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Nuclear magnetic resonance (NMR) spectroscopy is an
important analytical technique in metabolomics. Because

it provides atomic-level detail of small molecules, NMR is well-
known as an indispensable tool for unknown compound

identification. In recent years, liquid chromatography−mass
spectrometry (LC-MS) has become the dominant technology
in metabolomics research because of its sensitivity and ability
to record tens of thousands of features for each sample. The
dominance of LC-MS has resulted in less visibility and use of
NMR in publications, publicly deposited metabolomics data
sets, and other less quantifiable ways such as fewer specific
NMR metabolomics funding opportunities or fewer grant
proposal reviewers with NMR expertise. We believe that this
trend is largely because of a common misconception that NMR
and LC-MS are largely overlapping technologies. In this
review, we have focused on several unique strengths of NMR
in metabolomics research and illustrate these strengths with
examples from recent literature. We hope to show readers that
NMR is indeed highly complementary to LC-MS and that it
can significantly enhance the biological knowledge gained from
metabolomics research.
Improvements in genomic sequencing technology have

revolutionized science.1 The initial human genome project2

was a monumental effort estimated by the National Human
Genome Research Institute (NHGRI) to cost $2.7 billion and
require over a decade of effort by international teams of
scientists. Today, the NHGRI estimates the cost of sequencing
an entire human genome to be about $1000. As noted by
many, metabolomics is more complicated than genomics from
the perspective of analytical technology because of the large
chemical diversity and dynamic nature of the metabolome.
Over the past two decades, biomedical and biology

applications in metabolomics have steadily grown and show
no signs of diminishing (Figure 1A). A large amount of that
growth is from advances in mass spectrometry (MS),3

especially LC-MS, which has become the dominant analytical
platform used in metabolomics (Figure 1B). In addition to
possessing extremely high sensitivity, the abilities of LC-MS
are substantial, including measuring tens of thousands of
features in one experiment, obtaining elemental formulas with
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high mass-resolution measurements, and matching metabolites
to large and expanding MS databases with tandem mass
spectrometry (MS/MS). These attributes, along with a highly
competitive commercial landscape of MS vendors, make it an
attractive choice for metabolomics studies.
What about the role of NMR in metabolomics?5 Sensitivity

is a regularly noted limitation of NMR, a spectroscopic
technique with resonance frequencies that are several orders of
magnitude lower than thermal energy at room temperature and
standard field strengths available in most laboratories today.
The Boltzmann distribution shows that only a few in 105

nuclear spins contribute to the signal (the majority cancel each
other), but that low energy also allows for noninvasive
magnetic resonance imaging (MRI), as well as nondestructive
in vivo NMR. Further, many recent technical developments
have greatly improved the sensitivity of NMR,6 and state-of-
the-art NMR probe technology can enable characterization of
nanomole quantities of sample.7 Thus, NMR is more sensitive
than many people believe, but it is still a few orders of
magnitude less sensitive than MS.
We routinely use both NMR and MS for metabolomics in

our laboratory because they are largely complementary,
especially for confident unknown compound identification.8

While the trend in metabolomics research is clearly toward LC-
MS, we have focused this review on applications that uniquely
benefit from NMR spectroscopy. We are focusing on several
strengths of NMR in metabolomics research (columns in
Table 1), which will be organized in the review by examples of
applications from the recent literature (rows in Table 1). We
note that applications in biofluids from human samples are not
emphasized here. These are clearly important areas of
metabolomics that have numerous reviews already available.
Many of the topics described below can be nicely applied to
human biofluids, especially the use of fraction libraries for

improved ID and functional studies as well as virtually all of the
topics covered under computation.

• In vivo NMR: MRI and magnetic resonance spectrosco-
py (MRS) are widespread and important in many
clinical applications, but similar NMR technologies can
be used to noninvasively study metabolism in vivo.
These highly flexible methods can be applied to many
different cultured systems and used to obtain data that
would be difficult or impossible to collect with other
techniques.

• Isotope tracing and flux: Unlike MS, which gets more
complex when isotopic labels are employed, there are
powerful methods in NMR to filter the signal during
data acquisition to only see the isotopes and remove all
other signals. This can be applied to many applications,
including in vivo metabolomics, where isotopes can be
used to investigate specific mechanisms in metabolic
pathways.

• Binding studies: The dynamic nature of metabolism
includes interactions between metabolites and macro-
molecules, especially proteins. These functional inter-
actions are largely ignored in metabolomics research but
have been routinely used in drug discovery. NMR can
detect from very strong (Kd < nM) to very weak (Kd ∼
μM-mM) binding affinities, and we present what we see
as largely unexplored opportunities to use metabolite
fraction libraries to study function.

• Media analysis: Because the sample does not touch the
instrument, NMR is ideal for analysis of media sampled
in real-time or in discrete time points. The quantitative
and highly reproducible nature of NMR is ideal for
characterizing nutrients consumed and metabolites
released in cultures of microorganisms. This chemical
“footprint” is simple to measure by NMR because the
media needs no extraction or extensive preparation.
More importantly, it can provide very useful information
about the metabolic state of the culture.

• Unknown compound identification is one of the major
strengths of NMR, especially when used with MS. We
discuss a few examples of NMR for compound ID in
genetic pathways of model organisms and marine natural
products. Unknown ID and the use of fraction libraries

Figure 1. Overall trends. The bar chart in A shows PubMed search
results for “metabolomics OR metabonomics” (black points
connected by dashed lines), “metabolomics OR metabonomics
AND mass spectrometry” (blue bars), and “metabolomics OR
metabonomics AND NMR” (red bars). The inset pie chart B shows
the current distribution of techniques used in studies deposited on the
Metabolomics Workbench.4 Both data were obtained Oct. 10, 2020.

Table 1. Strengths of NMR That Will Be Highlighted in
Sections on Applications

NMR strength

Section
In vivo

metabolism

Isotope
tracing
and flux

Ligand
binding

Media
analysis

Unknown
compound

ID

1) In vivo
metabolomics

X X X

2) Mammalian
cell culture

X X X X

3) Metabolite-
protein
binding

X

4) Model
organisms

X X X X

5) Marine and
carbon
cycling

X X X X

6)
Computation

X X X X X
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both serve to illustrate the close relationship between
metabolomics and natural products discovery.9

• Computational methods: Whether data are collected by
NMR or MS, all metabolomics studies generate a large
amount of data that need to be processed and analyzed
to extract biological knowledge. We end the review by
summarizing recent developments in chemoinformatics
and computational modeling that are especially
important for NMR.

■ IN VIVO METABOLOMICS
Organisms inhabit different metabolic states depending on
their developmental programming, internal resources, regu-
latory processes, and emergent dynamics (e.g., circadian
clocks) and in response to changes in their environments.
Single time-point measurements with little or no sample
preparation allow for rapid snapshots of metabolism across
multiple samples, conditions, or times. Continuous or real-time
methods provide repeated measurements on the same sample
over time scales with sufficient temporal resolution to observe
a given dynamic phenomenon. NMR stands alone in its ability
to noninvasively study the inner workings of metabolism
within a wide range of living organisms due to its sensitivity,
resolution, unbiased and quantitative nature, and ability to
nondestructively measure complex samples with minimal
modification.
Fingerprinting and the Utility of High-Resolution

Magic Angle Spinning (HR-MAS) NMR Techniques.
Metabolomics data are often considered the gold standard
for phenotypic measurements. Thus the most basic use of in
vivo metabolomics leverages the strengths of magnetic
resonance to provide metabolic profiles (fingerprints) of
samples to aid in de novo annotation, facilitate sample
classification, and lend a scalable functional perspective10,11

to metabolomics.
Sample preparation for in vivo NMR is typically quite

simple; some cell suspensions can be measured directly in
NMR tubes with only the addition of D2O and a chemical shift
reference.12 However, high-resolution magic angle spinning
(HR-MAS), which reduces effects of sample inhomogeneity
(e.g., broad line shapes) for mixed-phase and solid biological
samples, has gained popularity for ex vivo and in vivo
metabolomics since its introduction for observing nonliving
semisolids over 30 years ago.13,14 In modern HR-MAS systems,
a sample is simply placed with lock solvent and chemical shift
reference in a small zirconia rotor (typically <80 μL). The
rotor is then inserted into a specialized probe which tilts it to
the “magic angle” (54.7° with respect to the applied magnetic
field) and spins it pneumatically about its longitudinal axis.
One use of this technology is measuring regulatory and

lifestyle changes, such as those which occur in the switch to
pathogenicity.15 HR-MAS provided the first in vivo metabolic
profile of Pseudomonas aeruginosa to serve as a baseline for
detection and identification of infections in clinical samples.16

The lack of sample disruption in HR-MAS means clinical
samples such as these can subsequently be preserved or used in
downstream molecular analyses. This robust technique also
provided classification of microalgae in vivo containing residual
seawater, thus opening up metabolomics measurements for
osmotically fragile marine cells in general17 (discussed below).
Additionally, it can link together pathways important to
metabolic disease and aging and allows simultaneous
observation of polar small molecules and lipids. Using in vivo

NMR measurements of lipids and other metabolites in living
Drosophila melanogaster, Righi et al. dissected relationships
between injury in aging/immunodeficient flies and suggested
that insulin signaling plays a role in both.18 The group then
found intramyocellular lipid components to be potential
biomarkers for insulin resistance in mitochondrial flies,
including unidentified peaks.19 More recently, an exciting
study by Sarou-Kanian et al. demonstrated that HR-MAS
could both quantify and localize several metabolites (e.g., to
reproductive organs) in living D. melanogaster.20

HR-MAS offers considerable advantages as a flexible in vivo
metabolomics technique. However, samples can experience
high acceleration while spinning.21 While microorganisms such
as yeast and bacteria tolerate and even grow in comparable
hypergravity, these forces have some known effects on
physiology.22 Furthermore, these effects may be complex and
difficult to distinguish from ordinary metabolic processes.
Fortunately, two avenues of research are addressing this issue.
First, new pulse sequences that allow for spinning speeds as
low as 100 Hz have been demonstrated for intact C. elegans
tissue and living freshwater shrimp,23 greatly reducing the
forces experienced by organisms during measurement. Second,
an arrangement called high-resolution magic angle coil
spinning (HR-MACS) uses a small resonator coil that is
made in-house and placed inside the zirconia rotor. By
reducing sample radius and spinning speeds, sub-μL yeast cell
suspensions are subjected to far less acceleration with
preserved data quality and improved mass-sensitivity.24 We
refer to a recent review of HR-μMAS approaches,25 which
show promise for further in vivo measurements of micro-
organisms.
Other challenges in HR-MAS based studies include water

and macromolecule suppression, spinning sideband attenu-
ation, and reduced flexibility in sample conditions. These,
along with spinning speed, have been partially addressed by
new 1D and 2D pulse sequences,23,26 enabling application of
HR-MAS to more sensitive specimens and extending the
practical length of time-series experiments. Finally, probes with
higher radio frequency (RF) power (e.g., Bruker composite
multiphase (CMP) probes) have allowed comprehensive
multiphase NMR measurements in freshwater shrimp which
survive in the rotor for hours.27 A hole can also be drilled in
the rotor cap to allow for oxygenation with ambient air21,27 or
treatment with alternative gas mixtures.

