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Abstract. An important tool in the study of conformal geometry, and the AdS/CFT
correspondence in physics, is the Fe↵erman-Graham expansion of conformally compact Ein-
stein metrics. We show that conformally compact metrics satisfying a generalization of
the Einstein equation, Poincaré-Lovelock metrics, also have Fe↵erman-Graham expansions.
Moreover we show that conformal classes of metrics that are near that of the round metric
on the n-sphere have fillings into the ball satisfying the Lovelock equation, extending the
existence result of Graham-Lee for Einstein metrics.

Introduction

The purpose of this paper is to show that an important part of the theory developed for
Poincaré-Einstein metrics, metrics that are conformally compact and Einstein, holds also for
Poincaré-Lovelock metrics, metrics that are conformally compact and Lovelock. Specifically
we show that Poincaré-Lovelock metrics with su�cient boundary regularity on arbitrary
manifolds have an asymptotic expansion identical in form to that of Poincaré-Einstein met-
rics and that conformal classes of metrics on the sphere su�ciently close to that of the round
metric can be filled in with Poincaré-Lovelock metrics.

The local invariants of a Riemannian manifold are easy to write down. Weyl’s invari-
ant theory identifies them with the contractions of the Riemann curvature tensor and its
covariant derivatives. On the other hand local scalar invariants of a conformal structure
are less readily accessible. Inspired by the tight connection between the Riemannian geom-
etry of hyperbolic space and the conformal geometry of the round sphere, the Fe↵erman-
Graham [FG85, FG12] ‘ambient construction’ seeks to invariantly associate to a manifold
with a conformal structure another manifold with a Riemannian structure. Conformal in-
variants of the former are then obtained from Riemannian invariants of the latter,

A Riemannian manifold (M, g) is conformally compact if M is the interior of a compact
manifold with boundary M and for some, hence any, non-negative function x 2 C

1(M) that
vanishes simply and exactly at @M, x2g is a metric on M. The metric on @M obtained by
restricting x2g to @M depends on the choice of x, but di↵erent choices yield metrics in the
same conformal class, the ‘conformal infinity’ of g [PR88, Chapter 9]. The problem posed
in [FG85] is, given a conformal class of metrics on @M, find a conformally compact Einstein
metric g whose conformal infinity is the given conformal class. These ‘Poincaré-Einstein
metrics’ can, for appropriate choices of x, be written near the boundary as x�2(dx2 + h)
where h has an asymptotic expansion of the form

(1) h ⇠

(
h0 + h2x2 + (even powers) + hn�1xn�1 + hnxn + . . . if n odd

h0 + h2x2 + (even powers) + hn,1xn log x+ hnxn + . . . if n even
1
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with n = dim @M. (These ‘appropriate’ x are known as special boundary defining functions.)
The choice of x determines a metric h0 in the conformal infinity and Riemannian invariants

that do not depend on such a choice are invariants of the conformal class of h0. An important
example is the renormalized volume,

(2) R Vol(M) = FP
s=0

Z

M

xs dvolg = FP
"=0

Z

{x�"}
dvolg,

which for n odd is independent of the choice of special boundary defining function used in
its definition, while for n even its dependence on x is mediated through the term hn,1 in the
expansion of the metric.

The importance of the renormalized volume is that it plays a prominent rôle in the Anti-
de-Sitter / Conformal Field Theory (briefly AdS/CFT) correspondence. This is a proposed
duality [Mal98] between a quantum gravity theory in the interior of a manifold and a con-
formal field theory on the boundary. This duality was clarified in [GKP98], [Wit98] as an
equivalence of partition functions and the renormalized volume shows up as the partition
function of the gravity theory. The dependence on the choice of boundary defining function
was shown to match the expected conformal anomaly of the conformal field theory on the
boundary when n = 2 or n = 4 [HS98].

A natural generalization arises from recalling that in four dimensions the only natural
tensors on Riemannian manifolds that are symmetric, built up from the metric and its first
two derivatives, and divergence-free are linear combinations of the metric and its Einstein
tensor,

agij + bEij(g), Eij(g) = Ric(g)ij �
scal(g)

2
gij.

Indeed, this is one of the motivations for the form of the field equations of gravity in general
relativity. It was shown by Lovelock [Lov71] that in dimension m, the space of tensors
satisfying these properties has dimension b

m
2 c (though only the metric and the Einstein

tensor are linear in the second derivatives of the metric). Generators for the other tensors
are given by

E(2q)
ij (g) = Ric(2q)ij �

scal(2q)(g)

2q
gij where Ric(2q)ij = �

↵1↵2···↵2q

i�2···�2q
R�2

↵1↵2jR
�3�4
↵3↵4

· · ·R�2q�1�2q
↵2q�1↵2q

,

scal(2q)(g) = gst Ric(2q)st , and �
↵1···↵2q

�1···�2q
= det((�↵i

�j
)).

Remark 1. For locally conformally flat metrics, we have

scal(2q)(g) = �2q(g
�1P (g)),

the (2q)th elementary symmetric function of the eigenvalues of the Schouten tensor of g, see
(1.2) and Remark 6.

Divergence-free symmetric two tensors natural in the metric and its first two derivatives
are known as generalized Einstein tensors, or Lovelock tensors. We will refer to a metric
that is conformally compact and satisfies an equation of the form

(3)
X

↵qE
(2q)
ij (g) = �gij,

as a Poincaré-Lovelock metric. For our purposes the particular values of the coe�cients will
be immaterial as long as they satisfy a single linear restriction.
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For a fixed n � 3, and any choice of scalars ↵ = (↵1, . . . ,↵bn+1
2 c

) let

�(↵) =
X

↵q

✓
�
1

2

◆q n!(2q)!

(n� 2q + 1)!
=
X

↵q�
(2q),

chosen so that (3) holds with � = �(↵) for a hyperbolic metric. Let LimSec(↵) be the set of
 > 0 such that

X
↵q

⇣
�


2

⌘q n!(2q)!

(n� 2q + 1)!
= �(↵),

A1(↵,) =
X

↵q

⇣
�


2

⌘q�1 (n� 2)!

2

(2q)!

(n� 2q)!
6= 0.

The usual Einstein equation corresponds to ↵ = (1, 0, . . . , 0), �(↵) = �n, LimSec(↵) = {1}.
In general the number of elements in LimSec(↵) can be any number in {0, . . . , bn+1

2 c}, but
if the signs of the ↵i alternate then LimSec(↵) = {1}. We will assume that LimSec(↵) 6= ;.

Theorem 1. Let X be an n-dimensional closed manifold, n � 3 with a conformal class of

Riemannian metrics c, and fix ↵ such that LimSec(↵) 6= ;.

a) Choose a locally constant function  : X �! LimSec(↵). Let N = n�2 if n is even and

N = 1 if n is odd. There is a conformally compact Riemannian metric g on X⇥ [0, 1]x with

conformal boundary X ⇥ {0}, whose sectional curvatures converge to � as x ! 0, which is

even modulo O(xN+2) and asymptotically satisfies the Lovelock equation

X
↵qE

(2q)
ij (g) = �(↵)gij +O(xN).

Moreover, g is unique modulo O(xN) up to a di↵eomorphism fixing X ⇥ {0}.
For any Riemannian metric h0 in the conformal class c there is a boundary defining

function x for which g takes the form x�2(�1dx2 + h(x)) with h(0) = h0 and the ten-

sors {@i
xh(0)}i2{0,...,N+1} are formally determined by h0.

b) Assume that (M, g) is a conformally compact manifold with conformal boundary (X, c),
and g satisfies the Lovelock equation

X
↵qE

(2q)
ij (g) = �(↵)gij.

Then the sectional curvatures of M converge to �, with  : X �! LimSec(↵) a locally

constant function, and we can find x such that g has the form x�2(�1dx2 + hx) near the

boundary. Moreover, if g has su�cient boundary regularity,

i) h has an expansion of the form (1) where the tensors hk for k < n, and hn,1 if n is even,

are formally determined by h0.
ii) The tensor hn is not formally determined by h0; if n is odd hn is trace free, if n is even

its trace is formally determined by h0.
iii) if n is odd hn is divergence free, if n is even its divergence is formally determined by h0.
In any case all of the tensors in the expansion are formally determined by h0 and hn.

Remark 2. If ↵ = (1, 0, . . . , 0) then the Lovelock equation is the Einstein equation and this

theorem is the usual Fe↵erman-Graham expansion. In this case the boundary regularity of g
in (b) is shown in [CDLS05].
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It turns out that the formal determination of the asymptotic expansion of a conformally
compact metric holds for a larger family of curvature equations, obtained by modifying the
trace of the Lovelock tensors,

Fg(↵, �) =
X

↵q(Ric
(2q)(g)� �(2q)g) + �q(scal

(2q)(g)� (n+ 1)�(2q))g = 0,

which reduces to the Lovelock equation above if �q = �
↵q

2q for all q.

Theorem 2. Parts (b)(i) and (b)(ii) of Theorem 1 hold for metrics satisfying Fg(↵, �) = 0
as long as ↵ 6= �(n+ 1)� and LimSec(↵, �) 6= ;.

If (n+1) > 4 and g is a solution of Fg(↵, �) = 0, such as a Poincaré-Lovelock metric, then

g = x�2(�1dx2 + h0 + h2x
2 + h4x

4 +O(x5)).

We determine the tensors h2 and h4 below in §2.3. The tensor h2 is always a multiple of the
Schouten tensor of h0,

h2 = �
1


P (h0),

while the tensor h4 is more complicated,

h4 = �
1

(n� 4)

⇣
�

h0Ch(Ṙic)

4(n� 1)
+ h0(

1
4C

2
h0
(h2

2)�
1
2Ch0(h2)

2)� Ch0(h
2
2) + 2h2Ch0(h2) +

Ṙic



⌘

�
B1,2(↵, �,)h0

(n� 4)A1(↵,)

⇣
1
2(2n� 5)C 2

h0
(h2

2)� 2(n� 2)Ch0(h2)
2 +

˙scal



⌘

+2(n� 3)
⇣
�

1

4
C

2
h0
(h2

2) +
1

2
Ch0(h2)

2
�

1

4(n� 1)
Ch(Ṙic)�

A3(↵,)

4(n� 1)A1(↵,)
C

4
h0
(Weyl2h0

)
⌘

�
4(n� 1)A3(↵,)C 3

h0
(Weyl2h0

) + (4(n� 1)B3,4(↵, �,)�A3(↵,))h0C
4
h0
(Weyl2h0

)

4(n� 1)(n� 4)A1(↵,)

where

Ṙic =
1

2
�L,h0(h2)� �⇤h0

(�h0h2)�
1

2
Hessh0(Ch0(h2)),

˙scal = Ch0(Ṙic) +
1
2C

2
h0
(Ric?h2)� Ch0(h2)scal,

and we are using the double form formalism reviewed in §1.2, and functions of ↵, � specified
in §2.

An advantage of the Poincaré-Lovelock metrics over other solutions of Fg(↵, �) = 0 is
that the former are guaranteed to exist, at least on the ball, by the following analogue
of [GL91, Theorem A].

Theorem 3. Let M = Bn+1, n � 4, h the hyperbolic metric on M and bh = ⇢2h|{⇢=0} the

round metric on Sn = @M. Let ↵ be such that LimSec(↵) 6= ;.
For any smooth Riemannian metric bg on Sn

which, for some ✓ > 0, is su�ciently close in

C
2,✓(M,S2(M)) to bh there is a metric g 2 C

1(M,S2(M)) \ ⇢�2
C
0(M,S2(M)) satisfying

(P
↵qE

(2q)
ij (g) = �(↵)gij,

x2g
��
@M

is conformal to bg.
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The Lovelock equations are generally not elliptic, even after gauge-fixing, and hence can be-
have very di↵erently to the Einstein equations. For example, the product of an n-dimensional
Riemannian manifold and the `-dimensional flat torus satisfies E(2q)(g) = 0 whenever 2q > n,
so that for many Lovelock equations the moduli space of solutions is infinite dimensional.
However it turns out that the linearization of the Lovelock equations at the hyperbolic met-
ric on the ball is, as long as A1(↵,) 6= 0, essentially the same as the linearization of the
Einstein equations.

