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ABSTRACT. An important tool in the study of conformal geometry, and the AdS/CFT
correspondence in physics, is the Fefferman-Graham expansion of conformally compact Ein-
stein metrics. We show that conformally compact metrics satisfying a generalization of
the Einstein equation, Poincaré-Lovelock metrics, also have Fefferman-Graham expansions.
Moreover we show that conformal classes of metrics that are near that of the round metric
on the n-sphere have fillings into the ball satisfying the Lovelock equation, extending the
existence result of Graham-Lee for Einstein metrics.

INTRODUCTION

The purpose of this paper is to show that an important part of the theory developed for
Poincaré-Einstein metrics, metrics that are conformally compact and Einstein, holds also for
Poincaré-Lovelock metrics, metrics that are conformally compact and Lovelock. Specifically
we show that Poincaré-Lovelock metrics with sufficient boundary regularity on arbitrary
manifolds have an asymptotic expansion identical in form to that of Poincaré-Einstein met-
rics and that conformal classes of metrics on the sphere sufficiently close to that of the round
metric can be filled in with Poincaré-Lovelock metrics.

The local invariants of a Riemannian manifold are easy to write down. Weyl’s invari-
ant theory identifies them with the contractions of the Riemann curvature tensor and its
covariant derivatives. On the other hand local scalar invariants of a conformal structure
are less readily accessible. Inspired by the tight connection between the Riemannian geom-
etry of hyperbolic space and the conformal geometry of the round sphere, the Fefferman-
Graham [FG85,[FG12] ‘ambient construction’ seeks to invariantly associate to a manifold
with a conformal structure another manifold with a Riemannian structure. Conformal in-
variants of the former are then obtained from Riemannian invariants of the latter,

A Riemannian manifold (M, g) is conformally compact if M is the interior of a compact
manifold with boundary M and for some, hence any, non-negative function z € C*(M) that
vanishes simply and exactly at dM, x2¢g is a metric on M. The metric on M obtained by
restricting 22¢g to M depends on the choice of z, but different choices yield metrics in the
same conformal class, the ‘conformal infinity’ of g [PR88, Chapter 9]. The problem posed
in [FG85] is, given a conformal class of metrics on M, find a conformally compact Einstein
metric g whose conformal infinity is the given conformal class. These ‘Poincaré-Einstein
metrics’ can, for appropriate choices of z, be written near the boundary as x=2(dz? + h)
where h has an asymptotic expansion of the form

. b ho + hox? + (even powers) + hy,_ 12"t + hpa™ + ... if nodd
(1) - ho + hox?® + (even powers) + hy, 12" logx + h,z" + ... if neven
1
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with n = dim OM. (These ‘appropriate’ x are known as special boundary defining functions.)

The choice of x determines a metric hg in the conformal infinity and Riemannian invariants
that do not depend on such a choice are invariants of the conformal class of hg. An important
example is the renormalized volume,

(2) Bvol(M) = FP/ z® dvol, = FP/ dvol,,
M {z=e}

s=0 e=0

which for n odd is independent of the choice of special boundary defining function used in
its definition, while for n even its dependence on z is mediated through the term h,, ; in the
expansion of the metric.

The importance of the renormalized volume is that it plays a prominent role in the Anti-
de-Sitter / Conformal Field Theory (briefly AdS/CFT) correspondence. This is a proposed
duality [Mal98| between a quantum gravity theory in the interior of a manifold and a con-
formal field theory on the boundary. This duality was clarified in [GKP98|, [Wit98] as an
equivalence of partition functions and the renormalized volume shows up as the partition
function of the gravity theory. The dependence on the choice of boundary defining function
was shown to match the expected conformal anomaly of the conformal field theory on the
boundary when n = 2 or n = 4 [HS98].

A natural generalization arises from recalling that in four dimensions the only natural
tensors on Riemannian manifolds that are symmetric, built up from the metric and its first
two derivatives, and divergence-free are linear combinations of the metric and its Einstein
tensor,

, scal(g)

agij +bE;(9),  Eij(g) = Ric(g)ij — —5gis-
Indeed, this is one of the motivations for the form of the field equations of gravity in general
relativity. It was shown by Lovelock [Lov71] that in dimension m, the space of tensors
satisfying these properties has dimension [%] (though only the metric and the Einstein
tensor are linear in the second derivatives of the metric). Generators for the other tensors

are given by

scal®? (g)

E@D () = Ric?? —
(9) = Ric;; %

ij gij where Ricgq) = 5a1a2é.a2qR’82 R8s RB2a-1P2

if2-Baqg o) oo Q2q—1002q°
st (2 o1 i
scal®?(g) = ¢*' Ric’?, and Op, e = det((957)).
Remark 1. For locally conformally flat metrics, we have
scal® (g) = a9 (97' P(9)),

the (2q)™ elementary symmetric function of the eigenvalues of the Schouten tensor of g, see

and Remark @

Divergence-free symmetric two tensors natural in the metric and its first two derivatives
are known as generalized Einstein tensors, or Lovelock tensors. We will refer to a metric
that is conformally compact and satisfies an equation of the form

2
(3) Z C“qu(j g (9) = Agij,
as a Poincaré-Lovelock metric. For our purposes the particular values of the coefficients will
be immaterial as long as they satisfy a single linear restriction.
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For a fixed n > 3, and any choice of scalars o = (a, . . atnﬂj) let

N\ nl 2q
— _- (2 )
)\(a)—Zaq( 2) o2+ Zaq)\ q
chosen so that (3 holds with A = A(a) for a hyperbolic metric. Let LimSec(«) be the set of
x > 0 such that
1(2g)!
S (-5) R Ao,
2/ (n—2q+1)!

Al(a,/{):Zaq<—E>ql (n—2)! (2q)! 40,

2 2 (n—2q)!
The usual Einstein equation corresponds to a = (1,0,...,0), A(«) = —n, LimSec(a) = {1}.
In general the number of elements in LimSec(a) can be any number in {0,..., [% ]}, but

if the signs of the «; alternate then LimSec(a) = {1}. We will assume that LimSec(a) # ().

Theorem 1. Let X be an n-dimensional closed manifold, n > 3 with a conformal class of
Riemannian metrics ¢, and fix a such that LimSec(a) # 0.

a) Choose a locally constant function & : X — LimSec(a). Let N = n—2 if n is even and
N = oo ifn is odd. There is a conformally compact Riemannian metric g on X x [0, 1], with
conformal boundary X x {0}, whose sectional curvatures converge to —% as x — 0, which is
even modulo O(xN*2) and asymptotically satisfies the Lovelock equation

Zaq = Aa)gy; + O(z").

Moreover, g is unique modulo O(x™) up to a diffeomorphism fiving X x {0}.
For any Riemannian metric hy in the conformal class ¢ there is a boundary defining
function x for which g takes the form x=*(F~'dz® + h(x)) with h(0) = ho and the ten-

-----

b) Assume that (M, g) is a conformally compact manifold with conformal boundary (X, ¢),
and g satisfies the Lovelock equation

Z O‘quQ) (9) = Ma)gi;-

Then the sectional curvatures of M converge to —%, with & : X — LimSec(«) a locally
constant function, and we can find x such that g has the form x=2(K 'dz* + h,) near the
boundary. Moreover, if g has sufficient boundary reqularity,

i) h has an expansion of the form where the tensors hy, for k <n, and hy, ;1 if n is even,
are formally determined by hy.

it) The tensor h, is not formally determined by ho; if n is odd h,, is trace free, if n is even
its trace is formally determined by hg.

iii) if n is odd h, is divergence free, if n is even its divergence is formally determined by hy.
In any case all of the tensors in the expansion are formally determined by hg and h,.

Remark 2. If « = (1,0,...,0) then the Lovelock equation is the Einstein equation and this
theorem is the usual Fefferman-Graham expansion. In this case the boundary reqularity of g

in (b) is shown in [CDLS05].
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It turns out that the formal determination of the asymptotic expansion of a conformally
compact metric holds for a larger family of curvature equations, obtained by modifying the
trace of the Lovelock tensors,

Fy(a, 8) = ag(Ric®(g) — AP9g) + B, (scal * (g) — (n + 1)A*)g = 0,
which reduces to the Lovelock equation above if §, = =3¢ for all q.
q

Theorem 2. Parts (b)(i) and (b)(ii) of Theorem|[1] hold for metrics satisfying Fy(a, 8) = 0
as long as a # —(n + 1) and LimSec(«, 5) # 0.

If (n+1) > 4 and g is a solution of F,(c, §) = 0, such as a Poincaré-Lovelock metric, then
g =%k da® + ho + hox® + hyz* + O(2°)).

We determine the tensors hy and A4 below in . The tensor hs is always a multiple of the
Schouten tensor of hyg,

1
hg - —;P(ho),
while the tensor h, is more complicated,
1 ho%h(Ric) Ric
hy = — (= 1) < R — ho(3Ch, (h3) = 5hg (h2)?) — Cho(h3) + 2ha Gy (ha) + T)

2

Bia(a, 5, k) (4 2 /12 9 scal
(n—4)A (a, k) (‘(2n —5)%;, (hy) — 2(n — 2)Gh, (ha)” + T)

1
4dk(n — 1)

As(a, R)

%n(Ric) — 1k(n — )AL (a, k)

1 1
+2(n = 3) (= 2, (h) + 5%h (ha)? - i, (Weyl?,))

4(n —1)As(a, /@)%,f’o(Weylio) + (4(n — 1)Bg(a, B, k) — As(a, k) ho G, (Weyl;,)
4k(n —1)(n —4)A;(a, k)

where

. 1 . 1
Ric = §AL,h0<h2) — 5h0(5h0h2) — éHGSShO (Cgho (hg)),
scal = %, (Ric) + 1% (Ric ®hy) — G, (ho)scal,

and we are using the double form formalism reviewed in and functions of «, 3 specified

in §2|

An advantage of the Poincaré-Lovelock metrics over other solutions of Fy(a, ) = 0 is
that the former are guaranteed to exist, at least on the ball, by the following analogue
of |GLI1, Theorem A].

