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ABSTRACT
In 21 cm cosmology, precision calibration is key to the separation of the neutral hydrogen
signal from very bright but spectrally-smooth astrophysical foregrounds. The Hydrogen Epoch
of Reionization Array (HERA), an interferometer specialized for 21 cm cosmology and now
under construction in South Africa, was designed to be largely calibrated using the self-
consistency of repeated measurements of the same interferometric modes. This technique,
known as redundant-baseline calibration resolves most of the internal degrees of freedom
in the calibration problem. It assumes, however, on antenna elements with identical primary
beams placed precisely on a redundant grid. In this work, we review the detailed implementation
of the algorithms enabling redundant-baseline calibration and report results with HERA data.
We quantify the effects of real-world non-redundancy and how they compare to the idealized
scenario in which redundant measurements differ only in their noise realizations. Finally,
we study how non-redundancy can produce spurious temporal structure in our calibration
solutions—both in data and in simulations—and present strategies for mitigating that structure.

Key words: instrumentation: interferometers – cosmology: dark ages, reionization, first stars

1 INTRODUCTION

21 cm cosmology, the tomographic mapping of the redshifted hy-
perfine transition of neutral hydrogen, has the potential to provide
direct access to the majority of the luminous matter in the universe
for the first time (Furlanetto et al. 2006; Morales & Wyithe 2010;
Pritchard & Loeb 2012; Zaroubi 2013; Loeb & Furlanetto 2013; Liu
& Shaw 2019; