω) =
∣∣∣∣ ñ(ω) − 1

ñ(ω) + 1

∣∣∣∣2 (189)

is a directly measurable quantity. The absorption coefficient

α(ω) = 2ωκ(ω)

c
= ωε2(ω)

n(ω)c
(190)

is measurable in transmission and spectroscopic ellipsometry

allows one to measure directly ε1(ω) and ε2(ω).

There are several levels of theory at which one can obtain

the optical dielectric function supported in the Questaal package.

Typically we need the macroscopic dielectric function:

εM (ω) = [ε−1
G=G′=0

(q → 0, ω)]−1 (191)

This is essentially obtained as a byproduct of the GW method (see

Section 4). One way to obtain this limit is to take a small but

finite q and use lmgw to obtain the plane wave matrix elements of

the inverse dielectric function. The direction of the finite q then

defines the specific component of [ε2(ω)]αα which is actually a

tensor. If one simply calculates instead

εG=G′=0(q → 0, ω) (192)

one obtains the value without local-field corrections.

Alternatively, however, one can take the limit q → 0 analyti-

cally and arrive at the Adler–Wiser formula in the RPA,

[ε2(ω)]αβ = 8π2e2

Ωω2

∑
n

∑
n′

∑
k∈BZ

fnk(1 − fn′k)

× 〈ψnk|vα|ψn′k〉〈ψn′k|vβ |ψnk〉δ(ω − εn′k + εnk) (193)

Here Ω is the unit cell volume and fnk are the occupation num-

bers, which in principle are given by the Fermi function at finite

temperature but are in practice taken to be 0 or 1 for empty

and occupied states respectively. The vα are the components of

the velocity operator v = ṙ = (i/h̄)[H, r]. For systems with

at least orthorhombic symmetry the ε2(ω) tensor is diagonal

in the Cartesian components. This well-known equation in the

independent particle and long-wavelength form gives the ε2(ω)

in terms of matrix-elements of the velocity operator and ver-

tical interband transitions and can also be obtained from the

Kubo formula for the optical conductivity. Within the all-electron

methods (no non-local pseudopotentials) and if GW -self-energies

are not included, the velocity matrix elements are equivalent to

the momentum matrix elements v = p/m and can be obtained

straightforwardly from the ∇ operator matrix elements within

the muffin-tin spheres and using a Fourier transform for the

smooth part of the wave functions in the full-potential implemen-

tation. The matrix elements of the ∇ operator between spherical

harmonics times radial functions inside the muffin-tin spheres

is obtained using the well-known gradient formula [174]; more

generally, see Section 3.2 and Appendix D.

When the non-local self-energy operator or its Hermitian ver-

sion are included, however, (im/h̄)[H, r] is no longer equal to the

momentum operator. To correct this, the approximation proposed

by Levine and Allan [175,176] can be used, which consists in

rescaling the matrix elements by a factor (εn′k − εnk)/(ε
LDA
n′k −

εLDAnk ). This is exact when the LDA and GW eigenfunctions are
the same, and it works well in weakly correlated systems. How-
ever, it breaks down when correlations become strong, as in
NiO. Questaal also has an approximate form for the proper non-
local contribution to the velocity operator. As of this writing,
it takes into account only intercell contributions. This approx-
imation apparently does not work well in strongly correlated
systems, and results with full matrix element will be reported in
due course [129].

The long-wave length approximation without local field (or
excitonic) effects of ε2(ω) can thus be obtained both in the ASA lm
and the full-potential lmf codes and, when reading in the QSGW
self-energy, can use the corrected quasiparticle energies rather
than the Kohn–Sham eigenvalues. While approximate, it has the
advantage that the q → 0 limit is taken analytically and that
one can decompose the optical response in contributions from
each occupied-empty band pair. By furthermore plotting vertical
interband transition energies for any given pair, one can analyse
where the bands are parallel and give their largest contribution
to the joint density of states. This provides a way to relate the
critical points or van-Hove singularities in the optical response
to particular interband transitions. lmf and lm use this to enable
decomposition into band-pair contributions if desired; it can also
resolve contributions to ε by k.

The code also allows one to calculate dipole optical matrix
elements between core states and valence or conduction band
states and this can be used to model X-ray absorption (XAS) and
emission (XES) spectroscopies. Furthermore, one can calculate
Resonant X-ray Emission Spectroscopy (RXES) also known as
Resonant Inelastic X-ray Scattering (RIXS) using the Kramers–
Heisenberg equations [177]. The interesting point about this spec-
troscopy is that it allows to probe transitions between valence
and conduction band states of the same angular momentum on
a given site. In fact, let us say one considers as X-ray edge the
K-edge or 1s core level, then the RXES probes transitions between
valence bands and conduction bands of p angular momentum on
the site of core hole that are in resonance with the difference of
the absorbed and subsequently coherently emitted X-ray photon
transitions from these conduction and valence states to the same
core-hole. In optical measurements in the VIS-UV region, on the
other hand, one probes only � to �±1 dipole allowed transitions.
Using p-levels as core hole RIXS thus probes d − d transitions,
which often may be strongly influenced by many-body effects.
The Kramers–Heisenberg formula assumes the wavevector of the
X-ray can be neglected so that only direct transitions at the
same k-point are allowed and within this approximation it al-
lows one in principle to extract band-dispersions in a manner
complementary to ARPES.

It was established 20 years ago that RPA approximation to
the dielectric function can be dramatically improved by adding
ladder diagrams via a Bethe–Salpeter equation [127,128] (BSE)
in simple sp semiconductors. Traditionally the method is used
by substituting GW eigenvalues for the DFT ones obtained from
one-shot GW (Section 4). For simple sp semiconductors where
LDA and GW eigenfunctions are similar, this works well. It does
not, however, when correlations become strong, e.g. in Cu2O,
where it was shown that ε(ω) calculated from the BSE starting
from a QSGW reference described the measured spectrum quite
well [178]. Recently Cunningham et al. studied optics from BSE
using QSGW as reference for a number of systems, and found
very good agreement with experiment even in correlated sys-
tems such as NiO [116] and the monoclinic phase of VO2 [119].
However, when spin fluctuations are large and QSGW does not
describe the underlying band structure well, as in La2CuO4 (see
Section 4.4), the description begins to break down. Recently Cun-
ningham has added ladders to W in the QSGW self-consistency
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Fig. 32. (left) Real part of χ (q, ω = 0) for La2CuO4 showing a dominant peak at q
= (π, π ). (middle) Imaginary part of χ (q, ω) (arbitrary units) for La1.88Sr0.12CuO4

showing that spin fluctuations get gapped at (π, π ) below 145 K. (right) Nodal

superconducting gap structure for the hole-doped La2CuO4 showing dx2−y2 gap

symmetry. The colour bar shows the negative (in blue) and positive (in red)

superconducting gap magnitudes in arbitrary units passing through node where

the gap closes (in yellow).

cycle. This seems to dramatically improve on the description of
ε(ω), even in an extreme case such as La2CuO4. These capabilities
are embedded in the standard Questaal distribution.

In the ASA code lm second harmonic generation coefficients
can also be calculated but this portion of the code has not recently
been updated to become applicable in the full-potential lmf
implementation. The calculation of NLO coefficients is a bit more
complex even within the long-wavelength independent particle
approximation because of the need to include both intra- and
inter-band transitions and disentangle them in a careful manner.
The way to obtain divergence free expression was described in
a series of papers by John Sipe and coworkers [179–181]. The
version implemented in the code [182] uses Aversa’s length gauge
formalism. The intra-band matrix elements ri and inter-band re in
this formalism are

〈nk|ri|mk′〉 = δnm[δ(k − k′)ξnn + i∇kδ(k − k′)]
〈nk|re|mk′〉 = (1 − δnm)δ(k − k′)ξnm (194)

with

ξnm ≡ (2π )3i

Ω

∫
Ω

d3r u∗
nk(r)∇kumk(r) (195)

in which Ω is the volume of the unit cell and unk(r) is the
periodic part of the Bloch function. The ξnn can be recognised to
be a Berry connection. The manipulation of the matrix elements
of ri in commutators is non-trivial but described in detail in
Aversa and Sipe [179]. An update of these parts of the code to
incorporate them in lmf and to be made compatible with QSGW
band structures as input is intended.

See also Section 6.3.

6.3. Response functions within DMFT

With a converged self-energy, the CTQMC can sample the two-
particle Green’s function [183] to obtain local spin and charge
vertices. Finally, the non-local Bethe–Salpeter equations (BSE) in
spin, charge and superconducting channels [183] can be solved
from a local vertex and a non-local polarisation bubble in the
respective channels. This allows us to compute the corresponding
real [86] and imaginary part of susceptibilities [86,184] in those
channels. In Fig. 32 we show the real part of the spin suscepti-
bilities in x = 0 La2−xSrxCuO4, adapted from Ref. [86]. There is a
peak at q = (π, π ) suggesting dominant Néel anti-ferromagnetic
spin fluctuations (Fig. 32).

We compute the imaginary part of the spin susceptibilities
along the line (h, k, l) = (0, 1/2, 0)−(1, 1/2, 0) and find that the
peak at (1/2, 1/2, 0) gets spin gapped (vanishing weight at ω =
0) when x = 0.12 below a certain temperature, consistent with
experimental observations [185]. Additionally, solving the BSE in
the p-p superconducting channel we recover a superconducting

Fig. 33. Questaal strategy for solving the many-electron problem.

gap function with dx2−y2 symmetry (right panel, Fig. 32). Our

QSGW+DMFT implementation can be successfully applied to a

wide range of systems; weakly correlated metals [115], strongly

correlated metals [184] and correlated Mott insulators [86].

