SUB-RIEMANNIAN LIMIT OF THE DIFFERENTIAL FORM HEAT
KERNELS OF CONTACT MANIFOLDS
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ABSTRACT. We study the behavior of the heat kernel of the Hodge Laplacian on a contact
manifold endowed with a family of Riemannian metrics that blow-up the directions trans-
verse to the contact distribution. We apply this to analyze the behavior of global spectral
invariants such as the n-invariant and the determinant of the Laplacian. In particular we
prove that contact versions of the relative n-invariant and the relative analytic torsion are
equal to their Riemannian analogues and hence topological.

INTRODUCTION

Sub-Riemannian geometry is a generalization of Riemannian geometry where distances
are measured using curves that are tangent to a subbundle of the tangent bundle. Perhaps
the best studied setting is that of a contact manifold M where the curves are required to
be tangent to the contact distribution 57 C T'M. As JZ is maximally non-integrable the
Chow-Rashevskii theorem guarantees that any two points on M can be connected by a
curve tangent to s |Mon02, Chapter 2| and so a bundle metric g, known as a Carnot-
Caratheodory metric, induces a distance d,,, on M analogously to the Riemannian distance.

One natural approach to studying this sub-Riemannian geometry is through approxima-
tion: if g. is a one-parameter family of Riemannian metrics, extending ¢, and blowing-up
in the directions transverse to .#” as € — 0, it was shown by Gromov |Gro96] that the metric
spaces (M, d,, ) converge in the Gromov-Hausdorff sense to (M,d,,, ). The behavior of the
Hodge Laplacians of the metrics g. was initiated by Rumin [Rum00], following work of Ge
on the scalar Laplacian |[Ge93|, who showed that the those parts of the spectrum that have
finite limits concentrate on the spectrum of their counterparts in the Rumin contact complex
from [Rum94],

0= QoM 22y 2 qn gy Dy gty ey om0,

This complex is built from the de Rham complex and the contact structure of M; here
m = dim M is equal to 2n + 1, Q% (M) is a quotient of Q¢(M) if ¢ < n and a subspace
otherwise, d is a first order operator and D, is a second order operator. Interestingly
this complex computes the singular cohomology of M, just as the de Rham complex does.
Rumin’s initial motivation was to obtain differential operators compatible with ‘Heisenberg
dilations’ in which the .7 directions are scaled by A and the complementary directions by
A2. Indeed the Hodge Laplacians of the Rumin complex are not elliptic in the usual sense
of invertible principal symbols; however they have symbols ‘Heisenberg calculus’ that are
invertible and as a result they are hypoelliptic operators.

Rumin points out in [Rum00] that the contact complex can be derived from a spectral
sequence induced, e.g., by Heisenberg dilations. We study this spectral sequence using Hodge

theoretic techniques following [MM90, For95]. In particular we obtain filtrations of the de
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Rham complex (really of a rescaling of the de Rham complex, see
EL =8 CELPCEN =P (M) ifpé {n,n+1},
and &8 C & C EY C &Y = QP (M) if p € {n,n + 1},

in which &7 is isomorphic to the Rumin complex, &7 corresponds to the null space of
(dw + 0), and &2 consists of the Rumin harmonic forms and so is finite dimensional
and isomorphic to the singular cohomology H?(M).

Rumin’s approach in [Rum00] was to focus on the convergence of the resolvent of the Hodge
Laplacians in the sub-Riemannian limit. They note that while their approach establishes
convergence of appropriate heat kernels for large times, they do not apply to the short-
time behavior. In this article we establish the behavior of the heat kernel of the Hodge
Laplacians for all time. Our approach follows Melrose’s construction of the heat kernel
(see [Mel93, Chapter 7] and below) in that we construct a manifold with corners on
which the heat kernel is essentially smooth.

Theorem 1. Let M be a contact manifold with contact form 6, let J be an almost contact
structure on F = ker 0 such that g(-,-) = dO(-, J-) is symmetric positive definite on H,
and let

o®0

g2

(1) 9 = 9w ®

i) The heat kernels of the Hodge Laplacians A., acting on differential forms of degree
p & {n,n + 1} are Z-smooth (i.e., polyhomogeneous, see @ on a manifold with corners
H'X with boundary hypersurfaces capturing the asymptotics as t — 0 with £ bounded, as
t — 0 like €2, and as ¢ — 0 with t bounded.

For differential form degrees p € {n,n + 1}, the same is true for e 2A. with boundary
hypersurfaces capturing the asymptotics as t — 0 with € bounded, ast — 0 like €*, ast — 0
like €2, and as € — 0 with t bounded.

ii) For differential forms of degree p ¢ {n,n + 1}, the asymptotics of the trace of the heat
kernels of the Hodge Laplacians take the form

2N g at” ast— 0,6 >0,
Tr(e ') ~ ¢ py Y 2 im0 Arpb as py = Vit +e? =0,

Tr(e_t(dﬂ”??)zﬂg;) +0() ase—0,t>0,

where ay, and Ay are local (i.e., they are integrals of universal polynomials in the local in-
variants of the metric), and Hgr denotes the orthogonal projection onto Y.
For differential forms of degree p € {n,n+ 1}, we have

(—m/2 > o axt” ast— 0,6 >0,
pz(mﬂ) S iso Arph as py =Vt+et =0,

_ Ix 2
Tr(e™72) ~ Tr(e !t e T gp gp)
as po = Vt+e? — 0,

—(m+1
+ 3 "V Sso Budk + Olp)
Tr(e_t(D”J“D;f)QHgf) + O(e) ase— 0,t >0,

\
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where ay, Ay, and By, are local, Hgr\gr denotes the orthogonal projection onto EY\ &, and
Hgp denotes the orthogonal projection onto EY.

iit) If F is a flat bundle on M then the same constructions hold for the heat kernels of
the Hodge Laplacians of the de Rham complex with coefficients in F, AL'. In particular, if Fy
and Fy are flat bundles of the same rank then

Tr(e_mfl) — Tr(e_m?)

has the same asymptotics as in (ii) but without the local terms, and similarly for e 2ALi
acting on forms in middle degrees.

We then apply this construction to study the n-invariant and the analytic torsion of contact
manifolds.

The n-invariant of the odd signature operator, n(.S), was introduced Atiyah, Patodi, and
Singer [APS75a] as the boundary contribution to the index formula for the signature operator
with appropriate global boundary conditions. In [APS75b] they introduced the p-invariant
which assigns to a flat bundle F' the difference of the n-invariant of the odd signature operator
twisted by F, n(ST), with the n-invariant of the trivial flat bundle of the same rank,

p(F) = n(S") = rank(F)n(S).

They showed that the p invariant is a smooth invariant of M, i.e., it is independent of the
choice of metric on M. (Note that explicit computations on lens spaces show that it is not a
homotopy invariant in general. For manifolds whose fundamental group satisfies the Borel
conjecture [Wei88] or an appropriate version of the Baum-Connes conjecture [Kes00], the
p-invariant is a homotopy invariant.)

Corollary 2. Let F — M be a flat bundle, SE the odd signature operator of (M, g.) with
coefficients in F, and S%, the odd signature operator of Rumin’s complex with coefficients in
F. As e — 0, the finite part of the difference between n(SE) and n(S%,) is the integral of a
local invariant of the metric,

(2) n(Sy) —FPn(S) = local .

Correspondingly, the p-invariant of the Rumin complex is equal to the p-invariant of the de
Rham complez,

p(F) = n(S5) — rank(F)n(S.).

The n-invariant of the Rumin complex was first studied in [Rum00, §7] and subsequently
by Biquard, Herzlich, and Rumin [BHRO7]. In the latter, they conjecture [BHRO7, §6] that
holds in arbitrary dimension and they study it on three dimensional contact manifolds. If
M is a three dimensional Cauchy-Riemann (CR) Seifert manifold, meaning that the almost
complex structure J in the metric is integrable and M is endowed with a locally free
action of S! that preserves (J#,J) and is generated by a Reeb field, then they establish
with an explicit formula for the local term, [BHR07, Theorem 1.4]

M? CR Seifert = n(Sy) — FPn(S:) = R? O A db,

512 Jy

where 6 is an S'-invariant contact form and R is the curvature of the Tanno-Webster-Tanaka
connection.
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The analytic torsion of M is a function that uses determinants of the Hodge Laplacians
of the de Rham complex to assign to each flat bundle /' — M and each basis of the
cohomology of M with coefficients in F' a real number (see . It was defined by Ray and
Singer [RS71] as an analytic analogue of a combinatorial invariant known as Reidemeister
torsion which it was shown to equal by Cheeger [Che79] and Miiller [M78], independently, for
flat bundles with unitary holonomy, and by Miiller [M93] for flat bundles with unimodular
holonomy. Bismut and Zhang [BZ92] were able to extend the Cheeger-Miiller theorem to
arbitrary flat bundles.

Corollary 3. Let FF — M be a flat bundle with unimodular holonomy, {p*} C H*(M; F) a
basis for the cohomology of M with coefficients in F. The difference between the logarithms
of the analytic torsion of the de Rham complex of M and the analytic torsion of the Rumin
complex of M s given by the integral of a local invariant of the metric,

(3) log AT(M, {i*}, F) —log AT (M, {u*}, F) = local .

In particular, if Fy and Fy are flat bundles of the same rank with isomorphic cohomology
(e.g., if they are both acyclic) then the relative analytic torsions of the de Rham and Rumin
complexes coincide,

logﬁ<M7 {N*}a Fl) _logﬁ(Mv {M*}a FQ) = logﬁjf(M’ {:u*}v Fl) _logﬁﬁ”(Mv {:u*}7 F2)

The analytic torsion of the Rumin complex was introduced and studied by Rumin and
Seshadri [RS12]. For three dimensional CR Seifert manifolds they are able to establish a
stronger version of (3), [RS12, Theorem 4.2]

M? CR Seifert == log AT(M,{u*}, F) = log AT (M, {*}, F).

On a general 3-dimensional contact manifold they show that modifying log AT (M, {1*}, F)
by a local term produces a ‘CR-torsion,” log ATcr(M, {p*}, F), which is independent of the
contact form. As, in three dimensions, there are no local invariants of contact metrics that
are independent of the choice of contact form [BHRO7, proof of Theorem 9.1], it follows from
our theorem that

M? Contact = log AT (M, {u*}, F) =log ATcr(M, {u*}, F).
In an interesting preprint [Kit], Kitaoka looks at a modified Rumin complex with the
differential d_ replaced by
dy = |n —p| "%d 4 on forms of degree p, for all p & {n,n + 1}

and studies the corresponding analytic torsion on the odd-dimensional spheres with the
standard contact structure and metric, log AT ,» (S***1 {1*}, R). Using representation theory
they are able to prove that

log AT o (S* ! {*}, R) = log AT (S*"**, {i*}, R) + log(n!).
A direct computation (see ([7.1) below) shows that in general Kitaoka’s torsion differs from
that of Rumin-Seshadri by a local term

(4) log AT (M, {u*}, F) — log AT (M, {y*}, F) = local .

Further context. Pseudodifferential operators on the Heisenberg group, adapted to par-
abolic dilations, were introduced by Dynin [Dyn78|. The calculus of Heisenberg pseudodif-
ferential operators was consequently developed by Beals-Greiner |[BG88| and Taylor [Tay84]
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(see also [Mel99] for the relation with the #-calculus of [EMMO91]). A calculus including both
the usual pseudodifferential operators and the Heisenberg pseudodifferential operators was
developed by Epstein and Melrose [EM] and used to study index theory by van Erp [vE10D]
(see also [vE10a,BvE14, Eps04] for more on index theory in this context). Complex pow-
ers and noncommutative residues of operators in the Heisenberg calculus were developed
by Ponge [Pon08c| as well as a construction of associated heat kernels following work of
Beals, Greiner, and Stanton [BGS84]. Recently the relations between sub-Riemannian spec-
tral asymptotics and dynamics have been studied by, e.g., Colin de Verdiere, Hillairet, and
Trélat [CAVHT18|, Fermanian and Fischer [FKF19|, and Savale [Sav]. Some of these con-
structions have now been extended to more general filtered manifolds. For example, the
groupoid approach to pseudodifferential operators in [vEY19] allows van Erp and Yuncken
to handle filtered manifolds, and has been used by Dave and Haller to study BGG se-
quences generalizing the Rumin complex [DH17] and to study heat kernels and their asymp-
totics [DH19.

The sub-Riemannian limit is closely related to the adiabatic limit introduced by Witten
[Wit85] in which the metric on the total space of a fiber bundle is blown-up along the
fibers. Witten’s results were treated and generalized in [Che87,BF86a, BF86b| and since
then the adiabatic limit has become a standard tool in geometric analysis. Most relevant
to our approach is the adiabatic limit approach to the Leray-Serre spectral sequence by
Mazzeo and Melrose [MM90], and its subsequent extension by Forman [For95|, as well as
the adiabatic limit of analytic torsion studied by Dai and Melrose [DM12]. Similar analytic
surgery techniques have been used, e.g., to study the formation of cylinders [MM95 HMM95|
Has9g|, fibered cusps [ARSb,|ARS18|, and wedges [ARSa]. In contrast to these works the
degeneration in this project is not happening along a submanifold but rather along a sub-
bundle of the tangent bundle.
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1. RUMIN’S CONTACT COMPLEX

In this section we review some results of [Rum94, Rum00].