Theorem 3. Let M = B"™!, n > 4, b the hyperbolic metric on M and/[j\ = p?blipm0y the
round metric on S = OM. Let a be such that LimSec(a) # ().

For any smooth Riemannian metric g on S™ which, for some 6 > 0, is sufficiently close in
C2(M,S2(M)) to b there is a metric g € C(M,S*(M)) N p~2C°(M,S*(M)) satisfying

{Zaquf‘“ (9) = A@)gyj,

2 . ~
x g‘aM is conformal to g.
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The Lovelock equations are generally not elliptic, even after gauge-fixing, and hence can be-
have very differently to the Einstein equations. For example, the product of an n-dimensional
Riemannian manifold and the /-dimensional flat torus satisfies £?(g) = 0 whenever 2¢ > n,
so that for many Lovelock equations the moduli space of solutions is infinite dimensional.
However it turns out that the linearization of the Lovelock equations at the hyperbolic met-
ric on the ball is, as long as Aj(a, k) # 0, essentially the same as the linearization of the
Einstein equations.

Remark 3. We do not explore the consequences of the Lovelock equations with Ay («a, k) = 0.
The Lovelock equation in this case shows that the trace of Oyh|.—o vanishes but does not
determine its trace-free part, while in the Graham-Lee argument for existence the vanishing
of Ai(a, k) implies the vanishing of the linearization of the Lovelock equations at a hyperbolic
metric.

There are many papers in the literature that discuss modifications of the Einstein equation.
Recently, for example, Alace and Woolgar [AW 18] consider asymptotically hyperbolic metrics
satisfying the Bach equation in dimension four and a modification in higher dimensions
and derive their formal power series expansions, while in [CGGLO18] the authors consider
higher curvature theories of gravity whose actions are given by generalizations of Branson’s
Q-curvature.

In the context of the AdS/CFT correspondence, there is a systematic discussion of as-
ymptotic expansions of solutions of higher derivative theories in three dimensional gravity
in [STvRO09]. Four-dimensional theories are treated in, e.g., [ST13]. The paper [ISTYO00]
(cf. [Ske01]) discusses how the coefficients of the expansion of a conformally compact metric
are constrained by their behavior under conformal transformations regardless of the gravita-
tional equation imposed (assuming that the expansion is smooth and that the gravitational
expansion is satisfied by hyperbolic space). Note that Fefferman-Graham [FG12, Proposi-
tion 3.5] show that for the Einstein equation only contractions of the Ricci curvature and its
covariant derivatives show up, while, e.g., the expression for hy above shows that the Weyl
curvature is involved in the expansion of solutions of general Lovelock equations.

We mention a few papers that are more specifically in the setting of Lovelock gravity
in the AdS/CFT correspondence. In [KO07] boundary terms consistent with the Lovelock
action and AdS asymptotics are determined. In [dBKP10] the authors consider AdS;/CFTg
and explain how considerations in a conformal field theory hypothetically dual to a Lovelock
theory restrict the physically meaningful values of the coupling constant vector o.. This theme
is also explored in [CE10] for cubic Lovelock gravity in arbitrary dimensions. In |[CESdS13]
the authors point out that the inclusion of ‘higher curvature terms’ allows for the description
of more general conformal field theories. In [AK16] the authors consider actions that are up
to quadratic in the curvature and they identify specific values of the couplings for which the
Lovelock equations do not determine the terms in the expansion of the metric; this seems to
correspond to the condition A;(a, k) = 0 above. In loc. cit. the authors point out that in
five dimensions this corresponds to ‘gravitational Chern-Simons theory’.

Consequences
We briefly review some of the immediate consequences of Theorem [I} for a more complete
survey of these consequences in the Einstein setting see, e.g., [DGHO0S|.

As mentioned above, if (M, g) is a Poincaré-Einstein manifold then an important conformal
invariant of its boundary is the renormalized volume (2)). In [AIb09] it is shown that every
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scalar Riemannian invariant of (M, ¢g) has a renormalized integral that is independent of the
choice of special boundary defining function used in its definition. As this only depends on
the form of the Fefferman-Graham expansion it holds for all Poincaré-Lovelock metrics.

A particularly interesting example is the Pfaffian, the integrand of the Gauss-Bonnet
theorem, for which we have |Alb09, Theorem 1.2]

R/ Pt dvol, = x(M).
M

It is natural to wonder if this is an index theorem but the relevant elliptic operator, the Gauss-
Bonnet operator, dgp, is shown not to be Fredholm on any conformally compact manifold
in [Maz88]. Nevertheless a renormalized index is defined in [AlbO7] using renormalized
integrals and shown to satisfy

Rind(dgp) = / Pff dvol, .
M

Indeed a renormalized index theorem is proven for all Dirac-type operators on conformally
compact manifolds. The renormalized supertrace of the heat kernel is only guaranteed to
be independent of the choice of special boundary defining function if the metric is even to
order n+ 1, so to one order greater than the general Poincaré-Lovelock metric. (Most Dirac-
type operators on conformally compact manifolds can not even be smoothly perturbed to be
Fredholm [AMO09a]. An index formula for elliptic pseudodifferential operators on conformally
compact manifolds that are Fredholm is established in [AMO09b].)

For any conformally compact metric g, whose sectional curvatures converge to a locally
constant function at 0M, the resolvent

R(s) = (A—s(n—s))"

is constructed by Mazzeo and Melrose [MMS87] as an analytic family of bounded operators on
L? for Re(s) > n. In loc. cit. they show that its Schwartz kernel extends as a meromorphic
function to the complex plane minus a discrete set, C\ (3(n — N)). Guillopé and Zworski
[GZ95] showed that for a conformally compact metric with constant curvature near infinity
the extension is to the whole complex plane. The general case was understood by Guillarmou
|Gui05] who showed that if the metric is even modulo O(x?**1) then the resolvent extends
meromorphically to Re(s) > (n — 2k — 1)/2. (A different approach has subsequently been
developed by Vasy |[Vasl13].) Thus for Poincaré-Einstein and Poincaré-Lovelock metrics the
resolvent is a meromorphic function for Re(s) > 0.

Using the resolvent it can be shown that, given a function f € C*°(0M), and s such that

Re(s) > n/2, 2s—n ¢ Ny, and s(n — s) is not a pole of R(s),
there is a unique solution of the equation (A — s(n — s))u = 0 of the form
u=2xa""F(z,y) + 2°G(x,y)

with F,G € C*(M) and F(0,y) = f. The scattering matrix at energy s, S(s), is the map
that sends f to G(0,y) [JSB0O] and makes up a meromorphic family of pseudodifferential
operators on M (cf. [dHSS01, §5]). Graham and Zworski [GZ03] show that an appropriate
multiple of the residue of S(s) at s =n/2 + k,

P = (1M1 (2% Kk — 1)))Resemrn)ax5(s)
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(with £ € N, k < n/2 if n is even, and under a generic assumption on g) are conformally
covariant self-adjoint differential operators on M whose principal part is the same as the k'
power of the Laplacian A*. They show |GZ03, §4] that these operators can also be obtained
by formal power series arguments and coincide with the GJMS operators [GJMS92].
Assuming now that n is even, it follows from the asymptotic expansion of the Laplacian
that P,/21 = 0 so that S(s)1 does not have a pole at s = n. The scalar Riemannian invariant

Q= (=1)"*(2"(3)!(5 — DHS(n)1

is known as Branson’s Q-curvature. If we denote the Q-curvatures of A and h=e2Th by @
and () respectively, these are related by

eTQ = Q+ Py,

The integral of Q-curvature is (thus) conformally invariant and Graham-Zworski show that
if one writes

Voly({z > }) = coe™ + coe ™™ 2 + ...+ cpne 2+ Llog(L) + B Vol(M) + o(1)

then L is the integral of 25(n)1, hence a multiple of the integral of Q-curvature.

In [FGO02], Fefferman and Graham make use of the work of [GZ03| and define a Q-curvature
in odd dimensions whose integral is a multiple of the renormalized volume. (In [CQYO06] this
is related to the Gauss-Bonnet theorem.)

The theorems in [GZ03,FG02] only make use of the Einstein equation through the form
of the expansion of the metric (1)) and so hold also for Poincaré-Lovelock metrics. Thus for
each choice of o such that LimSec(«) # (), there are GIMS operators with the same leading
part and conformal covariance and there is a Q-curvature with the corresponding conformal
transformation law whose integral appears in the asymptotic expansion of the volume.

The contents of the paper are as follows. In section (1| we discuss Lovelock tensors using
the formalism of double forms. This was introduced by Kulkarni [Kul72] and has recently
been developed by Labbi [Lab05] — [Lab15]. In section [2| we apply this formalism to find
the formal asymptotic expansion of solutions to the equation F(a, ) = 0 mentioned above.
This is analogous to the treatment of the Einstein equation in, e.g., |[Gra00,GHO05]. We then
parallel |[Juh09, §6.9] in to compute the first couple of non-zero tensors in the expansion
of a Poincaré-Lovelock metric. In section[3|we turn to the existence result. We follow [dLS10]
to compute the linearization of the gauge-fixed Lovelock equation and then use the results
of [GLI1].
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1. LOVELOCK TENSORS AND DOUBLE FORMS

1.1. Lovelock tensors. Certain problems in statistics (fitting regression equations non-
linear in parameters) led Hotelling to pose the problem of determining the volume of a small

tube around a manifold M embedded in R",
Ba(ﬂ) = {r ¢ R" : distance from r to M is less than e}.