Observing Fluxes Using Stable Isotope Labeling (SIL)
Approaches. Stable isotope labeling (SIL) has historically
allowed flux to be traced through the network of metabolism
from a defined start point to multiple end points28 where the
label accumulates over time.29 Most current SIL studies rely on
13C,30,31 which has a large chemical shift dispersion, ubiquity of
incorporation in biomolecules, and relative low natural
abundance that allows labels to be selectively observed without
much background. A recent application of SIL produced a
combined in vivo and ex vivo annotation of a 13C-enriched
water flea metabolome using several multidimensional 1H and
13C NMR experiments. This custom reference metabolome
will be used in future studies for mapping results from real-
time toxicity detection experiments.32 The approach represents
a promising general strategy of using reference data sets for
future SIL studies in this nonmodel organism, underscoring the
flexibility of in vivo NMR metabolomics. SIL approaches using
NMR are reviewed in more detail below as well as in other
recent reviews.33,34 However, the utility of SIL approaches is
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maximized when combined with real-time in vivo measurement
(Figure 2).
Real-Time Metabolism Measurements. The gold stand-

ard for observing metabolism at work is a dynamic, real-time
measurement. Because NMR excels at quickly and non-
intrusively measuring metabolites in relatively small volumes,
flow NMR systems were adapted long ago for monitoring cell
cultures and conditioned media.35 In these systems, a liquid

sample (such as culture media or cell suspension) is pumped
through the magnet bore into the probe in a closed or open
loop and can be recycled or discarded after measurement.
Alternatively, cells held within the probe can be continuously
replenished with fresh media. Of particular interest, commer-
cially available benchtop flow NMR systems extend the
versatility of NMR for real-time monitoring of liquid
reactions36 while greatly reducing overhead and will be useful

Figure 2. Continuous in vivo metabolism by NMR (CIVM-NMR) allows for global monitoring of known and unknown endo- and exometabolite
pools in living cells or organisms with high temporal resolution. (A) Raw data can be traced using feature (peak/ridge) extraction algorithms, and
(B) plots of combined peak intensity profiles for replicate samples show high reproducibility for metabolic trends. (C) Major fluxes can be observed
when SIL is used to selectively monitor labeled derivatives, and differential dynamics in distinct pools of the same metabolite can be monitored in
the same sample. Modified with permission from Judge, M. T.; Wu, Y.; Tayyari, F.; Hattori, A.; Glushka, J.; Ito, T.; Arnold, J.; Edison, A. S.
Continuous in vivo Metabolism by NMR. Front. Mol. Biosci. 2019, 6, 26. doi: 10.3389/fmolb.2019.00026. (ref 21).

Figure 3. Targeted isotopic CIVM-NMR measurement of metabolic flux in human myeloid leukemia cells. (A) 13C-labeled keto-isovalerate (KIV)
was converted to valine. (B) 13C-labeled valine was not converted to KIV, confirming unidirectional flux in ML cells. (C, D) Relative
concentrations over time of 13C-labeled KIV (orange) and 13C-labeled valine (purple) compared to baseline noise (gray), obtained by taking the
raw maximum spectral intensity within each region of the representative experiments in (A, B), respectively. Different lines show the data from 3
independent replicates of each experiment. Reprinted with permission from Judge, M. T.; Wu, Y.; Tayyari, F.; Hattori, A.; Glushka, J.; Ito, T.;
Arnold, J.; Edison, A. S. Continuous in vivo Metabolism by NMR. Front. Mol. Biosci. 2019, 6, 26. doi: 10.3389/fmolb.2019.00026. (ref 21).
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for problems like media optimization and culture control.37

Lastly, flow NMR is not limited to single-celled organisms as
multicellular aquatic organisms were recently sustained in-
probe with media flow to do real-time metabolic flux
monitoring.38

For cell suspensions, simpler NMR setups can be used.
Koczula et al. recently used solution 1H NMR to collect time
series spectra on agar-embedded chronic lymphoid leukemia
cells, allowing them to observe real-time metabolome shifts
without sedimentation.39 Select peaks were traced using an in-
house tool,40 and pH was estimated by a known internal
standard.39 For more complex samples, such as the multi-
cellular fungus Neurospora crassa, HR-MAS can be used for
continuous in vivo monitoring of metabolism by NMR (CIVM-
NMR). Judge et al. used CIVM-NMR to collect data (Figure 2,
Panels A−B) with high temporal resolution (up to ∼30 s)
under different oxygenation conditions without needing
specialized flow NMR equipment and with minimal sample
preparation.21 More recently, C. elegans metabolism was
monitored in real time using a custom NMR tube insert that
separated worms from the D2O lock solvent.41 The approach
used in this study offers the benefits of ease of application and
high-quality real-time data without requiring an HR-MAS
probe. In both this study and CIVM-NMR, features were
extracted for both known and unknown peaks (Figure 2,
Panels A−B).21,41
One particular strength of NMR is the unique ability to

noninvasively conduct selective or parallel measurements of
distinct pools of metabolites in vivo. Reed et al. recently used
13C-edited NMR to track real-time incorporation of isotopi-
cally labeled glucose into multiple myeloma cells as well as
define important considerations for SIL experiments.42 Like-
wise, Judge et al. monitored fluxes derived from 13C-labeled
glucose in Neurospora, and protons on both labeled and
unlabeled carbons were measured simultaneously to reveal
unique dynamics for different glucose pools in the same
organism (Figure 2, Panel C). In the same study, specific
amino acid fluxes were measured in living cancer cells (Figure
3).21

Finally, while in vivo systems such as these are desirable,
well-mixed cell cultures can be effectively sampled frequently
with small volumes to yield very similar dynamic information.
By injecting bacterial, yeast, or mammalian cell cultures into a
mass spectrometer after in-line extraction, Link et al. were able
to effectively track the response of bacterial cultures from
starvation into feeding.43 This study also highlights the need
for modeling, as the high-density dynamic data generated from
the technically impressive platform were used to fit kinetic
models to interpret amino acid biosynthesis pathway
dynamics.43 Hyperpolarization NMR experiments, while
challenging to implement and optimize, also produce data of
similar temporal resolution for specific reactions.34,44

In Vivo Data Analysis. New approaches to data analysis
are emerging for real-time metabolomics, as the ability to
collect large amounts of real-time in vivo data currently
outpaces our ability to extract and interpret information from
it. In particular, advanced feature extraction tools and kinetic
models trained on these new data are needed. Commercially
available and proprietary software is limited for the analysis of
extracted continuous NMR systems. MetaboLab from the
Günther group39 and in-house scripts from our own group21

have been used for real-time in vivo feature tracing (Figure 2A)
and extraction (Figure 2B). More recently, a computer vision-

based tool called RTExtract has been developed for extracting
peak intensities from NMR data with continuous changes in
peak location and intensity, including those from CIVM-NMR
or flow NMR experiments.45 This tool greatly expands the
potential of time-series in vivo NMR experiments by
simplifying and expediting the feature extraction process as
well as improving the capability to track overlapping peaks.
This is exciting, as continuous spectral measurements on a
system as quantitative and stable as NMR offer several
advantages in solving deconvolution and alignment prob-
lems.21,45 Ultimately, automated nonparametric feature ex-
traction flexible enough for different measurement intervals
and experimental formats is desirable. Improved approaches
for spectral deconvolution are also needed, particularly for HR-
MAS probes, which inherently have broader line widths that
can mask coupling. Because real-time data are typically 1D,
annotation is still a challenge. Faster 2D pulse sequences,
which are more amenable to real-time measurements, would
aid in annotation and resolution. Likewise, improved de novo
annotation strategies could be paired with streamlined
approaches for mapping peak annotations from extracted
data to in vivo data to better leverage the benefits of both data
types. Finally, integration of real-time data requires detailed
kinetic models,46 which do not make steady-state assumptions
and are flexible with experimental format.

■ METABOLOMICS APPLICATIONS IN MAMMALIAN
CELL CULTURES

Cell lines are advantageous for their relative accessibility, low
cost, ease of manipulation, and experimental control. As the
interest in cancer metabolism has increased, so has the
application of metabolomics in cancer cell models. More
recent developments in cell-based therapeutics have also
created new opportunities for discovery by NMR. Here, we
outline some recent work leveraging the unique capabilities of
NMR to measure intra- and extracellular metabolites as well as
specific metabolites and pathways implicated in disease or
function in cultured mammalian cell models.

Targeted Metabolism in Mammalian Cells. There are
several unique features of NMR that allow for targeted analysis
of specific metabolite classes or pathways of interest to cancer
metabolism with the use of cell lines. This is a particularly
powerful capability when advancing from common profiling or
screening studies to understanding mechanisms or changes in
metabolic flux that produce observed changes.
For example, coenzyme A species, redox metabolites such as

NAD+ and NADH, as well as energy molecules like ATP are
particularly useful for understanding cancer metabolism in
vitro. However, these classes of molecules are difficult to
measure with MS-based techniques due to their highly labile
nature and structural similarity. These are challenging for
NMR as well due to their low concentrations and
aforementioned structural similarity which can produce high
spectral overlap. Recently, Nagana Gowda et al. have
optimized extraction and sample preparation techniques that
allow for preservation of these endogenous metabolites. A one-
time addition of coenzyme standards to a reference sample was
sufficient to identify and quantify signals from unique species
using standard 1H NMR across multiple samples.47 Similarly,
utilizing a combination of standard compound spiking and 2D
correlation experiments, Nagana Gowda was also able to
definitively identify and quantify redox coenzymes and
adenosine phosphate species from extracted mammalian
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cells.48 These methods highlight how, when combined with
robust chemical extraction methods, the reproducibility and
stability of metabolite chemical shifts in an NMR spectrum can
enable comprehensive profiling of coenzymes and energy
molecules with a single experiment.