Remark 3. We do not explore the consequences of the Lovelock equations with A1(↵,) = 0.
The Lovelock equation in this case shows that the trace of @xh|x=0 vanishes but does not

determine its trace-free part, while in the Graham-Lee argument for existence the vanishing

of A1(↵,) implies the vanishing of the linearization of the Lovelock equations at a hyperbolic

metric.

There are many papers in the literature that discuss modifications of the Einstein equation.
Recently, for example, Alaee andWoolgar [AW18] consider asymptotically hyperbolic metrics
satisfying the Bach equation in dimension four and a modification in higher dimensions
and derive their formal power series expansions, while in [CGGLO18] the authors consider
higher curvature theories of gravity whose actions are given by generalizations of Branson’s
Q-curvature.

In the context of the AdS/CFT correspondence, there is a systematic discussion of as-
ymptotic expansions of solutions of higher derivative theories in three dimensional gravity
in [STvR09]. Four-dimensional theories are treated in, e.g., [ST13]. The paper [ISTY00]
(cf. [Ske01]) discusses how the coe�cients of the expansion of a conformally compact metric
are constrained by their behavior under conformal transformations regardless of the gravita-
tional equation imposed (assuming that the expansion is smooth and that the gravitational
expansion is satisfied by hyperbolic space). Note that Fe↵erman-Graham [FG12, Proposi-
tion 3.5] show that for the Einstein equation only contractions of the Ricci curvature and its
covariant derivatives show up, while, e.g., the expression for h4 above shows that the Weyl
curvature is involved in the expansion of solutions of general Lovelock equations.

We mention a few papers that are more specifically in the setting of Lovelock gravity
in the AdS/CFT correspondence. In [KO07] boundary terms consistent with the Lovelock
action and AdS asymptotics are determined. In [dBKP10] the authors consider AdS7/CFT6

and explain how considerations in a conformal field theory hypothetically dual to a Lovelock
theory restrict the physically meaningful values of the coupling constant vector ↵. This theme
is also explored in [CE10] for cubic Lovelock gravity in arbitrary dimensions. In [CESdS13]
the authors point out that the inclusion of ‘higher curvature terms’ allows for the description
of more general conformal field theories. In [AK16] the authors consider actions that are up
to quadratic in the curvature and they identify specific values of the couplings for which the
Lovelock equations do not determine the terms in the expansion of the metric; this seems to
correspond to the condition A1(↵,) = 0 above. In loc. cit. the authors point out that in
five dimensions this corresponds to ‘gravitational Chern-Simons theory’.

Consequences

We briefly review some of the immediate consequences of Theorem 1; for a more complete
survey of these consequences in the Einstein setting see, e.g., [DGH08].

As mentioned above, if (M, g) is a Poincaré-Einstein manifold then an important conformal
invariant of its boundary is the renormalized volume (2). In [Alb09] it is shown that every
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scalar Riemannian invariant of (M, g) has a renormalized integral that is independent of the
choice of special boundary defining function used in its definition. As this only depends on
the form of the Fe↵erman-Graham expansion it holds for all Poincaré-Lovelock metrics.

A particularly interesting example is the Pfa�an, the integrand of the Gauss-Bonnet
theorem, for which we have [Alb09, Theorem 1.2]

R

Z

M

P↵ dvolg = �(M).

It is natural to wonder if this is an index theorem but the relevant elliptic operator, the Gauss-
Bonnet operator, gGB, is shown not to be Fredholm on any conformally compact manifold
in [Maz88]. Nevertheless a renormalized index is defined in [Alb07] using renormalized
integrals and shown to satisfy

Rind(gGB) =
R

Z

M

P↵ dvolg .

Indeed a renormalized index theorem is proven for all Dirac-type operators on conformally
compact manifolds. The renormalized supertrace of the heat kernel is only guaranteed to
be independent of the choice of special boundary defining function if the metric is even to
order n+1, so to one order greater than the general Poincaré-Lovelock metric. (Most Dirac-
type operators on conformally compact manifolds can not even be smoothly perturbed to be
Fredholm [AM09a]. An index formula for elliptic pseudodi↵erential operators on conformally
compact manifolds that are Fredholm is established in [AM09b].)

For any conformally compact metric g, whose sectional curvatures converge to a locally
constant function at @M, the resolvent

R(s) = (�� s(n� s))�1

is constructed by Mazzeo and Melrose [MM87] as an analytic family of bounded operators on
L2 for Re(s) > n. In loc. cit. they show that its Schwartz kernel extends as a meromorphic
function to the complex plane minus a discrete set, C \ (12(n � N)). Guillopé and Zworski
[GZ95] showed that for a conformally compact metric with constant curvature near infinity
the extension is to the whole complex plane. The general case was understood by Guillarmou
[Gui05] who showed that if the metric is even modulo O(x2k+1) then the resolvent extends
meromorphically to Re(s) > (n � 2k � 1)/2. (A di↵erent approach has subsequently been
developed by Vasy [Vas13].) Thus for Poincaré-Einstein and Poincaré-Lovelock metrics the
resolvent is a meromorphic function for Re(s) > 0.

Using the resolvent it can be shown that, given a function f 2 C
1(@M), and s such that

Re(s) � n/2, 2s� n /2 N0, and s(n� s) is not a pole of R(s),

there is a unique solution of the equation (�� s(n� s))u = 0 of the form

u = xn�sF (x, y) + xsG(x, y)

with F,G 2 C
1(M) and F (0, y) = f. The scattering matrix at energy s, S(s), is the map

that sends f to G(0, y) [JSB00] and makes up a meromorphic family of pseudodi↵erential
operators on @M (cf. [dHSS01, §5]). Graham and Zworski [GZ03] show that an appropriate
multiple of the residue of S(s) at s = n/2 + k,

Pk = (�1)k+1(22kk!(k � 1)!)Ress=n/2+kS(s)
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(with k 2 N, k  n/2 if n is even, and under a generic assumption on g) are conformally
covariant self-adjoint di↵erential operators on @M whose principal part is the same as the kth

power of the Laplacian �k. They show [GZ03, §4] that these operators can also be obtained
by formal power series arguments and coincide with the GJMS operators [GJMS92].

Assuming now that n is even, it follows from the asymptotic expansion of the Laplacian
that Pn/21 = 0 so that S(s)1 does not have a pole at s = n. The scalar Riemannian invariant

Q = (�1)n/2(2n(n2 )!(
n
2 � 1)!)S(n)1

is known as Branson’s Q-curvature. If we denote the Q-curvatures of h and bh = e2⌥h by Q
and bQ respectively, these are related by

en⌥ bQ = Q+ Pn/2⌥.

The integral of Q-curvature is (thus) conformally invariant and Graham-Zworski show that
if one writes

Volg({x � "}) = c0"
�n + c2"

�n+2 + . . .+ cn�2"
�2 + L log(1") +

R Vol(M) + o(1)

then L is the integral of 2S(n)1, hence a multiple of the integral of Q-curvature.
In [FG02], Fe↵erman and Graham make use of the work of [GZ03] and define a Q-curvature

in odd dimensions whose integral is a multiple of the renormalized volume. (In [CQY06] this
is related to the Gauss-Bonnet theorem.)

The theorems in [GZ03,FG02] only make use of the Einstein equation through the form
of the expansion of the metric (1) and so hold also for Poincaré-Lovelock metrics. Thus for
each choice of ↵ such that LimSec(↵) 6= ;, there are GJMS operators with the same leading
part and conformal covariance and there is a Q-curvature with the corresponding conformal
transformation law whose integral appears in the asymptotic expansion of the volume.

The contents of the paper are as follows. In section 1 we discuss Lovelock tensors using
the formalism of double forms. This was introduced by Kulkarni [Kul72] and has recently
been developed by Labbi [Lab05] – [Lab15]. In section 2 we apply this formalism to find
the formal asymptotic expansion of solutions to the equation Fg(↵, �) = 0 mentioned above.
This is analogous to the treatment of the Einstein equation in, e.g., [Gra00,GH05]. We then
parallel [Juh09, §6.9] in §2.3 to compute the first couple of non-zero tensors in the expansion
of a Poincaré-Lovelock metric. In section 3 we turn to the existence result. We follow [dLS10]
to compute the linearization of the gauge-fixed Lovelock equation and then use the results
of [GL91].
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1. Lovelock tensors and double forms

1.1. Lovelock tensors. Certain problems in statistics (fitting regression equations non-
linear in parameters) led Hotelling to pose the problem of determining the volume of a small

tube around a manifold fM embedded in RN ,

B"(fM) = {r 2 RN : distance from r to fM is less than "}.

In 1937 Weyl attended a seminar where Hotelling gave a solution for submanifolds fM of
codimension one [Hot39] and the following year Weyl gave a solution for arbitrary codimen-

sion [Wey39]. He showed that, for small ", the volume of B"(fM) is a polynomial

Vol(B"(fM)) = Vol(BN�m
" )

bm2 cX

q=0

"2q

(N �m+ 2)(N �m+ 4) · · · (N �m+ 2q)

Z

fM

è
2q(g) dVolg

�
,

where m = dimfM, BN�m
" denotes a ball of radius " in RN�m, and the coe�cients are

integral invariants of fM with its induced Riemannian metric g—hence are independent of
the particular embedding. The integrands, è2q(g), are known by many names, e.g., ‘Weyl
volume-of-tube invariants’, ‘Lipshitz-Killing curvatures’, and ‘Lovelock scalars’, the latter
because they essentially coincide with the traces of the Lovelock tensors mentioned in the
introduction,

è
2q(g) =

scal(2q)(g)

(2q)!q!
.

The first few are given by

è
0(g) = 1, è

2(g) =
1

2
scal, è

4(g) =
1

8
(|R|

2
� 4|Ric |2 + scal2).

Another name for these invariants is ‘Gauss-Bonnet curvatures’ as è2q(g) is, after multiplying
by (2⇡)q, the integrand of the Gauss-Bonnet theorem in dimension 2q, i.e., the 2q-dimensional
Pfa�an. This observation was used by Allendoerfer and Weil in the original proof of the
Gauss-Bonnet theorem [All40,AW43].

These invariants have connections to many topics in geometry and physics. They ap-
pear, for example, in Chern’s kinematic formulæ for quermassintegrals [Che66], Steiner’s
formula [Gra04, Chapter 10], and an approach to lattice gravity [CMS82,CMS84,CMS86].
For a modern discussion see the book [Gra04].
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Just as each scal(2q)(g) is a generalization of the scalar curvature, the functional

g 7!

Z

fM
scal(2q)(g) dVolg

generalizes the Einstein-Hilbert action and its Euler-Lagrange derivative (after multiplying
by �q�1), E(2q)(g), known as the (2q)�Lovelock tensor, generalizes the Einstein tensor. On
a manifold of dimension m the functions scal(2q)(g) vanish identically if 2q > m (see (1.3)
below), while if m is even the scalar scal(m)(g) is essentially the Pfa�an of the curvature of
g and hence its Euler-Lagrange derivative is identically zero.

Directly from their definition, the Lovelock tensors are symmetric divergence-free (0, 2)-
tensors (e.g., [Bes08, Proposition 4.11]) that only depend on the metric and its first two
covariant derivatives (i.e., its curvature). Lovelock [Lov71] showed that every (0, 2)-tensor
satisfying these properties is in the R-span of {E0(g), . . . , Ebm/2c(g)}, which is now known
as the space of Lovelock tensors.

Lovelock tensors satisfy Schur’s Lemma: if for some metric g some non-zero R-linear
combination of the Lovelock tensors is equal to the product of a scalar function with the
metric, X

↵qE
(2q)
ij (g) = fgij,

then that scalar function f must be locally constant. We refer to such metrics as Lovelock
metrics.

1.2. Double forms. The formalism of double forms studied by Kulkarni [Kul72] is very
convenient for analyzing Lovelock tensors and scalars. It has recently been developed in
various articles of Labbi [Lab05,Lab07,Lab08,Lab10,Lab14,Lab15].

On a Riemannian manifold (M, g) of dimension m, an (a, b)-form is an element of

⌦a⌦b(M) = C
1(M ;⇤aT ⇤M ⌦ ⇤bT ⇤M),

and a double form is an element of the direct sum of the (a, b)-forms,

⌦⇤⌦⇤(M) =
M

a,b

⌦a⌦b(M).