In 1937 Weyl attended a seminar where Hotelling gave a solution for submanifolds M of
codimension one [Hot39] and the following year Weyl gave a solution for arbitrary codimen-

sion [Wey39]. He showed that, for small &, the volume of B.(M) is a polynomial
5
Vol(B.(M)) = Vol(BY—™)

q=0

[

g2

(N—=m+2)(N—=m+4)--- (N —m+2q) {/E2q()d\/olg},

where m = dim M, BY=™ denotes a ball of radius € in R¥=™ and the coefficients are
integral invariants of M with its induced Riemannian metric g—hence are independent of
the particular embedding. The integrands, %q(g), are known by many names, e.g., ‘Weyl
volume-of-tube invariants’, ‘Lipshitz-Killing curvatures’, and ‘Lovelock scalars’, the latter
because they essentially coincide with the traces of the Lovelock tensors mentioned in the
introduction,

scal®? (g)

The first few are given by
~ ~ 1 ~ 1
l(g) =1, Ily(g) = éscal, ly(g) = §(|R|2 — 4| Ric|? + scal?).

Another name for these invariants is ‘Gauss-Bonnet curvatures’ as f5,(g) is, after multiplying
by (27)?, the integrand of the Gauss-Bonnet theorem in dimension 2g¢, i.e., the 2¢-dimensional
Pfaffian. This observation was used by Allendoerfer and Weil in the original proof of the
Gauss-Bonnet theorem [A1140,[AW43].

These invariants have connections to many topics in geometry and physics. They ap-
pear, for example, in Chern’s kinematic formulee for quermassintegrals |[Che66|, Steiner’s
formula Chapter 10], and an approach to lattice gravity [CMS82, CMS84, CMS86].
For a modern discussion see the book |[Gra04].
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Just as each scal® (g) is a generalization of the scalar curvature, the functional

g— /~ scal®?(g) dVol,,
M

generalizes the Einstein-Hilbert action and its Euler-Lagrange derivative (after multiplying
by —¢'), E??(g), known as the (2¢)—Lovelock tensor, generalizes the Einstein tensor. On
a manifold of dimension m the functions scal®? (g9) vanish identically if 2g > m (see
below), while if m is even the scalar scal™ (g) is essentially the Pfaffian of the curvature of
g and hence its Euler-Lagrange derivative is identically zero.

Directly from their definition, the Lovelock tensors are symmetric divergence-free (0, 2)-
tensors (e.g., [BesO8, Proposition 4.11]) that only depend on the metric and its first two
covariant derivatives (i.e., its curvature). Lovelock [Lov71] showed that every (0, 2)-tensor
satisfying these properties is in the R-span of {E°(g),..., E™/2)(¢)}, which is now known
as the space of Lovelock tensors.

Lovelock tensors satisfy Schur’s Lemma: if for some metric g some non-zero R-linear
combination of the Lovelock tensors is equal to the product of a scalar function with the

metric,
2
Z aqE( ‘1) f92]7

then that scalar function f must be locally constant. We refer to such metrics as Lovelock
metrics.

1.2. Double forms. The formalism of double forms studied by Kulkarni [Kul72] is very
convenient for analyzing Lovelock tensors and scalars. It has recently been developed in

various articles of Labbi |[Lab05,Lab07,Lab08,Lab10,/Lab14,Lab15].
On a Riemannian manifold (M, g) of dimension m, an (a,b)-form is an element of

QM) = C®(M; A“T*M @ A*T* M),

and a double form is an element of the direct sum of the (a, b)-forms,
Q*®*(M) _ @ Qd@b(M
a,b

The wedge product induces a product on double forms by extending

(@@ B)(y®0) = (any)@(BAI)

from simple tensors to all of Q*®*(M) by linearity. This is known as the Kulkarni-Nomizu
product, is often denoted ®, and satisfies

we QPPINM), € V(M) = wh = (—1)"" 0.

In particular multiplication in €, Q*®*(M) is commutative.
An important operation on double forms is contraction

6, - V(M) — QR (),

If r=0ors=0, weset w = 0 for every w € Q"®*(M). Otherwise, for any vector fields
Vi,...,Ve_i1and Wy, ..., W,_1, we set

ngw((‘/h sy ‘/7”—1)’ (le R Ws—l)) = ZW((GJ‘»VM sy ‘/;"—l)a (ej7 le sy Ws—l))

where the sum runs over a g-orthonormal basis of vector fields, {e;}.
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For example, if w, 0 € Q'®*(M) are given in a local coordinates by
W=wep 0" ® 0°, N ="ap 0" ® Qb,
then we have
(@N)sotr = (W B N)sotr = WsaMoyr — WsrTlot — WotNs,r + W r sty
Co(wn)iy = gab(wa,bni,j — Wa jMip — WipTa,j + Ws t7ab)
= Colw)nij + Co(Mwiy — 9" (Wa iy + WipNay),
CK;(WTI) = 2(y(w)Ey(n) — gabgijwa,jm,b)-

Further, by considering an eigenbasis of the operator induced by w, it is easy to see that

the complete contraction of w” is equal to the k' elementary symmetric polynomial of its
eigenvalues,

(1.2) EF W) = on(g7'w).

g

(1.1)

The metric g is naturally seen as a (1, 1)-form, which we continue to denote g,
g(V)W) = g(V, W).
The curvature of g, R, defines a (2, 2)-form by
Rg S Q2®2(M>’ Rg((‘/l’ ‘/2)’ (Wh WQ)) - g(R(‘/lv ‘/Q)Wla WQ)
The computation of the Weyl volume of tube invariants in [Gra04, Chapter 4] shows that
2 _ (2
scal ) (g) = ‘Kg( q)(Rg).
The tensor Ric®? from the introduction corresponds to the (1,1)-form,
2 2¢—1
R — iRy
and the (2¢)-Lovelock tensor, E??(g), corresponds to the (1, 1)-form

(29)
(29) _ p(2q) scal " (g)

As mentioned above, Lovelock [Lov71] showed (see also [Lab08]) that (—g~!-times) the Euler-
Lagrange derivative of [ scal®(g) dvol, is gD,
Note that APT*M = 0 for p > m implies that
0 _ 2) _ 20) 0\ _
(1.3) R, =0, Rg ) =0, scal®(g) =0, whenever 20 > m.

A useful observation is that that curvature (2, 2)-form of a metric g whose sectional curvature
is identically equal to a constant k is given by

(1.4) R, =

Remark 4. [Kul72] A double form w € Q*(M) is symmetric if a = b and
w((Vi, oo, Vo), W, ooy W) = w((Why oo o, W), Vi, ..., V)

for any vector fields. Symmetry is preserved by multiplication and contraction.
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A double form satisfies the first Bianchi identity if it is in the null space of the operator
By - QEV(M) — QarDRE-D (),
Brw((Viy .o Vasa), Wh, oo . W)
=) (Vi Vi Vi), (Vi Wi W)
and the second Bianchi identity if it is in the null space of the operator
By QP (M) — QUFVE (N,
PBow((V1, ... Va+1) (Wh,..., W)
= (—1)(Vyw)( W(Vise o Vi V), (Vi W, W),
The null spaces of these operators are preserved by multiplication and that of Ay is preserved
by contraction.
The metric and the curvature are symmetric (1,1) and (2,2) forms respectively, and both
satisfy the two Bianchi identities. It follows that for all 7, k, ¢ the double form %gj (gka;) 185

symmetric, satisfies the first Bianchi identity, and, if 7 = 0, satisfies the second Bianchi
identity.

Remark 5. The Hodge star extends to double forms by
*a® ) = (xa) ® (x5).

A four-dimensional manifold is Einstein if and only if its curvature, as a (2,2)-form, satisfies
xR = R, so the Hitchin-Thorpe inequality [Tho69, Hit7}] can be written

3
in 4 dimensions, x R=R = x(M) > §|Sign(M)|,

where sign(M) denotes the signature of M. Thorpe obtained this inequality as a particular
instance of the more general

(k1)
(2k)!

where p(M) denotes the k™ Pontrjagin number of the manifold. Thorpe’s higher dimen-
sional self-dual metrics are Lovelock, see [Lab10] for a discussion and generalization, and
seem natural objects to study.

in 4k dimensions, * R* = R¥ = y (M) >

[Pk (M)],

Remark 6. The Kulkarni-Nomizu product is most often encountered in the orthogonal de-
composition of the curvature tensor

CZR
R=W+yg i + g’ _GR
m—2 2m(m —1) )~

There is a similar decomposition of symmetric double forms satisfying the first Bianchi iden-
tity, such as the double forms R* and their contractions, see [Kul72, §3].

The following result will be very useful below ( |[Lab05, Lemma 2.1]).
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Lemma 1.1. For any w € Q*®Y(M) we have

0)%,(wg) = 9% (w) + (m — 20)w

D%,(¢"w) = ¢"€ (w) + k(m — 20 — k + 1)g" 'w

P( o) — Poim—20+p—k k! pl pr(,,
e =3 (" e

with the convention that if k —r < 0 then ¢g*~" =0 and if p—r ¢ [0,] then €V~ "(w) = 0.

The same proof shows that for w € Q°(M),

P
(kN m—a—b+p—k k! T
ng (g w) ;O ( r (k . r)‘ (p _ r)'g ng ((.U)

Proof. (0) is [Kul72, Proposition 2.4]. We prove (1) by induction, using (0) as our base case.
The inductive step is

C (9" w) = g€ (g"w) + (m — 2(0 + k))g"w
= " EC (W) +k(m —20 —k+ 1) g"w+ (m —2(0 + k))g"w
= g"E (W) + (k+ 1)(m — 20 — k) g*w.

Similarly we prove (2) by induction using (1) as our base case. The inductive step is, with
m=m — 2/,

r

p+1 kw _ . m+p—k k! p' k—r P=T ()
oo =3 ( S e )

_ (m +p— k) (k flrn (p %! (g’“—%;“‘f<w>+<k_r><m+zp—k—r+1>g’“‘“%f"’M)

i (m+p—k) ! k!
rlm+p—k—r+ 1) (p—r+ 1 (k—r)

<(m+p— k—r+ 1)(]9—7”—1— 1) +r(m—|—2p_ k _r+2)>gk*7‘<€p+lf1ﬂ<w)

m+ — k) ! k! ™ k—rcpop+l—r
:Zr!<m<+p—pk—2+1)!(p—];+1)!(/f_r)!<(m+p“‘k)<p“))9 W)

1,
:i mAp+1—k\ Kkl (p+1)!g,€_rcgp+1_r(w)
— r (k—=r)(p—r1)! g

O

Some useful particular cases are

k!m!
[ A
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(m —3)1(k + 1)!
2(m —k —2)!