13C-labeled substrates are useful for tracking the flux of
carbon sources and understanding the unique metabolism of
different cancer types. While using SIL is not unique to NMR,
the ability to directly and selectively detect molecules and the
positions of atoms containing tracers such as 13C is
unparalleled. NMR provides atom-specific information, making
it ideal for isotopomer analysis. Lane et al.49 provide an
excellent example of applying both NMR and LC-MS for
investigating cancer energetics using both 13C- and 15N-labeled
glucose, glutamine, glycerol, and octanoate to profile differ-
ential nutrient utilization between breast cancer cell lines of
different histological subtypes. By using 1H-detected 1D 13C-
HSQC (heteronuclear single quantum correlation) experi-
ments, they compared NMR J-couplings at different nuclei in
metabolites labeled by different isotopic substrates and were
able to deduce the specific pathways used to metabolize these
carbon sources. Combined with information from 2D 1H-
TOCSY (total correlation spectroscopy) experiments, they
were able to quantify relative amounts of ribose contained in
nucleotides generated by oxidative vs nonoxidative pentose
phosphate pathways, among other insights.49 A review of the
stable isotope resolved methods utilized by Lane was recently
published by their group.50 Winnike et al. also used 13C-labeled
glucose and glutamine to determine the relative flux of these
nutrients in breast cancer cells using both directly detected 13C
1D experiments as well as 2D 13C-HSQC for metabolite
annotation. 13C detection provides greater chemical shift
dispersion and less overlap than 1H detected data.30,51

Importantly, these studies and others have revealed that the
typical classifications of breast cancer cells, such as
proliferation rate or histological subtypes, do not necessarily
predict metabolic pathway activity.
To probe metabolism even more specifically at the enzyme

level, Hattori et al.52 utilized a variety of 1D and 2D NMR
experiments on cell extracts labeled with either valine or its
ketoacid, keto-isovalerate (KIV). To determine the direction-
ality of the transamination reaction, which is catalyzed by
branched-chain amino acid aminotransferase 1 (BCAT1), they
either added 13C-valine with natural abundance KIV or 13C-
KIV with natural abundance valine. Similar experiments were
done with 15N to follow the amino group. These data showed
that leukemia cells preferentially transaminate branched-chain
keto acids to their respective branched-chain amino acids,
uncovering a novel behavior of leukemia cells shown to
enhance their malignancy.52 Judge et al. were able to use
CIVM-NMR to reproduce this result using the same matched
pairs of substrates in live cells utilizing a continuous 1D 13C-
HSQC experiment to detect the protons that were connected
to labeled carbons, giving a simple and direct real-time display
of KIV turnover (Figure 3).21

While 1H and 13C atoms are the most commonly used nuclei
for profiling metabolites, there are other nuclei that can be
leveraged for targeted analysis of metabolism in cancer cells by
NMR.
For instance, phosphocholine and phosphoethanolamine

related molecules, which have been previously observed to be
significant in cancer studies by NMR,53,54 can be detected
directly using 31P NMR. Similar to 1H, 31P is an NMR active

isotope and occurs at 100% natural abundance, which provides
higher sensitivity than 13C. There are fewer phosphorus
resonances comprising a typical biological sample, resulting in
a less crowded spectrum. Juranic and co-workers have
developed useful NMR-based methods to characterize high-
energy phosphometabolites like ATP.55 Not only do they take
advantage of 31P NMR, but they also label samples with added
H2

18O. The addition of 18O is indirectly detectable through
isotope effects that manifest on the 31P nuclei, allowing for
elucidation of valuable functional information in perfused
tissues. Shah et al. demonstrated the utility of 31P NMR in
capturing the dynamics of different phosphoethanolamine
species across cancerous and nonmalignant cell lines, revealing
differential dependence of cancer cells on phospholipid
synthesis when biosynthetic genes were knocked out.56

Veronesi et al.57 used direct 19F detection of fluorine-labeled
substrates and their enzymatic products to monitor the activity
of a specific enzyme in living cells. Similar to 31P, 19F is an
NMR active isotope that occurs at 100% natural abundance,
with essentially no background resonances in most biological
samples. This allows tracking the fate of 19F tracer molecules
without signals from endogenous compounds. With their
system, Veronesi et al. were able to quantify changes in fatty
acid amide hydrolase activity upon treatment with inhibitors.57

As the first example of this type of quantitative kinetic data
obtained in intact cells, 19F has applications for both cancer
drug screening and targeted metabolism studies.

Media Analysis of Cancer Cell Cultures. The analysis of
extracellular metabolites in culture media is important to the
study of cancer cell metabolism in vitro. NMR is well suited for
this due to the minimal sample preparation needed, which
allows aliquots of culture media to be analyzed via NMR
directly with the addition of a chemical shift reference in 5−
10% D2O. Complementing the intracellular metabolome with
changes in the extracellular environment provides greater
context for interpreting the results of metabolomics studies. In
addition, the use of small diameter, low volume sample tubes
with a high-sensitivity small volume probe enables sampling of
media from the same culture repeatedly over time for time-
course data.
Recently, Wojtowicz et al.58 performed a time-course NMR

analysis of media in the culture of breast cancer cells and
compared the media profiles to NMR profiles of serum from
breast cancer patients, to see if direct comparisons could
reasonably be made between them when performing in vitro
studies. Wojtowicz and colleagues collected media samples
from breast cancer cell cultures 16 times over the course of 72
h, revealing dynamic, nonmonotonic changes in several
detected metabolites. Lactate, alanine, glutamine, tyrosine,
and glucose profiles in the culture media showed opposite
trends of accumulation or depletion compared to changes in
patient serum vs healthy controls, thus exhibiting some key
limitations of direct comparisons of media with serum.
However, the authors noted that for many metabolites, the
interpretation of the results changed drastically depending on
which time point was examined.58 This again implicates the
importance of collecting dyanmic measurements at biologically
relevant resolution to contextualize and properly interpret
metabolomics data.
Mahar and colleagues recently showed the utility of

combining isotopomer analysis with conditioned media
analysis by NMR to quantify the Warburg effect, a metabolic
signature of cancer cells where most glucose is converted to
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lactate instead of pyruvate.59 Both normal and cancer cell lines
were cultured in media containing [2H7]glucose, and the media
were sampled over the course of 5 h. Due to the isotopic effect
of deuterium incorporation, they were able to use 2H
decoupled 1H NMR to resolve and track the accumulation of
lactate isotopomers excreted into the media over the culture
period, after correcting for changes in T1 relaxation, another
isotopic effect. They showed not only that the cancer cell line
consumed almost six-times the amount of glucose compared to
normal liver cells, but also nearly all of the [2H7]glucose
consumed by the cancer cells could be accounted for by
glycolysis-produced lactate and monodeuterated water.59 This
study illustrates the power of meauring stable isotopes in
conditioned media to derive definitive flux measurements
through pathways enabled by the quanititative nature of NMR.
A unique twist on the analysis of conditioned media is to use

it to simulate an in vivo environment for cancer cells. Luis et al.
used conditioned media from cultured adipocytes to expose
MCF-7 cells to an environment simulating an in vivo obesity
phenotype. 1H NMR analysis of the conditioned media before
and after culturing MCF-7 cells showed an “inversion” of the
Warburg effect as evidenced by increased glycolytic inter-
mediates in the culture medium, along with increased
proliferation and invasiveness characteristics of the cells.60

The straightforward sampling and preparation of media for
NMR analysis enabled the authors to conclude that the
conditioned media metabolite profiles may be relevant to in
vivo disease and have provided more evidence for how and why
breast cancer prognoses are worse in obese women.

While the methods and approaches for interrogating
mammalian (cancer) cell metabolism in vitro continue to
become more advanced and comprehensive, the need for more
physiologically relevant culture models amenable to these
techniques is apparent. Ultimately, the application of these
techniques to more complex models such as tissue-on-a-chip,
coculture, or organoid systems will be able to provide
metabolic discoveries with more relevance to disease and
physiology.

Mammalian Cell-Based Manufacturing. Aside from
basic biology research, another significant application of
mammalian cell culture is in industrial production of
biotherapeutics. While the industry of cell expressed biologics
continues to grow and diversify,61 a new generation of cells-as-
therapies is also on the horizon. Here we will describe recent
uses of NMR for mammalian cell-based biologics manufactur-
ing in existing industrial processes and the future of NMR as a
potential key technology for manufacturing of cell therapies.
The use of NMR, metabolomics, and other techniques for

mammalian cell production of biologics manufacturing is not
new,36,62,63 but they have recently gained popularity for their
utility in cell culture engineering and prediction of product
quality. Recent work by Ali et al. and Zürcher et al. has
highlighted the use of metabolomics data collected during cell
culture bioprocesses to predict and improve the quality of
products produced in cells.64,65 However, there are some
unique applications of NMR technology to improving cell-
based bioprocesses. Brinson and Marino recently demon-
strated the use of 2D NMR spectroscopy to provide a high-

Figure 4. Metabolites as active participants of metabolism in all levels of the central dogma. Metabolites affect and regulate protein function in a
variety of ways. They also influence transcription and RNA metabolism and regulate post-transcriptional modifications. At the uppermost level,
metabolites as cofactors and cosubstrates are involved in epigenetic regulation. To uncover these relationships and interactions, novel strategies are
needed to define metabolites function/activity and reveal their impact in the regulation of phenotypes. DNMT, DNA methyltransferase; FAHFA,
fatty acid ester of hydroxyl fatty acid; GPCR, G protein- coupled receptor; HAT, histone acetyltransferase; KMT, lysine methyltransferase; PRMT,
peptidyl-arginine methyltransferase; RBS, ribosome binding site; SAM, S-adenosylmethionine; TPP, thiamine pyrophosphate. Reprinted by
permission from Macmillan Publishers Ltd.: NATURE REVIEWS MOLECULAR CELL BIOLOGY, Rinschen, M. M.; Ivanisevic, J.; Giera, M.;
Siuzdak, G. Nature Reviews Molecular Cell Biology 2019, 20, 353−367. Copyright 2019. (ref 79).
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order structural fingerprint of cell-expressed protein prod-
ucts.66 Since three-dimensional structure is critical to protein
function, these NMR signatures can be used as metrics to
assess product quality. This application is an example of the
utility and versatility of structural information that is provided
by NMR in cell manufacturing.
In addition, Blondeel et al. used time-course 1H NMR

metabolomics of culture media in cells expressing recombinant
proteins in order to identify metabolites that were rapidly
consumed, thus limiting cell density and production. By
supplementing additional nutrients observed by NMR to be
rapidly depleted, they were able to achieve a nearly 75%
increase in cell density.67 As mentioned elsewhere, the
recurring measurement of metabolites in culture media is
uniquely suited to NMR due to the simplicity of sample
preparation and inherently quantitative nature of measure-
ments.
As an evolution from cell expression-based production of

biologics, cell therapies (such as CAR-T cells, mesenchymal
stromal cells, and stem cell therapies) are poised to become a
significant sector of biopharmaceutical manufacturing.68−70

Since cell therapies are even more complicated than the
expression of biologics, cell products require increasingly
comprehensive characterization and optimization for manu-
facture. Recent studies have already demonstrated the utility of
metabolomics measurements to characterize and improve
growth of cell therapy products.71−74 As with cell expression
systems described previously, optimized, rationally designed
media formulations are also needed for effective cell therapy
manufacturing and can be aided by NMR metabolomics in
similar ways.75 1H NMR was recently used by Agostini et al. to
characterize and predict the quality of platelet-derived media
supplements for industrial cell manufacturing, leveraging the
ease of sample preparation and throughput of media analysis
by NMR.76 Continuous flow NMR techniques for monitoring
mammalian cell culture systems have existed for decades35 but
have not yet become a central technology in cell manufactur-
ing. However, NMR could fill the need for a nonintrusive, high
information content, online monitoring technique that can be
leveraged to predict and improve product quality.