The wedge product induces a product on double forms by extending

(↵⌦ �)(� ⌦ �) = (↵ ^ �)⌦ (� ^ �)

from simple tensors to all of ⌦⇤⌦⇤(M) by linearity. This is known as the Kulkarni-Nomizu
product, is often denoted ?, and satisfies

! 2 ⌦p⌦q(M), ✓ 2 ⌦r⌦s(M) =) !✓ = (�1)pr+qs✓!.

In particular multiplication in
L

a ⌦
a⌦a(M) is commutative.

An important operation on double forms is contraction

Cg : ⌦
r⌦s(M) �! ⌦(r�1)⌦(s�1)(M).

If r = 0 or s = 0, we set Cg! = 0 for every ! 2 ⌦r⌦s(M). Otherwise, for any vector fields
V1, . . . , Vr�1 and W1, . . . ,Ws�1, we set

Cg!((V1, . . . , Vr�1), (W1, . . . ,Ws�1)) =
X

!((ej, V1, . . . , Vr�1), (ej,W1, . . . ,Ws�1))

where the sum runs over a g-orthonormal basis of vector fields, {ej}.
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For example, if !, ✓ 2 ⌦1⌦1(M) are given in a local coordinates by

! = !a,b ✓
a
⌦ ✓b, ⌘ = ⌘a,b ✓

a
⌦ ✓b,

then we have

(1.1)

(!⌘)s�,t⌧ = (! ? ⌘)s�,t⌧ = !s,t⌘�,⌧ � !s,⌧⌘�,t � !�,t⌘s,⌧ + !�,⌧⌘s,t,

Cg(!⌘)i,j = gab(!a,b⌘i,j � !a,j⌘i,b � !i,b⌘a,j + !s,t⌘a,b)

= Cg(!)⌘i,j + Cg(⌘)!i,j � gab(!a,j⌘i,b + !i,b⌘a,j),

C
2
g (!⌘) = 2(Cg(!)Cg(⌘)� gabgij!a,j⌘i,b).

Further, by considering an eigenbasis of the operator induced by !, it is easy to see that
the complete contraction of !k is equal to the kth elementary symmetric polynomial of its
eigenvalues,

(1.2) C
k
g (!

k) = �k(g
�1!).

The metric g is naturally seen as a (1, 1)-form, which we continue to denote g,

g(V )(W ) = g(V,W ).

The curvature of g, R, defines a (2, 2)-form by

Rg 2 ⌦2⌦2(M), Rg((V1, V2), (W1,W2)) = g(R(V1, V2)W1,W2).

The computation of the Weyl volume of tube invariants in [Gra04, Chapter 4] shows that

scal(2q)(g) = C
(2q)
g (Rq

g).

The tensor Ric(2q) from the introduction corresponds to the (1, 1)-form,

R
(2q)
g = C

2q�1
g Rq

g,

and the (2q)-Lovelock tensor, E(2q)(g), corresponds to the (1, 1)-form

E
(2q)
g = R

(2q)
g �

scal(2q)(g)

2q
g.

As mentioned above, Lovelock [Lov71] showed (see also [Lab08]) that (�q�1-times) the Euler-

Lagrange derivative of
R
scal(2q)(g) dvolg is E (2q)

g .
Note that ⇤pT ⇤M = 0 for p > m implies that

(1.3) R`
g = 0, R

(2`)
g = 0, scal(2`)(g) = 0, whenever 2` > m.

A useful observation is that that curvature (2, 2)-form of a metric g whose sectional curvature
is identically equal to a constant  is given by

(1.4) Rg =


2
g2.

Remark 4. [Kul72] A double form ! 2 ⌦a⌦b(M) is symmetric if a = b and

!((V1, . . . , Va), (W1, . . . ,Wa)) = !((W1, . . . ,Wa), (V1, . . . , Va))

for any vector fields. Symmetry is preserved by multiplication and contraction.
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A double form satisfies the first Bianchi identity if it is in the null space of the operator

B1 : ⌦
a⌦b(M) �! ⌦(a+1)⌦(b�1)(M),

B1!((V1, . . . , Va+1), (W1, . . . ,Wb�1))

=
X

(�1)j!((V1, . . . , bVj, . . . , Va+1), (Vj,W1, . . . ,Wb�1))

and the second Bianchi identity if it is in the null space of the operator

B2 : ⌦
a⌦b(M) �! ⌦(a+1)⌦b(M),

B2!((V1, . . . , Va+1), (W1, . . . ,Wb))

=
X

(�1)j(rVj!)((V1, . . . , bVj, . . . , Va+1), (Vj,W1, . . . ,Wb�1)).

The null spaces of these operators are preserved by multiplication and that of B1 is preserved

by contraction.

The metric and the curvature are symmetric (1, 1) and (2, 2) forms respectively, and both

satisfy the two Bianchi identities. It follows that for all j, k, ` the double form C
j
g (g

kR`
g) is

symmetric, satisfies the first Bianchi identity, and, if j = 0, satisfies the second Bianchi

identity.

Remark 5. The Hodge star extends to double forms by

⇤(↵⌦ �) = (⇤↵)⌦ (⇤�).

A four-dimensional manifold is Einstein if and only if its curvature, as a (2, 2)-form, satisfies

⇤R = R, so the Hitchin-Thorpe inequality [Tho69,Hit74] can be written

in 4 dimensions, ⇤R = R =) �(M) �
3

2
|sign(M)|,

where sign(M) denotes the signature of M. Thorpe obtained this inequality as a particular

instance of the more general

in 4k dimensions, ⇤Rk = Rk =) �(M) �
(k!)2

(2k)!
|pk(M)|,

where pk(M) denotes the kth
Pontrjagin number of the manifold. Thorpe’s higher dimen-

sional self-dual metrics are Lovelock, see [Lab10] for a discussion and generalization, and

seem natural objects to study.

Remark 6. The Kulkarni-Nomizu product is most often encountered in the orthogonal de-

composition of the curvature tensor

R = W + g

 
CgR�

C 2
g R

m

m� 2

!
+ g2

✓
C

2
g R

2m(m� 1)

◆
.

There is a similar decomposition of symmetric double forms satisfying the first Bianchi iden-

tity, such as the double forms Rk
and their contractions, see [Kul72, §3].

The following result will be very useful below ( [Lab05, Lemma 2.1]).
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Lemma 1.1. For any ! 2 ⌦`⌦`(M) we have

0)Cg(!g) = gC (w) + (m� 2`)!

1)Cg(g
k!) = gkC (w) + k(m� 2`� k + 1)gk�1!

2)C p
g (g

k!) =
pX

r=0

✓
m� 2`+ p� k

r

◆
k!

(k � r)!

p!

(p� r)!
gk�r

C
p�r
g (!)

with the convention that if k � r < 0 then gk�r = 0 and if p� r /2 [0, `] then C
p�r
g (!) = 0.

The same proof shows that for ! 2 ⌦a⌦b(M),

C
p
g (g

k!) =
pX

r=0

✓
m� a� b+ p� k

r

◆
k!

(k � r)!

p!

(p� r)!
gk�r

C
p�r
g (!).

Proof. (0) is [Kul72, Proposition 2.4]. We prove (1) by induction, using (0) as our base case.
The inductive step is

C (gk+1!) = gC (gk!) + (m� 2(`+ k))gk!

= gk+1
C (!) + k(m� 2`� k + 1)gk! + (m� 2(`+ k))gk!

= gk+1
C (!) + (k + 1)(m� 2`� k)gk!.

Similarly we prove (2) by induction using (1) as our base case. The inductive step is, with
m = m� 2`,

C
p+1
g (gk!) =

pX

r=0

✓
m+ p� k

r

◆
k!

(k � r)!

p!

(p� r)!
Cg(g

k�r
C

p�r
g (!))

=
pX

r=0

✓
m+ p� k

r

◆
k!

(k � r)!

p!

(p� r)!

⇣
gk�r

C
p+1�r
g (!)+(k�r)(m+2p�k�r+1)gk�r�1

C
p�r
g (!)

⌘

=
pX

r=0

(m+ p� k)!

r!(m+ p� k � r + 1)!

p!

(p� r + 1)!

k!

(k � r)!
⇣
(m+ p� k � r + 1)(p� r + 1) + r(m+ 2p� k � r + 2)

⌘
gk�r

C
p+1�r(!)

=
p+1X

r=0

(m+ p� k)!

r!(m+ p� k � r + 1)!

p!

(p� r + 1)!

k!

(k � r)!

⇣
(m+ p+ 1� k)(p+ 1)

⌘
gk�r

C
p+1�r(!)

=
p+1X

r=0

✓
m+ p+ 1� k

r

◆
k!

(k � r)!

(p+ 1)!

(p� r)!
gk�r

C
p+1�r
g (!)

⇤
Some useful particular cases are

C
k
g (g

k) =
k!m!

(m� k)!
,

C
k
g (g

k!) =
(m� 2)!k!

(m� k � 1)!
(kgCg(!) + (m� k � 1)!) , whenever ! 2 ⌦1⌦1(M),
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C
k+1
g (gk!) =

(m� 3)!(k + 1)!

2(m� k � 2)!

�
kgC 2

g (!) + 2(m� k � 2)Cg(!)
�
, whenever ! 2 ⌦2⌦2(M).

2. Fefferman-Graham expansions

Let (M, g) be a conformally compact manifold of dimension m = n + 1 with curvature
Rg 2 ⌦2⌦2(M). Recall that, for each q < n+1

2 ,

R
(2q)
g = C

2q�1
g Rq

g, scal(2q)(g) = C
2q
g Rq

g, E
(2q)
g = R

(2q)
g �

1
2q scal

(2q)(g)g.

For a hyperbolic metric h, using (1.4), these are given by

R
(2q)
h =

✓
�
1

2

◆q n!(2q)!

(n� 2q + 1)!
h = �(2q)h,

scal(2q)(h) =

✓
�
1

2

◆q (n+ 1)!(2q)!

(n� 2q + 1)!
= (n+ 1)�(2q),

E
(2q)
h = R

(2q)
h �

scal(2q)(h)

2q
h = (1� n+1

2q )�(2q)h.

In this section we follow [Gra00, §2] and work out the formal consequences of the equations

(2.1) Fg(↵, �) =
X

↵q(R
(2q)
g � �(2q)g) + �q(scal

(2q)(g)� (n+ 1)�(2q))g = 0,

with ↵q, �q constants (with the Lovelock equation corresponding to �q = �↵q/(2q)).
For given constants ↵, � we define

LimSec(↵, �) =
n
 > 0 :

X
�(2q)(↵q + (n+ 1)�q)(

q
� 1) = 0,

and A1(↵,) =
X

↵q

⇣
�


2

⌘q�1 (n� 2)!

2

(2q)!

(n� 2q)!
6= 0

�
.

Note that since (�1)q�(2q) > 0,

(�1)q↵q � 0 (or  0) =) 1 2 LimSec(↵, �),

and similarly,

(�1)q(↵q + (n+ 1)�q) � 0 (or  0) =) LimSec(↵, �) ✓ {1}.

On the other hand, by choosing ↵q, �q, appropriately we can arrange
X

�(2q)(↵q + (n+ 1)�q)(
q
� 1) = (� 1)p()

for any polynomial p of degree bn+1
2 c�1, and so we can arrange for there to be bn+1

2 c di↵erent
positive solutions .

Remark 7. For concreteness, if

↵ = (6n(n� 2)(n� 3)a, 1, 0, . . . , 0), �q = �
↵q

2q

then we are studying the equation

6(n� 2)(n� 3)aE(2)
ij (g) + E(4)

ij (g) = 6n(n� 1)(n� 2)(n� 3) (a� 1) gij,
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which is satisfied by any hyperbolic metric. The set LimSec(↵, �) in this case is defined as

those  > 0 satisfying

�
3
2n(n� 1)(n� 2)(n� 3)(� 1)(+ 1� 2a) = 0

A1(↵,) = 6(n� 2)(n� 3)(a� ) 6= 0

and hence, for this particular choice of (↵, �), we have

LimSec(↵, �) =

8
><

>:

; if a = 1

{1, 2a� 1} if a > 1
2 , a 6= 1

{1} otherwise

During the computations below, we will assume

↵ 6= �(n+ 1)�, LimSec(↵, �) 6= ;.

