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The high frequency, low amplitude wing motion
that mosquitoes employ to dry their wings inspires
the study of drop release from millimetric, forced
cantilevers. Our mimicking system, a 10-mm
polytetrafluoroethylene cantilever driven through
+1mm base amplitude at 85Hz, displaces drops via
three principal ejection modes: normal-to-cantilever
ejection, sliding and pinch-off. The selection of system
variables such as cantilever stiffness, drop location,
drop size and wetting properties modulates the
appearance of a particular ejection mode. However,
the large number of system features complicate the
prediction of modal occurrence, and the transition
between complete and partial liquid removal. In
this study, we build two predictive models based
on ensemble learning that predict the ejection mode,
a classification problem, and minimum inertial
force required to eject a drop from the cantilever, a
regression problem. For ejection mode prediction, we
achieve an accuracy of 85% using a bagging classifier.
For inertial force prediction, the lowest root mean
squared error achieved is 0.037 using an ensemble
learning regression model. Results also show that
ejection time and cantilever wetting properties are the
dominant features for predicting both ejection mode
and the minimum inertial force required to eject a
drop.

1. Introduction

Translational and rotational aerodynamics explain wing
motion precision and sensitivity to change in morphology

© 2020 The Author(s) Published by the Royal Society. Al rights reserved.
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[1-11]. Flying insects face many different environmental challenges, contending with rain, fog,
dew and other airborne particles which can deposit additional mass onto the wing surface [12-
15]. The accumulated drops across the insect body can be many times its mass, inhibiting or
preventing flight [13,16]. To overcome this threat, mosquitoes apply a modified wingbeat during
flight startup, the flutter stroke [13]. The flutter stroke persists for approximately 4 ms at nearly
double the in-flight wingbeat frequency, during which the wingtip deflection is around 10% of
a normal stroke, imparting high accelerations in excess of 2400 gravities to particles adhered to
wings. This simple yet effective technique inspires further investigation of systems where the
dynamics of the substrate and fluid are coupled, pushing the paradigm of liquid drop motion
control to a greater level of complexity.

Drop motion control efforts have primarily aimed to displace drops linearly [17], merge
multiple drops [18,19] or establish internal flow [20]. In the simplest motions, however,
complicating nonlinear drop deformation arises which is not fully understood for all substrate
perturbations. Previous studies have investigated drop motion by moving contact lines [21-27]
and pinch-off [28,29] using ultrasound- [30,31] and vibration-induced motion [32-35]. The
transition between pinned motion and contact line movement occurs when the deviation of
contact angle exceeds the contact angle hysteresis for both horizontally [36] and vertically [33]
vibrated sessile drops. If contact angle hysteresis is sufficiently large, drops which are otherwise
stationary on a vertical surface can be migrated against gravity with surface vibration [37].
Vertical perturbations of horizontal substrates induce axisymmetric, linear drop oscillations and
pinned contact lines at low amplitudes [33]. At high vibration amplitudes contact lines exhibit
stick—slip motion and fluid oscillations are nonlinear, with nodes developing on the surface. The
critical Bond number by which sliding, or contact line depinning, occurs under gravity can change
with the history of inertial force [38]. At ultrasonic vibration frequencies, the drop can experience
internal flow that deforms the free surface and unpins the contact line [30], or shatters the drop
altogether [39,40].

The aforementioned studies consider drop motion by one-dimensional substrate displacement.
The two-dimensional drop—cantilever system studied here was first introduced to investigate the
impact dynamics of drops on hydrophobic laminar leaves [41]. Environmental contaminants and
seasonal changes to leaves which lower the water-repellency of foliage increase the torque exerted
to the leaf impacted by a raindrop. Inspired by insects, we study the drop-cantilever system
from the opposing perspective—drop removal by the cantilever [42]. Drop ejection from a beam
occurs via three different modes [42]: normal-to-substrate ejection, sliding, and pinch-off. Photo
sequences of drop deformation and time to complete release are shown in figure 1a—c. Normal-to-
substrate ejection (electronic supplementary material, movie S1) occurs when beam accelerations
from small deflections produce receding contact lines. Inertial force must overcome the drop
adhesion without drops failing cohesively. Sliding (electronic supplementary material, movie S2)
occurs for relatively larger deflections allowing tangential inertial force to overcome contact angle
hysteresis. In pinch-off (electronic supplementary material, movie S3), inertial force generates
contact line motion but the drop ultimately fails in cohesion, leaving a small child droplet attached
to the substrate. Three ejection modes are highly correlated with the selection of cantilever wetting
properties, vibration characteristics, and drop location and size. Theoretical prediction of ejection
modes [42] with a given set of input variables is not a closed problem and complicated by drops’
time-dependent deformation, or sloshing, which is neither periodic nor axisymmetric [43—46].
Closing the problem would require solving coupled Navier-Stokes and elastica equations in time
and space. At best, we can use semi-empirical relations [42] to predict the transition between
complete and partial liquid removal for a fixed set of system properties. The number of system
features including drop and cantilever properties, and drop location exacerbates the need for a
data-driven approach. Data-driven predictive modelling of ejection modes is achievable by only
a partial characterization of the ejection mode parameter space [29,47,48].