7. Towards a high-fidelity solution of the many-body problem

Solving the many-electron problem with high-fidelity is a

formidably difficult task. Our strategy to accomplish this relies

on the following premises:

(i) many-body solutions are best framed around a non-

interacting starting point, and we believe that QSGW is the

best choice among them, by construction;

(ii) charge fluctuations governed by long-range interactions,

but they can be treated accurately with low-order pertur-

bation theory; and

(iii) spin fluctuations are governed mostly by single-site effec-

tive Hamiltonian (or action). The short-range interactions

can be too strong to handle perturbatively, as can be seen

by the non-analytic behaviour of one- and two-particle

quantities, and their high degree of sensitivity to small per-

turbations, e.g. change in temperature. Nonlocal contribu-

tions are much weaker and can be treated in perturbation

theory.

Charge and spin fluctuations have very different characteristic

energy scales: plasmon frequencies are typically of order 5 eV

while typical magnon frequencies are of order 100meV or less.

As a consequence they mutually interact weakly so that the self-

energy is predominated by independent contributions from spin

and charge channels. This is the premise of the Bose Factor Ansatz

which has been found to be effective in a DMFT framework [186].

We have framed a hierarchical strategy around these premises

(Fig. 33). At the lowest level is QSGW, which depends only min-

imally on DFT. We think this is of central importance to frame a

consistently reliable theory, for reasons we have pointed out in

Section 4.1.

Referring to the figure, QSGW is adequate for many purposes.

When not, there are two routes: a perturbative, nonlocal path

(1′, 2′, 3′) : low-order diagrams are added to W to make (W →
Ŵ ). To date we have added ladders to the charge channel; in

progress is a project to add the electron–phonon interaction

perturbatively [187], effectively adding another bosonic contribu-

tion to W . Also possible, but not yet accomplished in Questaal,

is to add low order spin fluctuation diagrams such as the T

matrix. All of them make a better G (G++ in the Figure). The

second path begins as nonperturbative, local path (1). From a

local interaction nonlocal susceptibilities can be constructed (2).

We have shown a few instances of this in Section 6.3, and the

results are remarkably good in cases we have studied so far,

e.g. Ref. [184]. Finally, the susceptibilities can be used to add

a new diagrammatic contribution (3) to G (G++). The simplest

addition is Dual Fermions [166].

Perhaps more satisfactory would be to have a single, unified

approach, for example the Diagrammatic Monte Carlo (DiagMC)
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method [188]. But it is formidably difficult to make this method

work practically in real systems, because of the enormous time

and memory costs that realistic (as opposed to model) Hamiltoni-

ans require. We think that the JPO basis alluded to in Section 3.12

is perhaps the most promising framework to realise DiagMC for

realistic Hamiltonians. Even in such a case an optimal approach

would likely closely resemble Fig. 33, but with some cross-linking

between paths (1) and (1′), using a diagrammatic Monte Carlo

solver only to include nonlocal diagrams beyond the RPA.

8. Software aspects

The software package has a long history and has featured a

high level of modularisation from its early days. The different

parts interoperate through shared interfaces and file data formats.

The implementation is mainly in procedural Fortran 77. Fixes

and improvements as well as new feature code uses modern

Fortran features (f2008+) for convenience as well as improved

reliability and interoperability. Despite f77’s shortcomings and

questionable reputation, sound software engineering practices

have been observed, there is (1) extensive code documentation in

an uniform format, (2) almost no shared mutable state (i.e. com-

mon blocks or module variables); (3) action through side effect

is avoided and data is passed through arguments, (4) unneces-

sary temporary data copies are avoided, (5) data structures are

organised with performance in mind and most heavy number

crunching is outsourced to performance libraries implementing

the BLAS, LAPACK, FFTW3 APIs, (6) the code is written in an uni-

form style with consistent flow patterns. This practice has been

extended through the use of modern version tracking and contin-

uous integration pipelines incorporating regression, coverage and

performance testing, and minimal style policy enforcement.

8.1. Release policy

We use the popular distributed version tracking system git.
The public online hosted repository is hooked to continuous

integration pipelines executing the steps above on each push

event. New features are developed in separate feature branches,

if pushed to the public online repository, these are visible to all

users. When judged safe and reasonably useable, feature branches

are merged to the main development branch (‘‘lm’’). After ex-

tensive use, the development branch is merged to the release

branch (‘‘master’’) and a new release is tagged with a numerical

version in the format vmajor.minor.patchlevel. If/when issues are

discovered and fixed the patchlevel is incremented in a new

tag and the new commits are merged back to the development

branch and from there to the feature branches. This approach

reduces the maintenance burden significantly, however it does

mean that once the minor version is incremented there are no

more patches offered to the older versions and users are strongly

encouraged to update to the latest version available. Since new

developments are effectively done by interested users, and there

is as of yet no contractual support offered, we feel this is a

justified arrangement and in the long term offers users new fea-

tures and improved performance with effectively close to no risk.