¢ (g w) = (kg'€?(w) +2(m — k — 2)%,(w)) , whenever w € Q*#*(M).

2. FEFFERMAN-GRAHAM EXPANSIONS

Let (M, g) be a conformally compact manifold of dimension m = n + 1 with curvature
R, € Q*®2(M). Recall that, for each ¢ < ”T“,

REJZ‘]) = %;q_le, scal®?) (9) = %;ng, 59(2‘1) = qu) — ﬁsoaI(QQ) (9)g.
For a hyperbolic metric b, using ([1.4]), these are given by

Rgzq) — <_1)q ( n_!(?q)! ,b = A2y,

2) (n—2q+1)!
scal®? () = <_%) q <(Z—j 21;'53 ?)!‘! = (n+ 1A%,
scal®? ()

h=(1- n_ﬂ)/\@q)h

2q

(29) _ »(29)
& =Ry — 2

In this section we follow [Gra00, §2] and work out the formal consequences of the equations

(2.1) Fy(o, B) =Y ag(RPD — X g) + B, (scal®(g) — (n + 1)ACD)g = 0,

with «,, f, constants (with the Lovelock equation corresponding to 8, = —a,/(2q)).
For given constants o, § we define

LimSec(a, §) = {ﬁ >0: 3 A (0, + (n+ 1)B,) (W — 1) =0,

and Ay (o, k) = > a, (_f)q—l (n—2)1 (2¢)! ; L 0} |

2 2 (n—2

Note that since (—1)7A29 > 0,
(—1)%a; > 0 (or <0) = 1 € LimSec(«, f),
and similarly,
(=1)%ay+ (n+1)8,) > 0 (or <0) = LimSec(c, 3) C {1}.
On the other hand, by choosing «y, /3,, appropriately we can arrange

D Ay + (n+ 1)) (s = 1) = (v = p(x)

for any polynomial p of degree | %+ | —1, and so we can arrange for there to be | 25| different

positive solutions k. :
Remark 7. For concreteness, if

a= (6n(n—2)(n—-3)a,1,0,...,0), [,=——
then we are studying the equation

6(n — 2)(n — 3)aEL (9) + EL(g) = 6n(n — 1)(n — 2)(n — 3) (a — 1) gy,

(5]
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which is satisfied by any hyperbolic metric. The set LimSec(c«, 8) in this case is defined as
those k > 0 satisfying
—3pn—-1)n—-2)(n—=3)(k—1)(k+1—-2a)=0
Ai(a, k) =6(n—2)(n—3)(a—kK) #0

and hence, for this particular choice of («, 3), we have

0 ifa=1
LimSec(a, ) = S {1,2a =1}  ifa>3,a#1
{1} otherwise

During the computations below, we will assume
a# —(n+1)8, LimSec(a, ) # 0.

We will make use of the following functions to simplify the expressions we obtain,

K\t (n —2)! (29)!
Ax(a,r) =) ay (_§> 2 (n—2q+1)!<q_1)

Afer) = Y (E)H DAL

2 41 (n—2q)
Y2 =4 29 (a=1)(g—2)
=T ()
aonm) =3 oy (=5 AT (n—2q+ 1) 2
Bij(o, 8, k) = Aj(a) + Ay(B) + (n + 1)A;(B)
and we point out that for the usual Einstein equation Ric(g) = —ng we have a = (1,0, ...,0),

p =0, LimSec = {1},

Ma)=—n, Ai(a,1)=1, As(a,1)=A3(a,1) = Ay(a, 1) =0.
2.1. Asymptotically hyperbolic. First, when does (2.1) imply that g is asymptotically
hyperbolic?

Let = be a boundary defining function, i.e., a non-negative function smooth on M with
OM = {z = 0} and vanishing to first order at dM, and let

(2.2) k=22,
Mazzeo [Maz88, pg. 311] pointed out that the curvature of g satisfies
R, = —/{% +O(x %) as x — 0.

It follows that
G 9R1 = ki(n + DA 4 O(z)
and hence
Fy(e, ) =Y AP (ay + (n+1)8,)(s" — 1)g + Oz ™).
Thus F,(c, ) = 0 implies

(2.3) SN (0, + (n+ 1)8,) (5 — 1) = 0.
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We conclude that as long as o, +(n+1)5, # 0, which are assuming, the sectional curvatures
of g converge to a locally constant function as x — 0. For the computations below, x can be
any locally constant function valued in LimSec(q, /).

2.2. General expansion. Now that we know that sectional curvatures of g converge to k, a
locally constant function on 9M, it follows from |Gra00, Lemma 2.1] that for any boundary
defining function xy there is another boundary defining function x such that

x =104 O(x}) as 10 = 0, |%|2 =k in a neighborhood of dM.

Boundary defining functions satisfying the latter condition are known as special, or geodesic,
boundary defining functions.

From now on we assume that z is a special boundary defining function, and we introduce
the notation

g:ng’ h0:§|8M’

for the associated incomplete metric and boundary metric, respectively. We use the integral
curves of Vzz to identify a neighborhood of OM with a collar [0,1), x OM in which the
metric takes the form

and we will work in this neighborhood (cf. [GL91, Lemma 5.2]).
In this neighborhood, the curvature of g satisfies

g(Rg(&c, 81)895, 8]) = $_4(—%$2h;/j + %xzh;ahabhgj + %.Thij — hl])
9(Ry(0i,8;)0h, 0¢) = x* <x2h(Rh(8i, 0;)0k, 0¢) — L (hiyphiy; — Wighl;)

o 5 (Rt + Bihey = hichlyy = hiehty) = K(highe; — hich)

1
222

9(Ry(0z, 0:)0;,0k) = 5—((Va,h') (0, 0;) — (V1) (s, Ok))

We can reexpress this, using (1.1)), as an equality of (2, 2)-forms

(2.4) Ry = (dz®dx) ® a5 (—h" + LG,(W)h — 26,())?)) + Eh' — h)
+27°8((dz ® 1) ® D) + 2~ *(z* Ry, — £(£0 — h)?)

where Dh is the (1,2) form
DH(U)(V, W) = (Vv I)(U, V) ~ (Vah')(U, V)

and S((dzr ® 1) ® Dh') denotes the symmetric (2,2) form extending (dz ® 1) ® DI .
Taking ¢'® power, we see that Rl is given by

RI = g~ (q(dx®dx)@(%(—hug%h(h’)h’— 26 ((W)?)+2h0 —h) (2 Ry — 5(20 — h)*)!

g

2

+q2°S((dx @ 1) ® DI (z* Ry, — (51 — h)*)*™Y) + (2° Ry — 5(51' — h)2)‘1>,
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its (2¢ — 1)*® contraction by
(25) €27 '(RY) =
o7 (a(de@dw) 6 (5 (=" + LG (W)W = LG ((W)?) + 5 = ) (2R — 5 (51— h)*)1)
+g2’S((dr @ 1) © €7 (DI (2 Ry, — 5(30 — h)*)*™))
+ G (2P Ry — 550 — h)*))
20 Vg6 (5 (<R 56N~ FEL((0)) + 5 =) (@ Ry = (51 =)' ).

and its (2¢)"™ contraction by
(2:6) CH(RY) = 6" (2* R — 5 (5 = 1))
+ (20)gr6 7 (5 (=" + SGR = LG (WD) + 51 = W) 2Ry — 55K = 01 )).

A priori, F,(a, ) is O(z2), but as we saw above the most singular term in R cancels

with that in A9 g and the most singular term in scal®?(g) with (n+ 1)A\?9. Thus the most
singular term in Fy(a,0) is

vy ag((de @ dr) G2 alg — DI (=5h2)7)
+ (20— DEEY(alg — DI (=5h2)17) = 627 (k! (~5h2)7))

1 2¢—1 /7 r\1(n—1)! 2q)! ,
=o' ey ((r @ dr) o == (-3) | 2 )<n_<z?+1>!%<h>

() O g o )

=zt ((dx ® dx) ® %(Al(a, k) + 2nAs(a, k))Gh(R)

+ 5 (= D Ao, )R + (Ar(a, §) + 2nAs(a, )G (R)),
and so the most singular term in Fj(«, ) is

v ((dr @ dn) © %(Al(oz, k) + 2nAs (o 1)) Gh ()

+2((n = DA(a, ) + (Ar(a, k) + 2nAs(a, 1) hE(H))

+o kn(AL(B, k) + (n 4+ 1) A3, k) ER(R)(

The equation F,(c, ) = 0 imposes that both the coefficient of dz®dx and the complement
vanish at x =0,

(Al(oz, K) 4+ 2nAs(a, k) + 2n(A1 (5, k) + (n + 1) As (5, m)))%h(h') = O(x),
<(n — DA (o, k)N + (Aq(a, k) + 2nAs(a, k) 4+ 2n(A1(B, k) + (n + 1) As(B, ﬁ)))h%h(h')))
= O(x).
Substituting the first equation into the second yields ' = O(z) as long as A(«, k) # 0.

dr Q@ dx

+h).
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From (2.5) we see that the terms with a factor of 2° in 3" a,RY? are

+aS((dx ® 1) ©€," (DK (=5h*)"™))
+ (20 = DRGTH=4(=5) R — qlg = 1)(=5)hT T Ry)
+ 6 a(=5) 0 Ry))

=3 ay((r@dn) o (- ! (—f)q_l ( Gt (n=Dles o

2\ 2 n—2g+1) 2

—-n (-5 - _ﬁ?i 5 e ALD)

+ <_g>q_1 (n(iq;'q)[ (n ; 2)'8((dl‘ X 1) ) Cgh(Dh/))

+ (_g)(; - _%?_L i (n ; 2)! ((n—2q+ 1)h" + (29 — 2)hEn(h"))

NE . _%?i 5 (n g DL (0 — 20 + 164 (Ra) + (4 — DAGE(R,))

= (dr @ dr) & ( — S(As(0,m) + 280(0, W) ) + - Asla, )G ()
+ Ay (a,5)S((dr ® 1) © G,(DI))
N (_g) (Ai(a, K)R" + 2A5(a, k)G (W) + (AL (e, K)Eh(Ry) + As(a, K)hEE(Ry)).