Machine learning techniques have recently received significant attention in fluid mechanics
because of their ability to handle copious amounts of experimental and numerical data [49]
in sub-disciplines such as shape optimization [50,51] and particle image velocimetry [52-54].
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Figure 1. Photo sequences of drop ejection via (a) normal, (b) sliding and (c) pinch-off. (Online version in colour.)

The relation between satellite droplet formation and three-dimensional printing variables has
been predicted using artificial neural networks for drop-on-demand bioprinting [55]. Wavelength
analysis by the maximum entropy method can be used to predict the drop size distribution in
primary breakup of liquid jets [56]. Data-driven approaches in splash demonstration significantly
improve the visual monitoring of the splash detail [57]. Ensemble learning, which combines
different machine learning techniques, has been successfully deployed to characterize interfacial
kinetics [58] and droplet formation in ink-jet-based bioprinting [59].

In this study, we employ ensemble learning to tackle the classification problem of predicting
drop ejection modes from a forced cantilever beam with base amplitude +£1 mm and frequency
of 85Hz across a range of surface wettability, drop position, and drop size. Another set of base
learners is used to perform regression analysis to predict the related inertial forces. We thus
characterize drop ejection across a greater range of system variable values than we have explored
experimentally. Experimental and theoretical considerations for our drop—cantilever system can
be found in a previous work [42]. We begin with a description of our experimental methods in §2a.
The selection of base learners to perform ensemble classification and regression is described in
§2b. The predictive results from our algorithm for the classification of ejection mode are presented
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Figure 2. Schematic of experimental set-up. (Online version in colour.)

in §3a. We present the prediction results of minimum inertial force required to eject a drop in §3b
and provide concluding remarks in §4.

2. Drop ejection experiments

(a) Experimental methods

More detailed experimental methods are provided in Alam ef al. [42]; we thus provide a brief
description here. Polytetrafluoroethylene cantilevers with elastic modulus E =480 MPa are cut
to shape with a Universal Laser Systems I1.512.150D laser cutter. Finished, mounted cantilevers
measure 10 x 3.6 x 0.05 mm. We affix cantilevers to the post of a K2007E01 electrodynamic
shaker with cyanoacrylate adhesive. LabVIEW interfaces with a Keysight 33210A signal generator
to drive the shaker at a constant frequency of 85Hz via a NI9263 4= 10V 4-Channel C series
module and a bus-powered compactDAQ cDAQ9171 USB chassis. A schematic of the drop
release experimental set-up is shown in figure 2. To increase cantilever hydrophobicity, we use
NeverWet® hydrophobic spray and mechanically remove the coating to generate a wide range
of wetting properties. Fluid properties are augmented by mixing glycerin and water, 1:1 by
volume. Drops are placed in different locations on the cantilever surface using a 10 ml syringe.
We film the cantilever—drop motion with Photron UX-100 and AX-200 high-speed cameras fitted
with Nikon 105mm lenses at 8000 fps. Amscope LED-50W and 30W gooseneck lights provide
localized illumination for filming. We extract the drop size, drop location and cantilever position
using Tracker, an open source image analysis software.

(b) Experimental results and theoretical considerations

Drop release experiments are performed using a horizontal 10-mm cantilever and a singular drop
of water or a 1:1 water—glycerin solution by volume resting on the upward-facing surface. To
produce a particular ejection mode, we vary drop location xg, drop size R, liquid viscosity n and
contact angle 6, while noting ejection type and measuring ejection time ¢. We plot the distribution
of the three principal ejection modes by pairwise system variables in figure 3. Ejection modes
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Figure 3. Pair plot of ejection modes. Plots along the diagonal are histograms. (Online version in colour.)

appear as clusters in the physical variable space. The diagonal in figure 3 shows univariate
distribution of the data for the variable in the respective column. The surface tension o of water
(72.9dyncm~!) and 1:1 water—glycerin solution by volume (67.5dyncm™') are within 7% and
density within 2% of one another. Thus, we do not include surface tension or density as variables.
The viscosity of the glycerin solution, however, is 1t = 6.13 = 0.05cP (N =3), or approximately 7
times that of water. Data corresponding to y in figure 3 appear in rows and stacks because only
two discrete viscosity values are put on test. These plots, particularly the rightmost histogram,
likewise demonstrate sliding is more rarely witnessed for pure water.