We will make use of the following functions to simplify the expressions we obtain,

A2(↵,) =
X

↵q

⇣
�


2

⌘q�1 (n� 2)!

2

(2q)!

(n� 2q + 1)!
(q � 1)

A3(↵,) =
X

↵q

⇣
�


2

⌘q�2 (n� 4)!

4!

(2q)!

(n� 2q)!
(q � 1)

A4(↵,) =
X

↵q

⇣
�


2

⌘q�2 (n� 4)!

4!

(2q)!

(n� 2q + 1)!

(q � 1)(q � 2)

2

Bi,j(↵, �,) = Aj(↵) +Ai(�) + (n+ 1)Aj(�)

and we point out that for the usual Einstein equation Ric(g) = �ng we have ↵ = (1, 0, . . . , 0),
� = 0, LimSec = {1},

�(↵) = �n, A1(↵, 1) = 1, A2(↵, 1) = A3(↵, 1) = A4(↵, 1) = 0.

2.1. Asymptotically hyperbolic. First, when does (2.1) imply that g is asymptotically
hyperbolic?

Let x be a boundary defining function, i.e., a non-negative function smooth on M with
@M = {x = 0} and vanishing to first order at @M, and let

(2.2)  = |
dx
x |

2
g

��
@M

.

Mazzeo [Maz88, pg. 311] pointed out that the curvature of g satisfies

Rg = �g2

2 +O(x�3) as x ! 0.

It follows that

C
2q
g Rq

g = q(n+ 1)�(2q) +O(x)

and hence

Fg(↵, �) =
X

�(2q)(↵q + (n+ 1)�q)(
q
� 1)g +O(x�1).

Thus Fg(↵, �) = 0 implies

(2.3)
X

�(2q)(↵q + (n+ 1)�q)(
q
� 1) = 0.
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We conclude that as long as ↵q+(n+1)�q 6⌘ 0, which are assuming, the sectional curvatures
of g converge to a locally constant function as x ! 0. For the computations below,  can be
any locally constant function valued in LimSec(↵, �).

2.2. General expansion. Now that we know that sectional curvatures of g converge to , a
locally constant function on @M, it follows from [Gra00, Lemma 2.1] that for any boundary
defining function x0 there is another boundary defining function x such that

x = x0 +O(x2
0) as x0 ! 0, |

dx
x |

2
g ⌘  in a neighborhood of @M.

Boundary defining functions satisfying the latter condition are known as special, or geodesic,
boundary defining functions.

From now on we assume that x is a special boundary defining function, and we introduce
the notation

g = x2g, h0 = g
��
@M

,

for the associated incomplete metric and boundary metric, respectively. We use the integral
curves of rgx to identify a neighborhood of @M with a collar [0, 1)x ⇥ @M in which the
metric takes the form

g =
dx2


+ h,

and we will work in this neighborhood (cf. [GL91, Lemma 5.2]).
In this neighborhood, the curvature of g satisfies

g(Rg(@x, @i)@x, @j) = x�4(�1
2x

2h00
ij +

1
4x

2h0
iah

abh0
bj +

1
2xh

0
ij � hij)

g(Rg(@i, @j)@k, @`) = x�4
⇣
x2h(Rh(@i, @j)@k, @`)�

x2
4 (h0

ikh
0
`j � h0

i`h
0
kj)

+ x
2 (hikh

0
`j + h0

ikh`j � hi`h
0
kj � hi`h

0
kj)� (hikh`j � hi`hkj)

⌘

g(Rg(@x, @i)@j, @k) =
1

2x2
((r@kh

0)(@i, @j)� (r@jh
0)(@i, @k))

We can reexpress this, using (1.1), as an equality of (2, 2)-forms

(2.4) Rg = (dx⌦ dx) ? x�4(x
2

2 (�h00 + 1
2Ch(h

0)h0
�

1
4Ch((h

0)2)) + x
2h

0
� h)

+ x�2
S((dx⌦ 1) ? Dh0) + x�4(x2Rh �


2 (

x
2h

0
� h)2)

where Dh0 is the (1, 2) form

Dh0(U)(V,W ) =
1

2
((rV h

0)(U,W )� (rWh0)(U, V ))

and S((dx⌦ 1) ? Dh0) denotes the symmetric (2, 2) form extending (dx⌦ 1) ? Dh0.
Taking qth power, we see that Rq

g is given by

Rq
g = x�4q

⇣
q(dx⌦dx)?(x

2

2 (�h00+ 1
2Ch(h

0)h0
�

1
4Ch((h

0)2))+ x
2h

0
�h)(x2Rh�


2 (

x
2h

0
�h)2)q�1

+ qx2
S((dx⌦ 1) ? Dh0(x2Rh �


2 (

x
2h

0
� h)2)q�1) + (x2Rh �


2 (

x
2h

0
� h)2)q

⌘
,
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its (2q � 1)th contraction by

(2.5) C
2q�1
g (Rq

g) =

x�2
⇣
q(dx⌦dx)?C

2q�1
h

⇣
(x

2

2 (�h00+ 1
2Ch(h

0)h0
�

1
4Ch((h

0)2))+ x
2h

0
�h)(x2Rh�


2 (

x
2h

0
�h)2)q�1

⌘

+ qx2
S((dx⌦ 1) ? C

2q�1
h (Dh0(x2Rh �


2 (

x
2h

0
� h)2)q�1))

+ C
2q�1
h ((x2Rh �


2 (

x
2h

0
� h)2)q)

+(2q�1)qC
2q�2
h

⇣
(x

2

2 (�h00+ 1
2Ch(h

0)h0
�

1
4Ch((h

0)2))+ x
2h

0
�h)(x2Rh�


2 (

x
2h

0
�h)2)q�1

⌘⌘
,

and its (2q)th contraction by

(2.6) C
2q
g (Rq

g) = C
2q
h ((x2Rh �


2 (

x
2h

0
� h)2)q)

+ (2q)qC
2q�1
h

⇣
(x

2

2 (�h00 + 1
2Ch(h

0)h0
�

1
4Ch((h

0)2)) + x
2h

0
� h)(x2Rh �


2 (

x
2h

0
� h)2)q�1

⌘⌘
.

A priori, Fg(↵, �) is O(x�2), but as we saw above the most singular term in R
(2q)
g cancels

with that in �(2q)g and the most singular term in scal(2q)(g) with (n+1)�(2q). Thus the most
singular term in Fg(↵, 0) is

x�1
X

↵q

⇣
(dx⌦ dx) ? C

2q�1
h (q(q � 1

2)h
0(�

2h
2)q�1)

+ (2q � 1)C
2q�2
h (q(q � 1

2)h
0(�

2h
2)q�1)� C

2q�1
h (qh0(�

2h
2)q)
⌘

= x�1
X

↵q

⇣
(dx⌦ dx) ? 2q � 1

2

⇣
�


2

⌘q�1 (n� 1)!

2

(2q)!

(n� 2q + 1)!
Ch(h

0)

�

⇣
�


2

⌘q (n� 1)!

2

(2q)!

(n� 2q + 1)!
((n� 2q + 1)h0 + (2q � 1)hCh(h

0))
⌘

= x�1
⇣
(dx⌦ dx) ? 1

2
(A1(↵,) + 2nA2(↵,))Ch(h

0)

+


2
((n� 1)A1(↵,)h

0 + (A1(↵,) + 2nA2(↵,))hCh(h
0))
⌘
,

and so the most singular term in Fg(↵, �) is

x�1
⇣
(dx⌦ dx) ? 1

2
(A1(↵,) + 2nA2(↵,))Ch(h

0)

+


2
((n� 1)A1(↵,)h

0 + (A1(↵,) + 2nA2(↵,))hCh(h
0))
⌘

+x�1n(A1(�,) + (n+ 1)A2(�,))Ch(h
0)(

dx⌦ dx


+ h).

The equation Fg(↵, �) = 0 imposes that both the coe�cient of dx⌦dx and the complement
vanish at x = 0,

⇣
A1(↵,) + 2nA2(↵,) + 2n(A1(�,) + (n+ 1)A2(�,))

⌘
Ch(h

0) = O(x),
⇣
(n� 1)A1(↵,)h

0 + (A1(↵,) + 2nA2(↵,) + 2n(A1(�,) + (n+ 1)A2(�,)))hCh(h
0))
⌘

= O(x).

Substituting the first equation into the second yields h0 = O(x) as long as A1(↵,) 6= 0.
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From (2.5) we see that the terms with a factor of x0 in
P

↵qR
(2q)
g are

X
↵q

⇣
(dx⌦ dx) ? C

2q�1
h (� q

2(�

2 )

q�1h2q�2h00
� q(q � 1)(�

2 )
q�2h2q�3Rh)

+ qS((dx⌦ 1) ? C
2q�1
h (Dh0(�

2h
2)q�1))

+ (2q � 1)C
2q�2
h (� q

2(�

2 )

q�1h2q�2h00
� q(q � 1)(�

2 )
q�2h2q�3Rh)

+ C
2q�1
h (q(�

2 )
q�1h2q�2Rh)

⌘

=
X

↵q

⇣
(dx⌦ dx) ?

⇣
�

1

2

⇣
�


2

⌘q�1 (2q)!

(n� 2q + 1)!

(n� 1)!

2
Ch(h

00)

� (q � 1)
⇣
�


2

⌘q�2 (2q)!

(n� 2q + 1)!

(n� 2)!

2
C

2
h (Rh)

⌘

+
⇣
�


2

⌘q�1 (2q)!

(n� 2q)!

(n� 2)!

2
S((dx⌦ 1) ? Ch(Dh0))

+
⇣
�


2

⌘q (2q)!

(n� 2q + 1)!

(n� 2)!

2
((n� 2q + 1)h00 + (2q � 2)hCh(h

00))

+
⇣
�


2

⌘q�1 (2q)!

(n� 2q + 1)!

(n� 2)!

2
((n� 2q + 1)Ch(Rh) + (q � 1)hC

2
h (Rh))

⌘

= (dx⌦ dx) ?
⇣
�

1

2
(A1(↵,) + 2A2(↵,))Ch(h

00) +
2


A2(↵,)C

2
h (Rh)

⌘

+A1(↵,)S((dx⌦ 1) ? Ch(Dh0))

+
⇣
�


2

⌘
(A1(↵,)h

00 + 2A2(↵,)hCh(h
00)) + (A1(↵,)Ch(Rh) +A2(↵,)hC

2
h (Rh)).

Hence the terms in Fg(↵, �) with a factor of x0 are

(dx⌦ dx) ?
⇣
�

1

2
(A1(↵,) + 2A2(↵,))Ch(h

00) +
2


A2(↵,)C

2
h (Rh)

⌘

+A1(↵,)S((dx⌦ 1) ? Ch(Dh0))

+
⇣
�


2

⌘
(A1(↵,)h

00 + 2A2(↵,)hCh(h
00)) + (A1(↵,)Ch(Rh) +A2(↵,)hC

2
h (Rh))

+
⇣
� (A1(�,) + (n+ 1)A2(�,))C

2
h (h

00) + (A1(�,) + (n+ 2)A2(�,))C
2
h (Rh)

⌘

(
dx⌦ dx


+ h).
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Since h0 = O(x), we can use (2.5), (2.6) to write Fg(↵, �) = 0 as

(2.7) (dx⌦ dx) ? 1

2
(A1(↵,) + 2nA2(↵,))Ch(h

0)

+


2
((n� 1)A1(↵,)h

0 + (A1(↵,) + 2nA2(↵,))hCh(h
0))

+ n(A1(�,) + (n+ 1)A2(�,))Ch(h
0)(

dx⌦ dx


+ h)

+ x
⇣
(dx⌦ dx) ?

⇣
�

1

2
(A1(↵,) + 2A2(↵,))Ch(h

00) +
2


A2(↵,)C

2
h (Rh)

⌘

+A1(↵,)S((dx⌦ 1) ? Ch(Dh0))

+
⇣
�


2

⌘
(A1(↵,)h

00 + 2A2(↵,)hCh(h
00)) + (A1(↵,)Ch(Rh) +A2(↵,)hC

2
h (Rh))

+
⇣
�(A1(�,)+(n+1)A2(�,))C

2
h (h

00)+(A1(�,)+(n+2)A2(�,))C
2
h (Rh)

⌘
(
dx⌦ dx


+h)

⌘

= O(x3).