Hence the terms in F,(«, ) with a factor of z° are

(dz @ dz) ® ( — %(Al(a, k) + 2A5(a, K))Er(R") + %Az(a, H)‘@f@h))
+A 1 (a,k)S((dr @ 1) ® €,(DR'))
+ <—g> (Ai(a, k)W + 2A5(, K)hEL(M") + (Ay (o, K)EL(Ry) + Ag(a, K)hEE (Ry))
(= A(ALBR) + (0 + DALB R)GER") + (A1(B, 1) + (n+ 2)As(B, 1) EE(Rr) )
(dx ® dx

K

+h).
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Since ' = O(x), we can use (2.5), (2.6) to write Fy(a, 5) =0 as
1
(2.7) (dz®dx)® §(A1(a, k) + 2nAs(a, k)6 (R)

+ 5 ((n = DAx(a, ) + (As(a, K) + 2nAs(a, ) hBH(H))

+ kn(A1(B, k) + (n+ 1)As(8, k) EL(1M)(

dr ® d
O
K

- x((dﬁ ®dx) ® ( - %(Al(a, k) + 2As(a, K))GH(R") + %Az(a, /f)cgi?(RhD
+ Ai(a,®)S((dx @ 1) © Gu(DN))

(<) (sl mB + 20, KL () + (A (0 )G () + Aol i)HEE ()

(= (AL(B, R)+(n+1) As(B, K)GE(R")+ (A (B, 1)+ (n+2) Aa(B, k)G (Fn) )

dr ® dx+h)>

K

= O(z?).

Taking k derivatives with respect to x we find
1
(2.8) (dz®dz)® 5((1 — E)Ai (o, k) + 2(n — k)Bia(a, 8, 1)) € (REHD)

+ R(n —1— kA (o, £)hFHD

2
(Ai(a, k) +2(n — k)Bya(a, B, 1)) hE, (RETD))

| X

= terms involving fewer derivatives of h + O(z).

Restricting the coefficient of dxr ® dx and the contraction of the coefficient without dx to
x = 0 yield the equations

(1 = k)Ai(a, &) +2(n — k)Bia(a, B, 8) G (h" ) |0
= terms involving fewer derivatives of h + O(x),

<(n —1- k?)Al(O[, Ii) + n(Al(a, li) + 2(7’L - k?)BLQ(O[, ﬂ, K)))%h(h(k+l)))|w:0
= terms involving fewer derivatives of h + O(x).

Note that if A;(a, ) # 0 then the two coefficients of ), (h**1)|,—y can not both be zero;
indeed if the first should vanish, then the second can be written as (n — 1)(k + 1)A;(a, k).
Hence if we have determined {hg, &|,—0, - - ., A¥)|,—0} We can determine %, (h**V)|,—¢ and
then, as long as k + 1 # n, use to determine A1, _q.

It follows inductively that the equations

(2.9) on-diagonal parts of F,(a, 8) = O(z"" %), €,(F,(a, 8)) = O(a"1)

(note that the analysis above only involved the on-diagonal parts of Fy(a, ) with respect
to the splitting (9,) & (9,)") uniquely determine a metric, up to order "2, of the form
172(d2?/k + h) with h9|,—, for £ < n, and G, (h™)|,—0, natural tensor invariants of h|,—o,
and, since the left hand side of respects parity in x (see (2.4))), with h)|,_o = 0 for
¢ < n odd.
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When ¢ = n, equation ([2.8]) is

(dr ® dr) © S((2 — n)As (o, 5) + 2B (e, B, )Gy ()

5 (AI (a, :‘i) + 2B1’2(O(, ﬁ, li))ho%ho (h(n)>

_l’_
= terms involving fewer derivatives of h + O(x).

If n is odd, then by parity the right hand side is O(z), so €, (h™)|.—0 = 0, but the trace-free
part is unconstrained. If n is even, then the right hand side may have a non-vanishing trace-
free part, so that the expansion of A~ must include a term 2" log = with a trace-free coefficient.

In this way we have shown Theorem [1| that metrics satisfying F,(«, 5) = 0 formally have
a Fefferman-Graham expansion. On the other hand, if we start with hy, we have only shown
how to arrange (2.9). Following [GHO5] we next show that in the particular case of the
Lovelock equations, i.e., when B, = —a,/2q so that Fy(a, () is a linear combination of
Lovelock tensors, the off-diagonal terms are related to the on-diagonal because the Lovelock
tensors are divergence-free.

Lemma 2.1. If 5, = —oy/(2q), and g satisfies (2.9)), then g satisfies
off-diagonal parts of Fy(a, ) = O(x"1),

and, if 0 = x*™" trace-free(Fy(a, B))|z=0, then the divergence of O is determined by hy and
vanishes if n is odd.

Proof. We compute in local coordinates, where dy = 9, indices {s,t,u,v} vary in {0,...,n}
and indices {4, j, k, (} vary in {1,... ,n}.
If F}; is the (0,2)-tensor corresponding to Fy(a, (), then it satisfies

0=g"Frus = ¢ (0sFp, — T%Fy, — TV, Fy), for all u € {0,...,n}.
For a metric of the form g = x72(dz?/k + h,) the Christoffel symbols satisfy

k
150

Fff' =1 F?k = =5 hu+ Ehjka Lop = §h ehék - ;5ka ng =T =0, Fgo R

2 *
where T denotes the Christoffel symbol of h,. Hence we have
st 2 1 50u
0=9"Fs = 2" |k | OoFou + —Fou + —Foo
x x
ij Lo n ik ik
—f—h]@iFju—i‘li —hYh,. — — FOu — h]FFku — RYTT F}k .
2 ij T ij i

For u = 0 this says

92 _ 1 .. 1 .. . > . —j
K (090 +— =+ §h”h§j) Foo = <§h”hk€h§z - hjk) Fji — (W0, — W*"T3) Fo

and for u = ¢ # 0, this says

1-n 1, )
(2.10) K (ax +— oy §hwh;j> Foe = —hiFy.

From ([2.5)) we know that an expansion in x for h induces an expansion in z for Fjy, starting
0
at x”.
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Now since the right hand side of (2.10) is O(z""?) and 3h"hj; = O(x), if we assume that
For = Asx® + Bya®logz + O(x*) then we have

(s +1—n)(A2* ' + Ba®tlogr) + Bez® ' 4+ O(2%) = O(2"?),

hence A; = B, = 0if s < n — 1. On the other hand if s = n — 1 and we write Fj, =
Oz % + O(z" "), then this same equation tells us that hf@je; = B, ;. Thus we can
conclude that Fy, = O(z" 1), and that the divergence of & is determined by hg and vanishes
if n is odd. O

This finishes the proof of part (b) of Theorem (I} We have already shown parts (i) and (ii)
for more general equations Fy(a, §) = 0, and part (iii) follows from Lemma

If n is even then this finishes the proof of part (a) of Theorem , since we now know that
any smooth conformally compact metric whose Taylor expansion is as above satisfies

> "0, BEY(g) = Ma)gi; + O(@"2).

As in [GHO5] this also shows that it is unique modulo O(z"~2) up to a diffeomorphism fixing
X x {0}.
If n is odd and we postulate that h has a smooth Taylor expansion at OM,

B o~ ijh(j)’

then the first term that we have yet to determine, z"h(™, is also the first odd power of .
We know that the on-diagonal part of the equation F,(a, 8) = 0 only imposes 6, (k™) = 0,
and the argument in Lemma [2.1| tells us that the off-diagonal parts of F(«, 8) are O(z"1)
but does not determine the 2"~ term. Fortunately, since this is the first odd power of x
in the expansion of h, it is easy to determine directly from that the 2"~ ! term in the
expansion of the off-diagonal part of F,(«, ) is

> aq (aS((de @ 1) ® 6" (DR (h*172)))) .

In particular, if we set h(™ = 0 then the off-diagonal part of F,(a, 8) is O(z").

After setting h™ = 0 we can now continue as above and use the on-diagonal parts of
the equation F,(c, ) = 0 to determine the full Taylor expansion of h (involving only even
powers of x) and then use Lemma to see that the h we have constructed satisfies

Fy(o, B) = O(x%)

(but we emphasize that here ;, = —a,/(2¢)). This finishes the proof of part (a) of Theorem
[l when n is odd.

2.3. First couple of terms. A Poincaré-Lovelock metric in dimension greater than four
has an expansion
g =17 2(dx® + ho + 2*hy + 2 hy + O(2°))

with hy and hy symmetric two tensors on M locally determined from hg. In this subsection
we follow |Juh09, §6.9] and determine the coefficients hy and hy in terms of hy. We will show
that hs is always a constant multiple of the Schouten tensor of hy, while h, depends on the

coefficients of (2.1)).
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In a technique used in loc. cit. but that goes back at least to [HS98|, we introduce the
coordinate p = 22 so that the metric takes the form

dp®> h

TR

In this subsection we consider A as a function of p and we will use & to denote O,h.
We obtain an expression for the curvature in these coordinates from (2.4) by making the
replacements

dp

m, Oxh — 2p1/28ph,
p

L

which yields

R, = (dp®dp) ® (ﬁ(—?ﬁ + Gu(h)h — L6,(h?)) — 4—;3h)

1 . 1 K. )

Similarly,

2 ()
= (pedn) o6 [ (02 (-2t G )30 32)) ) (502040l ni)—502) "
+ qé’((dp 1) o6 [D(h)( — 5002 4 p(Ry + whi) — §h2>q_l])
+ p‘l%fq_1< — 50°h* + p(Ry + whh) — gfﬂ)q

. . . . —1
+(2q—1)qmp*1<5,§ﬂ[<p2(—2h+<5h(h)h—%%h(fﬂ))—h)(—gp2h2+p(Rh+nhh)—gh2)q ]
and

€2 (RY) = %,fq( — 50207 + p(Ry + Khh) — gh?)q

+ (2q)qrE [(pZ’(—zh + Gulh)h — 16,(h2)) - h) ( — 5020 + p(Ry + khh) — th)H] .
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Thus the coefficient of dp ® dp in > aq(R§2q) — M29g) is given by

Eodisto oy () Gy O

vt (-5) S e ey

_ (_g>q %(n — D1%4(—2h + G, (h)h — 16, (h?))