The major version is only incremented when a very significant,

possibly incompatible rewrite of core components or the input

system has been performed.

New code and changes to existing code require: (1) coding

standards pass; (2) regression tests suite pass (approximately 350

tests as of this writing); and (3) test coverage of at least 90% of

code.

Table 8
Main executables in the Questaal suite.

Full-potential

blm Automatic input file generator

lmf Main band code

lmfa Free atom solver

lmfgwd Interface to GW

lmfdmft Interface to DMFT

Atomic sphere approximation

lm ASA band code

lmgf ASA crystal Green’s function code

lmpg ASA principal layer Green’s function

lmstr ASA structure constants

tbe Empirical tight-binding

Post-processing and utilities

fplot A graphics package

pldos A DOS postprocessor

plbnds A bands postprocessor

lmchk Checks structure-related quantities

lmdos Assembles partial DOS

lmfgws Dynamical self-energy postprocessing

lmscell Supercell maker

mcx A matrix calculator

Editors

lmf|lm --rsedit Restart file

lm --popted Optics

lmf --wsig∼edit Static Σ0

lmfgws --sfuned Dynamic Σ

lmf --chimedit Magnetic susceptibility

lmscell --stack Superlattice

8.2. Parallelisation

The programmes of the package support multilevel paralleli-
sation multiprocessing through the message passing interface
(MPI) and simultaneous multithreading through performance li-
braries and (when necessary) manual OpenMP directives. The
full-potential program uses multiprocessing mostly during the
Brillouin zone sampling, outside of the q-loop the MPI processes
cooperate on the local potential generation, only multithreading
is available within the processing of each q-point. The empirical
polarisable ion tight binding program offers more flexibility in
this regard by allowing simultaneous assignment of groups of
processes to each q-point as well as spreading different blocks
of q-points over groups of processes [189]. A somewhat similar
approach has been recently developed by Martin Lüders for the
GW code. While it is available in a feature branch it is not yet
considered production ready and has not been merged to the
main branch. The GW code is fairly multithreaded and for systems
of at least 15–20 atoms performs well on many-core wide vector
architectures like Intel’s Xeon Phi family of processors (tested
on x200, Knight’s Landing). A small but performance-critical part
was also ported to Nvidia’s CUDA parallel platform and shows
promising performance on hardware with good double precision
floating point capabilities (for example Titan, P100, V100 com-
pute cards). The polarisable ion tight binding program makes
more extensive use of CUDA; it is described in [189].

To ease parallel IO, classic fortran binary files are being moved
to HDF5 based data files. This also improves interoperability with
various postprocessing environments because the HDF5 libraries
offer bindings to a variety of popular programming languages.

8.3. Usability

An ordinary text command line is all one needs to be able to
use the programmes from the package. The main executables (see
Table 8) support a number of flags, notable among which is ‘‘--
input’’, it causes the full input understood by the executable to
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Fig. 34. Basic input file: a full-potential GGA calculation for HCP Gd with 7μB

l = 3 starting moment. A preprocessor directive (nk) is used to specify the k-

sampling, requesting 1000 points in the full Brillouin zone: the generated grid

(12,12,7) has components corresponding to the relative BZ vector lengths. nk,
like pwemax—which flags the inclusion of LAPW basis functions—can be changed

from the command line. The LMTO basis is to be setup automatically, caused

by the AUTOBAS token in the HAM (Hamiltonian) section.

be printed together with default values and short documentation

for each token. Another very valuable and possibly unique feature

is the ability to override almost any input file value through the

command line through the small embedded preprocessor which

renders the input transparent internally (Fig. 34). A third is the

suite of special-purpose editors (see Table). There is extensive

documentation online together with many tutorials and ready

made example script snippets. Users are encouraged to report

issues and offer ideas through the online ticketing system and

contribute improvements or fixes through pull requests or inline

patches.