■ METABOLITE−PROTEIN INTERACTIONS
Metabolites play an active role in metabolism, contributing to
regulation at all levels of the metabolic central dogma and
serving as direct modulators of biological processes and
phenotypes (Figure 4).77−79 However, current experimental
strategies to understand how metabolites interact with
macromolecules are still limited. Novel experimental ap-
proaches are slowly emerging, and most rely on MS-based
indirect measurements.77,79−84 NMR spectroscopy has a long
history of contributions to protein−ligand research85 and has
been widely used in the pharmaceutical industry for lead drug
discovery.86 A recent review by Becker et al.85 gives an
overview of the large repertoire of techniques available. NMR
is capable of measuring weak- or tight-binding interactions.
Weak binding generally translates to fast exchange, which can
be measured by ligand-detected NMR experiments like
saturation-transfer difference and WaterLOGSY. These
techniques have been used in drug discovery to screen natural
products and other libraries against drug targets.81,82,85 They
can detect equilibrium dissociation constants (Kd) greater than
μM. This approach was also used by Waller and co-workers,
who were able to show that a novel Fe/S enzyme called YgfZ

from E. coli (but found in all domains of life) was able to bind
to a folate ligand. This binding was predicted based on
mutation analysis, but the binding was too weak to be detected
by other methods.87

Despite the fact that ligand-binding studies can be relatively
high-throughput by using the same automation technology
already in place for NMR metabolomics (autosamplers, racks
of 96 tubes, autoshimming/tuning, etc.), not many applications
have taken advantage of this powerful technology to function-
ally characterize physiologically relevant metabolites with
protein interactions in a biochemical model.83 The rationale
and methodology for utilizing this systematic approach was
well laid out by Nikolaev and colleagues.82 The authors used
magnetization transfer NMR experiments to suppress protein
resonances and identify changes in metabolite features that
corresponded to metabolite-protein binding. Four well-
characterized bacterial and mammalian proteins were assayed
against a panel of 33 synthetic metabolite mixtures, detecting
all of the well-known interactions and uncovering novel
metabolite−protein interactions previously undescribed.82 An
exciting future prospect of functional metabolomics is the
extension of NMR metabolomics workflows to incorporate
these ligand-detected NMR experiments. The output from
metabolomics studies are physiologically relevant, metabolite
rich, and matrix free extracts that reach an end point after
analysis because NMR is nondestructive and nonintrusive.
However, spectral overlap of chemically similar compounds in
these extracts can lead to ambiguous assignment of potential
protein−metabolite interactions.85

Whiley et al.88 have developed a protocol that incorporates
semipreparative fractionation as a complement to metabolo-
mics studies. Parallels can be drawn to natural products
chemistry. Routinely used chromatographic fractionation and
fraction concentration simplify and concentrate complex
extracts for downstream analysis.80,89,90 The authors created
a library of elutants (fractions) collected at distinct time
intervals from a chromatography system. The fractions can be
concentrated to bridge the sensitivity gap between NMR and
LC-MS, as well as to reduce spectral overlap, thus improving
the process of comprehensive metabolite annotation. The
authors demonstrate that the combination of NMR and MS
could be used to identify several unknown metabolites in
human urine. Furthermore, this method paves the way to
create valuable libraries for ligand-detected NMR experiments.
NMR metabolomics extracts or reference materials can be
similarly transformed into libraries that circumvent the need
for synthetic standards and become screening substrates for
previously undiscovered metabolite interactions with pro-
tein(s) of interest. These methods can serve as building blocks
for metabolomics-based protein interaction studies, with the
promise of increased throughput not only for metabolite
identification but also to better define their respective
biological function.

■ MODEL MICROORGANISMS AND METABOLISM
Investigators have used model microorganisms for the
characterization of metabolism throughout the history of
biochemistry research.91,92 Biochemistry experiments have
long relied on their short generation times, easy manipulation,
and fast response to systematic perturbations of their
metabolism. Microbiologists have developed powerful tools
to manipulate micro-organisms, and these tools are useful in
metabolomics studies.91,93 These model organisms are
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particularly well suited for studying functional interactions, as
described above (Figure 4).77,94

Classical Biochemistry and Metabolomics. Classical
genetics and biochemistry experiments define testable models
of detailed biochemical reactions.95 However, classical experi-
ments are unable to characterize the overall metabolic network.
Metabolomics can provide a global view of the metabolic
network but often falls short in defining function or
mechanism.77,91 Here, we outline examples of experimental
approaches that highlight the complementary integration of
metabolomics and classical genetics/biochemistry with the
unique capabilities of NMR.
The use of NMR metabolomics with classical biochemistry

and genetics is illustrated by the RidA paradigm of enamine
stress in the model organism Salmonella enterica. Borchert and
co-workers used NMR metabolomics and transcriptomics to
better understand how the absence of RidA (a protein
responsible for the hydrolysis of enamine/imine species)
causes detrimental accumulation of the enamine 2-amino-
acrylate (2AA).96 The omics analyses revealed that the ridA
mutation caused global metabolic changes in S. enterica. In
particular, folate and branched-chain amino acid metabolism
pathways were disrupted.96 Additional work on the ridA
biochemical model capitalized on these findings in a nutrient
supplementation experiment. NMR measurements of chemi-
cally defined spent minimal media, spent minimal media
supplemented with isoleucine, and the resulting cell pellets
demonstrated that key metabolite changes between ridA and
wild-type strains were due to the IlvA-dependent generation of
2AA. Further media supplementations circumvented the
downstream pathway damage to GlyA, largely restoring those
same endogenous and exogenous metabolites to wild-type
levels.97 This classical genetic perturbation and metabolome
rescue approach, and the agreement between media analysis
and bacterial endometabolome, disentangled the complex
metabolic relationships between enzymes and further ex-
panded the interacting edges of the known ridA biochemical
model to previously unexplored pathways.96,97

Genetics and Metabolomics. Genetically modifying
model organisms to target specific genes and protein
complexes is a well-established approach. This introduces
disruptions that facilitate detailed mechanistic insights
otherwise difficult to reach.98 Without a priori knowledge,
investigators can use NMR to quantify known and unexpected
metabolite changes in disrupted pathways and in pathways that
were not previously thought to be connected. Furthermore,
these metabolites can be known or novel, and both can be
quantified with or without the need for chemical stand-
ards.97,99−101 This versatility has been illustrated by Marshall et
al.99 by inactivating alr (an alanine racemase) to determine its
effects on the cellular metabolism of Mycobacterium smegmatis.
NMR profiles resolved a much-debated controversy over the
role of alr in D-alanine biosynthesis. The authors used SIL by
supplementing cultures with 13C D-alanine and recording 2D
13C-HSQC experiments. They were able to quantify 38
metabolites that were produced from the 13C D-alanine carbon
source, including several that changed significantly with an alr
mutant. These data allowed them to uncover an alternate
biosynthetic pathway and to conclude that inhibitors of the Alr
protein would not be bacteriocidal.99

In addition to gene knockout and knockdown methods,
overexpression studies of target proteins (or recombinant
proteins) can use metabolomics as a powerful tool to probe

into these overactive pathways. Modern NMR spectrometers
have an extremely large dynamic range, and it is possible to
achieve over 2 million to 1 in dynamic range, depending on
many factors, including shimming and water suppression to
minimize radiation damping (personal communication, Dr.
Clemens Anklin, Bruker Biospin). This large dynamic range
allows for reliable quantitative measurements of metabolites
over a wide range of concentrations. In a study using
genetically edited yeast to overexpress the human oncoprotein
NSD3, Rona and co-workers used NMR to quantify small, but
statistically significant, differences in valine, glutamate, and
phosphocholine between NSD3 and the structurally similar
overexpressed yeast Pdp3.102 No significant differences were
observed for aspartate and arginine, both with low concen-
trations, a finding that is consistent in light of the structural
similarity of the two proteins. Yet, together with alanine, these
metabolites were significantly different from the Saccharomyces
cerevisiae wild-type strain and consistent with cancer
phenotypes. This suggested that despite the near identical
metabolic profile of these modified organisms, phosphocho-
line, valine, and glutamate indicate distinct pathways that
ultimately recruit different downstream signaling complexes.102

Microbial protein production systems rely heavily on
overexpression methods to produce large quantities of proteins
of interest.103 These can be hard to optimize or troubleshoot
when yields are lacking or no protein is produced. Chae et
al.103 hypothesized that NMR metabolomics paired with
isotopic labeling could identify metabolite profiles that
characterize optimal protein production conditions. They
collected 2D NMR on 71 Escherichia coli cultures, each
overexpressing a different gene, and were able to identify 17
metabolites that reflected the optimal conditions for protein
expression. These metabolites, with changes between groups
ranging from an order of magnitude to as low as 0.2 fold, were
used to reduce the number of trial-and-error iterations
necessary to achieve high protein yields and set indicators
for external stresses that could modulate metabolism to an
optimal protein production environment.91,102,103

Role of Caenorhabditis elegans in Metabolomics. C.
elegans has been a powerful model organism for nearly half a
century.104 Initially the focus of genetics and developmental
biology, C. elegans has become an important organism in
metabolomics research. There are two main advantages of C.
elegans: a large number of available mutations of known
pathways105 and the ability to culture large amounts of material
with the option of isotopic labeling. Clendinen and co-workers
developed a method to uniformly label C. elegans with 13C and
performed 2D NMR INADEQUATE (Incredible Natural
Abundance DoublE QUAntum Transfer Experiment) experi-
ments on these samples to obtain covalent fragment
information for all abundant metabolites.106 They were able
to match some of these fragments to an in silico database of
INADEQUATE spectra that was created from assigned 13C 1D
NMR spectra in the Biological Magnetic Resonance Bank
(BMRB) database. One drawback to uniform 13C labeling is
the large directly bonded 13C couplings (1JCC ∼ 30−75 Hz),
which cause overlap and reduce sensitivity. Geier et al. showed
that a constant-time 2D 13C-HSQC experimentwhich
decouples 13C from itself in the indirect 13C dimensioncan
greatly improve the spectral quality in uniformly labeled 13C-
labeled C. elegans.107 Using this approach, they were able to
more effectively match their data to spectral databases,

Analytical Chemistry pubs.acs.org/ac Review

https://dx.doi.org/10.1021/acs.analchem.0c04414
Anal. Chem. XXXX, XXX, XXX−XXX

I

pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c04414?ref=pdf


including the very useful COLMAR database (complex
mixtures by magnetic resonance).108

Research in C. elegans also nicely illustrates the comple-
mentary roles of NMR and MS in unknown compound
identification. Since the 1970s, geneticists knew about a
pheromone that causes C. elegans to develop into the dauer
stage when conditions are harsh and food scarce.109 Nearly 30
years later, the chemical identity of the dauer110 and related
mating pheromones was identified using 2D NMR and LC-
MS.111 The Schroeder group then developed an NMR-based
approach called differential analysis by 2D NMR spectroscopy
(DANS) that compared 2D COSY NMR data between the
reference strain N2 and a genetic mutant daf-22 that led to the
identification and de novo annotation of three known and four
previously undescribed pheromones from the same family
called ascarosides.112 Using the structural information obtained
by NMR, the Schroeder lab developed an LC-MS/MS assay
highly selective for ascarosides that monitored for the neutral
loss of 73 amu.113 This assay was only possible after the initial
structural characterization by 2D NMR, leading to the
discovery of hundreds of additional ascarosides and related
signaling metabolites.114 Similarly, Shou et al. used both NMR
and LC-MS to discover a novel class of small endogenous

peptides, nemamides, found to promote C. elegans survival
during starvation-induced larval arrest.115

■ MARINE ENVIRONMENTS AND CARBON CYCLING

Phytoplankton perform half of all photosynthesis on Earth,
generating 50% of the oxygen and contributing nearly half of
the turnover in the global carbon cycle. A quarter of the carbon
fixed by phytoplankton becomes part of the metabolite pool of
small molecules known as dissolved organic matter (DOM).
DOM is an assemblage of organic metabolites that play vital
roles in global carbon, nitrogen, sulfur, and phosphorus cycles;
metabolism of nutrients and xenobiotics; and marine
biodiversity.116 Crucially, DOM is scavenged by mutualistic
marine bacteria in loose association with phytoplankton and is
altered via bacterial catabolism into numerous metabolites as
part of the microbial loop. This loop cycles transformed
nutrients back into all trophic layers of the marine food web
and is a crucial step in elemental cycling. Characterizing the
identity of metabolites released by phytoplankton and
transformed by bacteria is crucial to understanding the
dynamism of reactivity, metabolic turnover, and chemical
transformation essential to supporting life.