U ()7 e i o)

dp®d : '
_ Z Wﬁp o [pAg(oz, K)EE(Ry, + rhh) + p* (—g) (Ar(a, k) + 3As(a, )G (h?)

+ PP (A (o, k) + 2A5(a, K)) 6 (—2h + G (h)h)
+ Al RYE((Ru+ kh1)) + O

while the terms without dp in > ozq(Rg,Zq) — A29g) are given by

P (—E>q_1 (n —2) ((n—2q+ 1)€n(Ry+ lihh> + (¢ = VhG;(Ry + mhh))

0t (<5 2 o — 20 1 1)) + 8 — 16 (%)

_ <_E>q (n—2)! (2(n — 2q + 1)(=2h + Cr(h)h) + 4(g — DhG(—2h + Cr(h)h))

ot (-0 DO oy 4 1R+ B (0 - 2B (Rt b))
+0(p°)
= 57 (A (@ K)o+ 1) + As(a, k)G (Ry + i)
+ 07 (—5) @A, )G + 3As(a, K)EE(H)

_ (_g) (2A1(a, K)(=2h + Cu(h)h) + 4As (v, K)hG,(—2h + G (h)h))

+ P2 (As(a, k)G ((Ry + khi)?) + Ay, K)hEH((Ry + khi)?)) + O(p) .
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By contracting, we see that 3 3,(scal®(g) — (n + 1)A\(9)g is given by
p(AL(B, k) + (n + 1) Ax(B, k)G (Ry + rhih)

4P (—f) 3(A1(B, k) + (n+ 1)As(B, 8))E2(h?)

2
— 7 (=5) HA(B,1) + (1 + D) As(B, 1) Gh(—2h + Gu() )
+ 02 (As(B, ) + (n + 1) A48, K)GE(Ri + h)?) + O(")| (dzijp N %) .

It follows that Fj(c, 3) = 0 gives us from the dp ® dp term the equation
(2.11) dpRdp® [Bl,g(a, B, k)E2(Ry + khih)

+p (_g) (Ar(a, k) + 3Bra(a, B, k) E2(h2)

— 0 (=3) @Ai(a,r) +4Bua(a, B,1)) 6 (~2h + G (W))

+ pBaa(a, B, K)EE((Ry 4 khh)?) + O(p?*)| =0
and from the term without dp the equation
(2.12)  Aj(a, K)E0(Ry + khh) + Biao(a, 8, k)hEE (R, + khh)
+ 0 (=5) @Ase R G (h) + 3B a(a, B, )HEE(R))
— 0 (=3) A, R)(=2h + Gu(h)h) + 4Bra(a B, W)AE(=2h + Gu(h)h)
+ p(As(a, k)G (R + khR)?) + Bs (o, B, k)G ((Ry, + khi)?)) + O(p?) = 0.
Restricting and to p = 0 yields the two equations
Bia(a, S, KGRy, + K,hh)|p:0 =0
(A (a, K)Cu(Ry + khi) + Bia(e, B, K)hEE (Ry + Khh))|p—o = 0

which, since Ai(a, k) # 0, imply (R, + Hhh)|p:0 = 0. Contracting we have €2(Rj, +

Hhil)‘pzo = O, i.e.,
1

Cho(h2) = _m(g}i(fiho)?
and hence
Cgho (Rho) + li(hocgho(hQ) + (n — Q)hg) =0
1 Cr(Bro), \ 1
= hy = _m<(€ho(RhO) - mh()) - _EP(hO)

where P(hg) denotes the Schouten tensor of hy.

In particular it follows that
(Ry, + Khi)| y=o = Weyl,,,

the Weyl curvature of hy, considered as a (2, 2)-form.
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To determine hy we differentiate (2.11)) and (2.12)) with respect to p and set p = 0. First
note that

0p(Cn( Ry, + £hh))|p—o
= Ric + K(hs%hy (ha) + ho(3Gm, (h3) — Ghy(h2)* + Gy (ha)) + (n = 2)ha),
Op (G (R + hh))|pmo = scal + 2(n — D)k(3E2 (h2) — Cho(ha)? + Gy (ha)),

where, using [Bes08, Theorem 1.174], cf. [Juh09, pg. 243], Ric and scal are given by

Ric = 0le-o Ric(ho + tha) = £ Ap g (ha) = 5, (Brgh2) — 5 Hessn (%3 (1)),
scal = O|y=oscal(hg + ths) = Apy (Ghy(ha)) + OngOn,ha — ho(Ric(hg), he)
= Gy (Ric) + 167 (Ric ®hs) — G, (ha)scal.
Then, from we have
(2.14) 2k(—As(a, k) + (n = 3)Bia(a, B, K))Ch, (ha)
+(5) (FAsa,r) + (20 = 5)Bua(a, B.7) 6 (1))
— k(=Ai(, k) 4 2(n — 2)Byao(av, B, £)) Gy (ha)?
+ (As(a, k) + Az (B, k) + (n+ 1) A(B, )Gt (Weyls ) + Bia(a, B, k)scal = 0.
and from we have
(2.15) (n —4)xA1(a, K)hy + k(A1 (@, &) +2(n — 3)Bra(a, B, k) hoGhy (ha)
— kAL (@, K)Gho (h3) + 5 (A1 (e, ) + (20 = 5)Bua(a, B, k) ho @y, (h3)
+ 26A1 (@, K) oGy (ha) — k(A1 (o, k) + 2(n — 2)Byo(e, B, k) oGy (ha)?
+A3(a, k)G (Weyl? ) +Bsala, B, k) ho@; (Weyl?, )+ Ay (a, k)Ric+Bi o (a, 8, k)hoscal = 0.

(2.13)

1@,
3

The contraction of the latter is
(2.16) k(2(n —2)Ai(a, k) +2n(n — 3)Bya(a, B, K))Chy (ha)
+ 5 ((n = 2)As(a, 8) + n(2n — 5)B1a(a, B, 1) (1)
— k((n — 2)A1 (o, k) + 2n(n — 2)Bya(a, 8, K))Ehy (h2)?
+ (As(a, k) +nBsa(a, B, k)G (Weyl?, ) + A (e, k)€ (Ric) + nBy (e, 8, k)scal = 0.

Multiplying (2.14) by n and subtracting it from (2.16)) yields

R4 1) A (0, 1) Bhy(he) + (5 ) (2(n—1)Ax(a, ) G2 () = k(2(n—1) As(a, k)G (o)’
+ As(a, K)Ep (Weyly ) + Aq(a, k)%x(Ric) = 0
and so we find

1 . As(a, R)
=) ) — A )

1 1
Guolhe) = =362, (13) + 5o (h2)" i (Weyl).
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Substituting into (2.15)) we find
(2.17)

hy = —

1 ho%(Ric) Lo a1 ) ) Ric
e () T GG~ §Bu () — G (4) + 2 (k) + =)

Bis(a, 8,k)ho (4 2 (12 ,  scal
B (n —4)Aq(a, K) (5(271 - 5)%’10(}@) —2(n = 2)Gh,(ha)” + 7)

1
4k(n — 1)

As(a, R)
4dk(n — 1)A1(a, K)

1 1 .
+2(n—3) ( — 160 (13) + 56, (ha)” - %, (Ric) — 7 (Weylio))

A(n — 1)As(a, )6 (Weyly )+ (4(n — 1)Bsa(a, B, k) — Az(e, k))ho%)t (Weyly )
4k(n —1)(n —4)A;(a, k)

3. GRAHAM-LEE EXISTENCE

In this section we use the results of Graham-Lee [GL91| to show that there are many
Poincaré-Lovelock metrics on the interior of the Euclidean ball.

Theorem 3.1. Let M = B"*', n > 4, b the hyperbolic metric on M and/h\ = p?h the
round metric on S™ = OM. For any smooth Riemannian metric g on S™ which, for some
0 > 0, is sufficiently close in C*9(M,S*(M)) to b there is a metric g € C(M,S2(M)) N
p~2CO(M,S*(M)) satisfying

(3.1) {R(f"’ —AGg =

2 . —
x g‘aM 1s conformal to g,

and, for any o such that LimSec(a) # (), there is a metric g € C*(M,S*(M))Np~2C°(M,S?*(M))
satisfying

(3.2) {Z%(gg(2q) — (1 - %R g) = 0

$2g|aM is conformal to .

(In [GLO1], the equation (3.1)) is treated with ¢ = 1. Solving with a = ¢, (i.e.,
aj = dj,) gives a solution to . We treat both equations in parallel as it makes it simpler
to compare with |[GLI1].)

To compensate for diffeomorphism invariance, we will study a perturbation of the equation
of the previous section,

Qua(9:1) = Y ag(RYD = ACg) + 5,(679 — (n+ DACD)g — b0 (9, 1) = 0,

where ¢ is an auxiliary metric and @, (g,t) an operator specified below . We will
show that the linearization of Q. )(g,t) is asymptotically equal to a linear combination of
(Ay 4 2n) in pure-trace directions and (A, — 2) in trace-free directions.

