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Bioprinting 101: Design, Fabrication, and Evaluation
of Cell-Laden 3D Bioprinted Scaffolds

Kaivalya A. Deo, BS,1 Kanwar Abhay Singh, MS,1 Charles W. Peak, PhD,1

Daniel L. Alge, PhD,1,2 and Akhilesh K. Gaharwar, PhD1–3

3D bioprinting is an additive manufacturing technique that recapitulates the native architecture of tissues.
This is accomplished through the precise deposition of cell-containing bioinks. The spatiotemporal control
over bioink deposition permits for improved communication between cells and the extracellular matrix,
facilitates fabrication of anatomically and physiologically relevant structures. The physiochemical properties
of bioinks, before and after crosslinking, are crucial for bioprinting complex tissue structures. Specifically,
the rheological properties of bioinks determines printability, structural fidelity, and cell viability during the
printing process, whereas postcrosslinking of bioinks are critical for their mechanical integrity, physiological
stability, cell survival, and cell functions. In this review, we critically evaluate bioink design criteria,
specifically for extrusion-based 3D bioprinting techniques, to fabricate complex constructs. The effects of
various processing parameters on the biophysical and biochemical characteristics of bioinks are discussed.
Furthermore, emerging trends and future directions in the area of bioinks and bioprinting are also highlighted.
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Impact Statement

Extrusion-based 3D bioprinting is an emerging additive manufacturing approach for fabricating cell-laden tissue engineered
constructs. This review critically evaluates bioink design criteria to fabricate complex tissue constructs. Specifically, pre-
and post-printing evaluation approaches are described, as well as new research directions in the field of bioink development
and functional bioprinting are highlighted.

Introduction

Additive manufacturing is a layer-by-layer fabrica-
tion process to construct complex three-dimensional

(3D) objects.1 3D bioprinting, an emerging category of
additive manufacturing, focuses on precise deposition of
cell-laden hydrogel bioinks to construct tissue engineered
structures (Fig. 1a).2 A multitude of 3D bioprinting tech-
niques have been developed, including laser-assisted print-
ing,3,4 inkjet printing,5,6 and extrusion-based printing.7,8 Among
these different approaches, extrusion-based 3D bioprinting
has become a popular technique as hydrogel precursors with

low-shear viscosities (>102 Pa$s) can be used for bioprinting.9–11
In addition, 3D bioprinting is also being explored for de-
signing a range of tissue types for regenerative medicine
(Fig. 1b).12

One of the primary components of 3D bioprinting is hy-
drogel bioinks. Hydrogels are water swollen polymeric net-
works that can be engineered to control various cellular
functions such as adhesion, spreading, proliferation, and differ-
entiation.13–19 Hydrogels exhibit cytocompatibility and are
extensively used to design cell-laden constructs.13,14 Recent de-
velopments in hydrogel chemistries, reinforcement approaches,
and crosslinking methods have expanded the applications of

FIG. 1. Trends in 3D bioprinting. (a) Exponential research growth in the field of 3D bioprinting. Data obtained from ISI
Web of Science using ‘‘3D bioprinting.’’ (b) Publications in the field of 3D bioprinting focusing on various tissue types. Data
obtained from ISI Web of Science, specifically looking at ‘‘3D bioprinting’’ and ‘‘bone/cartilage/vascular/skin/cardiac/liver/
neural/skeletal/tendon or pancreas’’ (February 2020). (c) Various applications of 3D bioprinting are explored in the field of
pharmaceutics, regenerative medicine and biomedical devices. 3D, three-dimensional. Color images are available online.
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3D bioprinting to pharmaceutics, regenerative medicine, and
biomedical devices (Fig. 1c). Thus, it is imperative to under-
stand the fundamental relationships between hydrogel formu-
lation, biophysical characteristics, and cellular interactions in
3D microenvironments.20–22 Furthermore, bioink characteriza-
tion in terms of swelling, degradation, and flow properties will
provide insight about the performance of bioinks and 3D printed
structures in physiological conditions.23,24

In this review, we discuss biophysical and biochemical
characteristics of bioinks and their relationship to the
extrusion-based 3D bioprinting process. Specifically, bioink
characteristics at different stages of the bioprinting process
are highlighted. We attempt to elucidate mechanical prop-
erties, cell-material interplay and the effects of processing
parameters on cellular viability in the bioprinting process.
Finally, promising new research directions in the field of
bioprinting are also summarized.

Extrusion-Based 3D Bioprinting

In extrusion-based 3D bioprinting, a nozzle continu-
ously extrudes the bioink filament and enables deposition
in predefined geometries. During the extrusion process, the
bioink should possess low viscosity to prevent possible
clogging of the extrusion tips (needle) as well as protect
cells from excessive fluid shear stress. Upon deposition
on the printer bed, the bioink should undergo rapid solid-
ification to maintain the deposited shape.25,26 The resolution
through extrusion bioprinting is generally between 50 and
1000 mm.27,28 The process of extrusion-based bioprinting
involves considerations at three different stages of bioprinting.

The crucial bioink characteristics at preextrusion stage
include precursor viscosity, cell distribution, and biocom-
patibility.29 The critical bioink attribute at mid-extrusion
stage considers shear stress minimization through plug flow
behavior, and postextrusion stage includes physiological sta-
bility postcrosslinking of 3D printed structures (Fig. 2a).7,30,31

Careful control of biomaterial chemistry determines stiff-
ness and dictates the processing capability of the bioink.
The potential to deposit high cell densities, matching the
physiological structure, is a major advantage of extrusion-
based bioprinting.32,33 Hence, designing appropriate bioinks
is crucial for obtaining 3D prints with relevant resolution,
fidelity, cell density, and other essential properties.34

Bioinks and the biofabrication window

Bioinks for extrusion-based 3D bioprinting need to
withstand high shear forces during the extrusion process and
recover rapidly thereafter. Typically, polymer formulations
that stabilize rapidly, such as gelatin methacryloyl (Gel-
MA)35,36 or alginate,37,38 have been used. To design bioinks
for 3D bioprinting, the concept of the biofabrication window
has been traditionally utilized. The biofabrication window
describes the trade-offs between printability and cell via-
bility within the constructs (Fig. 2b). It details the com-
promise in bioink design that is made to devise bioinks
with suboptimal printability while maintaining cellular
activity.39 Advanced bioinks use numerous strategies to el-
evate printability and cellular compatibility simultane-
ously. Such advanced bioink formulations are designed with
shear-thinning abilities, which modulate viscosity during
bioprinting process and allow the bioink to regain its orig-

inal viscosity postextrusion. Advanced bioinks also protect
the encapsulated cells without compromising the printability
or print fidelity.40