Let M be a contact manifold of dimension m = 2n-+1 with contact distribution 2 C T'M.
Let Ann() C T*M denote the annihilator of 2. Let Z* denote the differential ideal
generated by the sections of Ann(.77),

T =span{f Aa+dIAB:ac QT 'M,Bc QM0 cC®(M,Ann(H#))},
and let J* denote the forms that vanish after wedge product with an element of Z*,
JI={weQIM:0Nw=0=df ANw for all § € C*(M, Ann(7))}.
Using techniques from Kéhler geometry [Rum94, §2] it is easy to show that
g<n = J'=0, ¢g>n = 17=QIM.

We define
QLM — QIM /T4 %fqgn
i J1 ifg>n
The exterior derivative d induces two complexes (2%, M, d»),<, and (2%, M, d )g>y. Rumin
showed that any « € Q%,M has a unique representative 5 € Q"M such that df € J" =
Q4 M, and that setting D (a) = df3 yields a complex

d d d
0 QM "= Ql, M " Q”%MD :

D ¢

nglM%QnﬂﬂMﬂ...%Q%Méo

now known as Rumin’s contact complex. Moreover, he showed that this complex is in-
duced by a complex of sheaves resolving the sheaf of locally constant R-valued functions and
hence that its cohomology coincides with the de Rham cohomology of M. As pointed out
by Rumin-Seshadri [RS12], these arguments are local and essentially unchanged by allowing
coefficients in a flat vector bundle.

For a more geometric description of the Rumin complex, let us assume for simplicity that
J is coorientable. We fix a global contact form 6, let R be the Reeb vector field determined
by

O(R)=1, Ridd=0,
and let 7 denote the rank one subbundle of T'"M spanned by R so that TM = € & 7. It is
always possible to find an almost complex structure J on ¢ such that g (-,-) = df(-, J(-))

is a symmetric positive definite bundle metric on #. We then fix a Riemannian metric on
M,

(1.1) G =9gr 0RO
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The splitting of T'M induces a splitting of the cotangent bundle, T*M = 5¢* & ¥, and
then of differential forms

(1.2) QIM = QI SO NQ o = QMM @ QMM
The exterior derivative d : QIM — Q4T M decomposes into
d=d"" +d™ +d ", where d*F : QPIN — QPTIATE)L,
The last term reflects the non-integrability of .7#; concretely the fact that # € QY9M and
df € Q%2M. We can also write

(1.3) d = (ZH s ) LA BONQTIA — QUL @ 0 A QLA
R —UH

where dy = d®!, L is exterior product with df, and Lz denotes the Lie derivative by RE
Correspondingly, we have

(1.4) o= (iH ‘ng > QU DONQUIT — QUL @ O N QI
—UH
We can identify
(1.5) QIM/T 2 {we Q" L'w=0}, Ji={wecdAQU ' Lw=0}

Since L, as a map Q4% — QIF2¢* is injective if ¢ < n — 1 and surjective if ¢ > n — 1
[Rum94, §2] we can express this succinctly as

L* 0
With this identification, the differential D : Q%M — Q"' M is given by [Rum00, (2)]
De%ﬂOé =0AN (ER + dHLildH)Oé.
One can also view the contact complex as arising naturally from the spectral sequence in-
duced by the filtration 52 C T'M, see [Rum00]. An analytic approach to spectral sequences
for fiber bundles was developed by Mazzeo and Melrose [MM90] and then for arbitrary split-

tings of the tangent bundle by Forman [For95|. The Mazzeo-Melrose approach to the contact
complex will be crucial to our construction of the heat kernel, so we will describe it in detail

in §2|

ngM%’QqMﬁKer(O L).

Because D, is a differential operator of order two, the Hodge Laplacians of the Rumin
complex are defined to be

djfd;f—i-é;;ﬂdyf ifp@?{n,n—i—l}
(1.6) Aswlor v = (dwdw)’ + DuD%y  ifp=mn

(5%dﬁ)2+D;¢D4f ifp=n+1
Rumin [Rum94, §3] showed that these differential operators are not elliptic but they are
hypoelliptic. Recall that this means that if u is a distributional differential form in the
Rumin complex, i.e., a distributional section of the corresponding bundle, and it satisfies
that A u is smooth, then we can conclude that u was itself smooth. A discussion of how

this hypoellipticity is a general feature of differential form complexes on filtered manifolds
can be found in a recent paper of Dave and Haller [DH17, Theorem 2].

ISince d? = 0 these operators satisfy the relations d%, = —LLr and [d, L] = [dg, Lr] = [L, L] = 0.
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2. THE SUB-RIEMANNIAN LIMIT

As above, let M be a contact manifold of dimension m = 2n + 1 endowed with a global
contact form 6. We extend the metric g; from to a one-parameter family of Riemannian
metrics on M,
0®0

o2
We refer to the limit as e — 0 as the sub-Riemannian limit. Gromov |Gro96| has pointed
out that the metric geometry of the Riemannian manifolds (M, g.) converges in the Gromov-
Hausdorff topology to the metric geometry of the sub-Riemannian manifold (M, g.»).

The family of dual metrics on T*M converges to a degenerate metric supported on ¢,
and correspondingly the scalar Laplacians of g. converge as ¢ — 0 to the hypoelliptic Kohn

Laplacian A ,
Aﬁf = - Z Hj27

where {H,} is a gy-orthonormal local basis of 7.
Let X = M x [0,1]. with projection 7. : X — [0,1].. The sub-Riemannian limit
vector fields are

Var = {W € C®(X;TX) : (m.),W = 0 and W|.—o € C*(M; )},

i.e., they are vector fields on M parametrized by € and horizontal at ¢ = 0. As Vg is a
finitely generated projective module over C*°(X), we can use the Serre-Swan theorem, or
proceed directly as in [Mel93| §8.2], and find that there is a vector bundle

RTX — X,

together with a bundle map j : S®*T'X — T X such that j,C®°(X;®TX) = Vg C C®(X;TX).
Eliding the map j, we say that the space of sections of S*TX is Vig. We will refer to SRTX
as the sub-Riemannian limit tangent bundle.

At any p € M there is a Darboux coordinate chart (z1,...,%n, Y1, .., Yn, 2) in which 0
has the form

9 = 9w D , €>0.

1
0 =dz + = Z(’yj dl’j — Ij dyj)

2
In Darboux coordinates the sections of **T'X are locally spanned by
8&3]' ’ ayj ) 58,2

(but we point out that d,;, d,; are not horizontal away from the center of the coordinate
chart). Note that €, does not vanish at ¢ = 0 as a section of S*T'X, though it does as
a section of T'X. Correspondingly the sub-Riemannian family of metrics g. defines a non-
degenerate bundle metric on the sub-Riemannian tangent bundle.

Let *RT*X denote the sub-Riemannian cotangent bundle, defined as the dual bundle to
SRT X, and locally spanned (in a Darboux chart) by

6 dz+ 1> (yjdr; — x;dy;)
de;,  dy;, - B J6 j 1930

and define the sub-Riemannian limit differential forms to be sections of its exterior powers
SROP(X) = C®°(X; AP(RT* X)) = C™ (X; T (API) © g A ﬂ}\}(Ap*l,%”*)) ,

where 7y : X — M is the natural projection.
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The exterior derivative on M (or rather the m.-vertical exterior derivative on X) induces
a singular differential operator on *®Q*(X) which, with notation as in (1.3, has the form

L (dn L
< EER —dH

for € > 0. The adjoint operator is given by a modified form of (1.4,

5. — 5H 65;{3
== \ir oy

and hence the Hodge Laplacian is given by

T L[L*, dy] + €[Lr, 0p] Ay + opdy + 2Ly Lr + 5LL* )

We will make use of a slightly modified de Rham operator,

d 5_( dH—(SH %L—Eﬁgz)
e = Ve — 17 )
—;L + 8'682 —(dH — 6H)
which satisfies (d. — 6.)> = —A,, as this will be convenient when we come to study the
n-invariant.

The analysis of these operators is complicated by the singular coefficients as ¢ — 0, which
is an effect of the non-integrability of 7#. We will make use of these formulas for ¢ > 0 and
understand the behavior of these operators as ¢ — 0 by restricting the domain following
Mazzeo-Melrose [MM90].

2.1. Asymptotically solving Laplace’s equation. Our goal for this section is to under-
stand what we can say about sections @ of S2Q*X such that A.u = O(g%) as ¢ — 0 for some
(. Let
& = RO (X)]oso
and define
& = {ug € & - Fu € RO (X) s.t. Ule—g = up and A (7) = O(e"2).

We will determine the restrictions placed on the Taylor expansion of elements u of &;.
The reason we are interested in these spaces is that they give an analytic realization of
the spectral sequence induced by the splitting TM = 5 @& ¥ [MM90,[For95]. These satisfy

YV D& D

and [For95, Theorem 1.3] are eventually isomorphic to the singular cohomology of M in that
for each p there is an N € N such that

&h = &0 =) 67 2 (M),
jeN
Indeed, we will see that &7 = &2 if p € {n,n+ 1} and that & = &L if p ¢ {n,n + 1}.

Let us write
d.— 0. = a1 +ag+ea;
with the a; independent of €, and correspondingly

A= (de — 8.2 = 2A g+ e A+ Ag +eAy + 24,
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with the relations
2 2
Ays=aZ,, A_1=a_00+apa_1, Ay=aj+a_1a1+ aja_y,
2
Ay =aap + apar, Ay =aj

Note that since d. — 6. is skew-adjoint, so are the individual a;.

As explained in §1], the null space of

0 L
1=\ o

is naturally identified with the Rumin complex. The differential of the Rumin complex,
outside of middle degree, is correspondingly
dff = HKera_ldH-

It is also worth pointing out (see [Rum00, §4]) that a_; is a section of the endomorphism
bundle of A*(*}7T*X) whose spectrum is constant. In particular it has a generalized inverse

al, € C°(X;End(A*(*T* X)) st. alja.; =a_ja' | =1d — Hgera_,.

Given ug € ®Q*(X)|.—9, we can smoothly extend it to a form in RQ*(X). Any such
extension u satisfies
—Ad = a® upe 2+ 0™
and so
EF =& NKera®, = & NKera_,
by skew-adjointness. If uy € &, then any extension u = ug + uie + O(e?) satisfies
—A(T) = (A_jug + A_suy)e ™ + O(1) = (a_1apuo + a juy e + O(1).
We can take
Uy = —ailaouo,
and with this choice A (u) € O(1), so

To determine when a form wuy € &5 will be in &5, we start by specifying our preferred
extension of a form in & to a form on S*Q* M. Note that if & = ug +euy + %uy + O(e3) with

uy = —ailaouo,
then
— A (1) = (A_gug + A_yuy + Aoug) + O(e)
=a® uy + (a_ja0 + apa_1)uy + (a3 + a_1ay + aya_1)ug + O(e)
= a® jug + a_lao(—ailaouo) + aoa_l(—ailaou()) + (a2 + a_ya;)ug + O(e)
= a2 uy — a_yapa Jagug + a_1aytg + agllkera, agto + O(€),

so we have a natural choice of us by arranging for it to cancel out the part of the right hand
side in the image of a_1,

_ .t T
us = a' {(apa' jag — a1 — agllkera_,ao)uo-
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We define an ‘extension operator’
By & — RQH(X),
Do (ug) = ug — eaT_laouo + €2aT_1(a0aT_1a0uo — a Uy — aT_laoHKem_laouo)
with the property that
—A(P2()) = (Hkera_,a0)*uo + O(e).

This shows that a sufficient condition for uy € & is for (Ikera_, ao)*uo = 0.
To see that this is a necessary condition, let @ be any extension of ug such that A.u = O(1)
and write

u = Py(ug) + €v.

Here v € SRQ*M satisfies A.v = O(e7!), witnessing that vy = ¥|.—¢ is an element of &;.
Since & = & we know that A.®y(vg) = O(1) and ¥ = ®y(vg) + ew, with w € RQ*M
unconstrained. In this way we have shown that

U = Dy(ug) + ePy(vg) + 2wy + O(£%), for some vy € &, wy € &,

and hence (—A.U)|.—o = (ITkera_, a0)*uo + a? ;wy. Since the two terms on the right hand side
are orthogonal to each other, we see that the vanishing of (ITxerq_,@0)*uo is also a necessary
condition for uy € &%

Next we will show that & = &, i.e., that any form uy € & has an extension u such that
Au= O(e?). If ug € &, we have shown that

(2.1) a_qup =0, Ilkerq ,aoug =0,
thus ®5(ug) simplifies slightly to
Dy (up) = up + cuy + 2ug = ug — mT_laouo + szail(aoailaouo — ajug)

and for any form ug € &; we have that

— e AL(P2(uo) + ’us)

=a*(u3) + (a_1ag + aga_1)(ug) + (ai + ara_1 + a_1a;y)(uy) + (apay + arag)(uo) + O(e)

= a’(u3) + a_1ao(us2) + a_yai(u1) + apllyma_, (GOCLLGOUO - aluo)
— a2a’ Jagug — a1, aguo + agart + ajagug + O(e)
= a?,(us) + a_1ao(uz) + a_iai(uy) + aglkera_, (a1 — agal 1ag)ug + O(e).