Marine Exometabolome. The high salt content required
for culturing marine microorganisms or for analyzing natural

Figure 5. 13C-HSQC spectra reveal differential metabolite uptake and secretion in axenic phytoplankton Thalassiosira pseudonana (T. ps) and three
marine bacteria cocultures with T. ps. (A) Full representative spectra from T. ps with insets B, C, D, and E. Panel colors indicate coculture identity
(blackaxenic T. ps; redT. ps + Ruegeria; purpleT. ps + Stenotophomonas; greenT. ps + Polaribacter). The structure of DHPS is shown with
numbered peaks (D1, D2, and D3/D3*; * indicates a C−H bond in DHPS that lies within T1 noise). (B−E) Detailed NMR signals of 18 features
in axenic and coculture spent media. Spectra from one of 3 representative replicate samples are shown. Figure adapted with permission from ref 118
under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
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populations in seawater interferes with both MS and NMR
measurements.117 Additionally, the concentration of DOM is
in the nanomolar to micromolar range, so it must be
concentrated for NMR, but the salt is also concentrated.
This step is typically followed by membrane-based or solid
phase extraction (SPE) to remove salts from the solution, with
some notable exceptions, but in this situation SPE does not
effectively work for smaller metabolites.
A challenge of detecting LMW (low molecular weight, < 1

kDa) metabolites from seawater media is that the smallest and
most polar metabolites behave like salt. They are often difficult
to separate from the high-salt media background, particularly at
such low concentrations. Ferrer-Gonzalez et al. developed a
novel method to extract such LMW metabolites from the
coculture exudates of bacteria Ruegeria pomeroyi and
phytoplankton Thalassiosira pseudonana, two marine micro-
organisms commonly shown in ecological association.118 R.
pomeroyiT. pseudonana cocultures demonstrate bacterial
upregulation of several genes linked to the transport and
catabolism of dihydroxypropanesulfonate (DHPS), a small
metabolite rich in carbon and sulfur.119 T. pseudonana releases
large quantities of DHPS, a concentrated source of DOM,
which R. pomeroyi is able to consume as a sole carbon source.
Three amplified genes (hpsK, hpsL, and hpsM) were
hypothesized to form a tripartite ATP-independent periplasmic
(TRAP) transporter for import of DHPS into the cyto-
plasm.119 To verify that DHPS was significant to R. pomeroyi
carbon exchange, methods were developed for extracting and
analyzing 13C-labeled spent media from R. pomeroyiT.
pseudonana cocultures via NMR using lyophilization, recon-
stitution in DMSO-d6, and analysis in a 1.7 mm cryogenic
probe at 800 MHz. The smaller diameter probe enhances mass
sensitivity and minimizes loss due to salt. The group developed
an R. pomeroyi transporter mutant (ΔhpsKLM) in which the
putative transporter genes were knocked out to determine
whether DHPS was significant to carbon exchange in an R.
pomeroyiT. pseudonana coculture. 13C-HSQC was used to
analyze extracted spent media from axenic T. pseudonana, R.
pomeroyiT. pseudonana, and ΔhpsKLMT. pseudonana
coculture pairs. 13C-Labeled DHPS was absent in wild-type
samples, indicating the metabolite was taken up by R. pomeroyi.
13C-Labeled DHPS was present in both the axenic T.
pseudonana and the ΔhpsKLM coculture import mutant of
DHPS. The extraction method was later applied to expand
knowledge of metabolic interactions between ocean microbes
across a range of bacterial taxa commonly shown in ecological
association with phytoplankton. Spent media from axenic T.
pseudonana and coculture pairs of T. pseudonana with marine
bacteria R. pomeroyi, Stenotrophomonas sp., and Polaribacter sp.
were investigated via 2D 13C-HSQC. The 2D helped by
reducing overlap and also took advantage of the uniform 13C-
labeling of the cocultures. These analyses of extracted spent
media demonstrated that metabolic interactions between
phytoplankton and marine bacteria generate niche-specific
fingerprints that differentiate cocultures, revealing differential
patterns of uptake and enhancement of certain DOM species
between coculture groups versus axenic T. pseudonana (Figure
5).118

Despite the challenges with low concentrations, direct 1H
NMR spectra of DOM in natural, unaltered samples are
possible. Efficient water suppression is critical, so Lam et al.
combined well-known sequences to take advantage of
presaturation, water dephasing, and peak selectivity into an

innovative sequence: SPR-W5-Watergate. SPR (shaped pre-
irradiation) offers a greater magnitude of control over the
saturation region versus standard sequences. W5-Watergate
uses a “gradient−180*−gradient” combination where the
initial gradient pulse dephases every signal, 180* indicates a
selective 180-degree pulse on H2O resonance, and the second
gradient further dephases the water but refocuses the rest of
the signals. In combination, these sequences provide clean
baselines and may retain some exchangeable amide protons,
although at the expense of signal loss within 0.5−1 ppm of the
water peak.117

Marine Endometabolome. NMR and UHPLC-MS
(ultrahigh performance liquid chromatography−mass spec-
trometry) have also been combined in ecological metabolo-
mics research, providing clues about allelopathy, a type of
competition in which species release inhibitory or lethal
chemical compounds to impair competitor species.120 Karenia
brevis is a dinoflagellate associated with toxic red-tide algal
blooms. Two diatom competitorsAsterionellopsis glacialis and
Thalassiosira pseudonanawere exposed to allelopathic
compounds from K. brevis and evaluated for physiological,
proteomic, and metabolomic impact. T. pseudonana exposed to
K. brevis had a statistically significant 85% reduction in growth
rate and population decline, whereas A. glacialis had a
nonsignificant 35% growth reduction. Partial least-squares-
discriminate analysis (PLS-DA) was performed to determine
which compounds deviated from the control in response to K.
brevis. A. glacialis had 6−9% variation in metabolites and few
protein changes due to K. brevis, indicating resistance to the
allelopathic compounds likely evolved from exposure in nature.
Conversely, T. pseudonana metabolism was dramatically
impacted by exposure to the red-tide dinoflagellate, likely
due to sparse prior exposure in nature. A large number of
proteins were affected, and metabolites indicative of changes in
energy metabolism and cell stress were discovered. UHPLC-
MS analysis revealed decreases in metabolites associated with
cell wall structure, oxidative stress, and carbon metabolism.
13C-HSQC NMR analysis revealed complementary data
including decreases in metabolites associated with osmor-
egulation, amino acid metabolism, carbon metabolism,
glycolysis, photorespiration, and pyrimidine metabolism.120

This nicely illustrates how NMR and MS can be used together
to obtain a more complete description of the metabolome. The
lipidome of A. glacialis and T. pseudonana exposed to K. brevis
was subsequently interrogated using the same analytical
platforms. 13C-HSQC revealed that 80 lipids in T. pseudonana
were significantly altered in response to K. brevis exposure,
whereas just six were significantly altered in A. glacialis.121 The
authors thus concluded that K. brevis allelopathy disrupts cell
membrane lipid metabolism, increases permeabilization of the
cell wall, and decreases photosynthetic efficiency in com-
petitors, particularly those without a robust response due to
prior natural selective pressure.
Research into the intracellular metabolome of marine

microorganisms has enhanced understanding of how bacteria
transform metabolites for the microbial loop as well. Using
stable-isotope-guided NMR to augment metabolite signals,
intracellular metabolites of a natural coastal bacterial
community following 48 h incubation with 13C6-glucose were
examined via 13C-HSQC.122 Twenty-two compounds were
assigned based on correlation signals determined from HSQC-
TOCSY and 13C-decoupled 2D-JRES (two-dimensional
1H−1H J-resolved spectroscopy) and included amino acids,
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dipeptides, carboxylic acids, nucleosides, nucleobases, carbohy-
drates, and amino alcohols. This chemical repertoire suggests
that 13C6-glucose entered and was transformed via the
glycolysis and TCA (tricarboxylic acid) cycles, providing a
glimpse into the way DOM is transformed within the microbial
loop.122 The range of different NMR experiments is one of its
major strengths. In this case, the 2D J-RES data were used as a
way to profile samples without interference of 1H−1H J-
couplings, and both 13C-HSQC and HSQC-TOCSY experi-
ments allowed for database matching and compound ID.
Marine Natural Product (NP) Discovery. As noted

above, metabolomics and natural products discovery are
similar, especially in unknown compound identification.9 An
important area of marine metabolomics has been the use of
NMR for NP discovery.123−125 While structural and biological
characterization of small marine compounds is a challenge due
to low metabolite concentrations, development of the capillary
and microcryoprobes has enabled identification of many of
these metaboliteseven at the nanomole scale.124 The
mollusk Hexabranchus sanguineus consumes a diet of sponges
from which it isolates trisoxazole macrolides, powerful
antifungal compounds with cytotoxicity. Samples were
collected from the mollusk in the late 1980s, and major
trisoxazole structures were determined with the available NMR
tools, but minor components remained structurally elusive for
almost 20 years. Using a custom 1 mm 600 MHz microcryop-
robe126 with 1H NMR, COSY, 13C-HSQC, and 13C-HMBC
(heteronuclear multiple bond correlation), Dalisay et al. were
able to determine the structure of these minor metabolites
through overlapping NMR correlations afforded by the
different 2D experiments127

Molinski and co-workers have conducted numerous studies
utilizing the microcryoprobe approach to elucidate the
structure of marine NPs from sponges and ascidians,
colloquially known as sea squirts.128−130 Isolates from the sea
sponge Trikentrion f labelliforme have been shown to possess
indole structures known as trikentrin. Previous research
demonstrated antibacterial and cytotoxic properties in various
configurations of trikentrin, so COSY, NOESY (nuclear
Overhauser effect spectroscopy), 13C-HSQC, and 13C-HMBC
spectra were collected to further elucidate the metabolic
contents of T. f labelliforme fractions from over two decades
ago.128 Later, bromotryptosine residues from the sponge
Aplysina lacunose were investigated due to interest generated
by prior research into associated antibacterial, anti-inflamma-
tory, anticancer, and antifungal properties. Structures were
elucidated through similar 2D NMR experiments with a
microcryoprobe.129 Finally, the Molinski group also inves-
tigated the ascidian Didemnum mole for natural products
effective against cell proliferation and infection, and using
NMR, they elucidated the structure of two cyclic hexapeptides
which warrant further pharmacological investigation.130