Taking k derivatives with respect to x we find

(2.8) (dx⌦ dx) ? 1

2
((1� k)A1(↵,) + 2(n� k)B1,2(↵, �,))Ch(h

(k+1))

+


2
(n� 1� k)A1(↵,)h

(k+1)

+


2
(A1(↵,) + 2(n� k)B1,2(↵, �,))hCh(h

(k+1)))

= terms involving fewer derivatives of h +O(x).

Restricting the coe�cient of dx ⌦ dx and the contraction of the coe�cient without dx to
x = 0 yield the equations

((1� k)A1(↵,) + 2(n� k)B1,2(↵, �,))Ch(h
(k+1))|x=0

= terms involving fewer derivatives of h +O(x),
⇣
(n� 1� k)A1(↵,) + n(A1(↵,) + 2(n� k)B1,2(↵, �,))

⌘
Ch(h

(k+1)))|x=0

= terms involving fewer derivatives of h +O(x).

Note that if A1(↵,) 6= 0 then the two coe�cients of Ch(h(k+1))|x=0 can not both be zero;
indeed if the first should vanish, then the second can be written as (n� 1)(k + 1)A1(↵,).
Hence if we have determined {h0, h0

|x=0, . . . , h(k)
|x=0} we can determine Ch0(h

(k+1))|x=0 and
then, as long as k + 1 6= n, use (2.8) to determine h(k+1)

|x=0.
It follows inductively that the equations

(2.9) on-diagonal parts of Fg(↵, �) = O(xn�2), Cg(Fg(↵, �)) = O(xn�1)

(note that the analysis above only involved the on-diagonal parts of Fg(↵, �) with respect
to the splitting h@xi � h@xi?) uniquely determine a metric, up to order xn�2, of the form
x�2(dx2/+ h) with h(`)

|x=0 for ` < n, and Ch0(h
(n))|x=0, natural tensor invariants of h|x=0,

and, since the left hand side of (2.1) respects parity in x (see (2.4)), with h(`)
|x=0 = 0 for

` < n odd.
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When ` = n, equation (2.8) is

(dx⌦ dx) ? 1

2
((2� n)A1(↵,) + 2B1,2(↵, �,))Ch0(h

(n))

+


2
(A1(↵,) + 2B1,2(↵, �,))h0Ch0(h

(n))

= terms involving fewer derivatives of h +O(x).

If n is odd, then by parity the right hand side is O(x), so Ch0(h
(n))|x=0 = 0, but the trace-free

part is unconstrained. If n is even, then the right hand side may have a non-vanishing trace-
free part, so that the expansion of h must include a term xn log x with a trace-free coe�cient.

In this way we have shown Theorem 1 that metrics satisfying Fg(↵, �) = 0 formally have
a Fe↵erman-Graham expansion. On the other hand, if we start with h0, we have only shown
how to arrange (2.9). Following [GH05] we next show that in the particular case of the
Lovelock equations, i.e., when �q = �↵q/2q so that Fg(↵, �) is a linear combination of
Lovelock tensors, the o↵-diagonal terms are related to the on-diagonal because the Lovelock
tensors are divergence-free.

Lemma 2.1. If �q = �↵q/(2q), and g satisfies (2.9), then g satisfies

o↵-diagonal parts of Fg(↵, �) = O(xn�1),

and, if O = x2�n
trace-free(Fg(↵, �))|x=0, then the divergence of O is determined by h0 and

vanishes if n is odd.

Proof. We compute in local coordinates, where @0 = @x, indices {s, t, u, v} vary in {0, . . . , n}
and indices {i, j, k, `} vary in {1, . . . , n}.

If Fij is the (0, 2)-tensor corresponding to Fg(↵, �), then it satisfies

0 = gstFtu;s = gst(@sFtu � �v
stFvu � �v

suFtv), for all u 2 {0, . . . , n}.

For a metric of the form g = x�2(dx2/+ hx) the Christo↵el symbols satisfy

�k
ij = �

k
ij, �0

jk = �


2
h0
jk +



x
hjk, �i

0k =
1

2
hi`h0

`k �
1

x
�ik, �0

0k = �i
00 = 0, �0

00 = �
1

x
,

where � denotes the Christo↵el symbol of hx. Hence we have

0 = gstFtu;s = x2




✓
@0F0u +

1

x
F0u +

�0u
x
F00

◆

+hij@iFju + 

✓
1

2
hijh0

ij �
n

x

◆
F0u � hij�

k
ijFku � hij�k

iuFjk

�
.

For u = 0 this says



✓
@x +

2� n

x
+

1

2
hijh0

ij

◆
F00 =

✓
1

2
hijhk`h0

i` � hjk

◆
Fjk � (hij@i � hik�

j
ik)Fj0

and for u = ` 6= 0, this says

(2.10) 

✓
@x +

1� n

x
+

1

2
hijh0

ij

◆
F0` = �hijFj`;i.

From (2.5) we know that an expansion in x for h induces an expansion in x for F0`, starting
at x0.
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Now since the right hand side of (2.10) is O(xn�2) and 1
2h

ijh0
ij = O(x), if we assume that

F0` = Asxs +Bsxs log x+O(xs+1) then we have

(s+ 1� n)(Asx
s�1 +Bsx

s�1 log x) + Bsx
s�1 +O(xs) = O(xn�2),

hence As = Bs = 0 if s < n � 1. On the other hand if s = n � 1 and we write Fj` =
Oj`xn�2 + O(xn�1), then this same equation tells us that hij

0 Oj`;i = Bn�1. Thus we can
conclude that F0` = O(xn�1), and that the divergence of O is determined by h0 and vanishes
if n is odd. ⇤

This finishes the proof of part (b) of Theorem 1. We have already shown parts (i) and (ii)
for more general equations Fg(↵, �) = 0, and part (iii) follows from Lemma 2.1.

If n is even then this finishes the proof of part (a) of Theorem 1, since we now know that
any smooth conformally compact metric whose Taylor expansion is as above satisfies

X
↵qE

(2q)
ij (g) = �(↵)gij +O(xn�2).

As in [GH05] this also shows that it is unique modulo O(xn�2) up to a di↵eomorphism fixing
X ⇥ {0}.

If n is odd and we postulate that h has a smooth Taylor expansion at @M,

h ⇠

X
xjh(j),

then the first term that we have yet to determine, xnh(n), is also the first odd power of x.
We know that the on-diagonal part of the equation Fg(↵, �) = 0 only imposes Cg(h(n)) = 0,
and the argument in Lemma 2.1 tells us that the o↵-diagonal parts of Fg(↵, �) are O(xn�1)
but does not determine the xn�1 term. Fortunately, since this is the first odd power of x
in the expansion of h, it is easy to determine directly from (2.5) that the xn�1 term in the
expansion of the o↵-diagonal part of Fg(↵, �) is

X
↵q

�
qS((dx⌦ 1) ? C

2q�1
h (Dh(n)(h2q�2)))

�
.

In particular, if we set h(n) = 0 then the o↵-diagonal part of Fg(↵, �) is O(xn).
After setting h(n) = 0 we can now continue as above and use the on-diagonal parts of

the equation Fg(↵, �) = 0 to determine the full Taylor expansion of h (involving only even
powers of x) and then use Lemma 2.1 to see that the h we have constructed satisfies

Fg(↵, �) = O(x1)

(but we emphasize that here �q = �↵q/(2q)). This finishes the proof of part (a) of Theorem
1 when n is odd.

2.3. First couple of terms. A Poincaré-Lovelock metric in dimension greater than four
has an expansion

g = x�2(dx2 + h0 + x2h2 + x4h4 +O(x5))

with h2 and h4 symmetric two tensors on @M locally determined from h0. In this subsection
we follow [Juh09, §6.9] and determine the coe�cients h2 and h4 in terms of h0. We will show
that h2 is always a constant multiple of the Schouten tensor of h0, while h4 depends on the
coe�cients of (2.1).
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In a technique used in loc. cit. but that goes back at least to [HS98], we introduce the
coordinate ⇢ = x2 so that the metric takes the form

g =
d⇢2

4⇢2
+

h

⇢
.

In this subsection we consider h as a function of ⇢ and we will use ḣ to denote @⇢h.
We obtain an expression for the curvature in these coordinates from (2.4) by making the

replacements

x 7! ⇢1/2, dx 7!
d⇢

2⇢1/2
, @xh 7! 2⇢1/2@⇢h,

which yields

Rg = (d⇢⌦ d⇢) ?
✓

1

4⇢
(�2ḧ+ Ch(ḣ)ḣ�

1
2Ch(ḣ

2))�
1

4⇢3
h

◆

+
1

⇢
S((d⇢⌦ 1) ? D(ḣ)) +

1

⇢
Rh �



2⇢2
(⇢ḣ� h)2.

Similarly,

C
2q�1
g (Rq

g)

= (d⇢⌦d⇢)?⇢�2
C

2q�1
h

hq
4

⇣
⇢2(�2ḧ+Ch(ḣ)ḣ�

1
2Ch(ḣ

2))�h
⌘⇣

�

2⇢

2ḣ2+⇢(Rh+hḣ)�
2h

2
⌘q�1i

+ qS
⇣
(d⇢⌦ 1) ? C

2q�1
h

h
D(ḣ)

⇣
�


2⇢

2ḣ2 + ⇢(Rh + hḣ)� 
2h

2
⌘q�1i⌘

+ ⇢�1
C

2q�1
h

⇣
�


2⇢

2ḣ2 + ⇢(Rh + hḣ)� 
2h

2
⌘q

+(2q�1)q⇢�1
C

2q�2
h

h⇣
⇢2(�2ḧ+Ch(ḣ)ḣ�

1
2Ch(ḣ

2))�h
⌘⇣

�

2⇢

2ḣ2+⇢(Rh+hḣ)� 
2h

2
⌘q�1i

,

and

C
2q
g (Rq

g) = C
2q
h

⇣
�


2⇢

2ḣ2 + ⇢(Rh + hḣ)� 
2h

2
⌘q

+ (2q)qC
2q�1
h

h⇣
⇢2(�2ḧ+ Ch(ḣ)ḣ�

1
2Ch(ḣ

2))� h
⌘⇣

�

2⇢

2ḣ2 + ⇢(Rh + hḣ)� 
2h

2
⌘q�1i

.
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Thus the coe�cient of d⇢⌦ d⇢ in
P

↵q(R
(2q)
g � �(2q)g) is given by

X
↵q

d⇢⌦ d⇢

4⇢2
?
h
⇢(q � 1)

⇣
�


2

⌘q�1 (2q)!

(n� 2q + 1)!

(n� 2)!

2
C

2
h (Rh + hḣ)

+ ⇢2(q � 1)
⇣
�


2

⌘q (2q)!

(n� 2q + 1)!

(n� 2)!

2
C

2
h (ḣ

2)

� ⇢2
⇣
�


2

⌘q (2q)!

(n� 2q + 1)!
(n� 1)!Ch(�2ḧ+ Ch(ḣ)ḣ�

1
2Ch(ḣ

2))

+ ⇢2
(q � 1)(q � 2)

2

⇣
�


2

⌘q�2 (2q)!

(n� 2q + 1)!

(n� 4)!

4!
C

4
h ((Rh + hḣ)2) +O(⇢3)

i

=
d⇢⌦ d⇢

4⇢2
?
h
⇢A2(↵,)C

2
h (Rh + hḣ) + ⇢2

⇣
�


2

⌘
(A1(↵,) + 3A2(↵,))C

2
h (ḣ

2)

+ ⇢2(A1(↵,) + 2A2(↵,))Ch(�2ḧ+ Ch(ḣ)ḣ)

+ ⇢2A4(↵,)C
4
h ((Rh + hḣ)2) +O(⇢3)

i
,

while the terms without d⇢ in
P

↵q(R
(2q)
g � �(2q)g) are given by

⇢�1
X

↵q
(2q)!

(n� 2q + 1)!

h

⇢
⇣
�


2

⌘q�1 (n� 2)!

2
((n� 2q + 1)Ch(Rh + hḣ) + (q � 1)hC

2
h (Rh + hḣ))

+ ⇢2
⇣
�


2

⌘q (n� 2)!

2
(2(n� 2q + 1)Ch(ḣ

2) + 3(q � 1)C 2
h (ḣ

2))

� ⇢2
⇣
�


2

⌘q (n� 2)!