We can choose usz so that it cancels out the part of the right hand side in the image of a_1,
(2.2) us = al <—agu2 —ayuy — a' apllkera_, (a1 — agailao)u0> :

leaving us with
(g_lA(a)NE:O - HKerafla(]HKerafl (al — CLOCLE16L0> Ug.

It turns out that this vanishes for any ug satisfying (2.1)). Indeed, we see from (|1.5)) that
aq —aoailao vanishes on forms in Ker a_; of degree p ¢ {n,n+1} because it is an off-diagonal
operator with respect to (1.2]), while on forms of degree n or n + 1 this is given by

Hkera_;@okera (a1 — aoaT_lClo)Uo = (dyw — 60)(Dw — D’ )ug
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and both d» and 0, vanish on the images of D, D%,. Thus we have found that
Kergr a(dwdw + 0pdy) ifp¢{nn+1}
KerﬂylM(d}fd(yf) ifp=n+1

For forms of degree p ¢ {n,n + 1}, & is isomorphic to the cohomology of the Rumin com-

plex, hence to the de Rham cohomology of M, and so &5 = &2.

Finally, let us analyze when a form in &} will be in 7. As we did for &, we will start by
constructing a preferred extension operator ®4 : & — SRQ*M. Given uy € &, define uy,
ug by @o(ug) = ug + cuy + £%uy, define uz by (2.2)) and note that for any uy € &,

—8_2A5(U0 + cuy + €2U2 + 83U3 + 84U4) = a2_1u4 + A_1U3 + A()UQ + A1U1 + AQUO + 0(6),

so a natural choice for u, is for it to cancel out the part of the right hand side that is in the
image of a_;. So with these choices of uy, us, us, we define

dy: & — QM
(1)4(’&0) = U t+ecu + €2U2 + €3U3 — 64(aJr_1)2H1ma_1 (A_1U3 + Agug + Ajuq + AQUQ).

For any uy € &; we have
— e 2A(Py(u0)) = kera, (A_1us + Aguy + Ayuy + Asug) + O(e)
= Hkera_, (aoHIma,l(—aouz — ayuy — a'yagllkera_, (a1 — aga’ yag)ug)
+ (ag + ara_1)us + (agar + arag)uy + afu()) + O(e)

= kera_, @0 Ikera_, (@ous + a1uy) + (Ukera_, (a1 — aoailao))Quo + O(e)

and ([2.1)) implies that ke o, @0llkera_, (aouo+aiui) = 0. Indeed, since a; preserves Im(a_1),
and us € Ima_q, we have

HKera_laoal (aJr_laouO) = 07 HKera_1a0u2 = 07
as claimed. So
—e 2N (Dy(u0)) = (Hkera_, (a1 — aga’ ag))ue + O(e).

Thus a sufficient condition for uy € & is (kera_, (a1 — aoa’ yag))?ug = 0.

To see that this condition is necessary, we proceed as we did for &°. That is, let ug € &;
and suppose that @ is any extension such that A_(u) = O(g?). We can write & = ®4(ug) + v
with A.(v) = O(e). Thus vy = V|.— is in & which we have shown equals &; and so
v = ®y(v) + ew, with A.(w) = O(1). Thus wy = W|.—¢ in & and we can apply our previous
analysis of &5 to conclude that

ﬂ = @4(’&0) —+ 6(1)4(1}0) —+ 52(132(100) + 53@2(1'0) + 54y0 + 0(65),
for some vy € &, wp, x9 € &, Yo € &
and hence

_5_2Aa(a)|a:0 = (HKera_l(al - aoailao))zuo + (HKera_1a0)2wO + a2_1yo-
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These three terms are orthogonal as they correspond to separate parts of the Hodge decom-
position of Rumin’s complex and so the vanishing of (Ilkero (a1 — aoailao))%o is also a
necessary condition for uy € &7. This shows that

Kergr r(dwdn + 0pdsr) ifpé {n,n+1}
&5 = { Kergn n(dwrdn) NKergn v(D% D) ifp=n
KerQ%1M(5ﬂd%ﬂ) N Ker%;lM(D%D,*%) ifp=n+1

In all degrees &7 is isomorphic to the cohomology of the Rumin complex, hence to the de
Rham cohomology of M, and so & = &F.

In summary, in terms of the associated graded spaces
glf = éblf \ glf-kl?
we have established the following decompositions of the space of sub-Riemannian forms,

BPX o= 9 o @ o 92, ifpéd{nn+1}
~— ~— ~—
(5, M)+ Im(As) KerAp=£L%

X = G o0 G e 9 e YL,
~— ~— ~—
QM)+ Im(dpdn)? Im(D%5,Dy) KerAy

sRQn+1X|€:O — gg@—o—l D an—O—l D g4n+1 D goré—l-l
S~~~ S~~~ S~~~
@' M)L Im(0pdy)?  Im(DopDi,)  KerAyp=614"

It is worth noting that the decompositions above are homogeneous with respect to the natural
contact weight and associated filtration, which is defined by assigning weight 1 to forms in
JC* and weight 2 to forms in 7.

We will use the extension operators from above to define two ‘effective normal operators’
of the Hodge Laplacian. We define the & -effective normal operator to be

Neia(Ac) 1 85 — &
Netr2(Az) (u0) = Ac(Pa(u0))]e=o = —(Hkera_, a0) 1o = (drdn + 8rdp)uo,
and we define the & -effective normal operator to be
Nega(e2AL) : & — &
Nera(e72A0) (ug) = e 2 Au(P4(ug))]emo = —(Mkera_, (a1 — agal ag))*uq
B {D%D%ﬂuo ifp=n
DyDyuy itp=n-+1

These operators will be useful in the construction of the heat kernel. In similar situations,
but for Laplacians without coefficients that are singular in ¢, (e.g., [AAR15,/ARSb, ARS18,
ARSa]) one would define a normal operator for the Laplacian at ¢ = 0 by taking uy
A, (@)|e=o where u is any extension of uy. We will be doing the same in our setting save that
the choice of extension of uy to u is constrained by the singularity of A, as ¢ — 0, and so
we have constructed explicit extension operators.
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2.2. Asymptotically solving the heat equation. In the previous section we showed that
we can write

ldsrgex|._, = g, © Iy, © g, ©Ily,,
where Ily, denotes the orthogonal projection onto ¢;. (Similarly, we will use Ils, to denote

the orthogonal projection onto &j.) Heuristically, by ignoring everything except the effective
normal operators, we could expect the heat kernel of A, to take the form

e—te_Q(aA)QH% @ e—t(d%—i—&%)Qn% @ e—tsQ(D%—i-DEf)QH% ® Iy, .

While the truth is a bit more complicated this exhibits the different regimes necessary to
understand the asymptotics of the heat kernel, namely when ¢ and €2 go to zero together,
when € goes to zero with ¢ bounded, and when ¢! and €2 go to zero together. For later use,
we will explain how to formally solve the heat equation to arbitrarily high order in ¢ in each
of these regimes.

First suppose we wish to solve (9, + A)W® = 0 with initial data W©|,_q = f(¢)
where f(0) € %. Equivalently, with s = /2, we wish to solve (9, + e2A)W©® = 0. As

2

E2A|—g = a2, we set W ”(s,¢) = exp(—s(a_1)?)f and then we have

{(55 +e2A )WY = O(e),
Ws2(0,¢) = f(e).

To show by induction that we can solve the heat equation to arbitrary order in e, suppose
that we have found W(O)(s £)y... Wk(o)(s e) such that

{( +€2A)<Z 0€9W )za’““R,ﬁo)(s,s),
P 06]W0 (0,€) = f(e)

and note that WéOJr)l(s) = exp(—sa? ;) x Rk (s,0), where x denotes convolution, completes
the inductive step.

Next suppose we wish to solve (9; + A )W® = 0 with initial data W®|,_o = f(e) where
f(0) € %. As (A 0 ®y)|.m0 = (dsp + 0)*ly, we set

WP (t,€) = y(e U000 £(0))

and then we have

W5?(0.€) = ®2(£(0)) = f(e) + Ofe).
If, inductively, we have found WO(2) (t,e),... W,SQ) (t,€) such that
{(at + AE)(Z] 05JW(2)> = ngR ( €),
Y0 W;(0,€) = f(e) + il (o)
then we can improve the error in the first line by adding
_ gkl [82 ((aT_l)zl_[% (Rl(f) (t, 0))) 1 ®, (e*t(d%+5(%)2H£Z (Rl(f) (t, 0)))}

and for the error in the initial condition we can use the previous discussion to solve the heat

equation to arbitrarily high order with initial data H%w,(jzl(()) and then use the inductive

{@ + Aawé” O(e),
(0

hypothesis to solve the heat equation to order k + 1 with initial data ILg, w}fjl(o).
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Finally suppose we wish to solve (9, + A )W® = 0 with initial data W®W|,_y = f(e)
where f(0) € ¥,. Equivalently, with s = €2t we wish to solve (0, + e 2A )W® = 0. As
e 2(A. 0 Dy)|.—o = (Dw + D3, )?ly, we set

W (s,€) = Dy(e* PP £(0))

and then we have
(0, + e 20)WY = O(e),
Wi (0,2) = 4(£(0)) = f(e) + O(e).

If, inductively, we have found W0(4)(5, E)yenny Wk(4)(s, ¢) such that

{(as Fe2A) ( > ngj(A‘)) = HRW (s, ¢),
S W(0,6) = f(e) + F gy, (¢)

then we can improve the error in the first line by adding
— ekt [54 ((aT_l)ZH% (R (s, 0))) + %0, ((d,%ﬂ +0,) Iy, (R (s, 0)))
1P, (e—s(DﬁJer;f)QH% (R,(:l)(s, O)))] :

where we use that (d_» +(53f)2 has an inverse on %, then for the error in the initial condition
we can use the previous discussions to solve the heat equation to arbitrarily high order with

initial data (Id _H%4)w1(<ﬁ1(0)7 and then we can use the inductive hypothesis to solve the heat

equation to order k + 1 with initial data H&w,(ﬁl(O).

3. INTERLUDE: MANIFOLDS WITH CORNERS

We briefly review some basic concepts on manifolds with corners and refer the reader to,
e.g., [Maz91, §2A], [Mel92, Mel96| Gri01, DM12, Mel93,|EMMI1], for more details.

Recall that a map [0,00)™ — [0,00)™ is smooth if it has a smooth extension to a map
between open neighborhoods of [0, 00)™ in R™. A smooth m-dimensional manifold with cor-
ners W is a manifold smoothly modeled on [0, c0)™ with embedded boundary hypersurfaces.
This latter condition is equivalent to the existence, for each boundary hypersurface H, of a
smooth function p : W — R such that

p(W) C[0,00), p *(0)=H, dphasno zeroes on H;

any such function is known as a boundary defining function for H. A product of boundary
defining functions, one per each boundary hypersurface of W, is known as a ‘total’ boundary
defining function for W.

A construction we use repeatedly to obtain new manifolds with corners is (real) blow-up
of a ‘p-submanifold’ (or ‘submanifold of product-type’). An embedded submanifold Y C W
is a p-submanifold if every point ¢ € Y has a neighborhood U such that

wnu=w xw"
where W has no boundary and Y NU = W’ x {¢"} for some ¢” € W”. (Thus the interval
{z = 1,0 <y <1} is a p-submanifold of the unit square, while the diagonal {0 < z =y < 1}

is mot a p-submanifold of the unit square.) These are the submanifolds that have ‘nice’
tubular neighborhoods. The blow-up of W along Y, denoted [W;Y], is the manifold with
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corners obtained by removing Y and replacing it with its inward pointing spherical normal
bundle in W,

WY =W\ YU(NVJ{,Y \{0})/ ~, where v ~ \v for all v € N, Y \ {0}, A € RT.

A modification given a subbundle S of the conormal bundle to Y in W, Ny}, Y, known as
the ‘parabolic blow-up of W along Y with parabolic directions S’ and denoted [W;Y,S], is
obtained by replacing the radial dilations with anisotropic dilations,

W;Y, 8] = WA\Y [ (NEY \{0})/ ~s,
where (vgo,vg) ~ (Mge, Nvg) for all v = (vgo,vs) € NiLY \ {0}, A € RT,

and where we have chosen a complementary sub-bundle S’ to the annihilator S° of S.
A blow-up comes with a blow-down map

WY — W, [W;Y,S] — W,

which we usually denote /5. If L C W is a submanifold which is equal to the closure of L\Y,
then the ‘interior lift’ of L along 3 is defined to be the closure of 371(L\ V).

Every manifold with corners can be embedded into a closed manifold (see, e.g., [AMI1,
Theorem 4.2]) and a smooth function on a manifold with corners is, by definition, the
restriction of a smooth function on a closed manifold. However, it is convenient and often
necessary to work within the larger class of Z-smooth functions, or functions that are
smooth with respect to index sets (also known as polyhomogeneous functions). On a manifold
with boundary W, with boundary defining function p, an Z-smooth function f with index
set £ C C x Nj is a function that is smooth in the interior of W and has an asymptotic
expansion

fr Y as(y)ptlogp)  asp—0,
(s,p)€E
where the coeflicients, a,,(y), are smooth functions on dW. We denote the set of such
functions by
Ay (W).