8.4. Selected publications from Questaal

In this section we point to original papers where new capabil-

ities were developed within Questaal. Some the concepts are not

original with Questaal, though many are:

• an early DFT calculation of the Schottky barrier height at

a metal/semiconductor contact, showing the importance of

screening at the interface [190];

• an early calculation of alloy phase diagrams combining sta-

tistical theory and DFT [191];

• a systematic technique for deriving force theorems within

DFT [9];

• the first formulation of adiabatic spin dynamics within DFT
[11] and its application to explain the Invar effect in permal-
loy [192];

• a formulation of self-consistent empirical tight-binding the-
ory [29];

• a formulation of Electron Energy Loss Spectroscopy in DFT
[193];

• the original description of Questaal’s full-potential method,
Section 3 [31];

• the original description of Questaal’s all-electron GW ap-
proximation [194], and first calculation of RPA total energy
in a solid [195];

• solution of the Boltzmann transport equation combined
with DFT [196];

• the original formulation of Quasiparticle Self-Consistent GW
[16], demonstration of its wide applicability [83], and a
detailed description [84];

• Questaal’s implementation of nonequilibrium electron
transport in nanosystems [14], and significant applications
to magnetic transport [22,24,25,197,198];

• a fusion of genetic algorithms and exchange interactions to
predict and optimise critical temperatures in multi-
component systems [172];

• Dresselhaus terms calculated ab initio with high fidelity in
zincblende semiconductors [107,109,199];

• first GW description of 4f systems, showing the tendency to
overestimate splitting between occupied and unoccupied f
states [135];

• spin wave theory within QSGW [110];

• prediction of Impact Ionisation rates with QSGW [113];

• the PMT method of Section 3.10 [54];

• a formulation of tunnelling transport within QSGW [112];

• effect of spin–orbit coupling on the QSGW self-energy [77];

• approximate description of transient absorption
spectroscopy within QSGW [200];

• Questaal’s first application of QSGW+DMFT, showing the
need to go beyond GW when spin fluctuations are important
[115];

• addition of ladder diagrams to dielectric function [116];

• Fröhlich contribution to renormalisation of QSGW energy
bands [131]; and

• first application of QSGW+DMFT+BSE for susceptibilities,
Section 6.3 [86].

8.5. Distribution and licensing

Historically the code has been distributed as a set of source
tarballs, in addition registered users can git-clone our online
repository. The code is distributed under the terms of the General
Public license version 3. Contributions under a compatible license
are welcome.

9. Conclusions

Questaal is a descendant of one of the early all-electron meth-
ods developed in Stuttgart. It has gradually evolved to its present
form, but as no paper has been written for any of its stages the
present work is intended to summarise much of this evolution.
Our aim was to present the many expressions from classic works,
combined with previously unpublished recent developments, in a
unified way to show the connections between the parts.

We made an attempt to show Questaal’s strengths as well
as its limits, within varying levels of theory. We think Questaal
provides a very promising path to efficiently solve the electronic
structure problem with high fidelity. It is unique in its potential
to span such a wide range of properties and materials, and with
varying levels of approximation.
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Appendix

An augmentation radius is labelled by symbol s. Subscript R is
used to denote a site-dependent quantity, such as the augmen-
tation radius sR. When R appears in a subscript of a function of r
such as HRL(r), it implies that r is relative to R, i.e. r − R. When a
symbol refers to angular momentum, an upper case letter such as
L, refers to both angular quantum number and magnetic quantum
number parts, � and m.

Appendix A. Definition of real and spherical harmonics

Where spherical harmonics are used, Questaal uses the same
definitions as Jackson [201]:

Y�m(θ, φ) =
[
(2�+ 1)(�− m)!

4π (�+ m)!
] 1

2

Pm
� (cos θ )e

imφ (A.1)

Pm
� (x) = (−1)m

(1 − x2)m/2

2ll!
d�+m

dx�+m
(x2 − 1)� (A.2)

The −m and +m functions are related by [see Jackson (3.51) and
(3.53)]

P−m
� (x) = (−1)m

(�− m)!
(�+ m)!P

m
� (x) (A.3)

Y�,−m(r̂) = (−1)mY ∗
�m(r̂) (A.4)

Questaal mostly uses real harmonics Ylm, which are related to
the spherical harmonics as

Y� 0(r̂) = Y� 0(r̂)

Y�m(r̂) = 1√
2
[(−1)mY�m(r̂) + Y�,−m(r̂)]

Y�,−m(r̂) = 1√
2i

[(−1)mY�m(r̂) − Y�,−m(r̂)] (A.5)

It also uses real harmonic polynomials, [note: substituted l → �]

Y�m(r) = r�Y�m(r̂), (A.6)

which are real polynomials in x, y, and z.
The product of two spherical harmonic polynomials can be

expanded as a linear combination of these functions in the same
manner as ordinary ones

YK (r̂)YL(r̂) =
∑
M

CKLMYM (r̂) (A.7)

YK (r)YL(r) =
∑
M

CKLM rk+�−m
YM (r) (A.8)

The Gaunt coefficients CKLM are nonzero only when k + �− m is
an even integer, so the r.h.s. is also a polynomial in (x, y, z).