Drops experience inertial force imposed by cantilever deflection, the quantification of which
is challenging because of nonlinearity [60,61]. The addition of periodic base motion makes
the problem more complicated by the addition of a non-homogeneous term. Recently, this
problem was solved by combining modified Hamilton’s principle [62], Euler-Bernoulli kinematic
assumptions and elastica theory [61]. With the assumed mode technique, cantilever motion is
described by a nonlinear equation of motion [42], similar to a forced mass—-spring—damper system:

MS + C8 + K8 4+ KnL8® = =Moo (1), (2.1)
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Figure 4. (a) Schematics and (b) kymographs of drop release modes. (Online version in colour.)

where §(x, t) represents the amplitude of the assumed mode and §j is the maximum vertical
displacement of the cantilever base. Constants M and C are the equivalent mass and damping
coefficients, respectively, while Ki, and Kynp are the linear and nonlinear stiffness terms,
respectively. My is a mass term combining the base (rigid) and deformable motions of the
cantilever-drop system. Solving equation (2.1) with boundary condition w/,(0) =0 and initial
condition w(x,0) =w(x,0) =0, where w is the transverse deflection of the beam, provides the
position vector of any point along a two-dimensional cantilever at any time. Derivatives with
respect to x and t are denoted with ()" and ('), respectively. Inertial force is

F; = mgi, 2.2)

where mg is the drop mass calculated by assuming the drop has a spherical curvature above the
cantilever and r is the position vector of drop’s centre of mass. Here, r can be calculated as

1(f) = [xq — 8 sinw'(x, 1)] i+ [va + 8 cosw'(xo, t)]}, (2.3)

where x4 and yq are the cantilever—drop interface location at any time t. To eject a drop, this
inertial force must overcome liquid-solid adhesion defined as [42]

Faq =kRo (cos 6, — cos 6,), (2.4)

where R is the spherical drop radius, o is the surface tension and 6; and 6, are the drop’s
advancing and receding contact angles respectively. For normal ejection, there is no advancing
contact angle. Therefore, 6, is functionally 180° in equation (2.4). The factor k is a mode-dependent
experimental factor and the force inequality for each ejection mode is schematized in figure 4a. For
normal and sliding ejection, both cohesion force (F.) and inertial force (F;) overcome adhesion
force (F,q). In pinch-off, F; overcomes F}, but adhesion keeps some portion of the liquid attached
to the cantilever. Cohesion force must be overcome to split the drop into multiple entities and a
force for which there is no closed-form representation due to the unpredictable nature of drop
shape during sloshing. Kymographs for each ejection mode show temporal drop deformation
and cantilever amplitude pre- and post-ejection in figure 4b.

Experimental data shown in figure 3 are fed to machine learning algorithms to build the
classification and regression models. The selection of appropriate learning algorithms is critical
to the performance of any classification or regression problem [63-65]. Each ensemble learning
algorithm is comprised of four base learners. For classification, the ensemble consists of random
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forests (RFs), gradient boosting machine (GBM), k-nearest neighbour (KNN) and support vector
classification (SVC). For regression, the ensemble consists of RFs, GBM, ridge regression (RR) and
support vector regression (SVR). The selection of base learners [63] is guided by data distribution
(figure 3). RF and GBM are advantageous when data have a high degree of nonlinearity and
complex relationships between variables [66]. Small data size and small number of features
motivate the use of KNN and support vector machine (SVM) [67]. All the physical system features
influence inertial force, and the relatively few we have identified motivates the use of RR, an L2
regularization [68] that ensures no elimination of features. More details about the base learners
are provided in the electronic supplementary material.