In order for this to make sense, and behave well with respect to change of boundary defining
function, we require of £ that:

i) Any infinite sequence ((s;,p;)) € & satisfies Re s; — o0,

ii) If (s,p) € € then (s+ k,p') € € for all k € Ny and 0 < p’ < p.
On a manifold with corners Z-smooth functions have index sets at each boundary hypersur-
face and joint expansions at corners, see [Maz91, §2A] for details. As Z-smooth functions
are C*>°(W)-modules it is straightforward to define Z-smooth sections of vector bundles.

We say that a function f vanishes to infinite order at a boundary hypersurface H of a
manifold with corners W if all of the coefficients in its Taylor expansion at H are identically
zero. We denote the set of smooth functions on W that vanish to infinite order at all
boundary hypersurfaces of W by C*(W), and those that vanish to infinite order at all
boundary hypersurfaces except for H by C32(W).

A beautiful and powerful geometric technique of Melrose for understanding the mapping
properties of an operator and the composition of two operators is provided by the pull-back
and push-forward theorems. A map f: W — W’ between manifolds with corners is a b-
map, i.e., a ‘boundary map’, if the pull-back of any boundary defining function of a boundary
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hypersurface of W’ is the product of boundary defining functions of W. An example is the
projection of the square onto one of its sides and a non-example is the map from the unit
square onto [0, 2] sending (x,y) to x + y. A b-map is ‘simple’ if the pull-back of a boundary
defining function of W’ is a boundary defining function of W. The pull-back of an Z-smooth
function by a b-map is again an Z-smooth function, [Maz91, Proposition A.13]. For a simple
b-map, f, the index set of f*u at a boundary hypersurface H of W' is Ny if f(H) = W' and
is equal to the index set of u at the boundary hypersurface f(H) otherwise.

The push-forward of a density along a fiber bundle map is the fiberwise integral of that
density; in general push-forward is defined as the dual of pull-back. A b-fibration is a b-map
between manifolds with corners that restricts to a fiber bundle over the interior of each
boundary face and does not increase codimension (see [Gri01, Definition 3.9]). Push-forward
along a b-fibration is especially well-behaved for b-densities: a density on the interior of W is
a b-density if its product with a total boundary defining function is a non-degenerate density
on W. If u is an Z-smooth density on W and [ : W — W' is a simple b-fibration, then f,u
is an Z-smooth b-density on W’. The index set of f,u at a boundary hypersurface H of W’
is the ‘extended union’ of the index sets of u at the boundary hypersurfaces of W that are
mapped onto H by f. Here the extended union of two index sets £ and F is

EUF=EUFU{(z,p) eCxNy:(z,p—1)€ENF}.

In this paper we will only require pull-back and push-forward along simple b-maps; we
refer the reader to the references for the results for non-simple b-maps.

4. THE HEAT KERNEL CONSTRUCTION ON MODEL SPACES

In this section we will describe the construction of the heat kernel of a Laplace-type
operator on a closed manifold from [Mel93, Chapter 7] and the analogous construction
of the heat kernel of suitable hypoelliptic operators on ‘Heisenberg manifolds’ following
[BGS84, Tay84, Pon08c]. This will allow us to review the methods involved in situations
simpler than the heat kernel of a manifold undergoing the sub-Riemannian limit and will
serve as part of that construction.

Let us start by considering the structure of the heat kernel for the scalar Laplacian on
Y = R™ as a right density,

1 A2
(41) Ky(t,C,CI) = W exp ( — %) d(/

The function exp (— ‘C;—E/P) is smooth everywhere on R x Y x Y except at the submanifold

{t =0, = ¢’} where it is not defined and does not have well-defined limits. We resolve this
singularity by blowing-up the diagonal at time zero; that is, we remove this submanifold and
we replace it with (a modified version of) its inward pointing spherical normal bundle. We

denote the resulting space by HY and the map back to R x Y x Y, the ‘blow-down map’,
by
B:HY — R xY x Y,
In essence this comes down to introducing polar coordinates and then ‘taking them seri-
ously’.
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F1GURE 1. The heat space HY and its blow-down map [ : HY — Rf xY xY

Thus for coordinates on HY we can take

. ot (=
__ A/42 __ 4 — — [ !
R = t+‘< C|7 0 (Qter) (§27 E )7 C
and the map [ is given by
HY =R* x {(6,,0y) : 02 4+ 61 =1} x R™ ’ Rt xY xY
(Ea 57 C/) } (é;f§27 CI + §5Y7 C/)

The pull-back the heat kernel of Ay to HY is
———exp ( - |§YJ2> d¢' € RT™C™(HY; BLly),
(47TR20t)m/2 40t

5*KY(E7 57 CI) =

where Sr : HY — Y is the composition of 5 and the projection onto the right factor of
Y and Ay denotes the density bundle on Y. Its newfound smoothness is due to the pleasant
fact that now the numerator and denominator in the exponential are never simultaneously
Zero.

This construction of the Euclidean heat space, where the t-direction is treated with a
different weight as the spatial directions, is known as a ‘parabolic blow-up’ and denoted

HY =[RS x Y% {t = 0} x diagy, (dt)].

An alternate construction that is just as good for understanding the structure of the heat
kernel is to first introduce 7 = v/t as a smooth global variableE and then blow-up the diagonal
at time zero homogeneously in all directions. We denote the resulting space by

HY = [RF x Y? {7 = 0} x diagy/]
2To declare that 7 = Vt is smooth is to change the smooth structure of RT x Y2, It is the same

as carrying out a parabolic blow-up of the boundary hypersurface {t = 0}, i.e., replacing R* x Y? with
R x V2 {t = 0}, (d8)]
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and can obtain coordinates by
/
TR CF, 0= 0.0 = (5555, ¢
In these coordinates the pull-back of the heat kernel is given by
1 Oy |?
amer o (~
We will make use of both radial blow-ups and parabolic blow-ups in constructing the heat

space for the sub-Riemannian limit. For a discussion of radial and parabolic blow-up we
refer back to section [3] and the references therein.

)dce;R—mcw(HygﬁgAY)

4.1. The heat kernel of a Laplace-type operator.

Let M be a closed m-dimensional manifold and let A denote a Laplace-type operator
on sections of a vector bundle E — M. The heat equation for A, with initial data f &€
C®(M;E), is

U|t:0 = f

We denote the linear operator f + u by e™*2 : C*(M x RT; E) — C*°(M; E). Its Schwartz
kernel

¥&+AM:Q

Kg = ’6}[ - UR € COO(RZ_ X MZ; HOHI(E) & BEAM),

where i is the pull-back of a density to R x M? from the right factor of M, satisfies the
equation

(0 + A)Kn(t,¢.¢) =0

ICH(ta Ca C/) |t:0 = 5diagM
with dgiag,, the delta distribution on the diagonal of M Zatt=0.

It is convenient to multiply the first equation by ¢,
(tat + tAC)ICH(ta C) C/) = 07

as this does not change the solution and allows us to work with vector fields that are tangent
to {t = 0}. Following |[Mel93, Chapter 7], we establish the asymptotics of Ky and show that
it is Z-smooth density on a suitable manifold with corners by constructing the solution to
the heat equation within this class of densities.

We construct the ‘heat space’ of M by first blowing-up {¢t = 0} parabolically, i.e., intro-
ducing 7 = v/t as a smooth function. We will not reflect this in our notation beyond using
7 instead of ¢. Secondly we perform the radial blow-up of the diagonal at time zero,

HM = [Rf x M*{r=0,( =},
also represented schematically by Figure [1} This space comes with a blow-down map,
B:HM — RF x M.

We denote the composition of 3 with the projection of M? to the right factor of M by Bg.
This space has two boundary hypersurfaces,

B, = ‘temporal face’ = f=1({r =0,¢ # ('}),
B = ‘Euclidean face’ = 37'({r =0, = '}).




20 PIERRE ALBIN AND HADRIAN QUAN

The latter can be identified with a fiberwise compactification of the normal bundle to the
diagonal, i.e., the tangent bundle of M, and indeed f restricted to B is the bundle map.

As t — 0 we expect, by analogy with the Euclidean heat kernel, to have exponential decay
at B, and interesting asymptotics only at Bg, so we carry out our construction using the
function space C3°(M?; Hom(E) ® B5A ) discussed in §3, consisting of sections that vanish
to infinite order at B;;. Local coordinates near By are obtained from local coordinates ¢ on
M by, e.g.,

/
7_7 w = C C 9 CI’
T

(valid away from B,y) in which 7 is a boundary defining function for Bg. Since [ restricts
to a diffeomorphism between HM \ B and RF x M2\ ({7 = 0} x diag,,;) we can pull-back
vector fields and differential operators along 3. The lift of t0; is given, in these coordinates,
by

B(t0y) = (10, — @ - O)

and, for any vector field V' =} a;(()d,, the lift of 7V along fy, is

Br(rV) =Y a;(¢' +&7)0s,.

Note that the restriction of 85 (7V') to the fiber over ¢ € M of By is the constant coefficient
vector field obtained from V' by freezing coefficients at g; this is none other than the symbol
of V.

Remark 1. There is an equivalent way of obtaining the model operator of a differential
operator L at the fiber of B over g € M (cf. [Maz88, (2.5)]). Choose a chart ¢ around q
mapping into T,M with ¢(q) = 0, D¢(q) = 1d. Let D, denote the dilation by T on T,M and
define Ny(L)u, for say u a Schwartz section of E, over T,M, by

N,(Lyu = lim D3¢" L(¢™")* D} u.
T—0

It is easy to see that, just as above, Ny(370;)u = —i@ - Ozu and Ny(a(C)d¢,)u = a(0)dz,u.
Ezxpressing this limit using polar coordinates we see that it is the same as pulling-back along
B and restricting to ‘Bg.

It follows that the lift of 72A also restricts to its principal symbol on B, which in ap-
propriate coordinates in each fiber is just the Euclidean Laplacian, acting as a fiber-wise
differential operator. This suggests that we take as our first approximation to the heat
kernel of A the density we get from written in projective coordinates,

/ | 1
(4.2) Go(r,w,(") =x(T)T (amymrz P ( - Z|w|<27(A)(§’)> Idg pr
€ 7 CP(HM; Hom(E) @ BAa),

where | - [,(aycy denotes the metric on the tangent space to M at ¢’ defined by the symbol
of A, Idg denotes the identity on F, x is a cut-off function equal to one in a neighborhood
of B, and ug is the pull-back of a non-degenerate density along (.

It follows that Gy solves the heat equation to first order at By,

Bi(t0, + tA)Go € 7™ TICE(HM; Hom(E) ® f5A )
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and it satisfies the initial condition Gof — f for all f, i.e., (81)+Goli=0 = Odiag,,- The next
step is to find G; € Cg°(HM; Hom(E) ® ;A ), such that for any N € N,

B1(to, + tA) Z TG = TN Ry € rTm N (H M Hom(E) @ BhA).
J<N
Inductively, given Gy, ..., Gy, we look for G such that
Br(td,+tA) Y TG =7 N Ry 4 B (10, + tA)T TV Gy
j<N+1
€ 7 mFHNCR(HM; Hom(E) @ BhAw),
i.e., such that
[5(=6 05 =m+1+N)+0(A)]Gnti|r=0 = —Rnlr=o-

As Ry|,=o is a Schwartz function on the fibers of B, we can take Fourier transform and
solve the resulting equation to get

1
F(Gnt1lr=0) =/ exp((r — D)|EY)F (=R o) ¥Vt dr,
0

which shows that Gn1|,=0 is a Schwartz function on the fibers of B and completes the
induction.

Once we have all of the G; we ‘asymptotically sum’ them; that is we use Borel’s Lemma
to find

Go € T "C®(HM;Hom(E) ® 85Ar) such that, for any k, G, — Z G; = O(r~mHHHh,
i<k
It follows that
B1(t0y + tA)Goo = Roo € C*°(HM;Hom(FE) ® 55Au)

where C>°(HM; Hom(E) ® D) denotes sections of Hom(E) ® #5Ay, that vanish to infinite
order at both B, and Bg.

For the final step, we allow G, and R, to act by convolution as Volterra operators. Let

C®(R} x M;E) denote the sections of E that vanish to infinite order at ¢ = 0 (which is
equivalent to vanishing to infinite order in 7), and define

Goox : C(RS x M; E) — C(R} x M: E)

(Goo 5 u)(t,C) — / / — 5,6, uls,¢') ds

This operator satisfies
(0 + A)(Goo*) = Id +t 7' R

and we can invert the right hand side (as a convolution operator) with a convergent Neumann
series [Mel93, Proposition 7.17]

(Id 4+t Rox) ™ =D (=1)F(t " Roo#)¥ = 1d +5, Sw € C*(HM;Hom(E) @ BA).
It follows that the heat kernel of A (pulled back to HM) is equal to
Ke-ia = Goo 4+ Goo % Soo € 77 ™CF(HM; Hom(E) @ S5 )
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and, since Ko—a — Goo = Goo % Sae € C®(HM;Hom(E) ® BrAr), we see that the Taylor
expansion of the heat kernel at Bg is equal to the Taylor expansion of G, i.e., to the one
we constructed step by step above.

4.2. The heat kernel of a contact Laplacian.
For m = 2n + 1 the Heisenberg group is the multiplicative subgroup of GL,,(R) given by

1 x =z
H2 L = 0 Id, yvy]|:z,yeR" z€eR,,
0 0 1

and is naturally diffeomorphic to R™. An important feature of H™ is that the dilations
(x,y,2) — (ax,by,cz) that are group homomorphisms are precisely those with ¢ = ab; the
dilation with @ = b = ¢/2 = X\ > 0 is known as the ‘Heisenberg scaling’ by .

In the construction of the heat kernel on a closed manifold we have used that the principal
symbol of a differential operator is, at each point p € M, a translation-invariant differential
operator on T, M = R™. On a contact manifold M we can identify the tangent bundle with
a bundle of Heisenberg groups (the osculating group of [FS74]). The ‘Heisenberg symbol’
of a differential operator is, at each point p € M, a left-invariant differential operator on
T,M = H™. A self-adjoint operator is said to be ‘Rockland’ if its Heisenberg symbol is
invertible and this is known to be the case for the Hodge Laplacians of the Rumin complex,
A [Rum94] §3], [DH17, Example 4.21]. The heat kernel of a Rockland operator has been
studied in, e.g., [BGS84,|DH19|, [Pon08c, §5]. For future use we recast the construction of
these heat kernels in parallel to the construction in

Let P € Diff’(M; E) be a non-negative self-adjoint Rockland operator of order ¢ (recall
that A is of order four on n-forms and n+ 1-forms, and order two otherwise). We construct
the Heisenberg heat space of M from R} x M? by first introducing 7 = !/ as a smooth
function (i.e., by performing a quasi-homogeneous blow-up of {t = 0}). We will not include
this blow-up in our notation below beyond using 7 instead of ¢. Secondly we blow-up the
diagonal at time zero, but parabolically with respect to Ann (),

(4.3) HugM = [RF x M?* {7 =0,¢ = ('}, Ann(52)].
As before this space comes with a blow-down map

B: HgM — R} x M?
and has two boundary hypersurfaces,

B, = ‘temporal face’ = -1 ({r =0,{ # ('}),
By = ‘Heisenberg face’ = 31 ({r =0,¢ = ('}).

The latter is a fiberwise compactification of the tangent bundle of M and f restricts to the
bundle map.
Note that the pull-back of the density bundle along the blow-down map satisfies

BA(RY x M?) = ! A(Hg),

explaining why the asymptotic expansion of the trace of the heat kernel of a contact Laplacian
will begin at —(m + 1) instead of —m.
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As above, we will work with the space C°(M?; Hom(E) ® %A ) of densities that vanish
to infinite order at B, but have non-trivial asymptotics at By. Local coordinates near By
can be obtained from a Darboux chart (z;,y;, 2) = (¢, 2) by, e.g.,

C B <, z—2 / /

4.4 - z = ) ) )
( ) T? CL)C T ? w 7_2 C z

valid away from B, in which 7 is a boundary defining function for By.
In these coordinates, the lift of tJ, along [ is

B(t0y) = §(10r — w¢ - O, — 2w.0,,.) = (10 — Ru),
and we recognize that Ry is the infinitesimal generator of dilations adapted to the Heisenberg
group; for a vector field V' = 3 a;((, )9, + ao((, 2)0. the lift of 7V along 3 is
BHTV) =D ai(¢ + Twe, 2 4 Tw) D, + 7 a0+ Twe, 2+ w0,

Significantly, at the center of the Darboux chart, the lift of 0,, Qyjf) is 8% wyj 0., and
the lift of 0, + %xjaz is awyj + %wzj 0,.; 1.e., the lift of the horlzontal vector ﬁelds on M are
the corresponding vector fields on 7}, M.

Remark 2. Fquivalently we can find the model operator of a differential operator L at the
fiber of By over ¢ € M by choosing, e.g., a Darbouz chart ¢ around q mapping into Ty M
with ¢(q) = 0, Do(q) = 1d. Let Dy denote the anisotropic dilation map
T,M = J,® ¥, 3 (we,w,) —2 (Awe, Now,) € H, & ¥y = T,M
and define N,(L)u, for say u a Schwarz section of E, over T,M, by
N,(L)u = lim Df\qﬁ*L(qﬁ*l)*D}‘/)\u.
A—0

It is easy to see that this gives the same operators as above, and coincides with other defini-
tions of the Heisenberg symbol, cf. [JuE18], [Pon08c, §2.1].

It follows that the lift of 7°P restricts to each fiber of By to its Heisenberg symbol
o"(P), e.g., the corresponding Hodge Laplacian on the Heisenberg group. Also we recognize
the restriction of the lift of t0, to By as —¢~! times the infinitesimal generator of the
Heisenberg scaling. It is shown in, e.g., [DH19, Lemma 4] that the heat kernel of o™ (P)(q),
kot py(q)(T,We, w2) p1, is a Schwartz section of the density bundle on T, M, homogeneous with
respect to the anisotropic dilation

Kot(py(q ()\T AwC,)\ w,) = 2\~ (mF1 )k(,H (P)(q) (7‘, We, Wy)
whose integral over T, M is equal to the identity on £,. This suggests a first approximation
to the heat kernel of P analogous to (4.2]),
GO(Ta Wes Wy, Clv Z/) = X(T)T_(m+ k H(P) (¢ )(1 Wes wz) UR
€ 7~ mHICE (HyM; Hom(E) ® BpAu),

with x a cut-off function equal to one in a neighborhood of By, and ug is a density on M
pulled-back along SBg. It follows that G solves the heat equation to first order at By,

BE(t0y + tA)Go € 7 MVCE (Hg M ; Hom(E) @ BhAn)
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and it satisfies the initial condition lim,_,o Gof = f for all f, i.e., (81)+Goli=0 = Oadiag,, - Since
convolution on the Heisenberg group preserves Schwartz functions, we may construct G; as
in and asymptotically sum them to find

Goo € 77 MCE(HyM; Hom(E) @ BrAn),
B (t0; + tP)Goo = Roo € C(HygM; Hom(E) @ B5An).

Continuing as in §4.1, we view this as a Volterra operator acting by convolution and invert
it by a Neumann series to find

Ko-ir € 77 MO (HyM; Hom(F) ® BgAar).

Finally, we will have need of the Schwartz kernel of Ae~*¥ where P is a non-negative

self-adjoint Rockland operator of order ¢ and A is a pseudodifferential operator of order zero
in the Heisenberg calculus. The structure of these operators, when P is elliptic, has been
studied in several contexts as, e.g., a way of obtaining the Wodzicki-Guillemin residue of
A (see for example [Loy06| for a nice overview, [Les10,|GL02,|GS95] for the use of Ae™*F,
and [Pon08a,Pon08b,Pon07| for contact manifolds). Fortunately, as we will explain, the case
we will encounter below is simpler than the general case.

The Schwartz kernel of Ae™*f’ is again Z-smooth on the heat space HyM but the coeffi-
cients of the expansion at By are not necessarily local. Correspondingly it is convenient to
understand Ae~*F as an integral transform of the resolvent of P or of the complex powers of
P. Indeed, the Mellin transform of Ae~** is equal to AP~*, and, for P a positive self-adjoint
Rockland differential operator, the structure of P~* is detailed in [Pon08c, §5.3]; namely,if
P has differential order ¢, then P~* (and hence AP~*) is a Heisenberg pseudodifferential
operator of order —sf and together these operators form a holomorphic family. By taking
inverse Mellin transform, it follows that Ae~** is an Z-smooth function on HyM, vanishing
to infinite order at B;s and with asymptotic expansion at By of the form

(4.5) K gt ~ 7D Z a; 77 + Z(bk + belog 7)™, as T — 0,

§>0 k>0
where we recall that 7 = t'/¢. Recall from §3| that this is expressed as
Ae " € AT (HyM;Hom(E) ® BpAy) with J(By;) =0, T (By) = —(m + 1)00,

phyg
where we use —(m+ 1) and 0 to stand for —(m+ 1) + Ny and Ny, respectively. Interestingly,
while a; and by are local (i.e., they each depend on finitely many terms in the asymptotic
expansion into homogeneous terms of the symbols of A and P), the terms by need not be
local. For example if A is trace-class then the trace of A will be equal to the integral of
Am11 + bo.

It follows that the trace of Ae~'¥" has an expansion of the same form as (4.5]) (the coefficient
of the first log term is the noncommutative residue of A). In our construction below, A will
be the projection Ilg, from and P will be A from . This allows us to use an
observation of Branson-Gover [Bra05, §3], [BG05| to rewrite the trace as follows (e.g., on
forms of degree n)

(4.6) Tr(e ' ‘Q") = TI‘Q%M(Q_tD;fD%)

= Trqn, a(e~"47) — TI"Q%M(e_t(dﬂ)é%P) = Tran_ (e 27) — TrﬂgglM(e_t(‘s”d%‘)z)
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= Tron, ar(e7"87) = Trgn 1, (€725 ) + Trgn (e~ (07
— . _ 2
= T )+ 3 T ),
k=1

which implies that the short-time asymptotic expansion of the trace does not have any log 7
terms or terms that are global in the manifold. The analogous result holds for forms of
degree n + 1.

5. THE HEAT KERNEL OF A SUB-RIEMANNIAN LIMIT

In [Rum00, Theorems 3.5, 3.6], Rumin established convergence of the spectrum of the
Hodge Laplacian of metrics undergoing a sub-Riemannian limit. Specifically he showed
that, for some A € C, (in fact all A € C\ R)

(Ae - )‘>71 — (A,%”|£’2p - A)il on SRQPX? p ¢ {n>n + 1}

(628 =N = (Borlg =N oYX, pe{nn+1},

where &7 are the spaces defined in (2.1)). For positive time the behavior of the heat kernel
of A, as e — 0 is entirely analogous, [Rum00, §7]. However the behavior of the heat kernel
as both time and € go to zero is a bit more intricate. We will understand this degeneration
by constructing a manifold with corners, the sub-Riemannian limit heat space, on which the
heat kernel is Z-smooth for a smooth index set 7.

As sketched in the heat kernel will have three interesting regimes as € — 0, one where
g2 and t go to zero at the same rate, one where ¢ stays bounded, and one where €2 and ¢!
go to zero at the same rate. The latter only shows up when the form degree is n or n+ 1, so
we will construct different heat spaces for forms in middle degrees, H24X, and forms that
are outside of middle degrees, H3*X.

5.1. The heat kernel outside of middle degree.

In this section and the next we construct the heat kernels of the Hodge Laplacians A,
undergoing a sub-Riemannian limit. The construction is parallel to those in we construct
an appropriate heat space and find a Z-smooth density that solves the induced model prob-
lems at each boundary hypersurface, then improve this to an Z-smooth density that solves
the heat equation to infinite order at each boundary hypersurface, and finally use a Volterra
series to solve away the remaining error. In this section we work with sRQPX for a fixed
p¢{nn+1}.

To construct HRE'X we start with R} x M? x [0, 1]. and we first blow-up {t = 0} paraboli-
cally; i.e., we introduce 7 = v/t as our global time variable. We will not include this blow-up
in the notation beyond using 7 instead of ¢. Next, to capture the asymptotics of the heat
kernel as 7 and € both go to zero, we blow-up up the submanifold

{7 = 0} x diag,, x{e = 0} C R} x M* x [0, 1],

parabolically in the directions of Ann(.), as in (4.3). We denote the resulting boundary
hypersurface by B,;. Finally, to capture the asymptotics of the heat kernel as 7 — 0 for
positive &, we blow-up the (interior lift of the) diagonal of M? at time zero for all ¢, and
denote the resulting boundary hypersurface by B,.
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Thus altogether we have
HE'X = [RY x M? x [0,1].; {7 = 0} x diag,, x{e = 0}, Ann(?);
{r =0} x diag,, x[0, 1].],
together with its blow-down map
B:HPX — RY x M?* x [0,1],,

see Figure

T~ diagy,

FIGURE 2. The heat space H3"X and its blow-down map

Ignoring, as we will, the boundary hypersurface {¢ = 1}, H3'X has four boundary hy-
persurfaces

Bo1(HR'X) =& face’ = f~1({e = 0} \ {7 = 0} x diag,,),

By (HEX) =& face’ = 71 ({7 = 0} x diag,, x{e = 0}),

B o(HR'X) = ‘temporal face’ = 3-1({r = 0} x (M2 \ diag,,) x [0,1].),
Bao( HE'X) = ‘Euclidean face’ = B~1({r = 0} x diag,, x(0,1].).

where in the notation B, ; the first subindex is different from zero when the face lies over
7 = 0 and the second subindex is different from zero when the face lies over ¢ = 0. The
restriction of the blow-down map to the boundary faces produced by blow-up induces fiber
bundle structures,

B:Bao(HR'X) — M x [0,1]., B:Ba1(HRZ'X) — M.
The first of these is the fiberwise compactification of the sub-Riemannian limit tangent
bundle **TX; in the second case the fiber over ¢ € M is a compactification of T,M & R*
consistent with the Heisenberg scaling in T; M.