Note also, from Eq. (A.6) it follows that if α is purely imaginary

Y�m(αr) = (−1)l Y∗
�m(αr) (A.9)

It also follows from Eq. (A.6) and the discussion around Eq. (138)
that

∇pYL(r) = (2�+ 1)
∑
K

C−
KL;p YK (r)

−∇p(r
−2l−1

YL(r)) = (2�+ 1)
∑
K

C+
KL;p YK (r) (A.10)

for p = 1, 2, 3. r−2l−1YL(r) and YL(r) are ordinary Hankel and
Bessel functions of energy zero. In the top (bottom) line, k = �+1

(k = � − 1). Eqs. (A.10) may be taken as a definition of C
(±)

KL;p.
Similarly

rpYL(r) =
∑
K

{
C
(+)

KL;p + C
(−)

KL;pr
2
}
YK (r) (A.11)
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C (−) is the transpose of C (+) :

C
(+)

KL;p = C
(−)

LK ;p (A.12)

but we keep them separate to distinguish terms that take Y�,m
into Y�+1,m′ and those that map into Y�−1,m′ .

Appendix B. Definition of Hankel and Bessel functions

To distinguish radial parts of spherical functions from solid

versions, we denote spherical parts with subscript �, and solid

functions with subscript L, which refers to both the � and m parts.

The Questaal codes generally follow Methfessel’s definitions

for Hankel and Bessel functions. Writing k = √
E with Im k≥0,

they are related to standard spherical Neumann functions n� and

Bessel functions j� as follows:

HL = YL(−∇) h0(r)

= k�+1n�(kr)YL, E > 0

= (ik)�+1n�(kr)YL, E < 0

JL = k−�j�(kr)YL, E > 0

= (ik)−�j�(kr)YL, E < 0

where

h0 = Re eikr/r and j0 = sin(kr)/kr (B.13)

HL and JL are real for any real energy, and structure constants

Eq. (1) have the property SKL(R) = S∗
LK (−R). They can gen-

erated from the � = 0 functions using the operator YL(−∇);

see, e.g. Eq. (116). The latter are useful for derivations and also

practically, for instance, to express the gradient of ∇HL as a

linear combination of other HL. Eq. (122) shows the explicit

relation to the usual spherical Hankel function of the first kind,

h
(1)

� (z). Spherical harmonics YL can be substituted for the YL in

Eq. (B.13).

For historical reasons, Andersen made a different set of def-

initions, which are convenient for the ASA when E = 0. In this

paper we distinguish them from Questaal’s standard definitions

Eq. (B.13) with a caret. For E ≤ 0 and κ2 = −E,

Ĥ�(κ, r) = −[(2�− 1)!!(κw)−�]−1(iκw)h�(κr)

κ→0−−→ (w/r)�+1

Ĵ�(κ, r) = (−1/2)[(2�− 1)!!(κw)−�]j�(κr)
κ→0−−→ [2(2�+ 1)]−1(r/w)� (B.14)

w is a length scale which can be chosen arbitrarily (usually taken

to be some average of the MT radii).

Appendix C. Calculations in real and reciprocal space

All of the formalism developed so far (with the exception of

APWs) can apply to either real or reciprocal space. At present the

Questaal codes work in reciprocal space, with the exception of

lmpg (Section 2.14), which uses real space for the principal layer

direction. The k mesh is always a uniform mesh. Along any axis

the user can specify whether the mesh has a point coinciding with

k = 0 or points that symmetrically straddle it.

When screened MTO’s are used, Bloch sums are formed di-

rectly from the short ranged orbitals. The standard lmf basis is

not sufficiently short ranged, and Bloch sums are constructed

with an Ewald technique. A Bloch sum of HL is written as a sum

over lattice vectors R:

H
k
L (ε, γ ; r) =

∑
R

eik·R
HL(ε, γ ; r − R)

= eik·r ∑
R

e−ik·(r−R)
HL(ε, γ ; r − R)

The latter sum is periodic in R and can be written as a Fourier

series in the reciprocal lattice vectors G∑
R

e−ik·(r−R)
HL(ε, γ ; r − R) = 1

V

∑
G

eiG·r
ĤL(ε, γ ; k + G)

so that the Bloch-summed HL is

H
k
L (ε, γ ; r) = 1

V

∑
G

ĤL(ε, γ ; k + G)ei(k+G)·r (C.15)

V is the volume of the unit cell.

Appendix D. Matrix elements of Smooth Hankel Envelope
Functions

This Appendix derives analytic expressions for matrix ele-

ments of the overlap, laplacian, gradient and position opera-

tors for a pair of functions Hk2L2 (ε2, rs2; r − R2) and Hk1L1 (ε1, rs1;
r − R1), of the form Eq. (117). The strategy will be to use Par-

seval’s identity, Eq. (140), and evaluate the matrix elements of

functions in reciprocal space. Analytic solutions can be obtained

because products of functions Ĥ∗
2Ĥ1 can be contracted to sums of

functions of the same class, whose Fourier transform is known.