The diversity and large number of NPs yet to be explored is
a challenge. The structural elucidation process of these
complex molecules limits the throughput of bioactive
metabolite discovery. Zhang et al.131 utilized the nearly
standardized NMR structural elucidation process and highly
discriminating HSQC experiments to create an AI-based
dereplication and analysis tool that can rapidly associate newly
isolated NPs with their known analogues. This tool was used
by Reher et al.,132 in combination with a MS molecular
networking tool to elucidate a new chimeric swinholide-like
macrolide, symplocolide A, as well as the annotation of

swinholide A, samholides A−I, and several new derivatives
from a filamentous marine cyanobacterium. Approaches like
this are possible because NMR chemical shifts are highly
reproducible and provide a fingerprint of the molecule.
Furthermore, chemical shifts can be accurately calculated
using ab initio methods,133 and recent advances have greatly
improved the throughput of such calculations, making them
more practical for metabolomics and AI applications.134 These
approaches are promising advancements in structural identi-
fication of novel metabolites, increasing throughput and
efficiency in both natural products research and metabolo-
mics.132

■ CHEMOINFORMATICS AND COMPUTATIONAL
MODELING

All of the applications highlighted above require considerable
data analysis, and in this final section we highlight some
current trends in NMR metabolomics analysis. Some of these
methods, especially machine learning, also apply to MS
metabolomics and other omics fields. This section is not
meant to be a comprehensive review of chemoinformatics or
modeling but rather of approaches that we think are especially
promising for NMR applications.

Spectral Processing. The physical and chemical proper-
ties of a sample can affect the chemical shifts of some NMR
peaks. This makes it hard to compare peaks across spectra, so
alignment and/or division of NMR spectra into smaller regions
(binning) is usually applied to manage this problem.135

However, results from this step are not always optimal,
especially in complicated samples. Takis et al. used modeling
strategies for this problem by considering the chemical shift of
a signal as the function of a mixture’s total chemical
composition, pH, and temperature.136 They built a model
including sample pH, temperature, concentrations of 11 ions,
and chemical shifts and concentrations of 40 abundant
metabolites to estimate the chemical shifts of these metabolites
on ∼4000 artificial urine samples. The algorithm begins by
matching five navigating signals and then exports estimations
of chemical shifts and concentrations of the targeted
metabolites and ions. The algorithm demonstrated high
predictive accuracy in real urine samples. It also deconvoluted
overlapped peaks, thus improving annotation and quantifica-
tion.
As another alternative to the “align and/or bin” strategy,

“speaq 2.0” used wavelets to extract features from raw
spectra.137 In this method, Mexican hat wavelets were used
for peak picking because they are robust to baseline distortions.
Picked peaks were grouped for signals from the same nuclei
across different spectra. In contrast to using peak integrals for
quantifications, wavelet coefficients were used here to
represent the abundance of picked peaks for later analysis.
This method showed tolerance to small chemical shift
variations and could effectively extract features from the
simulated and published data sets.
Due to the abundance of signals, peaks are often overlapped

in a 1D 1H metabolomics spectrum. 2D NMR experiments
could better separate overlapped signals, but due to long
acquisition times, they are usually used only for peak
annotation or on a small sample set. With the development
of fast 2D NMR experiments,138,139 2D spectra have the
potential to be used for relative quantification. Therefore, tools
for quantifying 2D peaks have recently been improved. Two-
dimensional spectra can be vectorized140 or projected on one
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dimension141 to suit both 1D spectra processing methods and
statistical analysis methods. For example, the projection of
JRES spectra on the chemical shift dimension (pJRES) can be
binned by JBA (pJRES Binning Algorithm).141 JBA extends the
concept of statistical recoupling of variables142 by using the
collinearity of adjacent points to help define bin boundaries
and is able to retain small signals more efficiently.
Two-dimensional peaks can also be binned143,144 or line-

shape fitted145 directly for quantification and matrix size
reduction. While nonuniform binning can better quantify peaks
than uniform binning, the nonuniform binning algorithms are
underdeveloped for 2D spectra. The binning step in HATS-PR
(Hierarchical Alignment of Two-dimensional Spectra-Pattern
Recognition) can adjust bins by combining multiplets and
extending uniform bins to the next bin or to the maximum user
defined length.146 A more flexible multidimensional binning
algorithm, Generalized Adaptive Intelligent (GAI) binning,
was recently proposed.143 It extended adaptive intelligent
binning from one-dimensional to multidimensional data so
that 2D spectra could be binned with flexible bin sizes
automatically.
Extracting Information for Peak Annotations. Group-

ing signals from the same metabolites for database matching
can improve the accuracy of annotation. A spectrum from a
pure compound can be directly queried and matched in the
database. However, for mixtures, peaks from the same
metabolite need to be found before querying. Because signals

from the same compound should be highly linearly correlated
with each other, Statistical TOtal Correlation SpectroscopY
(STOCSY) uses Pearson correlation coefficients to gather
signals from the same metabolite and builds a pseudospectrum
for database query.147 However, STOCSY performance may be
compromised where peaks overlap. JRES can efficiently reduce
overlap by separating chemical shifts and multiplicities to two
dimensions, but JRES databases are limited and difficult for
peak matching.148 The Hoijemberg group introduced two
strategies to circumvent this challenge by querying peaks from
the projection of JRES for 1D databases (Figure 6).148,149 The
first strategy (Figure 6A) uses projection of STOCSY traces
from tilted and symmetrized JRES (p-(JRES-STOCSY)) as
pseudospectra.148 Because projection of tilted and symme-
trized JRES (pJRES) spectra differ from 1D spectra in terms of
multiplicity, pJRES spectra cannot be matched directly to 1D
databases. Therefore, they built a library (Chemical Shift
Multiplet Database) using curated pJRES spectra and their
traces on the J-coupling dimension obtained from the
Birmingham Metabolite Library.150 They also built a tool for
querying this database. This tool allows for repeated use and
includes correlated but small peaks in the query list to avoid
false-negative matching. Correlated but unmatched peaks can
also be queried against this database for unravelling biological
associations. The second strategy (Figure 6B) uses projection
of STOCSY results on nontilted JRES spectra (p-(ntJRES-
STOCSY))149 instead of STOCSY on p-ntJRES ((p-ntJRES)-

Figure 6. Workflows of using projection of STOCSY traces from tilted and symmetrized JRES spectra (A) and nontilted JRES spectra (B) for
database query. (A) Example of consecutively querying chemical shift multiplet database with p-(JRES-STOCSY) on driver peak at 1.181 ppm on
tilted and symmetrized JRES spectra. (B) Example of comparing results of querying database with (p-ntJRES)-STOCSY and p-(ntJRES-STOCSY)
on the same driver peak at 3.783 ppm. (A) Adapted with permission from Charris-Molina, A.; Riquelme, G.; Burdisso, P.; Hoijemberg, P. A. J.
Proteome Res. 2020, 19 (8), 2977−2988 (ref 148). Copyright 2020 American Chemical Society. (B) Adapted with permission from Charris-Molina,
A.; Riquelme, G.; Burdisso, P.; Hoijemberg, P. A. J. Proteome Res. 2019, 18 (5), 2241−2253 (ref 149). Copyright 2019 American Chemical Society.
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STOCSY)151 to mimic 1D spectra. Therefore, the deconvolut-
ing power of JRES is preserved.
Although including overlapped peaks in a query list may

introduce irrelevant metabolites in the query result, simply
discarding the overlapped peak also runs the risk of increasing
the false-negative rate. POD-CAST (Peak Overlap Detection
by Clustering Analysis and Sorting of Traces) took overlapping
information from the clustering of all STOCSY traces, which
came from each peak used as a driver peak, to complement the
peak list for database query.152

These computational techniques could be employed with
other spectroscopical or physical separating techniques to
enhance the efficiency of peak annotation. In a recent approach
to compound identification in NMR metabolomics, the
Nicholson group proposed a system to sequentially use
computational and experimental annotation strategies for a
metabolomics study.153 This system was shown to efficiently
reduce manual input and improve annotation accuracy and
thus is expected to be generally utilized in the future.
Database coverage also limits NMR peak annotation. With

the development of computational biology, structural in-
formation can now be predicted from chemical shifts by
machine learning at the motif,154 molecular,155 and compound
family131 level. In addition, the 1D spectrum from one
metabolite can be simulated under any magnetic field strength
according to its spin parametrized system matrix in the
GISSMO (Guided Ideographic Spin System Model Optimiza-
tion) library.156 These approaches are not only helpful for peak
annotations but they also enable the enhancement of current
databases with additional putative reference spectra.
Workflows. Owing to the diversity of tools available for

NMR spectral analysis, researchers usually assemble their own
workflows to record the functions and parameters they use.
There are several general tools which serve as pipelines that
include widely used steps and methods, such as NMRProc-
Flow,157 ASICS R,158 and Chenomx (Chenomx, Edmonton,
Canada). Recently published pipelines include AlpsNMR159

and PepsNMR160 for preprocessing, Lipspin161 for lipids
profiling, InterSpin162 for low-resolution NMR (such as
benchtop NMR and solid state NMR), and SigMa163 for
complex spectra processing. For complex spectra, processing
regions with different methods then combining them can
sometimes provide a better result than processing the entire
spectra with one method.164 SigMa divides a 1D NMR
spectrum into three categories: signature signals (SS), signals
of unknown spin systems (SUS), and bins (BINS) which are
too complicated to align and annotate. SS and SUS are further
aligned and quantified by line-shape fitting, but the signals in
BINS are integrated directly. By doing this, more information
can be extracted from the spectra.
With the rapid development of tools and workflows, the

need for workflow management is drawing attention.165

Verhoeven et al.166 recently wrote a review on KNIME167

and Galaxy168 workflow management platforms, where users
can assemble, automatically run, and record their workflows.
Workflow4Metabolomics (W4M)169 is another workflow
management infrastructure based on Galaxy. Beyond just
building and running workflows, this platform is also designed
to be a workflow repository. Usually, workflows are deposited
with data in data repositories, such as MetaboLights170 and
Metabolomics Workbench,4 but with this platform, workflows
can be cited and shared directly. PhenoMeNal171 is a recently
built cloud-based metabolomics analysis e-infrastructure. While

it incorporates W4M, it provides a greater variety of
established tools than W4M. PhenoMeNal enables calculations
to be run on the cloud and therefore makes analysis both time-
and resource-efficient. While current pipeline tools aim to
provide automatic solutions for analysis, an advanced user may
tend to have more flexibility in choosing methods for each
step. Therefore, a central language-independent tool repository
for metabolomics research would be invaluable for users to
learn and explore functions.