Ensemble learning is typically more effective compared to individual base learners by
lowering error and cross-fitting [69] when individual base learners are selected properly [70].
To combine multiple machine learning algorithms, we use bagging classification which is a
combination of bootstrapping and aggregating. In bagging, base learners are selected to predict
the class. For each base learner, we provide a sample dataset to all the base learners, re-
sampling the training set each time for each base learner using row sampling with a replacement
technique [71]. All the base learners are trained on a particular subset of the total dataset,
the method of bootstrapping. The predictions from base learners are aggregated by obtaining
a majority vote via application of a meta-classifier. A computational scheme of the bagging
algorithm is shown in electronic supplementary material, figure S1. Bagging classifiers reduce
overfitting compared to single independent models [71]. Sample size is also an important factor to
consider in bagging, but the additional data points may not improve accuracy [72]. Our approach
in bagging classification is to use small subsamples (starting with 10% of the total dataset) and
obtain the accuracy from the meta-classifier. Our algorithm accepts the result from the meta-
classifier if the accuracy is higher than the individual algorithms. If the accuracy is lower than
the individual model, a re-sampling process is carried out with larger subsamples.

We apply the non-negative least-squares (NNLS) method to combine all the base learners to
make the ensemble. NNLS was first introduced by Lawson & Hanson [73], formulated as

. 1
min f(e) = > || G = B 117,
subject to o >0, (2.5)

where « is a weight vector, G is the training set such that G € R"*" with m features and n number
of observations, and B is the unknown sample. The weight vector is distributed among the
individual learning algorithms. Predicted values Pr from each base learner are multiplied by a
respective weight in the regression to predict the actual outcome. The procedure of predicting
outcomes using ensemble learning is schematized in electronic supplementary material, figure
S2. The final predictions from the ensemble learner are made by multiplying each base learner’s
prediction by its respective weight vector and summing values,

Pr(ensemble) = arpPr(RF) + agpmPr(GBM) + arrPr(RR) + agyrPr(SVR). (2.6)

3. Results and discussion

(a) Ensemble prediction of drop ejection modes

Applying the grid search method we find the optimum parameters for each base learner shown
in electronic supplementary material, figure S3. We employ a bagging classifier to the dataset
and see that it provides slightly better accuracy than the individual learners. Using 10-fold
cross validation, we evaluate the accuracy of the learning algorithms and obtain an accuracy
of 85% which is only slightly higher than any of the individual classifiers (table 1). We extend
our analysis on ensemble learning for classification by analysing the area under the curve
(AUC) and the receiver operating characteristics (ROC) curve. To estimate the performance of
a classification model, ROC-AUC is an effective classification matrix. ROC is a simple way to
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Table 1. Performance of models in prediction of drop ejection modes.

algorithm accuracy precision recall F-score
RFs 0.83 0.84 0.80 0.82

G L e
T L T
G g D
L Ga e s

summarize the classification accuracy where a large number of confusion matrices are required
to summarize the classification accuracy. The ROC curve summarizes all confusion matrices
and the AUC represents separability, determining how the algorithm effectively differentiates
between the classes. AUC-ROC curves of the ejection modes using bagging classification for our
study are shown in figure 5. Higher values of the AUC represent higher model performance for
differentiating ejection modes. A model ensures separability if the AUC has a value close to unity.
If the ROC passes close to the random guess line, the algorithm is unable to separate different
classes. Accuracy, precision, recall, and F-scores for all classification learners are given in table 1.

The significance of system variables on ejection mode occurrence is computed using
permutation feature importance [74], a method of measuring relative importance scores,
independent of base learners. Feature importance is measured by the decrease of model accuracy
obtained by shuffling a feature’s value. Feature importance scores are plotted in figure 6. For
both classification of ejection modes (figure 6a) and predicting ejection force through regression
(figure 6b), t and 6. have higher importance scores than u, xo and R. From the experiments, we
witness that if . <136°, drops are more likely to eject via the pinch-off mode [42]. Contact line
motion begins rapidly, &~ 6 ms from base motion inception, when drops are close to the cantilever
tip as the inertial force at the tip rises quickly. Drops closer to the base require more time to eject.
Feature importance scores likewise reveal role of viscosity, which is a larger factor in determining
the type of ejection than in the inertial force at ejection. F,q is independent of p (equation (2.4)),
but does indirectly influence cohesive failure. Greater viscosity inhibits the drop elongation that
creates favourable conditions for pinch-off, and thus greater viscosity promotes sliding from
cantilevers undergoing large displacement.
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Table 2. Performance of the predictive model of minimum inertial force required to eject a drop.

algorithm o RMSE

RFs 0.3707 0.045
......................................... G e
e
............................................ S
............................................ e

(b) Ensemble prediction of minimum inertial force required for drop ejection

Similar to the classification problem, before combining base learners into an ensemble, we
determine the optimum parameters for each base learner using the grid search method shown
in electronic supplementary material, figure S4. We train the predictive models to predict the
minimum inertial force required to eject a drop and use 10-fold cross validation to validate the
performance of the models. The predicted versus actual inertial force for each base learner is
plotted in figure 7. RF and GBM outperform the others with low RMSE values, as shown in table 2.
The ensemble improves RMSE by 11.9% compared to the best base learner, GBM.