To begin with, consider matrix elements of the overlap and

Laplacian operators. Since ∇2HkL = Hk+1L, matrix elements of the

Laplacian and overlap are different members of the same class.

Using Eqs. (115), (117) and (A.8), products of two ĤkL(q) read

as follows. To shorten the formulas the smoothing radius will be

expressed in terms of γ = r2s /4.

Ĥ
∗
1 Ĥ2 = [̂

h0(ε1, γ1, q)̂h0(ε2, γ2, q)
]

×
{
(−q2)k1+k2 (−1)�1 YL1 (−iq) YL2 (−iq)

}
eiq·R1e−iq·R2 (D.16)

The quantity in curly braces can be expanded into a linear com-

bination of YL using Eq. (A.8),

(−q2)k1+k2 (−1)�1 YL1 (−iq) YL2 (−iq)

= (−1)�1
∑
M

CL1L2M (−q2)k1+k2+(�1+�2−m)/2
YM (−iq) (D.17)

and the radial part in square brackets is similarly expanded

ĥ0(ε1, γ1, q)̂h0(ε2, γ2, q) = (4π )2eγ1(ε1−q2)eγ2(ε2−q2)

(ε1 − q2)(ε2 − q2)

= (4π )2

ε1 − ε2

[
eγ1(ε1−ε2)e(γ1+γ2)(ε2−q2)

ε2 − q2
− eγ2(ε2−ε1)e(γ2+γ1)(ε1−q2)

ε1 − q2

]
= 4π

ε1 − ε2

[
eγ2(ε2−ε1)̂h0(ε1, γ , q) −eγ1(ε1−ε2)̂h0(ε2, γ , q)

]
(D.18)

ε2,ε1→ε−−−−→ (4π )2

(ε2 − q2)2
e(γ1+γ2)(ε−q2) (D.19)

γ = γ1 + γ2. (D.20)

When the factors in Eq. (D.16) are combined, the product is seen

to be the Fourier transform of a linear combination of HkM with

smoothing radius given by γ1 + γ2, at the connecting vector



D. Pashov, S. Acharya, W.R.L. Lambrecht et al. / Computer Physics Communications 249 (2020) 107065 45

R1 − R2. The overlap matrix can then be written〈
Hk1L1Hk2L2

〉 =
∫

H
∗
k1L1

(ε1, γ1; r − R1)Hk2L2 (ε2, γ2; r − R2) d
3r

= 4π (−1)�1
∑
M

CL1L2M

×
{ e−γ1(ε2−ε1)

ε2 − ε1
Hk′M (ε2, γ ;R) − eγ2(ε2−ε1)

ε2 − ε1
Hk′M (ε1, γ ;R)

}
k′ = k1 + k2 + (�1 + �2 − m)/2, γ = γ1 + γ2, R = R1 − R2

(D.21)

The case ε1 = ε2 = ε must be handled specially. In that
limit, the radial part simplifies to Eq. (D.19). This function is not
contained in theHkL pantheon, and a new function must be added

ŴkL(q) = ŵ0(ε, rs; q)(−iq)2kYL(−iq)

ŵ0(ε, γ ; q) = 4π

(ε − q2)2
eγ (ε−q2) = −1

(ε − q2)
ĥ0(ε, γ ; q) (D.22)

ŴkL is closely related to the energy derivative of ĤkL. Differentiate
Eq. (117), with respect to energy:̂̇HkL ≡ ∂ĤkL

∂ε
= ŴkL + γ ĤkL

which are generated from radial functionŝ̇h0(ε, γ ; q) = ŵ0(ε, γ ; q) + γ ĥ0(ε, γ ; q)
(D.23)

This provides a practical scheme to obtain W0L in real space since
analytic forms for H0L and Ḣ0L are known (Eqs. (111) and (112)).
To make WkL for higher k it is readily seen that

Wk+lL(r) = −εWkL(r) − HkL(r)

Using Eq. (D.19) for the quantity in square brackets, Eq. (D.16),
the resulting integral is∫

H
∗
k1L1

(ε, γ1; r − R1)Hk2L2 (ε, γ2; r − R2) d
3r =

4π (−1)�1
∑
M

CL1L2MWk′M (ε, γ ;R) (D.24)

where k′, γ and R the same as in Eq. (D.21). Note that Eq. (D.24)
encompasses matrix elements between two generalised Gaus-
sians, by virtue of Eq. (133), Hk+1L(ε = 0) = −4πGkL.