Feature Selection. Though modeling often uses many
features, only a few may be related to outcomes in NMR
metabolomics. To speed up the learning process as well as
increase model performance, feature selection is often
performed before the model training process. Feature selection
uses specific strategies to select features that contribute most
highly to the prediction variable. Many feature selection
methods have been developedfrom traditional univariate
selection methods to modern machine learning algorithms.172

While a discussion of different feature selection algorithms is
beyond the scope of this review, we will focus on two main
hurdles of NMR metabolomics dataclass-imbalance and
nonlinearity.
LASSO (least absolute shrinkage and selection operator) is

an L1 norm regularization technique that allows the coefficient
value of less important variables to be 0, significantly
eliminating feature quantity. It has, therefore, been used as a
feature selection method.173 When dealing with large-scale,
class-imbalanced metabolomics data, Fu et al. found that sparse
regularization can stabilize training results.174 They proposed
that minimizing the degree of overlap between imbalanced
classes can make the data set more separable. They used the
portion of minority cases incorrectly classified by K-nearest
neighbors (KNN) as the indicator of overlap degree between
imbalanced classes.
Two major Lasso-based feature selection strategies have

been developedMinimizing Overlapping Selection under
No-Sampling (MOSNS) and Minimizing Overlapping Selec-
tion under SMOTE (MOSS). SMOTE is a technique that
oversamples the minority group with replaced values.175 Four
different metabolomics data sets, which included one
simulation data set, were tested by these algorithms integrated
with a support vector machine (SVM). They found that MOSS
achieved higher classification performance on all four data sets,
indicating that rebalancing processing is beneficial in increasing
the true positive rate, whereas MOSNS performed well in
identifying important features.176 Along with LASSO-regulari-
zation, both algorithms can effectively alleviate class imbalance
effects, thus outperforming other algorithms in their study.
The imbalanced class is not the only concern of NMR

metabolomics data analysis. The inherent nonlinearity
characteristic of metabolites also makes feature selection
problematic. Although LASSO can significantly reduce feature
quantity for downstream analysis, it does not handle the
nonlinearity of metabolomics data since it assumes that all
variables have linear relationships. To address this issue,
Yamada et al.177 developed the Hilbert-Schmidt independence
criterion (HSIC) Lasso nonlinear feature selection method.
HSIC Lasso extracts predictor variables that are independent
of each other and are evaluated by nonparametric HSIC
dependency score statistics.178 Takahashi et al. used this novel
HSIC Lasso-based prediction model in a study to predict
depressive symptoms using metabolic data from 897 plasma
samples.179 They compared the results with state-of-the-art
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prediction models including, for example, Lasso, SVM,
Random Forest (RF), and Partial Least Squares (PLS) and
found that the HSIC Lasso-based feature selection integrated
with SVM yields the best predictive power. Feature frequency
was used to select key metabolites as predictors of depressive
symptoms. No strong dependency was observed among the
selected metabolites. Therefore, the HSIC Lasso-based feature
selection strategy can handle nonlinearity as well as avoid
redundancies in variable selection.
One shortcoming of NMR metabolomics studies is limited

sample sizes, with some studies containing 10 or fewer
replicates in each group. Since the Takahashi et al. study used a
relatively large sample size, the effectiveness of HSIC Lasso-
based feature selection on small sample sizes needs to be
tested. The small sample size makes feature selection and
dimensionality reduction extremely important and difficult to
perform. A common strategy is to combine univariate analysis
with multivariate analysis to perform feature selection.180,181

To date, no perfect method can handle the issue of small
sample sizes.182,183

Machine Learning (ML) Algorithm Comparison. With
the development of high throughput NMR and MS data
collection in metabolomics, ML algorithms have been widely
used in this field for multivariate metabolite analyses in order
to diagnose disease,184 predict risk,185 and reveal underlying
biological mechanisms between human health and disease.186

Figure 7 lists popular machine learning algorithms in the NMR

metabolomics field.187 PLS is a regression method that projects
features into linear structures to maximize the explained
variance of data sets. PLS-DA is an extension of the PLS
algorithm to classify binary classes. RF is a decision tree-based
ensemble learning method. By constructing multiple decision
trees and combining trees using a majority voting rank, it can
be used for classification. SVM outputs a map of sorted data
with the clearest margins to separate the two groups.
Sometimes, a kernel method can be used in SVM to transform

the margin from linear to nonlinear. Artificial neural networks
(ANNs) collect the connected units, which allow signal travel
between each layer and modelling of a biological brain.188 As
the overview of deep learning (DL) in metabolomics is beyond
the scope of this review, please refer to Sen et al.189 for a
detailed description. Genetic algorithms are stochastic
methods for function optimization based on biological
evolution.190 Each method has pros and cons, which make
choosing proper ML algorithms a challenge.
The Broadhurst group has tested eight different linear and

nonlinear ML approaches for their performance in binary
classification on 10 clinical data sets from metabolomics
studies.191−201 These 10 data sets were acquired either from
NMR or MS, data set size varied from 59 to 968, and the
number of metabolite variables of each data set varied from 29
to 689. The eight ML approaches are partial least-squares
regression (PLSR), principal component regression (PCR),
principal component logistic regression (PCLR), linear kernel
support vector machines (SVM-Lin), radial basis function
kernel support vector machines (SVM-RBF), RF, linear ANNs,
and nonlinear ANNs. The results showed that overall the linear
ML algorithms and nonlinear algorithms achieved similar
prediction performance in the binary classification metab-
olomics scenario. RF performed poorly with a small number of
samples when the number of variables was large.202 It also
emphasized that if applying Occam’s razor principle, the PLS-
DA remains the first choice in binary classification prob-
lems.203

Similarly, Powers’ group also evaluated five different ML
algorithms (Orthogonal PLS-DA, PLS, SVM, RF, and principal
components−linear discriminant analysis (PC-LDA)) in
binary classification NMR metabolomics studies.204 They
simulated a 50-metabolite-NMR data set to mimic human
urine sample data with known within-group variances,
between-group variances, and precisely defined group separa-
tion. Thirty-three out of these 50 metabolites were
commercially available and used to collect experimental
NMR spectra. Overall, equivalent performance was achieved
from the five ML algorithms when analyzing high-quality data
sets with low noise, small within-group variance, and large
between-group variance. When the group separation contrib-
utor was limited to one single variable, OPLS-DA and PC-LDA
outperformed other models.
From these papers, a simple conclusion can be drawn: PLS-

DA and OPLS-DA are currently the gold standard for binary
classification. However, things are different in multiclass
classification cases. Multiclass classification trains a system to
discriminate different classes for various unknown objects.
With the increase of class numbers, the complexities of the
model also increase, making it more complicated than in a
binary classification.205 Therefore, the strategy of multiclass
classification analysis should also be thoroughly addressed. The
common strategy to handle multiclass classification is to
transform the problem into a binary case, which is called binary
decomposition.206 One-against-all (OAA) and one-against-one
(OAO) are two common binary decomposition strategies.
OAA divides each class and all other classes into two groups,
transforming the K-class classification problem into K parallel
binary classifications,207 while OAO generates binary classi-
fication between each pair of classes and total K(K-1)/2
parallel binary classifications are conducted.208 A study of
multiclass discrimination in untargeted metabolomics has been
conducted by Trainor et al. to evaluate the performance of six

Figure 7. Advantages and disadvantages of popular ML algorithms.
The terms on the left (“Easy” and “Complex”) refer to
implementation. For more detailed information, please see the
reference by Liebal and co-workers. Adapted with permission from
Liebal, U. W.; Phan, A. N. T.; Sudhakar, M.; Raman, K.; Blank, L. M.
Metabolites 2020, 10 (6), 243. (ref 187). Creative Commons
Attribution 4.0 International License (https://creativecommons.org/
licenses/by/4.0/).
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different classifiers.209 In this case, the OAO approach was
used in multiclass classification. The simulated data were
incorporated with realistic blockwise correlation and partial
correlation of structures to mimic the correlations and
metabolite clustering in untargeted metabolomics studies and
then tested with six ML approaches including PLS-DA, Sparse
PLS-DA, RF, SVM, ANN, KNN, and naiv̈e Bayes. The results
showed that SVM and RF outperformed other models when
the studies incorporated non-normal error distributions,
unbalanced phenotype allocation, outliers, missing values,
and dimension reduction. When training with the three class
data sets, SVM and RF also perform better than other
algorithms. Therefore, knowing the intricate pattern of the data
set, considering the statistical power of analysis, and choosing
an algorithm accordingly are important and essential when
applying ML algorithms in metabolomics studies.
Integration of NMR with Other Data. The quantitative

and reproducible qualities of NMR spectroscopy make it ideal
to use in data integration. Because of the complementary
nature of NMR and MS, combining them in a study is
advantageous. They can be combined in tandem or in parallel
for structure elucidation or for a better metabolite cover-
age.111,115,210 The Brüschweiler lab developed an approach to
integrate NMR and high-resolution MS data called SUMMIT
MS/NMR (Structure of Unknown Metabolomic Mixture
components by MS/NMR).211 With high-resolution MS
data, it is possible to obtain an accurate molecular formula
for an unknown MS feature. NMR chemical shifts are
calculated for every possible structure, and the corresponding
NMR data are searched for the best match. This conceptually
simple approach can become quite complicated with larger
values of m/z, which can lead to a large number of structures.
It also depends on accurate calculations of NMR chemical
shifts, which as noted above are now quite accurate with high-
level theory.134 The SUMMIT approach would nicely
complement the metabolite fraction libraries described
above.88

With recent improvements in quantification accuracy and
the development of compatible sample preparation protocols
for MS and NMR techniques, interplatform correlation is
reinforced.210,212,213 For example, Clendinen et al. used NMR
and LC-MS to look for potential biomarkers of prostate cancer
recurrence.213 They measured polar extractions of human
serum samples by both NMR and hydrophilic interaction
liquid chromatography (HILIC)-MS and nonpolar extractions
by reversed phase liquid chromatography (RPLC)-MS. Each
platform detected some unique analytes. The authors used
correlations between signals across platforms to confirm peak
annotations. Also, features from the same metabolites with low
or negative interplatform correlation might indicate unreliable
quantifications for either platform; therefore, those features
were excluded from statistical analysis. For multivariate
statistical analysis, NMR and MS data were concatenated
and feature selected. As a result, a set of 20 metabolites (3 from
NMR) were reported to be potential biomarkers. In addition,
correlations between signals from metabolites measured from
different platforms were observed, which supplemented
metabolic crosstalk information. Together, these results
revealed the strength of interplatform correlation on improving
peak annotation confidence and relative quantification and
unravelling biological relationships between metabolites.
Moreover, Nagana Gowda and co-workers showed that
interplatform correlation could make absolute quantification

in MS samples easier when NMR quantification from the same
sample is used as reference.214

In many cases, processed NMR and MS data are statistically
analyzed separately and integrated on a pathway level.
Combining data matrices before multivariate analysis is
relatively rare partly due to the matrix size issue.215 For most
cases, the number of variables is much larger than the number
of samples, which is not favorable to most statistical analyses.
Concatenating matrices will further amplify these differences.
The concept of penalized multiblock analysis accompanied
with feature selection is suitable for this situation.215,216 It also
manages the imbalance of signal scales between platforms.
Deng et al. reported efficient classification of sample groups in
integrated LC-MS and NMR data with feature selection for
multiblock PLS-DA.217 They showed that simply concatenat-
ing matrices did not produce better performance than did a
single matrix, but integrated matrices with feature selection did
outperform a single matrix with feature selection. The
availability of these statistical tools should be recognized for
a more thorough usage of information in data integration.
NMR-based metabolomics can also be integrated with other

omics, such as genomics, transcriptomics, proteomics, or
microbiomics, in order to develop a more comprehensive
understanding of biological systems.218 Sheikh et al. recently
introduced metabolomics to glycomics studies in C. elegans.164