Once the linearizations are computed, the arguments in [GLI1] will apply virtually un-
changed. Given a metric g on S"™, we define an asymptotically hyperbolic metric T'(g)
extending the conformal class of § into M = B"*! and equal to h away from OB" ™! in (3.11])
below. Using the linearization of Q(a,5)(g,t), and an analysis of the corresponding ‘indicial



26 PIERRE ALBIN

operators’, Graham-Lee constructed an operator S(g) depending smoothly on g such that,
e.g.,
~ ~ -2
Qa,5)(5(9), T(9)) = O(p" ")
essentially by showing that the construction of the asymptotic expansion in the previous
section can be carried out smoothly. Using these approximate solutions, the arguments
in |GLI1] show that as long as g is sufficiently close to the round metric and

Z A(Qq)(q(aq ++1)8)) #0, Aila, k) #0,
there is a metric g extending the conformal class of g, such that

Qa.p)(9:T(9)) = 0.
Finally, in Lemma below we show that if («, ) is given by (e,,0) or if (a, ) satisfies
By = —2—1qozq, then
Qe (9:T(@) =0 — (ap)(9.T(@) = 0.

We start by computing the linearizations of the generalized Ricci tensors and Lovelock
scalars. These are due to [dLS10] at constant curvature metrics and |CdLS13] for slightly
more general metrics.

Let us introduce the following notation, with ¢ and ¢ two metrics on M,

5, : symmetric 2-tensors — one-forms , (0,t); = —g""tijx,
dg : one-forms — functions , dyw = —gjkcuj,k,
o, - one-forms — symmetric 2-tensors ,  (Giw)i; = 5(wi; + wji),

gt™!: one-forms — one-forms, (gt 'w); = gij(t ) Fwy,

Q;Qq) : symmetric 2-tensors — symmetric 2-tensors , Qf‘”((b)ij =, — Q—nggd%ggij.

The latter, known as the 2¢g-gravitation operator, has the key property that it takes Rffq) to
é'g(zq), the (2¢)™" Einstein-Lovelock tensor, and hence the second Bianchi identities read
59%2(1) (R(2Q)) = 0.
We point out that, if w is a one-form, then
(gf)(ﬁw)ij = $(wij +wji — 9" ws10i5) = O;w + 5904w

Lemma 3.2. Let (M, go) be an asymptotically hyperbolic manifold, p a boundary defining
function that is special for gy, and let v be a symmetric two tensor of the form r = pNT with
7 € C*(M,S%*(M)).

The linearization of the map g +— ng — \29Dg at gy in the direction of r satisfies

(7)
\(29)

= =y (20 = = D8 0) = 0 = DA (0 (1) + 80805 (1))

(3.3) D (RPV —ABDg)

g0

— (0 =20+ D(3A5(r) = 55,0062 () = 1)) + O(p™*).

If go has constant sectional curvature then the O(pNTY) term is identically zero.
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The linearization of the map g — (scal®(g) — (n 4+ 1)AD)g at go in the direction of r
satisfies

(3.4) D ((seal®(g) — (n+ 1A®)g) (1)
P i (1) + 2 (G (1) + 808G )30 + O,

n

N+1)

If go has constant sectional curvature then the O(p term s identically zero.

In particular, this implies that the linearization of g — £°% — (1 — ”2—21))\(2(1) g at go in the
direction of r satisfies

(3.5) D — (1 - A g)g,(r)

g 2q

n— (29)
- ( Tf(it 11))>\ (%go(%Ago ((ggo (T)) + 590590953)(7”) + (’fl — 2)%90 (T))

— (3 = 83,0,02(r) = 1)) + O™,
where, if gy has constant sectional curvature, then the O(p™*1) term is identically zero.
Proof. Let g = g(s) be a family of metrics on M with ¢(0) = go, ¢'(0) = 7.

We write the linearization of qu) at go as a sum of two operators according to

D ('R(2¢1) ) N (

g

N AR

as o (Z ga1b1 agbs azq 1b2g— 1R01d161fl (y) . chdqeqfq <g)>

_ Z Zg aibr |, & o~ O(Qakbk> . gOa2q71b2q71R01d161f1 (go> . chdqeqfq (90)

a a 9
+ Z Z 9o LS 9o 2qilbm]ilficldltﬁfl (90) e % ‘Szo(Rquqeqfq <g)) T chdqeqfq (90)

= LD (r) + M9 (r).

For £29(r) note that the factors g5* are O(p?), 2 o(g™0) = — gk, kgkggkbk is O(p*™™)
and each factor of R4, (g0) is equal to (—2go)czdlelf1 + O(p~?). Hence

£(29) (r)
a a a2q— b q—
S ) g e (5 + OO )
= LE(r) + O )

and if gy has constant sectional curvature then £39(r) = E(()zq)(r). We can use Lemma

to see that L7 (r) satisfies
0
5o (€1 (=39%)9) = £577() + (20) (=) G0 (9" 'r)

17 (2¢)!(m — 2)!
( 2q) : (qr)n(— QQ)!> (2¢ = )(r = 904 (7).

== qu(r):
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Similarly, in the expression for M9 (r) note that R, = d4|.—o(R,) is O(p*?) (e.g., from
[Bes08, Theorem 1.174(c)]), hence

2q) § :E :galbl . a2q 1b2g—1

0
(_%gg)cldlelﬁ U alszo(Rquqeqfq (g)) T <_%98)chq5qfq + O(pN+1)

= M) + O™
and if gy has constant sectional curvature then M9 (r) = /\/l(()zq) (r). We can compute
MP)(r) as
MG?(r) = a3 (=50) " Ry)

_ ()7 @g)lm - 3)! <(q —1)goG2 (Ry) + (m — 2(1)%0(5’;;))

20 (m—2q)!
and hence
iy oy - (2D (20)/(m = 3)
DR, (1) = 5 =gy (7= 24— )0 = 96 (1))
— (g = Do (By) = (m = 20)%,(R,) ) + O(p™*)
(3.6)

(29)
_ A_) (0= 1)(20 = 1)(r = 90%,, (7))

n(n—1
(g~ D92 (Ry) — (n = 20+ 1) (R,)) + O(p"+)

The variation of the curvature tensor has contractions [Bes08, Theorem 1.174], [dLS10, (3.7),

(3.8)]
ngo(Rg) = %Agor - 5* 590955)( )+ (R @ op 4o R§2))

ngQO(Rg) = %Ago(% ( )) + 5905909 3)(7“) + 9o (R( ) 7“)

go ’
and we note that
%(R(2) or—4+ro R§2))Z] = —(m — ].)T + O(pN+1>

9o(RE), 1) = —(m = 1)@y, (r) + O(p"*)

go ?

with the O(pV*1) terms vanishing if gy has constant sectional curvature. Substituting these

expressions into (3.6) yields (3.3).
Similarly decomposing D(scal®?(g)) (1) = Z((]Qq)(r) + M(fq’ (r) + O(pV ™) we find
—(29)
S o (@2 307)) = T () + ) (5283

—(20), (=1)7 (2¢)!(m —1)!
= ‘CO (T) - _(2(1) 2q (m_ 26])' (ggo(r)

and

T =gzt R =a(-3) g G
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so that
Do) =0(~3) g a

=~ 0@ (1, (1) + 2000630 (1) + 000,92 (1)) + O™,

n

(20m = D)% () + 2 (R,)) + O™

O

To compensate for the diffeomorphism invariance of these tensors, we will perturb them
by adding an operator of the form

(615; + 62969)(9(1599;2) (t))
where ¢ is an auxiliary metric.

Lemma 3.3 ( [GL91, Lemma 2.3, Proposition 2.10]). For metrics (g,t), a symmetric 2-

tensorr, and constants c1, ca, the linearization of the map (g,t) — (015;+02g5g)(gt_159gf,2) (1))
with respect to the first variable in the direction of r is

Dy ((c16;+¢2965) (98" 6,G5 (1)) (9. () = (€10 4 €2989) (—8,G57 (r) +C (r) = D (1)) + By ()
where, with covariant derivatives with respect to g,
Czkj = %(til)w(tie,j + tiei — tije), DF = gijC'fj = —(t*15ggé2)t)k,
(Berea(1))ji = 13D (Phag + Tjee — Tije)
—C (TabDa,bgjk + 1D g™ (rarp + Thta — Tabt) — gabDa,ijk>a
(€(r); = giCayr®,  (2(r)); = DFry.

If g and t are asymptotically hyperbolic metrics such that P2glomr = p*tlon and v = p"T,
with 7 € C*(M,S8*(M)), then

Dy((e8] + e298) (gt~ 8,62 (1)) () = (167 + 298, (~8,G2 () + O(p 1),
and if moreover g and t are equal on M then the O(pN*t1) term vanishes.

Proof. For ¢; =1, ¢co = 0, this is shown in [GL91]. So it suffices to compute

Osls=0((9503.) (9t ™0,G7 (t))) = ~0sls=0((9504,)9 D)
= —r“bDa,bgjk + %Dtgab(rat,b + Thta — Tabyt) — gabDa,ijk

and note that if g and ¢ are asymptotically hyperbolic metrics with the same leading term
at OM and 7 is as above, then D* = O(p?), D* ; = O(p), and hence the right hand side of

this expression is O(p™*1). It vanishes if g = ¢ since then both C' and D vanish. O
In view of Lemmas [3.2] and we define

(37) q)(a,ﬁ) (g, t)
(29)
==y h (gln = 20+ 1)3; = (agla = 1) + By(n — Da)gé, ) (gt '6,G2(1)),

and, as anticipated above,

Quap(9:1) = Y ag(RYD = A®g) + 5, (scal® (g) — (n + 1)ACD)g — Do )(g. 1)
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We have shown the following.

Lemma 3.4. Assume gy and t are_asymptotically hyperbolic metrics such that P go0lon =
p*tlonr and r = pNT, where T € C*(M,S8*(M)) has decomposition
r = ugo + 1o with €, (ro) = 0.