Bioprinting considerations

A range of biophysical and biochemical attributes of
bioinks can influence 3D printability. These properties in-
clude shear-thinning, recoverability, gelation kinetics, bio-
compatibility, and biodegradation. Before printing,
computer aided design (CAD) files are used to design the
construct to be printed. CAD software provides an array of
tools to create complex and anatomically relevant structures.
CAD files are subsequently converted to g-code, which
communicates the desired printing path and parameters (i.e.,
speed, location, infill) to the 3D printer.41 The bioprinting
speed is regulated and is usually between 700mm$s-1 and
10 mm$s-1.42,43 Subsequently, bioinks are loaded into ex-
trusion barrels for bioprinting. Mechanical properties, such
as viscosity and shear-thinning ability of bioinks, are critical
to improve cell viability when exposed to the printing stresses
make it possible to extrude the material with minimal applied
stress.44 The usual viscosities of bioinks for extrusion-based
bioprinting are between 30 and 6· 107 mPa$s.45,46

Once loaded, bioprinting commences, depositing cell-
laden bioinks onto the printer bed. Crosslinking chemistry
determines the ability of the hydrogel to form a stable
structure.31,47 Biomechanical considerations of the printed
constructs include elastic moduli and mechanical integri-
ty.48,49 Throughout the printing process, coordinating cell-
material interactions, maintaining appropriate rheological
characteristics, and maintaining a sterile microenviron-
ment govern the success of the 3D bioprinting process.50,51

Extrusion-based bioprinting is commonly successful in en-
suring long-term high cell viability (*80–90%) in the 3D
printed constructs.52–54 Biochemical considerations of the
bioprinted structures include degradability, cell-instructive
matrix remodeling, and extracellular matrix (ECM) pro-
duction (Fig. 2c).55,56

Throughout different stages of the bioprinting process,
various techniques can be used to measure performance and
efficacy. For example, shear rate sweeps can determine if a
material has potential to be injectable, and cytotoxicity as-
says indicate if a material has favorable interactions with
cells.57–59 The proceeding sections will examine the vari-
ous approaches used to characterize and quantify the utility
bioinks for fabricating intricate, complex geometries.

Bioink Design and Preprinting Considerations

3D bioprinting of hydrogel bioinks involves more com-
plex design criteria compared to typical fabrication tech-
niques. For example, bioinks (hydrogel precursors) must
be transported through a needle and be able to retain a de-
posited shape upon extrusion. Appropriate polymer selec-
tion is essential to maintain viability of encapsulated cells
and achieve the necessary mechanical requirements for 3D
printing.50

Polymer selection

Bioink composition should support high viability of en-
capsulated cells and shield cells from shear stress during
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extrusion.50,60–64 Molecular weight and crosslinking density
remain the two most critical physical characteristics that
influence cell behavior, regardless of the polymer used.63,64

Naturally derived polymers, such as gelatin and alginate,
have well characterized crosslinking mechanisms and
mechanical properties (as a crosslinked hydrogel).65–68

Naturally derived polymers often exhibit high molecular
weights, while synthetic polymers have custom molecular
weights.69,70 However, natural polymers, such as gelatin or
GelMA present integrin-binding motifs, facilitating strong
bioink–cell interactions. Gelatin with different ‘‘bloom
strength’’ reflects the average molecular weight of the poly-
mer. Higher bloom strength indicates formation of stiffer
gels. Conversely, synthetic polymers, such as poly(ethylene
glycol) (PEG), permit for finely tuned molecular weights
ranging from <500 to >1,000,000 Da, which can be leveraged
to control mesh size and nutrient diffusion.

Due to the chemical formula (-CH2-CH2-O-) of the PEG
backbone, it is often considered a biologically inert ‘‘blank
slate’’ polymer that will interact minimally with cells and
the body.71 However, PEG must be chemically modified to
crosslink and form stable hydrogels. Both dimethacrylate
and diacrylate PEG have been among the most widely
studied model hydrogels.72 Nuclear magnetic resonance
spectroscopy or attenuated total reflectance can be used to
verify the terminal end groups of the polymer and molecular
weight of the polymer. Overall, bioinks must meet the needs
of being able to mechanically deform and reform while also
providing an environment for cell proliferation. Achieving a
synergistic balance of all the properties is required to
maintain printability with active cellular viability and pro-
liferation.73

Polymer selection is also influenced by the type of
functionalities desired. Molecular weight influences cell

FIG. 2. Considerations for extrusion-based 3D bioprinting. (a) Optimizing various printer modalities and pre, mid and
post extrusion factors for ensuring favorable properties of the 3D bioprinted constructs. (b) Biofabrication window illus-
trating the trade-off between printability and biocompatibility required to make acceptable bioinks. (c) Biomechanical and
biochemical considerations of the 3D bioprinted architectures. Coordinating cell–material interactions, mechanical prop-
erties of the materials and maintaining cellular viability governs 3D bioprinting proficiency. ECM, extracellular matrix;
GAG, glycosaminoglycan; UV, ultraviolet. Color images are available online.
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behavior due to the amount of swelling a hydrogel may
undergo, resulting in nutrient supplementation and waste
removal.74 Matrix degradability is another factor that plays a
significant role in polymer selection.39,75 Natural polymers
derivatives, such as GelMA, contains degradation sites
sensitive to matrix metalloproteinases (MMPs). MMPs al-
low natural cleaving of ECM components permitting cells to
remodel and degrade the matrix.76,77 The end-groups of the
polymers determine the crosslinking mechanism that must
be used. Acrylate end groups have historically been com-
mon as they provide a facile method (ultraviolet curing) for

creation of covalent crosslinks. Similarly, thiol end groups
are also involved in unique crosslinking such as thiol-ene
click chemistry78 and thiol-nanoparticle vacancy driven
gelation.79 Some of the common polymer types utilized,
their crosslinking approaches and desired functionalities are
summarized (Fig. 3a).

Polymer dispersity index (PDI) is another important fac-
tor affecting the overall bioink properties. Polymer molec-
ular weight is critical to control bioink flow characteristics
and the resulting mechanical and biocompatibility proper-
ties.80 Having low PDI suggests that the polymer is similar

FIG. 3. Preprinting considerations. (a) Polymer selection is crucial in designing bioink with tunable performance. Type of
polymer, crosslinking mechanisms and desired functionalities are important parameters which can be controlled to achieve
enhanced cellular viability and material properties. (b) Rheological characterization is important to predict the utility of a
bioink for 3D bioprinting. Oscillatory stress-sweep, peak-hold test, and shear rate sweep experiments are important to
determine printability of bioink. (c) The modeling of flow behavior provides distribution of stress within the bioink during the
printing process. (d) Increasing bioprinting complexity also requires maintaining high shape fidelity for superior bioprinting
and cellular proliferation in the constructs. 1D, one-dimensional; 2D, two-dimensional. Color images are available online.
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in length, resulting in consistent mechanical properties.81

Due to processes variations, natural polymers are typically
more polydisperse than synthetic polymers.82,83 Increasing
polymer molecular weight, crosslink density, or concentra-
tion can improve the printability of the solutions at the cost
of limited cell migration and a reduction in nutrient diffu-
sion.84 Polymer molecular weight, crosslinking mechanism,
and side-groups dictate functionality of the polymer as a
bioink and subsequent compatibility.85 High molecular
weight polymers are typically viscous due to an increase in
chain entanglements.86 Thus, many of these criteria can be
used to gauge the overall bioprinting process and the in-
terplay between material chemistry and mechanical stresses
cells undergo during the printing process.