Besides glycomics data, the authors also integrated metab-
olomics data with worm population distribution to analyze the
relationship between metabolites, glycans, and size as a proxy
for development. In this study, synchronized worm samples
were measured for their metabolome by NMR, glycome by
LC-MS/MS, and population distribution by large-particle flow
cytometry. Different sized worms showed distinct patterns of
glycan and metabolite levels. A correlation network between
the three data matrices also showed associations between
metabolites, glycans, and worm size. Furthermore, NMR-
measured metabolites provided a substrate-level detail of
glycan modification and glycosylation. For example, the
authors observed that phosphocholine was positively corre-
lated to some developmental-stage-specific N-glycans. This
result suggested those glycans may be potential substrates for
phosphocholine modifications. The correlation between UDP-
N-acetylglucosamine (UDP-GlcNAc), O-glycans, and worm
sizes indicated possible changes in O-glycan utilization with
worm growth. Therefore, together with glycan-level changes,
metabolomics results shed light on glycan dynamics during
worm development.
With the development of statistical methods, data

integration is becoming more flexible. For example, Le
Moyec et al. used an unsupervised multiblock model to
analyze NMR-measured metabolites and biochemical assay
results, which contained heterogeneous analytes such as
specific lipid levels, protein levels, and enzymatic activities,
for understanding equine energy metabolism during horse
racing.219 Furthermore, data integration can in turn help NMR
peak annotation with knowledge from other omics. Wang et al.
built a network with NMR-measured metabolite levels,
microbiome gene abundance in rumen fluid samples, and
compound knowledge in the KEGG database.220 NMR
features were associated with genes through linear and
nonlinear correlations. Those genes were mapped in the
KEGG database for connected compounds through reaction
knowledge. In this way, NMR features were connected to
compound names, thus helping to extrapolate peak identity.

Analytical Chemistry pubs.acs.org/ac Review

https://dx.doi.org/10.1021/acs.analchem.0c04414
Anal. Chem. XXXX, XXX, XXX−XXX

P

pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c04414?ref=pdf


The developers of Metabomatching also proposed the idea
to annotate metabolites with their associated genetic traits
(e.g., SNP).221 In a mGWAS experimental set, they gathered
peaks highly associated with one SNP to generate a
pseudospectrum for database query. This approach was tested
to work on some known metabolites. While this work may not
yet fully replace routine annotation, for example by 2D NMR,
it can provide some idea of unknown peaks, as metabolites that
generate such signals would be associated with enzymes coded
by the genes. However, this kind of annotation technique is
limited by the genetic diversity of samples and requires a
specific experimental design. It is thus more suitable for an
integrated study rather than an unaccompanied metabolomics
study.
Statistical methods are developing quickly for multiomics

studies,216,222 but methods of integrating metabolomics with
other omics data are limited. Using methods developed on
other omics-integrated approaches for metabolomics-involved
integration is a promising avenue for future research.

■ CONCLUSION AND FUTURE PERSPECTIVE
We have highlighted several strengths of NMR and shown how
these can add considerable value to a metabolomics study. In
some examples, such as monitoring in vivo metabolism in real-
time and in protein-metabolite binding studies, NMR provides
information that would be inaccessible with any other
technology. In other cases, such as culture media analysis
and quantitative analysis of genetic mutants, other technologies
such as LC-MS could be used, but NMR is far simpler,
quantitative, and reproducible and thus has advantages that
arguably outweigh its lower sensitivity. As illustrated by
discoveries in natural products chemistry, true unknown
compound identification in metabolomics almost always
needs NMR, especially in the assignment of stereochemistry.
It is counterproductive to think of NMR and LC-MS or

other MS technology to be competitive technologies. Our
laboratory regularly uses both, and properly designed studies
can benefit greatly from their complementary data. Computa-
tional tools exist that allow integration of NMR and MS,
though there is considerable room for development in
integrative approaches.
Technology advances drive applications, which in turn,

expose areas ripe for new technology. New superconducting
materials are fueling growth in ultrahigh magnetic fields that
exceed 1 GHz. These new NMR systems will have greater
resolution and sensitivity and will also be ideal for detecting
nuclei other than 1H. NMR probe technology continues to
increase sensitivity and reduce volumes of sample. Technol-
ogies such as dynamic nuclear polarization (DNP), which are
beyond the scope of this review, have the promise of improving
NMR sensitivity by orders of magnitude.6 And the use of
NMR spectroscopy, in combination with MRI and some of the
other emerging technologies such as DNP, have the potential
to provide even a greater bridge between metabolomics and
function.
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Seppan̈en-Laakso, T.; Sysi-Aho, M.; Untch, M.; Huober, J.; von
Minckwitz, G.; Denkert, C. Int. J. Cancer 2014, 134, 1725−1733.
(194) Stevens, V. L.; Wang, Y.; Carter, B. D.; Gaudet, M. M.;
Gapstur, S. M. Metabolomics 2018, 14, 97.
(195) Armstrong, C. W.; McGregor, N. R.; Lewis, D. P.; Butt, H. L.;
Gooley, P. R. Metabolomics 2015, 11, 1626−1639.
(196) Thev́enot, E. A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. J.
Proteome Res. 2015, 14, 3322−3335.
(197) Zheng, X.; Huang, F.; Zhao, A.; Lei, S.; Zhang, Y.; Xie, G.;
Chen, T.; Qu, C.; Rajani, C.; Dong, B. BMC Biol. 2017, 15, 1−15.
(198) Fahrmann, J. F.; Kim, K.; DeFelice, B. C.; Taylor, S. L.;
Gandara, D. R.; Yoneda, K. Y.; Cooke, D. T.; Fiehn, O.; Kelly, K.;
Miyamoto, S. Cancer Epidemiol., Biomarkers Prev. 2015, 24, 1716−
1723.
(199) Sakanaka, A.; Kuboniwa, M.; Hashino, E.; Bamba, T.;
Fukusaki, E.; Amano, A. Sci. Rep. 2017, 7, 42818.
(200) Franzosa, E. A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos,
N.; Haiser, H. J.; Reinker, S.; Vatanen, T.; Hall, A. B.; Mallick, H.;
McIver, L. J. Nat. Microbiol. 2019, 4, 293−305.
(201) Chan, A. W.; Mercier, P.; Schiller, D.; Bailey, R.; Robbins, S.;
Eurich, D. T.; Sawyer, M. B.; Broadhurst, D. Br. J. Cancer 2016, 114,
59−62.
(202) Friedman, J.; Hastie, T.; Tibshirani, R. The elements of
statistical learning; Springer series in statistics; New York, 2001; Vol. 1.

Analytical Chemistry pubs.acs.org/ac Review

https://dx.doi.org/10.1021/acs.analchem.0c04414
Anal. Chem. XXXX, XXX, XXX−XXX

U

https://dx.doi.org/10.1093/gigascience/giy149?ref=pdf
https://dx.doi.org/10.1093/gigascience/giy149?ref=pdf
https://dx.doi.org/10.1093/bib/bbaa204?ref=pdf
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c04414?ref=pdf


(203) Mendez, K. M.; Reinke, S. N.; Broadhurst, D. I. Metabolomics
2019, 15, 150.
(204) Vu, T.; Siemek, P.; Bhinderwala, F.; Xu, Y.; Powers, R. J.
Proteome Res. 2019, 18, 3282−3294.
(205) Fu, H.-Y.; Yin, Q.-B.; Xu, L.; Goodarzi, M.; Yang, T.-M.; Li,
G.-F.; She, Y.-B. Chemom. Intell. Lab. Syst. 2016, 157, 43−49.
(206) Elkano, M.; Galar, M.; Sanz, J.; Bustince, H. Inf. Sci. 2016,
332, 94−114.
(207) Clark, P.; Boswell, R. European Working Session on Learning;
Springer, 1991; pp 151−163.
(208) Brunner, C.; Fischer, A.; Luig, K.; Thies, T. J. Machine
Learning Res. 2012, 13, 2279−2292.
(209) Trainor, P. J.; DeFilippis, A. P.; Rai, S. N. Metabolites 2017, 7,
30.
(210) Marshall, D. D.; Powers, R. Prog. Nucl. Magn. Reson. Spectrosc.
2017, 100, 1−16.
(211) Bingol, K.; Bruschweiler-Li, L.; Yu, C.; Somogyi, A.; Zhang,
F.; Bruschweiler, R. Anal. Chem. 2015, 87, 3864−3870.
(212) Li, X.; Luo, H.; Huang, T.; Xu, L.; Shi, X.; Hu, K. Anal.
Bioanal. Chem. 2019, 411, 1301−1309.
(213) Clendinen, C. S.; Gaul, D. A.; Monge, M. E.; Arnold, R. S.;
Edison, A. S.; Petros, J. A.; Fernandez, F. M. J. Proteome Res. 2019, 18,
1316−1327.
(214) Nagana Gowda, G. A.; Djukovic, D.; Bettcher, L. F.; Gu, H.;
Raftery, D. Anal. Chem. 2018, 90, 2001−2009.
(215) Boccard, J.; Rudaz, S. J. Chemom. 2014, 28, 1−9.
(216) Csala, A.; Zwinderman, A. H. In Computational Biology; Husi,
H., Ed.: Brisbane (AU), 2019.
(217) Deng, L.; Gu, H.; Zhu, J.; Nagana Gowda, G. A.; Djukovic, D.;
Chiorean, E. G.; Raftery, D. Anal. Chem. 2016, 88, 7975−7983.
(218) Pinu, F. R.; Beale, D. J.; Paten, A. M.; Kouremenos, K.;
Swarup, S.; Schirra, H. J.; Wishart, D. Metabolites 2019, 9, 76
(219) Le Moyec, L.; Robert, C.; Triba, M. N.; Bouchemal, N.; Mach,
N.; Riviere, J.; Zalachas-Rebours, E.; Barrey, E. Front Mol. Biosci 2019,
6, 45.
(220) Wang, M.; Wang, H.; Zheng, H.; Dewhurst, R.; Roehe, R.
IEEE Trans Nanobioscience 2020, 19, 518−526.
(221) Rueedi, R.; Mallol, R.; Raffler, J.; Lamparter, D.; Friedrich, N.;
Vollenweider, P.; Waeber, G.; Kastenmüller, G.; Kutalik, Z.;
Bergmann, S. PLoS Comput. Biol. 2017, 13, e1005839−e1005839.
(222) Huang, S.; Chaudhary, K.; Garmire, L. X. Front. Genet. 2017,
8, 84.

Analytical Chemistry pubs.acs.org/ac Review

https://dx.doi.org/10.1021/acs.analchem.0c04414
Anal. Chem. XXXX, XXX, XXX−XXX

V

pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c04414?ref=pdf