D.1. The momentum and position operators acting on a smooth
Hankel function

Following the usual rules of Fourier transforms, the gradient
operator ∇r and position operator r act in reciprocal space as
follows. Use the definition Eqs. (115) and (117) with Eq. (A.11)
to obtain

∇p HkL(ε, γ ; r) = 1

(2π )3

∫
ĤkL(ε, γ ; q)∇eiq·r d3q

= − 1

(2π )3

∫
eiq·r (−iq) ĥ0(ε, γ ; q)YL(−iq) d3q

= − 1

(2π )3

∫
d3q eiq·r ∑

M

{
C
(+)

ML;pĤkM (q) + C
(−)

ML;pHk+1M (q)
}

= −
∑
M

{
C
(+)

ML;pHkM (r) + C
(−)

ML;pHk+1M (r)
}

(D.25)

C
(±)

ML;p has two nonzero elements for fixed L; p. The position oper-
ator is more complicated, and we restrict the derivation to k = 0
case.

rH0L(ε, γ ; r) = 1

(2π )3

∫
Ĥ0L(ε, γ ; q) ∂

i∂q
eiq·r d3q

= 1

(2π )3

∫
eiq·r [i∇q̂h0(ε, γ ; q)]YL(−iq)

+ ĥ0(ε, γ ; q)[i∇qYL(−iq)] d3q
The first term contains

[i∇q̂h0(ε, γ ; q)] = 2iq (ŵ0 − γ ĥ0) = 2(−iq)̂̇h0

[i∇q̂h0(ε, γ ; q)]YL(−iq) = 2
∑
M

{
C
(+)

ML;p̂̇H0M (q) + C
(−)

ML;p̂̇H1M (q)
}

using Eq. (A.11). The second term follows directly from Eq. (A.10)

to yield

rp H0L(ε, γ ; r) =
∑
M

{
C
(+)

ML;p(2Ḣ0M (r)) + C
(−)

ML;p(2Ḣ1M (r)

+ (2�+ 1)H0M (r))
}

(D.26)

D.2. Matrix elements of position and gradient operators

Eq. (D.25) shows that ∇HkL(r) generates a linear combination

of the same family of HkL(r), evaluated at the vector connecting

atom centres. Thus, matrix elements of the gradient operator are

linear combinations of the same functions. A similar situation

applies to matrix elements of r, though they entail matrix ele-

ments of the overlap between HkL and ḢkL. These integrals can be

evaluated in reciprocal space using Parseval’s identity, expanding

Ĥ∗
1
̂̇H2 analogously to Eq. (D.16). The radial part of this product

can be expanded as:

ĥ0(ε1, γ1, q)̂ḣ0(ε2, γ2, q) = −(4π )2eγ1(ε1−q2)eγ2(ε2−q2)

(ε1 − q2)(ε2 − q2)2

+γ2 ĥ0(ε1, γ1, q)̂h0(ε2, γ2, q)

= −4π

ε1 − ε2

{
e(ε1−ε2) γ1ŵ0(ε2, γ , q) + [γ2 + (ε1 − ε2)

−1]

× e−ε2 γ1−ε1 γ2 (eε1 γ ĥ0(ε2, γ , q) − eε2 γ ĥ0(ε1, γ , q)
) }

(D.27)

Substituting this radial function into the square brackets in

Eq. (D.19), we obtain〈
Hk1L1Ḣk2L2

〉 =
∫

H
∗
k1L1

(ε1, γ1; r − R1)Ḣk2L2 (ε2, γ2; r − R2) d
3r

=4π (−1)�1

ε1 − ε2

∑
M

CL1L2M×
{

e(ε1−ε2) γ1Wk′M (ε2) +

[γ2 + (ε1 − ε2)
−1] e−ε2 γ1−ε1 γ2

×
(
eε1 γ Hk′M (ε2) − eε2 γ Hk′M (ε1)

) }
(D.28)

where Wk′M and Hk′M are evaluated with the same arguments k′,
γ and R as in Eq. (D.21). When ε2, ε1 → ε, the expression in curly

brackets reduces to

[Ẇk′M (ε) + (γ2 − γ1)Wk′M (ε)]/2
Combining Eqs. (D.25), (D.26), (D.21) and (D.28)〈

Hk1L1∇pHk2L2

〉
=

∫
H

∗
k1L1

(ε1, γ1; r − R1)∇pHk2L2 (ε2, γ2; r − R2) d
3r

= −
∑
M

{
C
(+)

ML2;p
〈
Hk1L1Hk2M

〉 + C
(−)

ML2;p
〈
Hk1L1Hk2+1M

〉} (D.29)
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〈
H0L1 (r − R2)pH0L2

〉 =
∫

H
∗
0L1

(ε1, γ1; r − R1) (r − R2)p

× H0L2 (ε2, γ2; r − R2) d
3r

=
∑
M

{
C
(+)

ML2;p2
〈
H0L1Ḣ0M

〉 + C
(−)

ML2;p
(
2
〈
H0L1Ḣ1M

〉
+ (2�2 + 1)

〈
H0L1H0M

〉) }
(D.30)
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