Rheology of bioinks

As extrusion-based bioinks must be injected through a
printing gauge, the ability to flow is of utmost importance.
Rheology is the study of flow properties of materials under
external forces.87 Unfortunately, rheology data presented
often lacks the contextual relationship of the rheology to the
printing results. Recent studies are beginning to understand
the correlation that exists between the rheology of bioinks
and the subsequent shape fidelity.88 In this study, we present
an understanding of the various rheological tests that are
available, their ability to predict potential of a bioink for 3D
bioprinting (Fig. 3b), and the parameters that are often
lacking in current studies.

Rheological characteristics of bioinks are determined
using either a stress or a strain-controlled rheometer. Rhe-
ometers either apply a specific displacement or force, both
of which can either be applied in oscillation (back and forth)
or in rotation (unidirectional). Various parameters such as
storage modulus (G¢), loss modulus (G†), and viscosity (Z)
are calculated and can be used to define the printability of
bioink formulations.87,89 Storage modulus is a measure of
the elastic energy within the bioink, while loss modulus is a
measure of the viscous portion or dissipated energy within
the bioink.39 Both storage and loss modulus are calculated
while performing oscillatorymeasurements. Viscosity, calcu-
lated via rotational tests, measures the material’s resistance
to flow.21

Typically, bioink characteristics are determined using
an oscillatory amplitude or frequency sweep to demonstrate
the storage and loss modulus and a rotational shear-rate
sweep is performed to determine viscosity.67 Storage and

loss moduli can be determined for precrosslinked or post-
crosslinked bioinks as a measurement of bioink perfor-
mance. Viscosity is used to describe the ability of the bioink
to flow through the reservoir, needle, and onto the printing
surface.90 After extrusion, a bioink must quickly recover
or be crosslinked so that it does not spread on the printing
surface.91 These rheological characteristics are crucial to
define the printability of bioink and will be discussed in
detail.

Viscosity. For extrusion-based bioprinting, a high visc-
osity at low shear rate is necessary to ensure that the bioink
does not spread and prevent collapse of large structures.
Viscosity can be controlled by polymer molecular weight,
degree of branching, concentration, and addition of rheo-
logical modifiers.68 Generally, an increase in these param-
eters results in an increase in viscosity across all shear rates.
This is illustrated in Table 1, which details a list of commonly
used polymers for bioinks. Conversely, lower crosslinking
density within hydrogel matrix aids in cell proliferation,
migration, and tissue formation through the facilitation of
nutrient diffusion and waste removal.92 Importantly, the vis-
cosity of a hydrogel bioink can directly influence the re-
sulting shape fidelity such as drooping and spreading.

Viscosity influences the ability of bioink to flow. An in-
crease in surface tension between the needle gauge and
bioink will decrease the ability of the bioink to shear thin,
whereas an ideal, frictionless system will facilitate extru-
sion.93 Overall, the bioink viscosity dictates whether ex-
truded materials are droplets, a continuous filament or
strand.36 Low viscosity solutions of GelMA tend to form
droplets that either will be forcefully expelled or form large
droplets that gravity causes to separate from the nozzle.94

However, rheological modifiers, such as nanosilicates95–97

or hyaluronic acid,94 can be added to GelMA to increase the
viscosity and form a filament rather than a droplet. Filament
formation allows for high-fidelity 3D structures to be
formed rather than a puddle.

Shear-thinning ability. Shear rate sweeps are most
commonly used to predict the behavior of a bioink during
the printing process, determining viscosities across a range
of shear rates. Shear rate sweeps often apply a range of shear
rates, from low shear rate (<10-3 s-1) to high shear rates
(>102 s-1), to mimic the bioink going through a needle. For
bioinks, a high viscosity at low shear rates and low viscosity

Table 1. Common Polymers, Viscosities, and Crosslinking Mechanism for Bioinks

Polymer Concentration
Crosslinking
mechanism

Viscosity
range (Pa$s) Reference

Methacrylated hylaronic acid/
methacrylated gelatin

6–12% UV 0.1–10,000 212

PEG-DA + Laponite 10% PEG-DA, 4% Laponite UV 1200 113

Sodium alginate 3–5% Ionic 0.6–6.4 213

GelMA 3–5% UV 75–2000 65

Hyaluronic acid 1.5% Temperature 22 214

Collagen 1.5–1.75% Temperature, pH 1.7–1.8 215

GelMA, gelatin methacryloyl; PEG-DA, poly(ethylene glycol) diacrylate; UV, ultraviolet.
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at high shear rates is imperative for the extrusion process.98

Materials that exhibit this characteristic are called ‘‘shear-
thinning.’’8,65 Often characteristic shear rate versus viscos-
ity graphs are presented with a lack of details.

Several models have been developed that can describe the
ability of a hydrogel to shear thin. Classically, the power-
law model, which is explained through the equation
g¼Kcn� 1, where g is viscosity, K is the flow consistency
index, and n is the shear-thinning index, has been applied to
materials where a low shear rate or high shear rate viscosity
plateau is not observed. The power law index can describe
the degree of shear-thinning. When n = 1, the solution is
Newtonian; n < 1 shear thinning; and n > 1 shear thicken-
ing.99 While graphical interpretation informs readers that
materials are shear-thinning, equation fitting may bring
broader understanding to the data collected and an overall
conclusion regarding the ability of a bioink to be extruded
through needles (Fig. 3c).

For example, the rheological profile of alginate precur-
sors has been investigated using the Generalized Power-law
equation.50 Through the application and study of the flow
consistency index, it was concluded that n* 0.3–0.4 has an
appropriate flow profile for bioprinting applications. In ad-
dition, the yield stress was examined as a critical parameter
that dictates cell viability during the printing process. Other
work suggests that hydrogel precursor modulus is impor-
tant for cell delivery.100 Uncrosslinked bioink viscosity and
storage modulus are analogous measurements, with the vis-
cosity measuring resistance to flow, while storage modulus
is an interpretation of hydrogel stability.