We will denote a boundary defining function for, e.g., By o(HE X) by pao, and similarly
for the other boundary hypersurfaces.
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Having constructed the heat space, we now focus on solving the model heat equations at
each boundary hypersurface and constructing a parametrix for the heat kernel. We will use
BrAy to denote the density bundle of M pulled-back to H3*X along the blow-down map
followed by the projection onto the right factor of M.

The face By o(HR'X) can be treated just as in Indeed, this face fibers over X =
M x [0,1]. and the fiber over each point is a compactification of the corresponding fiber of
the sub-Riemannian limit tangent bundle **7°X. The model operator of tA, is its principal
symbol as a constant coefficient operator on the fiber of S*7°X. For horizontal vector fields,
this is the usual symbol, while for vertical vector fields we divide out by e and then fix
coefficients (more correctly, in €0, as a section of *RTX, the ¢ is not a coefficient but an
inseparable part of the section).

Analogously to let Gg be the section of Hom(S*QPX) @ 8%, which, in coordinates
valid for ¢ > 0,

~/:C/_C ~ Z/—Z

is given by
X ~ ~
(47T)m/2 eXp ( — |wl 35(4 . E)) IdQRQ* d dw;,

where | - |§E(<,72,,E) denotes the metric g. on the corresponding fiber of SRT X, y is a smooth

cut-off function equal to one in a neighborhood of B, o(HGR'X). Coordinates valid near the
intersection B0 HIEX) N DBy (HRX) include

/ r
A L L
€ T ET
in which G takes the form
—2 ~
47T m/2 ( / (C z, 1 ) IdsRQp(X) dwC d(JJ/
— et gmm X < o2 ) Ider 7
(dm)m/2 p 9:(¢,z,1) ) 1AsRQ=(x) MR-

Thus we have
Go € pi™ ) pai p35C (HG X Hom (RO X) @ Brdr),
B1(t0: + tA)Go € pg " Vg o3 C (HG X Hom (P X) @ Sjpay)
and we can proceed to remove the subsequent errors at %d’O(HSOﬁtX ) just as in to find,
(5.1) Goo € pay™ ™ pa i pRC™ (H X ; Hom (TP X) ® BpA),
Br (80, + tA)Goo € py " (Paopo1)°CE(HR X Hom (RO X) © BiAnr).

This gives a parametrix for the heat equation with error vanishing to infinite order at the
‘Euclidean face’, B40(HE'X).

Next let us consider the boundary hypersurface By (HGR X ), which fibers over M and
on which we obtain a model problem on each of these fibers. This model problem takes a
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different aspect depending on the choice of coordinates. Consider first coordinates projective
with respect to 7, as in (4.4)),
¢—( z—2 , €
T, We = ) Wy =
T T

out

valid away from B o(HE*X) U Bao( HRX), in which 7 is a boundary defining function for
B1(HEX). In these coordinates, the fiber of the interior of B, 1 (HI X) above ({',2') € M

is H?, ) % R, and the model operator 01E tAM is AH ie., the sub-Riemannian limit of

the Hodge Laplacian on the Heisenberg group parametrized by «. So at this face, in these
coordinates, we still have to deal with a sub-Riemannian limit, albeit on a simpler space.
Let us consider instead coordinates near B4 (HJ' X ) that are projective with respect to
€ such as ) )
a:z, GC:C C, HZ:Z 22, ¢, 2, e,
€ € €
valid away from B¢ 1 (H3%'X), in which € is a boundary defining function for B4, (H'X). In

these coordinates, the fiber of the interior of B, (HZ X) above (¢, 2') € M is H, 0.) % R,

and the model operator of ¢(9; + AM) is 100, + 02Al, i.e., the heat equation for the Hodge
Laplacian on the Heisenberg group. The solution of the model heat problem on each fiber
is thus, with notation as in §4.2]

k’AH(O', 94, GZ) ,uR.
In terms of the previous set of coordinates, this becomes

kae (o o lwe, a?w,) pp = oM han(1, we, w,) pr

note that o™ up is homogeneous of degree zero with respect to Heisenberg dilation).
H g g g
Returning to the parametrix construction, we have so far constructed G, satisfying (|5.1)).
Let

Ry = pip B (0 4+ tA) Goclp, (rrowex)
€ (pa0p0.1)CC® (B (HEX); Hom (RO X) @ BpAar).

In coordinates projective with respect to , Ry vanishes to infinite order as o — 0 and hence
we may find Ly in the same space (by convolving Ry with the heat kernel of the Hodge
Laplacian on the Heisenberg group) such that (100, + 0?Af)(Lo) = Ry. Thus if we extend

p;ngrl)zO to
Lo € pg "™ (papo)*C(HR X ; Hom (RO X) @ BiAu)
out

then we can add it to G, and solve the heat equation to one order better at B, (HR'X),
ie.,

B3 (t0; + tA) (Goo + Lo) € p ™ (pa0poa) C (HS X Hom (RO X) © i Ay).
Continuing in this way we can solve away the error of the parametrix at this face and find
Loo € py™ ™ (papo1)C (HSE X Hom (ROPX) @ BpAar),

Roo = B3 (t0; + tA) (G oo + Loo) € (pa1pa0po1) C=(HE X ; Hom(*ROP X) @ BhAx).

3In this section, to avoid confusion, we will sometimes denote the Laplacian on M by AM and the
Laplacian on the Heisenberg group by A,
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This gives a parametrix for the heat equation with error vanishing to infinite order at the
‘Euclidean face’, B,0(HZ' X ) and the ‘& face’, By (HEX).

We next consider the situation at the face B (H'X) which we can identify with the
Heisenberg heat space of M from (4.3). The initial condition for the model problem at this
face is that as time goes to zero, the heat kernel must match the solution of the model
problem already constructed at B,1(HRZ'X). In projective coordinates with respect to e,
we found that the model operator of tA, at B41(HREX) is the sub-Riemannian limit of the
Hodge Laplacian on the Heisenberg group. Hence the initial problem for the heat equation
at Bo1(HRE'X) is the projection onto the null space of a_y, i.e., the projection onto <§§E

The upshot is that for the model heat equation we may work in & and the solution is then
e~ tdoe+ix)?

Returning to the parametrix construction, since the solutions to the model equations on
By (HRK'X) are kernels valued in & at By (HRX) N Bo1(HEX), we may assume that
R|%0,1( Howx) 1S valued in &. We may then proceed as explained in to solve the heat
equation asymptotically at B 1 (HEX), i.e., to find

Ps € (pa1paopo1) C=(HE X; Hom (" X) @ BhAw),
B}Z(tﬁt + tAg)(GOO + Loo + Poo) - (p071pd71pd70p071) COO(HoutX; Hom(SRQpX) X BEAM)
= COO( ;T{tX; Hom(SRQpX) ® BrAu).

Finally, we can remove the remaining error by considering ) = G + Lo + P and
S = —pF5(toy + tA.)(Q) as Volterra operators acting by convolution. The section @) satisfies

B1 (0 + AL)(Qx) = 1d —%S*
and we can invert the right hand side using the convergent Neumann series

(Id — =1d+ ) (38)7 =1d+5u*, Se € C¥(HRH'X; Hom(WX) @ BrAu).

j>1

It follows that the sub-Riemannian limit heat kernel, for differential forms outside of middle
degrees is given by

Ko-ne = Q+ Qx Swo € py "V pri p25,C (HS X Hom (RO X) @ Brar),

and satisfies
Br (0 + tA)Ke-ta. =0,

+1
’Ce*tAs |%o,1(H§F‘itX) = ICe_tA%”Hgé’ P((ﬁ )K:e*iAs |%d71(H§§tX) = ke—tA%a
. c (m+1) 1 ) B
Pd,o’Ce—tAs \%d,O(Hglth) = —(47r)m/2 exp < - Z’w’gg(ﬁ’,z’,l)) Idsrar(x) Hgs
as required. This proves part (i) of Theorem [1|for differential forms in degree p ¢ {n,n+1}.

4If we were to use projective coordinates with respect to 7, this is a statement about the large-time limit of
the heat kernel of the Hodge Laplacian on the Heisenberg group and was already noticed by Rumin [Rum00,
Theorem 7.14].
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5.2. The heat kernel in middle degrees.

In this section we first discuss how to modify the construction of the heat kernel of A, in
the previous section for forms SRQP X, with p € {n,n + 1}. Then we will discuss the how to
construct the heat kernel of e7?A, and why this is necessary for a uniform description of the
long-time behavior.

For the Hodge Laplacian A, in middle degrees, the construction in the previous section of
a parametrix for t0; +tA. works without change at the faces B40(HRE'X) and By 1 (HEX).
The model heat equation at Bg;(H'X) has initial condition Ilg and so we may work in
& and the model heat equation to solve is then (t0; + t(d + d.#)*)ILs,, whose solution is

Iy, e 100y, + 1 ifg=mn

—t(dy+dw) e, _ —t(dyp+om)? _
e 2 = [y e Iy, + Ilg = )
Yo G, &y {H%et(&%d%)ﬂ% + H& if qg=n-+ 1

since d | an, = 0=10x, Quit- To understand the structure of this solution, recall that Rumin

showed that Az, = (d#dx)* + D%, Dy is Rockland and hence it has a generalized inverse
in the Heisenberg calculus, which we denote AL&”, such that

A,yf,nAij,n = ALﬁnAJf,n = Id —ker(A )
The decomposition

nfM = KeI‘(Ayf’n) &) Im(Ae%am) = Ker(Ae%qn) ) Im((d%:dyf)Q) &) Im(D;nyf)

is preserved by Af%ﬁn and hence

My, = (dubr )ALy, e =1dan, i —(drdn)*Aly, ,

are both Heisenberg pseudodifferential operators of order 0 (they add up to the identity on
o= %, M). Moreover, the operator (d 0, + D%,*) is Rockland, as it squares to A,
and we can write

_ 2 _ *
e Hdor+0e) ey — g, e t(d”5”+D%”*)H% + Ilg on Q7 M

and analogously for ¢ = n+ 1. Thus we can see that the first term in this equality is smooth
on By 1 (HRE*X) but the second term is not.

As we know that on &, A, o &4 = £2A 11, we see that we should blow-up the diagonal
at € = 0 to capture the asymptotics of this term. Let

HEX = [HE'X; R x diag), x{e = 0}, Ann(5#)].
Together with the lifts of the boundary hypersurfaces of H3' X,
Bo1(HRX), Bai(HLEX), Bio(HLX), Buo(HRX),
there is the boundary hypersurface produced by the new blow-up
Ba2(HELX) = ‘local & face’ = B~1(R+ x diag,, x{e = 0}),

see Figure
The boundary hypersurface Bq2(H_; X) fibers over M with fiber over p € M given by R}
times a parabolic compactification of T, M. Identifying 7}, M with the Heisenberg group H™,
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-
A

FIGURE 3. The heat space H3 X and its blow-down map.

the lift of e2A ,Ilg, is AH%H@ and so the model heat equation is %7'(97- + TZAH%HgiI—H. The
solution to this equation is

—2AR T g _2AH
e T =Tl e Ao Tl
4 4

We can solve the heat equation 179, 4+ 72c2A 4 Il to infinite order at By (H_; X) by using
the expansion and the equation %’7’87— + 72A 1y, at %071([{5‘%)( ) by using the con-
struction described in and the previous section. Combining this with the constructions
of G and L, from the previous section, we obtain

Wi € o, (HEX: Hom(OPX) © B3A ).
with (B, (H X)) = T (Bao(HEX)) = T (Bro(HE X)) = 0,

such that the heat equation has remainder
Bi(t0; + tAL)(Goo + Lo + Wao) € C°(HEX; Hom(*R QP X) ® BrAn).

We may use a Neumann series of Volterra operators as in the previous section to improve
this to the heat kernel itself. In this way we have shown that, for degrees p € {n,n + 1},

Ke-iae € Ay (HEX; Hom("QPX) @ BhA),

Wlth W(%LQ(H:P_{X)) = @, W<%d,O<H:}_{X)) = —m, W(%O,I(HSI:{X)) = 07
W(Ba1(HpX)) = —(m+1), W(Baa(HiX)) = —(m + 1)U0,
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satisfies
Br (0 + tA)Ke—ta. =0,

]Ce—tAe ’%071(H$X) = }CeitA]\ﬁ;{”Hg27

(m+1) (m+1)

Paa Ke-ia |%d’1(H${X) = ke—m{gw Pa2 Ketac |%d72(HSJ;{X) = ke—mgfngm,
4

. g—(m+1) 1 _ ) _
pd,OICe—tAs \md,O(H;{X) = —(47)7“/2 exXp ( - Z’w’ga(C’,z’,l)> IdsRQfﬂ(x) 12%:2

It follows that, as ¢ — 0 and t — oo, the heat kernel of A, converges to the projection
onto &;. Since this is infinite dimensional this is unsatisfactory for understanding the limit
of, for example, the zeta function of the Hodge Laplacian. The way around this, as already
studied by Rumin [Rum00], is to construct the heat kernel of e 2A, instead. Notice that
the operator t(9; + e 2A.), expressed in the rescaled time variable T' = 8% is T(Or + A.)
so solving the heat equation for e 2A, is the same as solving the heat equation for A, but
with a rescaled time. This means that we have already done most of the work of solving this
equation.