2
(2(n� 2q + 1)(�2ḧ+ Ch(ḣ)ḣ) + 4(q � 1)hCh(�2ḧ+ Ch(ḣ)ḣ))

+ ⇢2
⇣
�


2

⌘q�2 (q � 1)

2

(n� 4)!

4!
(2(n� 2q + 1)C 3

h ((Rh + hḣ)2) + (q � 2)hC
4
h ((Rh + hḣ)2))

+O(⇢3)
i

= ⇢�1
h
⇢(A1(↵,)Ch(Rh + hḣ) +A2(↵,)hC

2
h (Rh + hḣ))

+ ⇢2
⇣
�


2

⌘
(2A1(↵,)Ch(ḣ

2) + 3A2(↵,)C
2
h (ḣ

2))

� ⇢2
⇣
�


2

⌘
(2A1(↵,)(�2ḧ+ Ch(ḣ)ḣ) + 4A2(↵,)hCh(�2ḧ+ Ch(ḣ)ḣ))

+ ⇢2(A3(↵,)C
3
h ((Rh + hḣ)2) +A4(↵,)hC

4
h ((Rh + hḣ)2)) +O(⇢3)

i
.
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By contracting, we see that
P

�q(scal
(2q)(g)� (n+ 1)�(2q))g is given by

h
⇢(A1(�,) + (n+ 1)A2(�,))C

2
h (Rh + hḣ)

+ ⇢2
⇣
�


2

⌘
3(A1(�,) + (n+ 1)A2(�,))C

2
h (ḣ

2)

� ⇢2
⇣
�


2

⌘
4(A1(�,) + (n+ 1)A2(�,))Ch(�2ḧ+ Ch(ḣ)ḣ)

+ ⇢2(A3(�,) + (n+ 1)A4(�,))C
4
h ((Rh + hḣ)2) +O(⇢3)

i✓d⇢⌦ d⇢

4⇢2
+

h

⇢

◆
.

It follows that Fg(↵, �) = 0 gives us from the d⇢⌦ d⇢ term the equation

(2.11) d⇢⌦ d⇢ ?
h
B1,2(↵, �,)C

2
h (Rh + hḣ)

+ ⇢
⇣
�


2

⌘
(A1(↵,) + 3B1,2(↵, �,))C

2
h (ḣ

2)

� ⇢
⇣
�


2

⌘
(2A1(↵,) + 4B1,2(↵, �,))Ch(�2ḧ+ Ch(ḣ)ḣ)

+ ⇢B3,4(↵, �,)C
4
h ((Rh + hḣ)2) +O(⇢2)

i
= 0

and from the term without d⇢ the equation

(2.12) A1(↵,)Ch(Rh + hḣ) +B1,2(↵, �,)hC
2
h (Rh + hḣ)

+ ⇢
⇣
�


2

⌘
(2A1(↵,)Ch(ḣ

2) + 3B1,2(↵, �,)hC
2
h (ḣ

2))

� ⇢
⇣
�


2

⌘
(2A1(↵,)(�2ḧ+ Ch(ḣ)ḣ) + 4B1,2(↵, �,)hCh(�2ḧ+ Ch(ḣ)ḣ))

+ ⇢(A3(↵,)C
3
h ((Rh + hḣ)2) +B3,4(↵, �,)hC

4
h ((Rh + hḣ)2)) +O(⇢2) = 0.

Restricting (2.11) and (2.12) to ⇢ = 0 yields the two equations

B1,2(↵, �,)C
2
h (Rh + hḣ)|⇢=0 = 0

(A1(↵,)Ch(Rh + hḣ) +B1,2(↵, �,)hC
2
h (Rh + hḣ))|⇢=0 = 0

which, since A1(↵,) 6= 0, imply Ch(Rh + hḣ)|⇢=0 = 0. Contracting we have C
2
h (Rh +

hḣ)|⇢=0 = 0, i.e.,

Ch0(h2) = �
1

2(n� 1)
C

2
h0
(Rh0),

and hence
Ch0(Rh0) + (h0Ch0(h2) + (n� 2)h2) = 0

=) h2 = �
1

(n� 2)

⇣
Ch0(Rh0)�

C
2
h0
(Rh0)

2(n� 1)
h0

⌘
= �

1


P (h0)

where P (h0) denotes the Schouten tensor of h0.

In particular it follows that

(Rh + hḣ)|⇢=0 = Weylh0
,

the Weyl curvature of h0, considered as a (2, 2)-form.
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To determine h4 we di↵erentiate (2.11) and (2.12) with respect to ⇢ and set ⇢ = 0. First
note that

@⇢(Ch(Rh + hḣ))|⇢=0

= Ṙic + (h2Ch0(h2) + h0(
1
2C

2
h0
(h2

2)� Ch0(h2)
2 + Ch0(h4)) + (n� 2)h4),

@⇢(C
2
h (Rh + hḣ))|⇢=0 = ˙scal + 2(n� 1)(12C

2
h0
(h2

2)� Ch0(h2)
2 + Ch0(h4)),

where, using [Bes08, Theorem 1.174], cf. [Juh09, pg. 243], Ṙic and ˙scal are given by

(2.13)

Ṙic = @t|t=0 Ric(h0 + th2) =
1

2
�L,h0(h2)� �⇤h0

(�h0h2)�
1

2
Hessh0(Ch0(h2)),

˙scal = @t|t=0scal(h0 + th2) = �h0(Ch0(h2)) + �h0�h0h2 � h0(Ric(h0), h2)

= Ch0(Ṙic) +
1
2C

2
h0
(Ric?h2)� Ch0(h2)scal.

Then, from (2.11) we have

(2.14) 2(�A1(↵,) + (n� 3)B1,2(↵, �,))Ch0(h4)

+
⇣
2

⌘
(�A1(↵,) + (2n� 5)B1,2(↵, �,))C

2
h0
(h2

2)

� (�A1(↵,) + 2(n� 2)B1,2(↵, �,))Ch0(h2)
2

+ (A4(↵,) +A3(�,) + (n+ 1)A4(�,))C
4
h0
(Weyl2h0

) +B1,2(↵, �,) ˙scal = 0.

and from (2.12) we have

(2.15) (n� 4)A1(↵,)h4 + (A1(↵,) + 2(n� 3)B1,2(↵, �,))h0Ch0(h4)

� A1(↵,)Ch0(h
2
2) +



2
(A1(↵,) + (2n� 5)B1,2(↵, �,))h0C

2
h0
(h2

2)

+ 2A1(↵,)h2Ch0(h2)� (A1(↵,) + 2(n� 2)B1,2(↵, �,))h0Ch0(h2)
2

+A3(↵,)C
3
h0
(Weyl2h0

)+B3,4(↵, �,)h0C
4
h0
(Weyl2h0

)+A1(↵,)Ṙic+B1,2(↵, �,)h0
˙scal = 0.

The contraction of the latter is

(2.16) (2(n� 2)A1(↵,) + 2n(n� 3)B1,2(↵, �,))Ch0(h4)

+


2
((n� 2)A1(↵,) + n(2n� 5)B1,2(↵, �,))C

2
h0
(h2

2)

� ((n� 2)A1(↵,) + 2n(n� 2)B1,2(↵, �,))Ch0(h2)
2

+ (A3(↵,) + nB3,4(↵, �,))C
4
h0
(Weyl2h0

) +A1(↵,)Ch(Ṙic) + nB1,2(↵, �,) ˙scal = 0.

Multiplying (2.14) by n and subtracting it from (2.16) yields

(4(n�1)A1(↵,))Ch0(h4)+
⇣
2

⌘
(2(n�1)A1(↵,))C

2
h0
(h2

2)�(2(n�1)A1(↵,))Ch0(h2)
2

+A3(↵,)C
4
h0
(Weyl2h0

) +A1(↵,)Ch(Ṙic) = 0

and so we find

Ch0(h4) = �
1

4
C

2
h0
(h2

2) +
1

2
Ch0(h2)

2
�

1

4(n� 1)
Ch(Ṙic)�

A3(↵,)

4(n� 1)A1(↵,)
C

4
h0
(Weyl2h0

).
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Substituting into (2.15) we find

(2.17)

h4 = �
1

(n� 4)

⇣
�

h0Ch(Ṙic)

4(n� 1)
+ h0(

1
4C

2
h0
(h2

2)�
1
2Ch0(h2)

2)� Ch0(h
2
2) + 2h2Ch0(h2) +

Ṙic



⌘

�
B1,2(↵, �,)h0

(n� 4)A1(↵,)

⇣
1
2(2n� 5)C 2

h0
(h2

2)� 2(n� 2)Ch0(h2)
2 +

˙scal



⌘

+2(n� 3)
⇣
�

1

4
C

2
h0
(h2

2) +
1

2
Ch0(h2)

2
�

1

4(n� 1)
Ch(Ṙic)�

A3(↵,)

4(n� 1)A1(↵,)
C

4
h0
(Weyl2h0

)
⌘

�
4(n� 1)A3(↵,)C 3

h0
(Weyl2h0

) + (4(n� 1)B3,4(↵, �,)�A3(↵,))h0C
4
h0
(Weyl2h0

)

4(n� 1)(n� 4)A1(↵,)

3. Graham-Lee existence

In this section we use the results of Graham-Lee [GL91] to show that there are many
Poincaré-Lovelock metrics on the interior of the Euclidean ball.

Theorem 3.1. Let M = Bn+1, n � 4, h the hyperbolic metric on M and bh = ⇢2h the

round metric on Sn = @M. For any smooth Riemannian metric bg on Sn
which, for some

✓ > 0, is su�ciently close in C
2,✓(M,S2(M)) to bh there is a metric g 2 C

1(M,S2(M)) \
⇢�2

C
0(M,S2(M)) satisfying

(3.1)

(
R

(2q)
g � �(2q)g = 0

x2g
��
@M

is conformal to g,

and, for any ↵ such that LimSec(↵) 6= ;, there is a metric g 2 C
1(M,S2(M))\⇢�2

C
0(M,S2(M))

satisfying

(3.2)

(P
↵q(E

(2q)
g � (1� n+1

2q )�(2q)g) = 0

x2g
��
@M

is conformal to g.

(In [GL91], the equation (3.1) is treated with q = 1. Solving (3.2) with ↵ = eq (i.e.,
↵j = �jq) gives a solution to (3.1). We treat both equations in parallel as it makes it simpler
to compare with [GL91].)

To compensate for di↵eomorphism invariance, we will study a perturbation of the equation
of the previous section,

Q(↵,�)(g, t) =
X

↵q(R
(2q)
g � �(2q)g) + �q(`

(2q)
g � (n+ 1)�(2q))g � �(↵,�)(g, t) = 0,

where t is an auxiliary metric and �↵,�(g, t) an operator specified below (3.7). We will
show that the linearization of Q(↵,�)(g, t) is asymptotically equal to a linear combination of
(�g + 2n) in pure-trace directions and (�g � 2) in trace-free directions.

Once the linearizations are computed, the arguments in [GL91] will apply virtually un-
changed. Given a metric bg on Sn+1, we define an asymptotically hyperbolic metric T (bg)
extending the conformal class of bg into M = Bn+1 and equal to h away from @Bn+1 in (3.11)
below. Using the linearization of Q(↵,�)(g, t), and an analysis of the corresponding ‘indicial



26 PIERRE ALBIN

operators’, Graham-Lee constructed an operator S(bg) depending smoothly on bg such that,
e.g.,

Q(↵,�)(S(bg), T (bg)) = O(⇢n�2)

essentially by showing that the construction of the asymptotic expansion in the previous
section can be carried out smoothly. Using these approximate solutions, the arguments
in [GL91] show that as long as bg is su�ciently close to the round metric and

X
�(2q)(q(↵q + (n+ 1)�q)) 6= 0, A1(↵,) 6= 0,

there is a metric g extending the conformal class of bg, such that

Q(↵,�)(g, T (bg)) = 0.

Finally, in Lemma 3.8 below we show that if (↵, �) is given by (eq, 0) or if (↵, �) satisfies
�q = �

1
2q↵q, then

Q(↵,�)(g, T (bg)) = 0 =) �(↵,�)(g, T (bg)) = 0.