The use of shear-thinning information to predict the
ability of a bioink to be 3D printed has also been investi-
gated. We would like to make the important distinction of
being able to inject materials versus 3D printed bioinks: 3D
printing requires a bioink to stabilize or localize at a given
point, while injection only requires materials to be shear-
thinning. Once the bioink has exited the needle, there are
little to no shear forces exerted on the bioink.101 To achieve
more accurate rheological predictions for 3D bioprinting
applications, researchers are encouraged to calculate the
shear rates experienced throughout the 3D printing process,
program rheological tests to apply these specific shear-rates,
and examine the viscosity recovery. In a recent study, a
recovery time of 30 s was deemed appropriate and per-
centage recovery was measured as a comparison between
unsheared and postsheared bioinks.102

Researchers often use hydrogel precursors during the
extrusion process, utilizing viscosity as the de facto mea-
surement of choice via a rheometric viewpoint. In addition,
thixotropic loops (increasing shear rate followed by a de-
creasing shear rate in a set amount of time) describe the
internal structure rebuilding time.103,104 A perfectly New-
tonian bioink will have overlapping curves for both the
increasing and decreasing shear rates, indicating the pres-
ence of a minimal internal structure and a nonideal bioink
candidate.104 A difference between loading and unloading
curves indicates the degree of thixotropic behavior within
the context of the test (i.e., if the test was completed using a
1min loading and 1min unloading curve, thixotropy is
specific to the time frame applied).105 Thixotropic loop tests
can be difficult to interpret and often require specialized
‘‘cup and cone’’ geometries to obtain reliable results.

Yield stress. Bioinks must overcome a certain amount
of stress, deemed yield stress, to allow for flow from the
barrel and onto the printing bed. Yield stress is the minimum
stress that must be placed on the material for flow to occur.
Hydrogel precursors are typically a weak network. When a
stress is applied above the yield stress, these network in-
teractions are interrupted, permitting the material to
flow.106,107 For example, gelatin is a thermoresponsive hy-
drogel, and above *37�C, it has high chain motility due to
weak polymer–polymer interactions and can easily be ex-
truded through a needle when stress is applied. High yield
stresses pose process difficulties in cell incorporation and in
the work required for the 3D printer motor. Along with
gelatin, other hydrogels, such as a self-assembling pep-
tide108,109 and colloidal systems,110,111 have been developed
that incorporate lower yield stress as an important design
consideration.

Oscillatory thixotropic measurements further elucidate
bioink stability during printing process. To complete oscil-
latory thixotropy measurement, an amplitude sweep must
first be conducted to determine the linear viscoelastic re-
gime of a bioink. Specifically, the storage modulus and loss
modulus should be independent of the applied stress or
strain (both of which are amplitude modulated). Outside of
the linear regime, the bioink is dependent on higher order
harmonics, requiring more advanced knowledge for data
interpretation. A yield point, where the storage modulus
decreases below the loss modulus (G¢ < G†) is exhibited, is
typically demonstrated at amplitudes above 101 Pa or be-
tween 50% and 1000% strain.112

Oscillatory thixotropic tests, apply series of sequential
amplitudes, simulating printing conditions. First, an ampli-
tude below the yield point is applied, representing G¢ > G†.
This is followed by application of a higher amplitude (G† >
G¢), which represents the flow through the needle. The last
step is application of the original amplitude, with the ex-
pectation that G¢ will increase quickly back to the original
value.113 Traditionally, researchers have tested multiple
cycles, although the 3D printing process requires only one
application of a high amplitude since the bioink must only
traverse the length of the needle once.

Print fidelity

Bioink composition is extremely crucial in designing
prints with high resolution and fidelity. High viscosities at
low shear rates dictate construct fidelity. Often, bioinks lack
recoverability, resulting in printed structures with lower
resolutions and accuracies than can be achieved with other
additive manufacturing techniques. However, when shear-
thinning behavior, yield stress, and recoverability are ex-
amined holistically, high fidelity prints can be achieved.
Achieving a synergistic balance between shear-thinning,
yield stress, and shear recoverability is required as the
complexity of printing increases from one-dimensional (1D)
to 3D (Fig. 3d).114 Another important parameter which
governs fidelity of constructs is the swelling behavior of the
hydrogel ink, which is mainly determined by the charge
densities and extent of crosslinking.94,115 High crosslinking
densities support lower swelling ratios and provide high fi-
delity prints but reduce oxygen and nutrients diffusion,
thereby reducing cell viability in the constructs. A solution
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to this problem is to design a composite bioink combining
hydrogel materials, which provide enhanced cell activity
with a material that confers mechanical stability, thus ar-
riving at good print fidelity.116

Postprinting Considerations and Assessment

Upon establishing cytocompatibility, the bioink can be
printed into complex shapes and geometries. However, there
are additional biological and mechanical characteristics that
need to be taken into consideration postprinting.

Physiological stability of 3D bioprinted structures

Structural fidelity. Rheology is an important tool to de-
termine the potential of a bioink for printing, specifically
characterizing the ability of the bioink to deform and re-
cover. However, after printing, image analysis of extruded
bioinks provides additional information concerning spread-
ing of bioinks (Fig. 4a). Several methods have been used to
analyze the quality of extrudate. The 3D printing process
begins in designing a construct in a CAD program (i.e.,
AutoCAD or SolidWorks).117 Given the programmed design
and dimensions, the print fidelity can be characterized by
comparing the experimental, extruded dimensions to the
theoretical ones. Light microscopy or micro-computed to-
mography has been used to image printed constructs.113,118

Ouyang et al. devised a system of images and equations to
quantify the ‘‘printability’’ of extruded bioinks.89 Three
classes of printability were established (under gelation, proper

gelation, and over gelation) to describe the morphology of the
extruded samples. Proper gelation bioinks exhibited smooth
surfaces with regular grid patterns; under gelation bioinks
flowed together creating circle patterns rather than squares;
over gelation bioinks had irregular grid patterns.

Mathematically, printability (Pr) was defined as Pr¼
p
4
1
C
¼ L2

16A
, where C is the circularity of the print, L is the

length, and A is the area. Pr values <1 indicate poor fidelity
with spreading and large, curved corners. As Pr approaches
1, the print ‘‘exactly matches and corresponds to the model
design,’’ with precise angles, smooth prints, and exact de-
position of material. As Pr increases, the bioink became
jammed or ‘‘crinkly’’/rough (ridges formed, cracks were
prominent, and the overall print was poorly constructed).
Mathematically defining print fidelity is an important
milestone within the bioprinting literature. However, print-
ability is defined in only 1D or two-dimensional (2D), and
there is a need to develop new approaches to evaluate 3D
printability.