The heat kernel of e 2A, will be Z-smooth on a different heat space, HB&4X, obtained
from H} X by rescaling the time variable. We again start with R;” x M? x [0, 1]. and replace
t with 7 = v/t. Then we blow-up the submanifold {7 = ¢ = 0} and denote the resulting
boundary hypersurface by B 1 (HEX). Let R = v/ + 72 and © = arctan(£) denote polar
coordinates on the resulting space.

Next we blow-up the submanifold {R = 0,0 = 7} x diag,, parabolically in the directions
of Ann(##) and denote the resulting boundary hypersurface by B, (H®IX). Coordinates
valid near the interior of this face include

T C — CI z—2 /

/
8_27 wC = c ) W, = 52 9 C7 z, g,

g =

in which ¢ is a boundary defining function for B, ; (HRIX).

Thirdly, we blow-up the interior lift of the submanifold { R = 0} x diag,,, parabolically in
the directions of Ann(#) and denote the resulting hypersurface by B,2(HRX). Coordi-
nates valid near the interior of this face include

T (- z—2z ,

/
S§=—-, W= , Wz = 5 Ca Z, &
19 ) g

in which ¢ is a boundary defining function for 954, ( HS&4X).

Finally we blow-up the interior lift of the submanifold {7 = 0} x diag,, x[0, 1]. and denote
the resulting boundary hypersurface by By o( HRIX).

Thus altogether we have

HEX = [[Rj x M? x [0,1];;{r =0=¢}};{R=0,0 = I} x diag,,, Ann(J¢) @ (dt);

(R =0} x diag,,, Ann(£); {7 = 0} x diag,, x|0, 1]5],

with blow-down map
B HRIX — RF x M? x [0,1].,
see Figure
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FIGURE 4. The heat space H®4X and its blow-down map

There are six boundary hypersurfaces of Hf4X in {¢ < 1}]

o=

mid
01(HgR X
L1 (HEX

B ®

d

32

mid
Hdx
Lo(HRX
ao( HEAX

d,1

5

)
)
)
)
)
)

53

( ) =
( ) =
2(HRX) =
( ) =
( ) =
( ) =

‘&y face’ = f~1({e = 0} \ {r = 0} x diag,,),

‘& face’ = B ({7 = 0} x M2 x {e =0} \ (diag,, x{e = 0})),
‘local &; face’ = f~1({R = 0,0 = 7} x diag,,),

‘&y face’ = B~H({R = 0} x diag,,),

‘temporal face’ = f=1({7 = 0} x (M?\ diag,,;) x [0,1].),
‘Euclidean face’ = =1 ({7 = 0} x diag,, x(0, 1],).

33

The parametrices we constructed for ¢(0; + A.) at all of the boundary hypersurfaces of
HE X carry over to H9X by rescaling the time variable and yield a parametrix

Ve

Ay (HROX; Hom (ROPX) @ BrAu),
with W(B10(HEIX)) =0, W(Bao(HEIX)) = —m,

phg

W(B41(HRX)) = —(m+1),

W(Bo1(HFX)) = W(B11(HREX)) =0,

W(B o (HEX)) = —(m + 1)U0,

satisfying 83 (t0; + te 2A.)V € C%% (HRIX; Hom (RO X) @ B Arr). Moreover we may as-
sume that its restriction to Bg 1 (HRIX) is valued in & and proceed as explained in to

Note that we are using the same notation B 1 (H®%4X) for the boundary hypersurface of H4X and
for the boundary hypersurface produced by the blow-up of {r =& = 0} in R} x M? x [0, 1], and similarly
for the other faces. We trust that this abuse of notation will not lead to confusion.
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solve the heat equation asymptotically at this face and find
V' e Cx  (HFX; Hom (P X) @ Brly),
Br(t0 + tA)(V 4+ V') € C(HBAX; Hom (RO X) ® BAn).

Again we can now use a Neumann series of Volterra operators to improve this to the heat
kernel itself. Thus we have shown that, for degrees p € {n,n + 1},

(5.2) K, r-2a. € Doy (HEX; Hom("QPX) @ BA),
with W(B1 o(HRX)) =0, W(Bao(HEX)) = —m,
W(Bo1(HEX)) = W(B11(HRX)) =0,

W(Bu1(HRX)) = —~(m+1), W(Ba2(HR'X)) = —(m + 1)U0,

satisfies
B0y + te * ALK, _1o-2a. = 0,
Ke-ta |‘/Bo,1(H§f{dX) - Ke’m%ﬂ%’ Kemia ‘%I,I(Hsmﬁdx) - ’Ce*m%mﬁz’
pgﬁ—i_l)lce—mg |%d7l(H;nRidX) = ke_mgf, pglf;—i_l)lce—mg |%d72(H$idX) = ke_mgfﬂgm’

4
. 8—(m+1) 1 _ ) _
pd,DICe_tAE ’%d,O(H;nRidX) = W exp < — Z‘w‘ge(g/7z/71)> IdsRQp(X) HR-

This finishes the proof of part (i) of Theorem

5.3. Trace of the heat kernel.
Having found a precise description of the structure of the heat kernel we now deduce the
consequences for its trace. Recall that, by Mercer’s theorem [Bri88] [Mel93, Proposition

4.55),
diagM>

where tr denotes the pointwise trace of Hom(*®Q*X)|4iag and S, denotes the push-forward
along the blow-down map from the heat space to R} x M? x [0, 1].. Equivalently, instead of
pushing-forward the heat kernel and then restricting to the diagonal, we can directly restrict
the heat kernel to the interior lift of the diagonal.

Let us start by considering differential forms of degree p € {n,n + 1}, as the other form
degrees will be simpler. The interior lift of the diagonal to HE}4X is shown in Figure , and
can be identified with

Tr(e™4¢) :/ tr <B*IC8_zAE
M

diagmax = M X [[Ri X [0,1]e;{r =0=¢e};{R =006 = %}},

with R = V€2 472 and © = arctan(£) polar coordinates valid after the first blow-up.
We denote the boundary hypersurfaces of .7&™4 with the same symbols we used for the



SUB-RIEMMANIAN LIMIT OF HEAT KERNELS 35
E
.

Bo,1

B2

B

B e

FIGURE 5. The heat space H®4X and corresponding diagonal A Hwidx

boundary hypersurfaces of H24X, thus
Bao(TE™) = -1 =0, > 0),
By1(TE™Y) = interior lift of {R = 0} after first blow-up,
Byo( T E™) = interior lift of {R =0,0 = I} after first blow-up,
By (TE™Y) = 1e=0,7 > 0).
Let us write this as M x .7&™4 and denote the natural projection off of M by

p{qgmid . dlaanﬁldX e ggmid.
Mercer’s theorem is then that
42
Tr(e™/=°2%) = (prs) K /2.

diag ;mid 5’
sR

and this allows us to read off the asymptotics of the trace.
The analysis of the sub-Riemannian limit Hodge Laplacian on forms outside of middle
degree is similar but simpler, with the interior lift of the diagonal given by

diag pou y = M x [RE % [0,1]: {7 = =0}].
Denote [RS x [0,1]; {7 = ¢ = 0}] by F&°" and denote its boundary hypersurfaces by
Bao(TEM) =Yt =0,e >0),
By1(TE™M) =811 =e=0),
Bo1(TEMN) =B1e =0,7>0).

Finally recall from the discussion at the end of that, although the heat kernel for
differential form degrees p € {n,n + 1} has log-terms in its asymptotic expansion, its trace
does not.
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Theorem 5.1. Let A, be the Hodge Laplacian of the sub-Riemannian limit metrics g..
Forp ¢ {n,n+ 1}, we have

Tr(e'29) € po " pa e (T 6™,

with a local expansion at By 1(T E™) and Bao(T E) (i.e., the coefficients of the expansion
at Ba1(TE) and Bao(TE™) are given by universal polynomials in the corresponding
symbol of A.) and the leading term at By, given by

Tr(e_mgm) = Tr(e ™27

Bo,1 (%*)

For p € {n,n+ 1}, we have
Tr(e—t/e2A5) c (pd71pd’2)—(m+1)p;6ncoo(géamid)’

with a local expansion at Bg1(T E™) and Bao( T E™Y), with expansion at Bga( T E™)
given by the sum of Tr(e ™4 9y ) + O(pa2) and a local expansion, and with leading term at
Bo.1 given by

Tr(e_mgm) = Tr(e ™87

Bo,1

This establishes part (ii) of Theorem . The local coefficients in the asymptotic expansion
of the trace of the heat kernel at boundary hypersurfaces over {¢ = 0} are integrals of
universal polynomials in the curvature and torsion of the Tanno connection as we now
discuss.

5.4. The heat invariants and Tanno’s connection.

It is well-known [MP49] that the coefficients in the short-time asymptotic expansion of
the trace of heat kernel of the Hodge Laplacian are integrals of universal polynomials in the
curvature of the metric and its covariant derivatives. This is an easy consequence of the
construction of the heat kernel in since the terms in the Taylor expansion of the heat
kernel at 28,4, are obtained from the Taylor expansion of the symbol of the Lapacian and
this is the Riemannian metric. The heat invariants arising from B4, for the Hodge Lapla-
cian undergoing a sub-Riemannian limit have a similar description as integrals of universal
polynomials. In this case the universal variables are the coefficients of different powers of ¢
in the expansion of the Levi-Civita connection V¢ as ¢ — 0 and, as we know explain, these
are the Tanno connection and its torsion.

Let

Wo=eR, Wi=Xy, ..., Wo=X, Wop=Y1, ..., Wiy =Y,
be a Darboux frame for (7'M, g.) so that the only non-zero brackets are [X;, ;] = R. Define
a(s,t) and s by
0 ifs=0
(W, Wi = a(s,t)R, s=<s+n if0<s<n
s—n ifs>n

so that J(W;) = a(,7)W5 for all i. Define the Christoffel symbols of this frame by
Vi, W, =T%(e) Wy
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Then an easy computation using the Koszul formula shows that the non-zero Christoffel
symbols are given by

Ik(e) =Th(1), T%(c) = L(—eRgi; + Lali, j)),

[io(e) = 3(9™(eRga) — Zali,i)g™) = T;(e),
where 1, 7, k, £ > 0. It follows that as € — 0 the Levi-Civita connection acting on differential
forms splits into
Ve =eVH0 4 VO ey 2

(where the notation corresponds to the splitting of the exterior derivative in §l1)) in which
V12 has the contribution of .J to the Christoffel symbols, and V1? has the derivative of the
metric with respect to the Reeb vector field. Thus V%! is the connection on T'M obtained
from the Levi-Civita connection by removing the vertical contributions; this is known as the
Tanno connection, see [Tan89, (3.1)]. The parts of the connection forms that depend on ¢
as € — 0 then make up the torsion forms of the Tanno connection.

6. THE 1 INVARIANT

In this section we consider the 7 invariant of the signature operator for sub-Riemannian
limit metrics g.. This has been considered in three dimensions by Biquard-Herzlich-Rumin
[BHRO7, Theorem 1.4] and in general dimension by Rumin [Rum00, §7].

The Hodge star induces a natural involution on the complexified differential forms on M,

I QM — QEM, S =1d.
The odd signature operator is
S=—i(dSI +Fd)=—iI(d—0)=—i(d—9)S,
its square is the Hodge Laplacian, and the n-invariant of an odd dimensional manifold is

o dt
n(S) = / (VTS ) T
0
Since .# maps forms of degree p to forms of degree m —p =2n+ 1 — p,
Se A OEM — QTP M @ Q2P (M),
and so the only forms that can contribute to the trace are those of the middle degrees
p € {n,n+ 1}, i.e., we have
o . gy dt
n(S) = / (I Se™ 8T =,
0
with IT™9 the projection onto middle degree forms.

Theorem 6.1. Let g. be a sub-Riemannian limit family of metrics on a contact man-
fiold and let S. denote its odd signature operator. The Schwartz kernel of the operator

Hmidgsae—a%Ae ™4 (pulled-back to HRYX ) is an Z-smooth right density
. t t : i
B* (Hmldgsse—ggAa Hmld) c '%?g(HsT%ldX7 I‘IOIH(A>|< (SRT*X))BEA)

with the same index sets as the middle degree heat kernel (5.2]).
The n-invariant of S. is an Z-smooth function on [0, 1],
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- ' . dt o ) w ) d
n(Se) = / TV e ST — = / Tr (Hmldﬂsse—azﬁsnmld> au
0 0

€ U
€ ([0, 1]) with E,({e = 0}) = (=m + No)T(—m + 1+ No)
and we have

FP S mi gy dt
077(55) / Tr(I1 ldﬁ(D% * 4 % Djf)e_tA%H&leld) :
e= 0

> : ay dt
+ R/ Tr(II™E (dp 5 + % dp)e T2 Hon s T mid) - + local
0

= Tcontact + local

where ® [ refers to a renormalized integral (see, e.g., [Alb] and ﬂ) and the final term is an
integral of a universal polynomial in the torsion and curvature of the Tanno connection and
their covariant derivatives.