We start by computing the linearizations of the generalized Ricci tensors and Lovelock
scalars. These are due to [dLS10] at constant curvature metrics and [CdLS13] for slightly
more general metrics.

Let us introduce the following notation, with g and t two metrics on M,

�g : symmetric 2-tensors �! one-forms , (�gt)i = �gjktij,k,

�g : one-forms �! functions , �g! = �gjk!j,k,

�⇤g : one-forms �! symmetric 2-tensors , (�⇤g!)ij =
1
2(!i,j + !j,i),

gt�1 : one-forms �! one-forms , (gt�1!)i = gij(t
�1)jk!k,

G
(2q)
g : symmetric 2-tensors �! symmetric 2-tensors , G

(2q)
g (�)ij = �ij �

1
2qg

k`�k`gij.

The latter, known as the 2q-gravitation operator, has the key property that it takes R(2q)
g to

E
(2q)
g , the (2q)th Einstein-Lovelock tensor, and hence the second Bianchi identities read

�gG
(2q)
g (R(2q)) = 0.

We point out that, if ! is a one-form, then

(G(2)
g �⇤g!)ij =

1
2(!i,j + !j,i � gst!s,tgij) = �⇤g! + 1

2g�g!

Lemma 3.2. Let (M, g0) be an asymptotically hyperbolic manifold, ⇢ a boundary defining

function that is special for g0, and let r be a symmetric two tensor of the form r = ⇢Nr with

r 2 C
2(M,S2(M)).

The linearization of the map g 7! R
(2q)
g � �(2q)g at g0 in the direction of r satisfies

(3.3) D
�
R

(2q)
g � �(2q)g

�
g0
(r)

=
�(2q)

n(n� 1)

⇣
((2q � nq � 1)Cg0(r)� (q � 1)(12�g0(Cg0(r)) + �g0�g0G

(2)
g0 (r)))g0

� (n� 2q + 1)(12�g0(r)� �⇤g0�g0G
(2)
g0 (r)� r)

⌘
+O(⇢N+1).

If g0 has constant sectional curvature then the O(⇢N+1) term is identically zero.
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The linearization of the map g 7! (scal(2q)(g) � (n + 1)�(2q))g at g0 in the direction of r
satisfies

(3.4) D

⇣
(scal(2q)(g)� (n+ 1)�(2q))g

⌘

g0
(r)

= �
q�(2q)

n

⇣
nCg0(r) +

1
2�g0(Cg0(r)) + �g0�g0G

(2)
g0 (r)

⌘
g0 +O(⇢N+1).

If g0 has constant sectional curvature then the O(⇢N+1) term is identically zero.

In particular, this implies that the linearization of g 7! E
(2q)
g � (1� n+1

2q )�(2q)g at g0 in the
direction of r satisfies

(3.5) D(E (2q)
g � (1� n+1

2q )�(2q)g)g0(r)

=
(n� 2q + 1)�(2q)

n(n� 1)

⇣
1
2g0(

1
2�g0(Cg0(r)) + �g0�g0G

(2)
g0 (r) + (n� 2)Cg0(r))

� (12�g0r � �⇤g0�g0G
(2)
g0 (r)� r)

⌘
+O(⇢N+1),

where, if g0 has constant sectional curvature, then the O(⇢N+1) term is identically zero.

Proof. Let g = g(s) be a family of metrics on M with g(0) = g0, g0(0) = r.

We write the linearization of R(2q)
g at g0 as a sum of two operators according to

D
�
R

(2q)
g

�
g0
(r) =

@

@s

��
s=0

�
C

2q�1
g (Rq)

�

=
@

@s

��
s=0

⇣X
ga1b1ga2b2 · · · ga2q�1b2q�1Rc1d1e1f1(g) · · ·Rcqdqeqfq(g)

⌘

=
XX

g0
a1b1 · · ·

@

@s

��
s=0

(gakbk) · · · g0
a2q�1b2q�1Rc1d1e1f1(g0) · · ·Rcqdqeqfq(g0)

+
XX

g0
a1b1 · · · g0

a2q�1b2q�1Rc1d1e1f1(g0) · · ·
@

@s

��
s=0

(Rcqdqeqfq(g)) · · ·Rcqdqeqfq(g0)

= L
(2q)(r) +M

(2q)(r).

For L(2q)(r) note that the factors gaibi0 are O(⇢2), @
@s

��
s=0

(gakbk) = �gakeak0 reakebkg
ebkbk
0 is O(⇢4+N)

and each factor of Rcidieifi(g0) is equal to (�1
2g

2
0)cidieifi +O(⇢�3). Hence

L
(2q)(r)

=
XX

ga1b10 · · ·
@

@s

��
s=0

(gakbk) · · · g
a2q�1b2q�1

0 (�1
2g

2
0)c1d1e1f1 · · · (�

1
2g

2
0)cqdqeqfq +O(⇢N+1)

= L
(2q)
0 (r) +O(⇢N+1)

and if g0 has constant sectional curvature then L
(2q)(r) = L

(2q)
0 (r). We can use Lemma 1.1

to see that L(2q)
0 (r) satisfies

@

@s

��
s=0

(
�
C

2q�1
g ((�1

2g
2)q)
�
= L

(2q)
0 (r) + (2q)(�1

2)
q
C

2q�1
g0 (g2q�1

0 r)

=) L
(2q)
0 (r) =

(�1)q

2q
(2q)!(m� 2)!

(m� 2q)!
(2q � 1)(r � g0Cg0(r)).
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Similarly, in the expression for M(2q)(r) note that Ṙg = @s|s=0(Rg) is O(⇢t�2) (e.g., from
[Bes08, Theorem 1.174(c)]), hence

M
(2q)(r) =

XX
ga1b10 · · · g

a2q�1b2q�1

0

(�1
2g

2
0)c1d1e1f1 · · ·

@

@s

��
s=0

(Rcqdqeqfq(g)) · · · (�
1
2g

2
0)cqdqeqfq +O(⇢N+1)

= M
(2q)
0 (r) +O(⇢N+1)

and if g0 has constant sectional curvature then M
(2q)(r) = M

(2q)
0 (r). We can compute

M
(2q)
0 (r) as

M
(2q)
0 (r) = qC 2q�1

g0 ((�1
2g

2
0)

q�1Ṙg)

= �
(�1)q

2q
(2q)!(m� 3)!

(m� 2q)!

⇣
(q � 1)g0C

2
g0(Ṙg) + (m� 2q)Cg0(Ṙg)

⌘

and hence

(3.6)

D
�
R

(2q)
g

�
g0
(r) =

(�1)q

2q
(2q)!(m� 3)!

(m� 2q)!

⇣
(m� 2)(2q � 1)(r � g0Cg0(r))

� (q � 1)g0C
2
g0(Ṙg)� (m� 2q)Cg0(Ṙg)

⌘
+O(⇢N+1)

=
�(2q)

n(n� 1)

⇣
(n� 1)(2q � 1)(r � g0Cg0(r))

� (q � 1)g0C
2
g0(Ṙg)� (n� 2q + 1)Cg0(Ṙg)

⌘
+O(⇢N+1)

The variation of the curvature tensor has contractions [Bes08, Theorem 1.174], [dLS10, (3.7),
(3.8)]

Cg0(Ṙg) =
1
2�g0r � �⇤g0�g0G

(2)
g0 (r) +

1
2(R

(2)
g � r + r �R(2)

g )

C
2
g0(Ṙg) =

1
2�g0(Cg0(r)) + �g0�g0G

(2)
g0 (r) + g0(R

(2)
g0 , r)

and we note that
1
2(R

(2)
g � r + r �R(2)

g )ij = �(m� 1)r +O(⇢N+1)

g0(R
(2)
g0 , r) = �(m� 1)Cg0(r) +O(⇢N+1)

with the O(⇢N+1) terms vanishing if g0 has constant sectional curvature. Substituting these
expressions into (3.6) yields (3.3).

Similarly decomposing D(scal(2q)(g))g0(r) = L
(2q)
0 (r) +M

(2q)
0 (r) +O(⇢N+1) we find

@

@s

��
s=0

�
C

2q
g ((�1

2g
2)q)
�
= L

(2q)
0 (r) + (2q)(�1

2)
q
C

2q
g0 (g

2q�1
0 r)

=) L
(2q)
0 (r) = �(2q)

(�1)q

2q
(2q)!(m� 1)!

(m� 2q)!
Cg0(r)

and

M
(2q)
0 (r) = qC 2q

g0 ((�
1
2g0

2)q�1Ṙg) = q

✓
�
1

2

◆q�1 (2q)!

(m� 2q)!

(m� 2)!

2
C

2
g0(Ṙg)
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so that

D(scal(2q)(g))g0(r) = q

✓
�
1

2

◆q�1 (2q)!

(m� 2q)!

(m� 2)!

2

⇣
2(m� 1)Cg0(r) + C

2
g0(Ṙg)

⌘
+O(⇢N+1)

= �
q

n
�(2q)

⇣
nCg0(r) +

1
2�g0(Cg0(r)) + �g0�g0G

(2)
g0 (r)

⌘
+O(⇢N+1).

⇤
To compensate for the di↵eomorphism invariance of these tensors, we will perturb them

by adding an operator of the form

(c1�
⇤
g + c2g�g)(gt

�1�gG
(2)
g (t))

where t is an auxiliary metric.

Lemma 3.3 ( [GL91, Lemma 2.3, Proposition 2.10]). For metrics (g, t), a symmetric 2-

tensor r, and constants c1, c2, the linearization of the map (g, t) 7! (c1�⇤g+c2g�g)(gt�1�gG
(2)
g (t))

with respect to the first variable in the direction of r is

D1((c1�
⇤
g+c2g�g)(gt

�1�gG
(2)
g (t)))(g,t)(r) = (c1�

⇤
g+c2g�g)(��gG

(2)
g (r)+C (r)�D(r))+Bc1,c2(r)

where, with covariant derivatives with respect to g,

Ck
ij =

1
2(t

�1)k`(ti`,j + tj`,i � tij,`), Dk = gijCk
ij = �(t�1�gG

(2)
g t)k,

(Bc1,c2(r))jk = c1
1
2D

t(rkt,j + rjt,k � rkj,t)

� c2
⇣
rabDa,bgjk +

1
2D

tgab(rat,b + rbt,a � rab,t)� gabDa,brjk
⌘
,

(C (r))j = gjkC
k
abr

ab, (D(r))j = Dkrjk.

If g and t are asymptotically hyperbolic metrics such that ⇢2g|@M = ⇢2t|@M and r = ⇢Nr,
with r 2 C

2(M,S2(M)), then

D1((c1�
⇤
g + c2g�g)(gt

�1�gG
(2)
g (t)))(g,t)(r) = (c1�

⇤
g + c2g�g)(��gG

(2)
g (r)) +O(⇢N+1),

and if moreover g and t are equal on M then the O(⇢N+1) term vanishes.

Proof. For c1 = 1, c2 = 0, this is shown in [GL91]. So it su�ces to compute

@s|s=0((gs�gs)(gt
�1�gG

(2)
g (t))) = �@s|s=0((gs�gs)gD)

= �rabDa,bgjk +
1
2D

tgab(rat,b + rbt,a � rab,t)� gabDa,brjk

and note that if g and t are asymptotically hyperbolic metrics with the same leading term
at @M and r is as above, then Dk = O(⇢2), Dk

,s = O(⇢), and hence the right hand side of
this expression is O(⇢N+1). It vanishes if g = t since then both C and D vanish. ⇤

In view of Lemmas 3.2 and 3.3, we define

(3.7) �(↵,�)(g, t)

= �

X �(2q)

n(n� 1)

⇣
↵q(n� 2q + 1)�⇤g � (↵q(q � 1) + �q(n� 1)q)g�g

⌘
(gt�1�gG

(2)
g (t)),

and, as anticipated above,

Q(↵,�)(g, t) =
X

↵q(R
(2q)
g � �(2q)g) + �q(scal

(2q)(g)� (n+ 1)�(2q))g � �(↵,�)(g, t).
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We have shown the following.

Lemma 3.4. Assume g0 and t are asymptotically hyperbolic metrics such that ⇢2g0|@M =
⇢2t|@M and r = ⇢Nr, where r 2 C

2(M,S2(M)) has decomposition

r = ug0 + r0 with Cg0(r0) = 0.