Mechanical stability and elasticity. Native tissue moduli
are well characterized. Therefore, composing a material to
match should, in essence, provide mechanical stability of the
implanted hydrogel.119–121 Elastic moduli characterization
is a classic method to study the ability of bioink to withstand
deformation. Elastic moduli can be determined from the
slope of a stress versus strain curve in compression or ten-
sion (Fig. 4b). However, there are discrepancies or limita-
tions between the parameters defined within each test (i.e.,

FIG. 4. Postprinting considerations. (a) Optical image analysis is performed to examine the quality, spreading and
printability of the bioinks postcrosslinking. (b) Compressive mechanical analysis is performed to evaluate the mechanical
stability and compressive modulus of the 3D bioprinted construct. (c) Swelling and degradation analysis aids in determining
swelling ratio and degradation characteristics of the bioink, which is crucial in designing 3D bioprinted elements for specific
tissue engineering applications. Color images are available online.
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compression/tension). For example, when defining the ulti-
mate tensile/compression stress, the range of strain over
which testing is performed is limited. Specifically, a mate-
rial can only be compressed *90–99%, while under tension
the construct can be theoretically stretched indefinitely.

The bioprinting process deposits bioink layers that must
adhere to each other to form a mechanically rigid structure.
The potential for delamination of layers due to low adhesion
results in a defect, thus increasing the chance for stress
concentrators and crack propagation.122,123 Mechanical
compression/tension testing can be performed to evaluate
the mechanical properties of 3D printed structures compared
to bulk properties. Compression testing of cast bioinks en-

sures that the structure does not have void spaces within the
tested samples (assuming no bubbles, sufficient layer con-
tact, and clean removal from the printing bed). Casted
bioinks typically have low polymer alignment since the
material is allowed to conform to the surrounding mold.
However, due to the layer-by-layer material deposition in
the 3D printing process, void spaces can develop or the
polymer may align, ultimately producing a significantly
different mechanical profile. Ideally, the printed sample
should possess 100% layer adhesion and contact. However,
when using a circular gauged needle, there might be some
space due to a geometric mismatch. From these spaces,
cracks propagate and decrease the compressive modulus.124

FIG. 5. Analyzing cell–material interactions. (a) Summary of various cellular cytotoxicity assays to monitor cellular
viability post 3D bioprinting. (b) Traction force microscopy analysis is used to determine the traction force cells generate
when attached to the bioink. (c) AFM techniques also quantify cell adherence to bioink through AFM cantilever deflections.
(d) Extracellular matrix quantification through various colorimetric assays determine how cells operate once encapsulated in
the bioink, which is crucial as the 3D bioprinted scaffold simulates the native tissue 3D architecture. AFM, atomic force
microscopy; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; MTT, 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Color images are available online.
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Swelling and degradation. Once the bioink is cross-
linked and placed into either an implanted site or in cell
culture media, swelling of the structure occurs. Swelling can
influence postprinting mechanics: an increase in fluid in-
creases the distance between crosslink or net points and
decreases crosslink density.125 Swelling can also be bene-
ficial, as it allows for diffusion of any entrapped therapeutics
and cellular waste products.126 Bioinks composed of natural
polymers such as gelatin will both swell and degrade due to
enzymes secreted by cells. Gelatin-based hydrogels have
previously been used for bioinks, demonstrating a mass loss
of 65% within 11 h when submerged in a collagenase so-
lution (5U/mL).127

Synthetic bioinks must be designed to degrade within an
appropriate time-scale for the intended application. Poly(lactide-
co-glycolide) compositions are often used to regulate the
degradation profile of hydrogels or nanoparticles128,129 and
for drug delivery applications.130,131 Specifically, thera-
peutic release profiles can be modulated via encapsulation
into PLGA nanoparticles with varying amounts of lactide
and glycolide to allow for appropriate release times.131

Alternatively, PEG has been modified with poly(lactic acid)
end groups to modulate network degradation132,133 and cell
adhesion134 and proliferation.135 To fully recapitulate native
tissue, degradation profiles are a key feature of developed
bioinks that must be characterized further. Hence, swelling

and degradation characterization of bioprinted constructs be-
come crucial for understanding their behavior in vivo (Fig. 4c).

Effect of the printing process on cell viability

Estimation of cellular compatibility is an essential part to
understand bioink–cell interactions and how the cells can be
stimulated by the bioink. It is also important to evaluate the
effect of shear forces and degradation byproducts on the
bioprinted system. This is done through various cellular
cytotoxicity/viability assays (Fig. 5a). The use of nano-
particles as rheological modifiers to bioink systems also
creates challenges in terms of cellular toxicity. Unlike
polymeric components of bioinks, whose behavior when
interacting with cells is well documented, nanoparticles can
interact with cells in a variety of methods, such as interac-
tion with cytosolic proteins, effects on mitochondrial ac-
tivity, and generation of reactive oxygen species.

Hence, it is paramount to identify concentration-dependent
effects the nanoparticles have on the cells before use in
printing applications.136 These factors are also important for
understanding the effects of polymer crosslinking agents on
overall cellular viability.137 A list of common assays used to
determine cellular viability within printed constructs is in
Table 2. However, a major drawback of these assays is the
focus only on the cell viability and the lack of consideration

Table 2. List of Common Assays to Measure Cell Viability

Reagent Site of action Method of detection Reference

Trypan blue Cytoplasm Trypan blue is excluded by live cells with intact plasma
membranes, while dead cells are stained blue

216

LDH Extracellular
space

Release of LDH cytosolic enzyme into extracellular space.
The released LDH is then measured via a tetrazolium dye.

217–219

TBARS Cytoplasm Estimation of lipid peroxidation due to ROS generation by
quantification of Malondialdehyde present in cells.

220,221

Calcein-AM and
ethidium bromide
(Live/Dead assay)

Cytoplasm Fluorescent probes commonly used together in the form of
Live/Dead viability assay. Live cells are able to exclude
Ethidium bromide, while dead cells do not show
fluorescence for calcein.

222,223

Annexin V Cell membrane Early apoptosis detection, due to movement into the outer
membrane of the plasma membrane

224

H2DFCA Cytoplasm The cell-permeant H2DCFDA is reduced to its fluorescent
form inside cells in the presence of ROS.

225,226

Comet assay Nucleus DNA fragmentation is viewed by single cell gel
electrophoresis.

227,228

Micronucleus assay Nucleus Study of DNA damage at the chromosome level. By
differential staining of DNA and RNA through stains such
as acridine orange, DNA with a micronucleus can be
visualized. An increase in the frequency of micronuclei
correlates to increased chromosomal damage.

229,230

MTT/MTS/WST Cytoplasm/
mitochondria

Tetrazolium dye is reduced to insoluble purple colored
formazan by oxidoreductase in living cells. Assuming the
similar cell types and cell numbers, the dyes can be used
as a colorimetric assay for determining cell metabolic
activity.