Proof. We can write the differential operator QZ(Hmid\/Tszﬂmid) using vector fields on H&4X
that are tangent to every boundary hypersurface (except By, and B, ), and with coefhi-
cients that are smooth on H4X. Applying such an operator to e 22" yields a function

that is Z-smooth at all boundary hypersurfaces but 8y ; and 8, ; with the same index sets.

The same argument applies to 62(52Hmid§5’sﬂmid) at B 1, as it is made up of vector
fields tangent to that face, but not to 5Z(Hmid‘§5’51—[mid) since it has coefficients singular at
this face. However, we constructed the Taylor expansion of etAT af By so that it was
valued in &}, and hence it follows from §2| that 6*(Hmid§5’66*m§nid) is Z-smooth at By

tAmId

with the same (smooth) index set as e *2¢"" | and leading term

ﬁz(Hmld\/l?(D%a * 4 % Djf))lceftA% .
Similarly, we have a contribution at B,9 given by
TI'(Hmid\/l?(d%ﬂ * 4 % d%)e—tA%Hg% Hmid)

however we can observe that this will not contribute to the renormalized n-invariant since this
trace is identically zero. Since d vanishes on %, M, this signature operator (xd» + d %)
maps QUM to QL M.

The rest of the theorem follows by applying Melrose’s push-forward theorem as above. [

7. DETERMINANT OF THE HODGE LAPLACIAN

Ray-Singer [RS71| defined the determinant of a Laplacian by generalizing the relation,
valid for any finite set of positive numbers {u;},

. L[~ dt
log [ i = =04ls=0 Y #™* = =045 (m/o Yy et 7) = —0Osls=0C1)(5),

in a way that we now briefly review.
Let e7* be the heat kernel of a positive operator, such as an elliptic Laplace-type operator
or a contact Laplacian, whose trace satisfies

Tr(e ) ~ t77/* Z ag(A)tPY ast —0, Tr(e ™ —Tlkera) — 0 exponentially as t — oo,
k>0
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for some n, ¢ € N, and with dim Ker A < co. The zeta function of A is defined, for Re(s) >
n/t, by
1 > dt
=—— | tTr(e™ —Hgern) —.
) = p | M)

This is a holomorphic function of s on this half-plane and the short-time asymptotic expan-
sion of Tr(e~*4) induces a meromorphic continuation (of I'(s)4(s) and hence of (4(s)) with
potential poles at s € {(n —k)/l : k € No}. We define (cf. [Has98, §3])

R oo dt ! dt > dt
/ Tr(e—t4) % — pp / £ Tr(e ) L 4 pp / # Tr(e—t4) &
0 t s=0 /g t s=0 J; t

and then note that (4(s), near s = 0, is given by

P E R poo
(s + s + (9(33)) (an dim Ker A + / Tr(e™'4) Cit + O(s)) :
0

S

where 7 is the Euler-Mascheroni constant. Thus (the meromorphic continuation of) (4(s) is
regular at s = 0, its derivative is equal to

R poo
¢4(0) = v(a, — dimker A) + / Tr(e ™) —
0

and we define this to be —logdet A.

dt
t?

Let us consider the Hodge Laplacian for sub-Riemannian limit metrics. First outside of
middle degrees, p ¢ {n,n + 1}, we have that

Tr(e "4 — Tlkera,.) — 0 exponentially as t — oo,

at a rate independent of ¢ by [Rum00, Theorem 7.1]. Secondly, in this case a, = 0 since
¢ =2,n=m, and ax(A.) = 0 for k£ odd. Finally the push-forward theorem for renormalized
integrals [HMM95, page 128], [ARSb, Lemma 11.1] allows us to conclude from Theorem
that

R poo
— FP(; logdet A, = —vb, + / Tr(e’m” — —i— / A —,
&= 0

where b, is the p-th Betti number of M, o is a rescaled time-variable on B4 (HE'X) (e.g.,
o= ‘/TF) and A,, 1 is, with notation from Theorem , the constant term in the expansion
of the trace at B, (HI' X). Comparing with logdet A we have, for forms of degree p ¢

{n,n + 1},

R oo do
FP(; logdet A, , = logdet Az, + Yami1(Aw,p) — / A1 —.
E= 0 g

Next let us consider middle degree forms, p € {n,n + 1}, starting with p = n. Arguing as
above we find that

dt
t

R poo R poo R poo /
dt do do

4 / Tr(e—t(d%-Fé%)Q }g;) 7 + / Bm_A,_Ln — + / Am+1,n —
0 0 9 0 o

R poo
— FPO logdet e *A,,, = —7b, + / Tlf(e_t(D“%fJFD‘*%)2 ‘((m)
e= 0 74
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where o, and ¢’ are rescaled time variables (e.g., ‘F and ‘/;, respectively) and, with notation
from Theorem 1}, A,,+1,, and By,11,, are the constant terms in the local part of the expansion
of the trace at %d 1(Hm‘dX) and B2 ( HHEIX), respectively.

Recall (4.6 . that we have

Tr(e " .,) = Trag, ar(e”47) + > (-1)F TrQ%kM(e—mif),

and similarly,

Tr(e—t(dyf +6.52)?

%n) = TrQZfM<€—thf61¢”) — TI.QT;IM( —téyfd%o)

= Trﬂgi;lM(eitA%) - Ter;;QM(eitd%(S%) = (_1)]?71 Tng;’“M@itA%)

k=1
so that

dt

%”) t

e 725A7g —tA? —tA dt

— ; TI'Q% ( —|— Z TI‘Q;L;I@M(G %”) — TI‘Q;L;kM(G ) 7,
= QA%W(O) - 7(am+1(Aﬂ”,n))

+ Z(— (CA?% o k( ) — C/Aﬂ,n,k(o) - 7(am+1(Aif,n—k) - am+1(A3ﬁn—k>)
k=1

R oo 2 dt B[ 2
— b, + / Tr(e—t(Dyf‘f‘DEf) gm) =4 / Tr(e—t(dyf+5yf)
0 EIN 0

and since (42(s) = (4(2s) we have

F—Po logdet A, ,, = logdet Ay, + Yam+1 (Do n)
R poo R poo /
do do
— / Bm+1,n - — / Am+1,n R
0 g 0 o
+ Z(—l)k logdet Ay i + Yami1 (A n—k)

The corresponding analysis for p = n + 1 yields

FﬁPO logdet e ?A, ;11 = logdet Ay 11 + 7(am+1 (A nt1))

R poo o'
- / Bm+1 n+1 = — / Am+1 n+1 _,;
0

+ Z log det Ap k1 + Yam1 (Dopnikr1)

Finally, let us discuss what this means for analytic torsion. The constructions above are
essentially unchanged by allowing the Laplacians to act differential forms twisted by a flat
bundle F¥ — M. Let g be a bundle metric on F. Our convention, following |[RS71], is to
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set
m

log AT(M, g, F,gr) = Y _(=1)" p Ch_,(0).
p=0
This is independent of the metric g, and in particular independent of ¢, if the bundle F' is
acyclicE and its holonomy is orthogonal [Che79,M78| or unimodular [M93]. For flat bundles
that are not acyclic we can remove the dependence on the metric by assigning to each basis
{ui} of Ker Ay, , the number

m

].Og AT(M7 {/1/;]}7 F) - log AT(M, Je, F’ gF) - log (H[Mq|wq](—1)Q>7
q=0
where {w?} denotes an orthonormal basis of harmonic forms and [pf|w?] = | det W] with

W4 the change-of-basis matrix satisfying
pi = (W;wj.

Note that, by e.g., [Rum00, Theorem 7.1}, an orthonormal basis of harmonic forms for ¢ > 0
converges to an orthonormal basis of harmonic forms for the Rumin complex, so we only
need to understand the asymptotics of log AT..

We start by noting that, for any ¢ > 0 and Re s > m/2,

1 & _o dt
-~ — tS T —te As _ H or _
Conlo) = [ T ceras)
2s 0
u=e—2t N € s —ule d_u _ 25
s F(s)/o u® Tr(e Kera,) " = e*Ca.(s),

and hence we have

(L2p.(0) = 2(loge)Ca.(0) + ¢4.(0), and F_P0 logdet e ?A, = F_PO log det A..

Thus the finite part of analytic torsion is given by

2n+1

|
FPlog AT(M, 9., Fgr) = 5 > (~1pFP (L (0)
p=0
] n+1

1
=5 > (CUEPCG (0)+ 5> (-1)pFP ey, (0)

p#n,n+1 p=n

, R poo do
-5 Z (‘D%(CA%J,(O) = Yami1 (Do p) + / Amt1p 7)
p#n,n+1 0
n+1

1 » , R poo do R poo do’
+ ) ;(_1) p<CAyf,p(0> — Yam+1(Borp) + ; Britip o + . Amtip 7)

n

+ (=15 ) (D ¢, (0) = Y (Ao ns)

k=1

6A flat bundle is said to be acyclic if H/(M; F) = 0 for all j.
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1
+(=1) HT Z(—l)kC/A%,HkH (0) = Yams1(A s ninir)
k=1
1 R poo ”+1 oo do R oo do’
=5 Z (=1)"p / m+1p —Z ( / Brip ~ + / Amtip 7)
p#n,n+1 0 0
n—1
1
-, (p+n Cae,(0) =20+ s (D)
p:0
n+1
+5 z 7p(Chr, (0) = H((ansr(Dory)
2n+1
b2 3 (0= (4 1), (0~ (= 0+ D (Br,)
p n+2
1 pR > do 1T v S do %[> do’
=3 Z (=1)"p Amtip ~ + B (—1) p( Brt1p ~ + A1 7)
p#n,n+1 0 p=n 0 0

_’_logAT%(Mag:)faFugF)

We make one final remark: the torsion, log AT (M, {u*}, F), associated to the weight
function w(p) arising above, and the weight function w(p) originally given in [RS12],

p+n p<n <
- p p=n
w(p) =< p p€{n,n+1}, w(p):{

1 1<
p—(n+1) p>n+1 pri ntl=p

coincide whenever the complex twisted by F' satisfies Poincaré duality, i.e. arises from
a unitary representation. This was the only case considered in |[RS12], however in this
section we are working with arbitrary flat bundles and thus take this to extend their original
definition. This establishes the proof of Corollary

Remark 3. When comparing with the definition of Rumin-Seshadri, note that their conven-
tion is to use A%, for p ¢ {n,n + 1} and that their definition of analytic torsion is the
multiplicative inverse of ours.

Finally we establish the relation between Kitaoka’s torsion and that of Rumin-Seshadri
and justify (4).

On a 2n + 1-dimensional contact manifold, Kitaoka modifies the definition of the Rumin
complex (*,dy) via a new definition of the differential: d*, = a,d’, = ———d", for

T

p # {n,n+ 1}. We can relate sub-Laplacians A -, of the original complex to those of the
modified complex as follows

Doy = (0% &)+ (d5,'0%)? = o (Owrde )’ + o (doedoe)?, for p ¢ {n,n + 1},
Ayn=200nand Ay i1 = Ayppng.

Now, since d_ and §  commute with A -, we can use the equivalence between the non-zero

eigenvalues of 5@; ldgf and the non-zero eigenvalues of dgfégg,f ! to conclude that

C(85 doy ) (s) = C(d5 8% ) (s)
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where ((A)(s) = > A,/° (with eigenvalues repeated with multiplicity)[’. In particular,
0£M €T (A)
since

C(Auwp)(8) = (g (05 d5p)*)(8) + (G (A 05)%) ()

we have

+ (=)™ (D Do) (s) + (= 1)1 (d 105 ) (9),
so after grouping together the different terms with the same half-Laplacian,
Carr (8) = —C(5 (0% d0e)?) (5) + (Gt (0% d5) ) (s) — -+ (=1)" (D5 Do) (s)
= —n*C((05d%)*) (s) + (n = 1D)*C((6%d5%)*)(5) = ... + (=1)"' (D% D )(5)

n—1

=) (=1 (n—p)*C(85 dhy ) (s) + (1) (D% D )(5)
p=0
n—1

= (=1 (n = p)* (%) (s) + (=1)" (D3 Do) (s).
p=0

If we now use Branson’s observation in the form
U855 (s) =Y (—1)7¢(A%,7)(s)
j=0

we can rewrite this in terms of the Rumin Hodge Laplacians as

P —p)™ Y (—17CAL7)(s) + (1) (D3 Do) (5)

p= 0 7=0

:Z Dl (2328> (A%)(s) + (=)' (D3 Do) ().

For comparison, Rumin-Seshadri’s torsion function is equal to

Care(s) = —=C((05ed3)*)(5) + C((85 %)) (s) — .+ (=1)" (D5 Do) (5)

= (=1 n = p)C(d 05 ) (s) + (=) (Do Do )(s)

Carx (s

MH

I
=)

"This differs from the definition for ¢(A)(s) of [RS12], but only by a cohomological term, which is s-
independent. Thus it does not contribute to 9,/ ».
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=S (] ) + (D D)

p=0
Taking derivatives at s = 0 we find that

(7.1) log AT, (M, g.r) = log AT+ (M, g) +2 3" (=17 logl(n — p)IIC(A%)(0)

= log AT (M, g.») + local

which shows that these two definitions of analytic torsion of the Rumin complex differ by a
local term.
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