The linearization of g 7! Q(↵,�)(g, t) at (g0, g0) in the direction of r is

(3.8)

�

X �(2q)

2n(n� 1)

⇣
q(n� 1)(↵q + (n+ 1)�q)(�g + 2n)(ug0) + (n� 2q + 1)↵q(�g � 2)(r0)

⌘

+O(⇢N+1)

If g0 has constant sectional curvature then the O(⇢N+1) term is identically zero.

In particular if �q = �
1
2q↵q the linearization is

(3.9)
A1(↵,)

4

⇣
� (n� 1)(�g0 + 2n)(ug0) + 2(�g0 � 2)(r0)

⌘
.

Recall the notation: If gi are metrics, all assumed to be of class Ck on M, then

E
k(g1, . . . , gN)

will denote any tensor whose components in any coordinate system smooth up to @M are
polynomials, with coe�cients in C

1(M) in the components of the gi, g
�1
i , and their partial

derivatives, such that in each term the total number of derivatives of the gi that appear is
at most k.

If g is conformally compact, then

Rjk = �⇢2(ngit⇢i⇢t)gjk + ⇢�1
E

1(g) + E
2(g)

and more generally, from (2.5),

C
2q�1
g (Rq) = ⇢�2

2qX

j=1

⇢jE j(g), and C
2q
g (Rq) =

2qX

j=1

⇢jE j(g)

Lemma 3.5. For g and t conformally compact metrics,

(3.10) (c1�
⇤
g + c2g�g)(gt

�1�gG
(2)
g (t))

= ⇢�2(12c1(Bk⇢j +Bj⇢k) + c2g
stBs⇢tgjk) + ⇢�1

E
1(g, t) + E

2(g, t)

where B = [Cg(t)gt
�1

� (n + 1)] d⇢. In particular, (c1�⇤g + c2g�g)(gt�1�gG
(2)
g (t)) = O(⇢�1) if

g
��
@M

= t|@M .

Proof. Graham-Lee [GL91, Proof of Proposition 2.5] compute that

(gt�1�gG
(2)
g t)k = �⇢�1Bk + E

1(g, t).

Applying (c1�⇤g + c2g�g) to this expression yields (3.10). If g
��
@M

= t|@M then B = O(⇢). ⇤
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Recall, from [GL91, §3] the following notation for spaces of functions. Consider b⌦ a
bounded open subset of Rn+1 with smooth boundary and ⌦ an open subset of M. Let dx
denote the Euclidean distance from x to @b⌦ and denote for s 2 R, k 2 N, � 2 (0, 1),

kuk(s)k,0;⌦ =
kX

j=0

X

|⇠|=j

kd�s+jD⇠ukL1(⌦)

kuk(s)k,�;⌦ = kuk(s)k,0;⌦ +
X

|⇠|=k

h
min(d�s+k+�

x , d�s+k+�
y )

|@⇠u(x)� @⇠u(y)|

|x� y|↵

i
.

We denote by ⇤s
k,0(⌦), ⇤

s
k,�(⌦), the Banach spaces of functions in C

k(⌦), with finite k·k
(s)
k,0;⌦

or finite k·k
(s)
k,�;⌦, respectively. These give rise to Banach spaces of functions on M, denoted

⇤s
k,0(M), ⇤s

k,�(M), see [GL91, Proposition 3.3].

We define an extension operator from boundary metrics to interior metrics as follows. Let
h be an asymptotically hyperbolic metric on M with h = ⇢2h 2 C

1(M,S2(M)), choose a
non-negative cut-o↵ function � 2 C

1(M) supported in the set U on which the flow along
h-geodesics normal to @M is a local di↵eomorphism, and which is identically equal to one
in a neighborhood of @M. Define

(3.11) Eh(bg) = �g + (1� �)h, T (bg) = T⇢,h(bg) = ⇢�2Eh(bg)
where g is the extension of bg from @M obtained by parallel translation and requiring
g(⌫, ·) = d⇢, with ⌫ the inward pointing normal to @M corresponding to h. Thus Eh(bg)
is a metric on M extending bg such that ⇢�2Eh(bg) is an asymptotically hyperbolic metric on
M.

Fix now M = Bn+1, ⇢(⇣) = 1
2(1� |⇣|2), and h = h, the hyperbolic metric.

Given bg 2 C
k,�(@M,S2(@M)), a metric on @M, we can employ the argument in [GL91, pg

203-205] virtually unchanged to construct approximate solutions to Q↵,�(g, T (bg)) = 0. We
start with g1 = ⇢�2Eh(bg), for which it is easy to see from (3.10) that Q(g1, ⇢�2Eh(bg)) =
O(⇢�1) and then use the linearization in Lemma 3.4 and the indicial root computation
in [GL91, §2] to construct successive approximations resulting in:

Proposition 3.6 ( [GL91, Theorem 2.11]). There is a smooth operator

S : Ck,�(@M,S2(@M)) �! ⇤�2
k�µ,�(M,S2(M)),

where µ = min(k � 2, n � 1), such that Q(S(bg), T (bg)) = O(⇢m�1) and S(h) = h. The map

bg 7! Q(S(bg), T (bg)) is smooth from C
k,�(@M,S2(@M)) into ⇤µ�1

k�µ�2,�(M,S2(M)).

Let bh denote the round metric on Sn.

Theorem 3.7 ( [GL91, Theorem 4.1]). Let M = Bn+1, n � 4, k � 2, ✓ 2 (0, 1), and let

(↵, �) be such that

X
q�(2q)(↵q + (n+ 1)�q) 6= 0 and A1(↵,) 6= 0.

There exists " > 0 such that, if bg is a smooth metric on @M with

kbg � bhkk,✓ < ",
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there is a metric g on M with uniformly negative Ricci curvature such that

⇢2g 2 C
n�1,�(M,S2(M)) for any 0 < � < min(1� 1

2(n�
p
n2 � 8 ), k + ✓ � 2n+ 2),

⇢2g
��
T@M

= bg, and Q↵,�(g, T (bg)) = 0.

Proof. We summarize the proof of [GL91, Theorem 4.1].
Set µ = min(k � 2, n� 1), �n = 1� 1

2(n�
p
n2 � 8 ), and let s = µ + 1 if µ + 1 < n and

otherwise s 2 (n�1, n�1+�n). Let L = D1(Q↵,�(g, t))(h,h)(r), so that from Lemma 3.4, L is
a non-zero multiple of �h + 2n on pure-trace tensors (relative to h) and a non-zero multiple
of �h � 2 on h-trace-free tensors. For this choice of s, [GL91, Corollary 3.11] implies that

L : ⇤s�2
k�µ,✓(M,S2(M)) �! ⇤s�2

k�µ�2,✓(M,S2(M))

is an isomorphism and Q(↵,�)(S(bg), T (bg)) 2 ⇤s�2
k�µ�2,✓(M,S2(M)).

Define

B ✓ C
k,✓(@M,S2(@M))⇥ ⇤s�2

k�µ,✓(M,S2(M))

B = {(bg, r) : bg is pos.def. on @M, S(bg) is defined, and S(bg) + r is pos.def. on M},

and a map
Q : B �! C

k,✓(@M,S2(@M))⇥ ⇤s�2
k�µ�2,✓(M,S2(M))

Q(bg, r) = (bg,Q(↵,�)(S(bg) + r, T (bg))).
As in [GL91, pg. 221], it follows from Lemma 3.6 and [GL91, Proposition 3.3] that Q is
smooth, satisfies Q(bh, 0) = (bh, 0), and its linearization about (bh, 0),

DQ(bh,0) : C
k,✓(@M,S2(@M))⇥ ⇤s�2

k�µ,✓(M,S2(M))

�! C
k,✓(@M,S2(@M))⇥ ⇤s�2

k�µ�2,✓(M,S2(M)),

is given by

DQ(bh,0)(bq, r) = (bq,D1Q(h, h)(DSbhbq + r) +D2Q(h,h)(DTbhbq)) = (bq, Lr +Kbq),
where Kbq = D1Q(h,h)(DSbhbq) +D2Q(h,h)(DTbhbq)).

We haveKbq 2 ⇤s�2
k�µ�2,✓(M,S2(M)) (sinceQ(↵,�)(S(bg), T (bg)) 2 ⇤s�2

k�µ�2,✓(M,S2(M)) for every
bg) and so the equation

DQ(ddfh,0)(bq, r) = ( bw, v)
has a unique solution given by bq = bw and r = L�1(v � K bw). The map ( bw, v) 7! (bq, r) is
bounded as a map

C
k,✓(@M,S2(@M))⇥ ⇤s�2

k�µ�2,✓(M,S2(M)) �! C
k,✓(@M,S2(@M))⇥ ⇤s�2

k�µ,✓(M,S2(M)),

so by the inverse function theorem Q is locally invertible in some neighborhood of (bh, 0).
Thus if g is su�ciently close to h we can solve the equation Q(bg1, r) = (bg, 0), i.e., find
g = S(bg) + r such that

Q↵,�(g, T (bg)) = 0.

Since bg is smooth, ⇢2S(bg) and ⇢2T (bg) are smooth in M, so

g = S(bg) + r 2 ⇢�2
C
1(M,S2(M)) + ⇢�2⇤s

k�µ,✓(M,S2(M)) ✓ C
2,✓(M,S2(M)).

As L is elliptic, g 2 C
1(M,S2(M)).
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Since s � 1, we always have ⇢2g 2 C
1(M,S2(M)) + ⇤1

2,✓(M,S2(M)), so g is continuous

on M. As in [GL91], using [GL91, Proposition 3.3] allows us to see that g is Lipschitz
and in C

n�1,s�n+1(M,S2(M)). Shrinking the neighborhood of bh if necessary, g can be made
arbitrarily close to h in the ⇤0

k�µ,✓(M,S2(M)) norm and in particular, g will have strictly
negative Ricci curvature. ⇤

Lemma 3.8 ( [GL91, Lemma 2.2]). Let g be a conformally compact metric of class C
3
on

M such that, for some K < 0,

Ric(g)(V, V )  K|V |
2
g for all V 2 TM,

and such that in coordinates smooth up to the boundary @kgij and ⇢@k@sgij are bounded. Let

t be a conformally compact metric of class C
3
on M, such that t 2 C

2(M,S2(M)).

a) If R
(2q)
g � �(2q)g � �(eq ,0)(g, t) = 0 then R

(2q)
g = �(2q)g.

b) If ↵ is such that LimSec(↵) 6= ; and �q = �
1
2q↵q, then

X
↵q(E

(2q)
g � (1� n+1

2q )�(2q)g)� �(↵,�)(g, t) = 0 =)
X

↵q(E
(2q)
g � (1� n+1

2q )�(2q)g) = 0

Proof. In the pure Lovelock setting, since R
(2q)
g + �g � �(2q)(g, t) vanishes, and �gG

(2q)
g kills

the first term by the second Bianchi identity and the second term by the metric property of
the connection, we must have

�gG
(2q)
g �(eq ,0)(g, t) = 0.

Let ! be the one-form gt�1�gG
(2)
g (t) so that this equation implies the vanishing of

�gG
(2q)
g ((n� 2q + 1)�⇤g � (q � 1)g�g)!

= �g
⇣
(n� 2q + 1)12(!i,j + !j,i �

1
qgijg

st!s,t) + (q � 1)(1� m
2q )gijg

st!s,t

⌘

=
(n� 2q + 1)

2
�g(!i,j + !j,i � gijg

st!s,t) =
(n� 2q + 1)

2
�gG

(2)
g �⇤g!.

When �q = �
1
2q↵q, we have

�(↵,�)(g, t) = �A1(↵,)(�
⇤
g +

1
2g�g)!,

and the second Bianchi identity implies that

0 = �g
⇣X

↵q(E
(2q)
g � (1� n+1

2q )�(2q)g)� �(↵,�)(g, t)
⌘

= A1(↵,)�g(�
⇤
g +

1
2g�g)! = A1(↵,)�gG

(2)
g �⇤g!.

In either case we have

�gG
(2)
g �⇤g! = 0,

just as in the proof of [GL91, Lemma 2.2]. As explained there, this implies that |!|2g is
bounded and �g|!|2g  2K|!|2g so [GL91, Theorem 3.5] implies ! = 0. ⇤

As a corollary of Theorem 3.7 and Lemma 3.8 we obtain Theorem 3.1.
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