231,232

JC-1 assay Mitochondria Aggregation of the dye is dependent on mitochondrial
membrane potential. Upon aggregation, a shift in
fluorescence occurs. This change in florescence can be
used to determine mitochondrial membrane integrity.

233–235

H2DCFDA, 2¢,7¢-dichlorodihydrofluorescein diacetate; LDH, lactate dehydrogenase; MTS, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide; MTT, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; ROS, reactive
oxygen species; TBARS, thiobarbituric acid reactive substance; WST, water-soluble tetrazolium salt.
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of other processes such as cell differentiation, formation of
cell signaling molecules, or secretion of proteins.138 Ad-
vanced genetic testing, such as RNA-sequencing, may also
be used to identify the effect of bioink components on cells,
but this process is both expensive and time-consuming.139

During 3D bioprinting, encapsulated cells experience
shear forces during the bioprinting process, which can affect
cellular viability, adhesion, and proliferation.50,100 Cell
suspensions in high viscosity bioinks have been used to
increase cell viability.100 Along with viscosity, geometric
constraints of the printing apparatus, such as the needle
gauge shape and size, can influence the shear stress being
applied to the material: large orifice deposition needles
(small gauge number) reduce the shear stress, while simul-
taneously reducing resolution of the 3D print, and lower
volumetric flow rates decrease the shear stress.140 Shear stress
has profound effects on cell phenotype and functionality. For
example, at 1 Pa of shear stress, articular chondrocytes can
significantly change morphology and metabolic activity,141

whereas human mesenchymal stem cells (hMSCs) can
withstand shear stresses in the range of 1 · 10-5–1 · 10-4 Pa
before significantly upregulating messenger RNA expres-
sions of osteocalcin, Runx2, and alkaline phosphataste.142

In conjunction with the flow behavior of the bioink,
internal shear stress can influence cell viability. Mechan-
otransduction at the cell-material interface and the me-
chanical stress placed on cells within the bioink continue to
be hurdles for 3D bioprinting constructs. Current techniques
to study cell viability as a function of shear stress rely on 2D
culture and varying the flow rate of media above the cells.
Short term, high shear stress, with cells suspended in a mov-
ingmedium is less studied, although cells appear to be resilient
to the printing process.143,144 Bioinks such as GelMA,94,145

alginate,50,146 and PEG147,148 along with materials such as,
peptides,149–151 polycaprolactone,152–154 kappa-carrageenan,57,155

and others156–158 have been extensively explored to com-
prehend the interplay between printing parameters and cel-
lular response to the bioprinting process.

GelMA-based scaffolds were used to 3D print complex
shapes145 and were used to deposit HepG2 cells with fa-
vorable viability.143 Alginate is often used due to its non-
immunogenicity, ability to shear thin, and quick ionic
crosslinking in CaCl2 solutions.159 The effects of bioink
compositions (0.5–1.5wt./vol. %) and printing pressures
(0.5–1.5 bar) on cell viability have been investigated.50

hMSCs were >60% viable at shear stress >10 kPa, nearing
100% viability with shear stress <5 kPa. In a similar recent
work, PEG-based bioinks were developed with human der-
mal fibroblasts. It was found that before a critical flow rate
of *140mg/s bioinks with a lower mass flow rate exhibited
a linear relationship with cell viability and with decrease in
mass flow rate, cell viability decreased. This indicated that
increase in hydrogel robustness led to a proportional damage
on encapsulated cells.160 Thus, it is crucial to determine the
shear rate distribution within the bioink formulations.

Evaluating cell–material interactions

Concurrent with the cellular viability, cell functions such
as adhesion, proliferation, and/or differentiation should also
be monitored. Cells encapsulated within the bioink can
proliferate and deposit nascent ECM that is composed of a

complex network of proteins (collagen, elastin, laminin, and
fibronectin), glycoproteins, and proteoglycans.161 This
newly deposited ECM can provide structural and biochem-
ical support to encapsulated cells.

The mechanical stiffness and elasticity of the ECM varies
from one tissue type to the next, primarily due to changes in
the ECM compositions (in particular elastin and collagen),
and the stiffness can differ by several orders of magnitudes.
For example, the elastic modulus of soft brain tissue is in the
range of tenths of a kilopascal (kPa), while calcified bone is
in the range of megapascals (MPa).162 The change in ECM
composition in diseased tissue, particular in case of cancer
metastasis, is well documented.163–166 The ECM protein colla-
gen also plays an important role in cellular adhesion. The pro-
cess of cell adhesion onto the ECM is a complex biochemical
process that has to be lined with other cellular events such
as cell differentiation, cell migration, and the cell cycle.167

Both ECM cell adhesion sites and mechanical properties
are of paramount importance when selecting biomaterial
constituents. The main goal of a fabricated ECM is to pro-
vide adequate sites to the cell for binding, as well as a 3D
architecture and mechanical stiffness similar to the native
tissue. Careful bioink selection allows for the generation of
a 3D architecture that faithfully mimics the native tissue,
while allowing for the variation in the overall mechanical
stiffness and the chemical properties by changing the bioink
composition or concentration.168

Most commonly, cell–material interactions are commonly
measured via 2D seeding of cells on the bioink surface. While
useful, these techniques fail to fully capture the complex
interactions when cells are encapsulated with 3D matrices.
The 3D encapsulation of cells within hydrogels represents an
increasingly complex technique for cell culture, but permits
for the fabrication of constructs that further recapitulate the
innate cellular architecture of tissue scaffolds for engineering
applications.124 This 3D microenvironment better mimics
what cells experience in vivo, compared to standard tissue
culture. In designing new bioinks for extrusion bioprinting,
initial cell screenings continue to be an established method
to determine cell–material interactions. Thus, it is important
to evaluate cell–matrix interactions as well as deposition of
nascent ECM protein using various available techniques.

Cell–matrix interactions within 3D printed struc-
tures. Traction force microscopy (TFM) is used to deter-
mine the traction force between cells and materials. Using the
traditional TFM techniques, cells are cultured on a clear
polyacrylamide gels that are functionalized with adhesive li-
gands and contain fluorescent beads that are embedded just
below the gel surface.169 When attachment occurs, cells gen-
erate a traction force that moves the fluorescent beads. This
movement is then quantified bymeasuring the displacement of
the fluorescent bead (Fig. 5b). This technique has been used to
compare cellular forces generated by metastatic breast, pros-
tate, and lung cancer cell lines and their nonmetastatic cell line
analogs. The traction forces of the metastatic cell lines were
found to be higher.170 After seeding cells, TFM could be used
to determine where cells are adhering on the bioinks surface
and subsequently moving. However, this requires an optically
transparent bioink as well as a flat surface to image. Alter-
natively, vinculin staining can be used to monitor focal ad-
hesion points and elucidate cell binding.171
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3D TFM is a modification to TFM and does not require
that cells be on the exterior of the sample being analyzed.
3D TFM can be used to understand cell behavior in 3D
cultures (Fig. 5b). In 3D TFM, fluorescent beads are coen-
capsulated with the cells within the bioink. A limitation of
this technique is the modification of the bioink’s rheological
properties due to the addition of fluorescent beads. How-
ever, this method can provide valuable insight on cell be-
havior within a bioink. Fraley et al.172 used these techniques
to track the movement of focal adhesion proteins in the 3D
matrix and establish their role in cell motility. Transparent
samples are preferred due to the ability to clearly visualize
the fluorescent beads.