The linearization of g — Qa,p)(9,t) at (go, go) in the direction of r is
(3.8)
A (29)
= S =) (q(n —1)(ag + (n 4 1)B) (A, 4 2n) (ugo) + (n — 2¢ + D)y (A, — 2)%))

+ O(pN+1)

N+1)

If go has constant sectional curvature then the O(p term 1s identically zero.

_ 1

In particular if §; = —o

oy, the linearization is
Al (Oé, l{)
4

Recall the notation: If g, are metrics, all assumed to be of class C* on M, then

EX(Gry ., TN)

will denote any tensor whose components in any coordinate system smooth up to M are
polynomials, with coefficients in C>°(M) in the components of the g;, g; ', and their partial
derivatives, such that in each term the total number of derivatives of the g; that appear is
at most k.

If ¢ is conformally compact, then

Rjx = —p*(ng" pip) gy, + 0~ 1 (9) + 6%(9)
and more generally, from ({2.5),

(3.9) (= (0= 1)(Ag, +20)(ugo) + 2(Ay, = 2)(r0) ).

CHURY) = p Y P (g), and GH(RY) = JE(g)
j=1

j=1
Lemma 3.5. For g andt conformally compact metrics,
(3.10) (e16, + czgég)(gt_lchgf) (1))

= p 2(5¢1(Brp; + Bjpr) + c2g™ Bopige) + p~ ' 61(3,1) + 6%(3,7)
where B = [6,;(D)gt " — (n+1)] dp. In particular, (c10} + 298,) (gt 16,652 (1)) = O(p™) if
§|8M = tom-
Proof. Graham-Lee |GL91, Proof of Proposition 2.5] compute that

(gt_léggf)t)k = —p 'B,+ &g, 1).

Applying (16} + c29d,) to this expression yields (3-10). 1t g]aM = t|on then B = 0O(p). O
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Recall, from |GLI1, §3] the following notation for spaces of functions. Consider Q a
bounded open subset of R"*! with smoot}l boundary and {2 an open subset of M. Let d,
denote the Euclidean distance from z to 02 and denote for s € R, k € N, v € (0, 1),

‘quOQ ZZ”CZ SﬂDé“HL“’(Q)

J=0 |¢|=5

—s wrki |0u(@) — Fuly)]
Julle = Nl + D [min(d 747, dyesten) it o
= ey
We denote by A (2), Aj_(Q), the Banach spaces of functions in C*(Q), with finite |- Hko 0

or finite HHE:LQ, respectively. These give rise to Banach spaces of functions on M, denoted
Ago(M), Aj (M), see [GLI1, Proposition 3.3].

We define an extension operator from boundary metrics to interior metrics as follows. Let
h be an asymptotically hyperbolic metric on M with h = p*h € C®(M,S*(M)), choose a
non-negative cut-off function ¢ € C*(M) supported in the set & on which the flow along

h-geodesics normal to M is a local diffeomorphism, and which is identically equal to one
in a neighborhood of M. Define

(3.11) En(9) = ¢g+ (1= ¢)h, T(g) =T,1(9) = p " En(7)
where g is the extension of g from OM obtained by parallel translation and requiring
g(v,-) = dp, with v the inward pointing normal to OM corresponding to h. Thus FEj(g)

is a metric on M extending g such that p=2E},(g) is an asymptotically hyperbolic metric on
M.

Fix now M =B"™, p(¢) = (1 — [¢|*), and h = b, the hyperbolic metric.

Given g € C*(OM,8%(OM)), a metric on M, we can employ the argument in |GLI1, pg
203-205] virtually unchanged to construct approximate solutions to Q. (g, 7(g)) = 0. We
start with g; = p~2FEy(9), for which it is easy to see from (3.10) that Q(g1,p 2Fy(9)) =
O(p~') and then use the linearization in Lemma and the indicial root computation
in |[GLI1, §2] to construct successive approximations resulting in:

Proposition 3.6 ( |[GL91, Theorem 2.11]). There is a smooth operator
S : CMI(OM, S*(OM)) — A2, (M, S*(M)),
where p = min(k — 2,n — 1), such that Q(S(q),T(9)) = O(p™ ') and S(h) = h. The map
g Q(S(9),T(9)) is smooth from C*7(OM,S*(OM)) into Ai~ /IL 2 (M, S?*(M)).
Let H denote the round metric on S™.

Theorem 3.7 ( [GLI1, Theorem 4.1)). Let M = B n >4, k > 2,0 € (0,1), and let
(cv, B) be such that

Z g D (g 4 (n +1)B,) # 0 and Ay (a, k) # 0.

There exists € > 0 such that, if g is a smooth metric on OM with

g —bllre <e,
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there is a metric g on M with uniformly negative Ricci curvature such that
p*g € C" Y (M,S*(M)) for any 0 < v < min(1 — %(n —Vvn?2—-8)k+6—-2n+2),
p2g}T{9M = /9\7 and Qa,ﬁ(ga T(/g\)> = 0.
Proof. We summarize the proof of [GL91, Theorem 4.1].
Set p=min(k —2,n—1), 7, =1—3(n—+vn?>—8),and let s = p+ 1 if p+1 < n and
otherwise s € (n—1,n—147,). Let L = D1(Qa,5(9,t)) () (r), so that from Lemma [3.4] L is

a non-zero multiple of Ay + 2n on pure-trace tensors (relative to ) and a non-zero multiple
of Ay — 2 on h-trace-free tensors. For this choice of s, [GLI1, Corollary 3.11] implies that

L: Az:iﬂ(M, S3(M)) — AZ:i_M(M, S?(M))

is an isomorphism and Q.5 (5(9),7(9)) € AZ:i_Zﬁ(M, S?(M)).
Define

P C CH(OM,S*(OM)) x Aj 22 o(M,S*(M))
% ={(g,r) : g is pos.def. on IM, S(g) is defined, and S(g) + r is pos.def. on M},

and a map

2: B — CH(OM,S*(OM)) x A; 22, o(M,S*(M))
2(9,7) = (9, Qs (5(9) + 7. T(9)))-
As in [GL91, pg. 221], it follows from Lemma and |GLI1, Proposition 3.3] that 2 is
smooth, satisfies 2(h,0) = (h,0), and its linearization about (b, 0),
D2 - CM (M, S*(OM)) x A2 ,(M, S* (M)
— CH(OM, S*(OM)) x Aj 2, o(M,S* (M),

is given by

D2 (@) = (@, D1Q(b,h)(DS;q + 1) + DaQo ) (DT57)) = (@, L + K7q),
Where KZJ\: DlQ(hyh)(DSBZD -+ DQQ(M)(DTEZJ\))
We have Kq € AZ:i_w(M, S?(M)) (since Qa5 (S(9), T(9)) € AZ:Z_M(M, S?(M)) for every
g) and so the equation
Do@(df/\hp)@\a r) = (w,v)

has a unique solution given by § = @ and r = L™'(v — K®). The map (@,v) — (q,7) is
bounded as a map

CH(OM, S*(OM)) x N2, o(M,S*(M)) — C*(OM, 8*(OM)) x A2 o(M,S8*(M)),

so by the inverse function theorem £ is locally invertible in some neighborhood of (E, 0).
Thus if ¢ is sufficiently close to b we can solve the equation 2(g;,7) = (g,0), i.e., find
g = S(g) + r such that

Qa,5(9: T(9)) = 0.
Since g is smooth, p2S(g) and p*T'(g) are smooth in M, so

9= 5@) +r € pC2(T,SX(M)) + p Ay, o(M, S*(M)) € C2¥(M, S*(M)).
As L is elliptic, g € C®(M, S*(M)).
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Since s > 1, we always have p?g € C**(M,S*(M)) + A} y(M,S*(M)), so g is continuous
on M. As in |GL91], using |[GL91, Proposition 3.3] allows us to see that g is Lipschitz
and in C"~Ls= (M, S2(M)). Shrinking the neighborhood of b if necessary, g can be made

arbitrarily close to h in the A)_, (M, S*(M)) norm and in particular, g will have strictly
negative Ricci curvature. 0

Lemma 3.8 ( [GLI1, Lemma 2.2)). Let g be a conformally compact metric of class C> on
M such that, for some K < 0,

Ric(g)(V,V) < K|V|2 for all V € TM,

and such that in coordinates smooth up to the boundary 0yg,; and pOy0sg;; are bounded. Let
t be a conformally compact metric of class C> on M, such that T € C*(M,S*(M)).

a) If Rng) — A9y — P (e,.0) (g,t) =0 then qu) = \20g.

b) If o is such that LimSec(a) # 0 and B, = —%]ozq, then

D ag(EP? — (1= A g) — B 5)(9,) =0 = > (EPY — (1 — BE)ACDg) =0

Proof. In the pure Lovelock setting, since RéQQ) + Ag — ®?9(g,t) vanishes, and 59952‘1) kills
the first term by the second Bianchi identity and the second term by the metric property of
the connection, we must have

5,69, 0)(g,t) = 0.

Let w be the one-form gt‘léggf) (t) so that this equation implies the vanishing of

=0y ((” —2q+ 1)%(%,]' + Wi %gingtws,t) + (-1 - g_n;)gijQStws,t>
(n—2q¢+1) 5 (n—2q+1) .
- 9 Og(wij + Wii — 919" wWer) = #(59%2)(59@.
When 8, = —2—1qaq, we have

(D(a,ﬂ) (ga t) = _Al(a7 ﬁ) (6; + %gdg)wa
and the second Bianchi identity implies that
0=6,( D au(EP — (1= 5Ag) — B (a.1))
= Ai(a,k)04(0) + 290, )w = Ay (, /—c)égggz)é;w.

In either case we have
3,G) 65w =0,

just as in the proof of [GLI1, Lemma 2.2]. As explained there, this implies that [w]? is
bounded and Ay|w|? < 2K|w|; so [GLI1, Theorem 3.5] implies w = 0. O

As a corollary of Theorem [3.7 and Lemma [3.8) we obtain Theorem
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