The weight assigned to each individual base learner is calculated by solving the NNLS problem
described in §2b and given in table 2. To visualize the performance of ensemble-based learning,
we use regression error characteristic (REC) curves with the individual learning algorithm
simultaneously shown in figure 8a. RECs plot the accuracy of the regression model with respect
to the absolute deviation. The relative position of the REC curve reveals which model is superior
compared to others. Models that reach 100% accuracy with a smaller value of error tolerance
provide better predictions. In other words, models with higher area under the curve have less
error. Predicted inertial force versus the actual force generated from the ensemble learning model
is shown in figure 8b.

We plot the predicted inertial force F; required to eject a drop from the cantilever surface versus
equilibrium contact angle 6 in figure 9. Globally, larger drops require greater F; to eject. In the
complete liquid removal zone, the inertial force developed by the cantilever must overcome F,q
(equation (2.4)). However, in the partial liquid removal zone, drops need to overcome both F,q,
to get the contact line moving, and an as yet unquantified cohesive force F.} to perform a pinch-
off ejection. Partial liquid removal or pinch-off is associated with lower 6. and higher F;. In the
ensemble model, we fix drop position to the mean value of ¥p =7.2mm and vary drop size R to
produce the inertial force predictions of figure 9a,b. We rationalize the relation between F; and 6, in
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the partial liquid removal zone by noting that lower 6, values promote flatter drops with centres
of mass closer to the substrate, increasing the inertial force required to deform the drop into a
shape that can pinch-off. Such deformation necessitates a relatively long time history to slosh to
an elongated shape which can eject, a notion supported by figure 6b. The relative values of F;
in the partial removal zone for different drop radii likewise provide insight to value of F.y, for
which there is no theoretical measure. Indeed, Fo, % R, but this prediction verifies larger drops
carry higher cohesive forces.
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Next, we fix drop radius R = 0.75 mm to predict F; for various drop locations. For a fixed drop
radius, inertial force in the partial liquid removal zone is greater for drops closer to the cantilever
tip. At the tip, inertia forces temporally increase most rapidly at the onset of base vibration.
Towards the base, the ejection inertial forces are unrealized for a relatively longer period of time,
over which the cantilever imparts a time-history of deformation to the drop. We thus surmise
that drops ejected closer to the base have reached a state of enhanced deformation by being
allowed to slosh for more vibration cycles; drop elongation decreases F.,. Predictions of F; in
all panels of figure 9 show a rapid change from the zone of partial to complete liquid removal
where inertial force is independent of drop location, as expected by observation of equation (2.4).
Above 0. =138° we witness no pinch-off ejections, which agrees with our previous prediction
of the transition contact angle [42]. Curves in figure 9 extrapolate to contact angles beyond our
highest measured value of 155°. Physically, we expect F; — 0 as . — 180°, but note our cantilever
is not capable of producing F; lower than 0.03 mN when drops finally leave the surface.

By changing R and xp in our model, we predict changes to F; but are unable to move from
one removal zone to another, a characteristic of figure 9 that supports our analysis of feature
importance scores (figure 6b). Though not captured in our plots, we posit complete liquid removal
closer to the base requires longer ejection times at a fixed 6. Though 6, is not fixed in figure 3, the
plot of t versus xg shows complete removal is more rapid than partial removal. Sliding, though
complete removal, takes the longest ejection duration because the drop must travel xg + R to leave
the substrate.

4. Conclusion

In this study, we develop an ensemble learning algorithm to classify drop ejection modes and
predict the minimum inertial force required to remove water drops and drops of glycerin solution
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from a dampened, damped cantilever. The ensemble model predicts the ejection modes with an
accuracy of 85%, which is not a vast improvement over the individual base learners. With the
data-driven predictive modelling approach, we identify the importance of system variables—
ejection time, contact angle, drop size, and drop location—on ejection mode occurrence and the
associated inertial force at ejection. Ejection time and contact angle are the dominant features for
predicting both ejection modes and inertial force. In the prediction of inertial force at ejection,
a regression problem, tree-based learning algorithms show better performance over kernel- and
regularization-based algorithms. The ensemble improves RMSE by 11.9% over the best individual
base learner, gradient boosting. Algorithmic predictions reveal that in the zone of partial liquid
removal or pinch-off, drop size and location govern ejection inertial force, whereas inertial force
in the zone of complete liquid removal is independent of drop size and location.
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