Atomic force microscopy (AFM) probe techniques in-
volve the quantification of how strongly a cell is adhered to
the surface of the bioink. The AFM cantilever reaches the
cells from micrometers above slowly. The cantilever then
makes contact and indents it such that the deflection reaches
a set point. The cantilever deflections during this process are
recorded as force–distance curves, where the highest force is
the cells adhesion strength (Fig. 5c). This technique can be
used to measure both cell–cell adhesion forces and cell–
matrix adhesion forces.173 While using AFM with bioink
systems, the cells in the printed constructs must come in
contact with AFM tip. Fully encapsulated cells cannot be
sensed utilizing AFM techniques without destruction of the
printed construct.174

Multiple particle tracking microrheology (MPT) is another
technique used to quantify cell–matrix interaction. In this
technique, probe particles are embedded in the hydrogel ma-
trix. The Brownian motion of the embedded particles is
measured and related to rheological properties such as creep
compliance and viscosity.175,176 PEG-based peptide cross-
linked hydrogel scaffolds were seeded with hMSCs.MPT data
were gathered over a period of time, which aided character-
ization of spatial remodeling of the hydrogels as the hMSCs
migrated.177 MPT is a crucial technique, which identifies re-
gions in the hydrogel network where cells adhere during ma-
trix degradation and MMP secretion. It also characterizes
distances over which cellular matrix remodeling occurs.

Evaluating nascent extracellular matrix production within
printed structure. Along with the visualizing cell interac-
tions with bioinks, evaluation of deposited matrix and pro-
tein quantification enhances the understanding of how cells
are behaving. The production and deposition of ECM by
cells is an important cellular event. In the case of bioprint-
ing, it becomes essential for cells to produce ECM to fa-
cilitate further proliferation within the scaffold. Native ECM
is composed of various components, such as proteins (col-
lagen, elastin, and fibronectin) and glycosaminoglycans
(GAGs) (heparan sulfate, chondroitin sulfate, and so on).178

Hence, it is important to quantify the production of ECM
components in 3D printed scaffolds (Fig. 5d), as they could
mimic the 3D architecture of the native tissues. Various
methods can be used for determining the individual com-
ponents as listed below.

Collagen is the most abundant protein within the human
body and is an important ECM component. The most common
methods to estimate collagen production is the quantification
of hydroxyproline within a sample. This is done by dissolving
the sample in hydrochloric acid, followed by neutralization,

and further reaction with reagents such as chloramine T.179

This method has a distinct drawback of being rather tedious
and can greatly be affected by the type of sample. Hence,
simpler colorimetric methods have been developed using dyes
such as Sirius Red F3BA, which bind specifically to collagen
and show no specific binding with elastins.180

There are five types of GAGs: heparan sulfate (HS), chon-
droitin sulfate, dermatan sulfate, keratan sulfate, and hyalur-
onan, of which HS is the most studied.178 There are two
commonly used techniques for the quantification of GAGs,
namely Alcian Blue and Dimethylmethylene Blue (DMMB)
assay. The latter works on the principle of acid digestion of
the polysaccharide followed by reaction with a carbazole,
which gives rise to a colored byproduct.181 However, this
method has a tendency to overestimate the concentration of
the GAGs due to interference from pH buffer components,
such as chloride ions (present in phosphate-buffered sa-
line).182 The DMMB assay relies on the ability of sulfated
GAGs to bind the cationic dye 1,9-dimethylmethylene blue183

and, hence, is better suited for GAG quantification.
With both collagen and GAG quantification, standardi-

zation to the number of incorporated cells provides infor-
mation regarding how active the cells are and if they are
proliferating. Nascent protein deposition within the 3D printed
construct can be visualized by adapting a recently developed
labeling technique. In this technique, methionine molecules
containing azide groups are incorporated into proteins dur-
ing their synthesis. These labeled proteins are then visual-
ized for a spatiotemporal characterization of nascent protein
deposition across the hydrogel matrix environment.184,185

Future Directions

The field of 3D bioprinting has undergone rapid progress
over the last several years. There has been headway in op-
timizing bioinks which not only provide cell viability and
printability but also provide additional tunable functional-
ities, such as stimuli responsiveness and programmable
properties. There has also been progress in expanding the
hardware of 3D bioprinting to incorporate synergistic,
multimaterial printing. In the following sections, we will
examine the various emerging bioprinting techniques and
their attributes which make them attractive in this field.

Multimaterial 3D bioprinting for fabricating complex
architectures

Current printing modalities successfully print relatively
complex geometries but are not completely successful at
recapitulating the intricate compositions of native tissue
structures. Progress in various additive manufacturing
techniques has led to the development of multimaterial
bioprinting.186–191 Multimaterial extrusion printing enables
for the deposition of multiple bioinks in a coded, continuous
manner to fabricate tissue constructs with a smooth and fast
transition between different materials (Fig. 6a). This enables
for printing structures that closely mimic native tissue de-
signs and composition.192

The multiextrusion process is calibrated with the motor-
ized stage movement, allowing for deposition of 3D archi-
tectures with multiple bioinks in a spatially defined manner.
However, resolution and print fidelity still remain significant
challenges, which are being met by designing additive
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manufacturing systems that can precisely control the print-
ing of complex architectures.50 Theoretical modeling is also
being applied to the bioink design. Instructing the experi-
mental design of a tissue structure through modeling is
expected to enhance the function and properties of biofab-
ricated tissue structures.193

3D bioprinting tissue models for preclinical evaluation

Engineered tissue models are becoming an increasingly
appealing platform to study various diseases and predict the
efficacy of novel therapeutic interventions, potentially re-

ducing or eliminating animal subjects.194 However, tradi-
tional fabrication techniques tend to produce oversimplified
constructs and cell microenvironments.195 The advent of 3D
bioprinting allows for engineering of complex, biomimetic
in vitro tissue models that can aid in treatment optimiza-
tion.196 For example, the tumor microenvironment is con-
sidered extremely vital in understanding and regulating
tumor metastasis and progression.197 3D bioprinted tumor
models enable a more precise simulation of the tumor en-
vironment and are ideal for preclinical studies (Fig. 6b). A
3D printed coculture ovarian cancer model was 3D printed
in a controlled manner using normal fibroblasts and human

FIG. 6. Future directions. (a) Multimaterial 3D bioprinting aims to recapitulate intricate composition of native tissue
structures through printing multiple bioinks in a synergistic manner. (b) 3D bioprinting engineered tissue models enables
conceiving in-vitro biomimetic tissue models which can be utilized in understanding disease progression and treatments for
conditions such as cancer. (c) 3D bioprinting therapeutics utilizes bioinks engineered with protein therapeutics which can
direct cell function in the bioprinted construct. (d) Four-dimensional (4D) bioprinting supports designing programmable
structures with tunable behavior and functionalities. A bioprinted heart valve tissue is responsive to electrical impulses
generated by cardiac cells and exhibits rhythmic contraction and expansion. Color images are available online.
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ovarian cancer cells (OVCAR-5). It was observed that the
3D printed cancer model established 3D acini with growth
kinetics and structures similar to in vivo development.198

Despite progress in designing cancer models through 3D
bioprinting, there still is a limited scope of engineering models
with multicellular microenvironments consisting of cancer
cells, immune cells, noncancer cells, and vascular cells.

Printing therapeutics in 3D to control and direct cellular
functions

Progress has also been made in designing bioinks loaded
with therapeutics, which can be utilized to program cell func-
tion within printed constructs. For example, a bioink designed
from a hydrolytically degradable polymer poly(ethylene
glycol)-dithiothreitol (PEGDTT) and 2D nanosilicates loaded
with protein therapeutics demonstrated a shear-thinning rhe-
ological profile with enhanced printing fidelity.199,200 The
anisotropic charge of the 2D nanosilicates enables seques-
tering of protein therapeutics and facilitates their sustained
release within the 3D printed structure (Fig. 6c). This approach
exhibits the potential to engineer intricate 3D tissue structures
within regenerative medicine.

4D bioprinting for designing dynamic tissues

The process of four-dimensional (4D) bioprinting in-
volves 3D bioprinting structures that change upon exposure
to an external stimulus, such as light, heat, or moisture.
These triggers allow the constructs to change shape, func-
tionality, or properties with the potential to translate into
dynamic motion.201 With detailed insight on material
properties and their stimuli responsive behavior, 4D bio-
printing allows for the design of programmable structures
with tunable functionalities. Examples of materials used
for 4D bioprinting include shape memory polymers
(SMPs)202,203 and hydrogels.204,205 4D printing with SMP-
based inks involves embedding SMP fibers within a matrix
to constitute a 3D bilayer structure. A dynamic shape
transformation of these structures can be achieved by
heating the construct above the characteristic transition
temperature exhibited by the SMP.206 Heat-activated SMPs
have been used in making 4D printed smart stents, which are
deformed to transitory shape, introduced into the body and
then transformed back to the original shape with a localized
temperature change.202

In the case of hydrogel-based bioinks, 4D bioprinted
composites with a bilayer framework exhibit controlled
deformations that depend on the hydrogel’s swelling ratios,
elastic moduli, and thickness of the framework.201 Using
modeling techniques allows for precise prediction of geo-
metric changes of the configurations and generated move-
ments, enabling design of constructs capable of twisting,
folding, and/or curling. These hydrogel bioinks can poten-
tially be utilized to bioprint various functional tissue com-
ponents, such as printed functioning cardiac tissue207 or
personalized replacement heart valves (Fig. 6d).

Recently, semisynthetic approaches have been developed
to enable photomediated 4D site-specific protein patterning.
In these techniques, diverse library of homogeneous func-
tionalized proteins were developed with reactive handles for
biomaterial modification.208,209 Mask-based photolithogra-
phy techniques were utilized to control the protein pattern-

ing throughout hydrogel thickness. The photoreversible
immobilization of proteins can be extended to growth fac-
tors and enzymes enabling a dynamic spatiotemporal regu-
lation of cellular proliferation and protein kinase signaling.
These techniques can be utilized to design advanced pho-
toresponsive bioinks for 4D bioprinting.

Conclusion and Outlook

3D bioprinting is a multifaceted fabrication technique for
printing complex tissue or even organ structures. The field
of bioprinting is rapidly evolving with applications in en-
gineering, science, and regenerative medicine. There has
been significant progress in designing intricate biomimetic
constructs with cellular functionalities. In general, bio-
printing has emerged as a strong high-throughput platform
technology to conceive macro- and microscale bioengi-
neered systems. Although current techniques to assess
polymeric bioink functionalities for 3D bioprinting appli-
cations are widespread, there is little standardization within
the field. In addition, there remains an overall lack of bioink
formulations and methodology for predicting usefulness as
a bioink.

Clinical application of extrusion-based bioprinting re-
quires bioinks that can be organized to replicate tissue or-
ganization, support cell proliferation and differentiation,
and degrade at physiological time scales. The rheological
properties of bioinks correlate to the systems biological
performance, dictating the need for novel and precise anal-
ysis techniques to monitor cell/material interactions during
the printing process. Optimization of the rheological proper-
ties, specifically yield stress, may permit homogeneous cell
incorporation and further boost the printing process. Often
high resolution is sought in 3D bioprinting, although recent
studies suggest that high precision may not be neces-
sary.210,211 Thus, development of advanced bioink materials
and formulations with suitability for multiple cell and tissue
types is currently an area of focus.

Overall, there is a need to promote fundamental rheo-
logical understanding with utilization of biological tech-
niques specifically to further deepen our insight into
extrusion-based 3D bioprinting. In addition, there is a need
to develop computational techniques that consider the
bioink properties and mechanics during fabrication, such as
nozzle diameter or printing speed, to provide a holistic ap-
proach to 3D bioprinting. Concurrently, there is a strong
sense in the bioprinting community to make the printing
modalities more accessible. We also need to bring down the
cost of bioprinters and making them more available to a
broader scientific group.

In the near future, we anticipate development of hybrid
bioprinting systems capable of dispensing multiple bio-
materials, multiple cell populations, as well as multiple
biochemical cues (such as drugs, nutrients, and growth fac-
tors) bringing us one step closer to whole tissue/organ
regeneration. These would also lead to advancement of
biomanufacturing technologies with in vivo integration,
leading to engineering constructs with enhanced in-vivo
efficacy. Furthermore, stimuli responsive bioprinting strat-
egies are also set to transform health care and medicine by
development of dynamic constructs poised to be utilized in
biosensing, bioactuation and biorobotics. Thus, this review
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attempts to elucidate the 3D bioprinting process, detailing
its various attributes. It also attempts to provide a deeper
understanding of the mechanics governing bioinks and their
subsequent macroscopic properties, such as ability to mod-
ulate adhesion, degradation, and therapeutic delivery for
executing prints with higher resolution, fidelity, and bio-
compatibility.
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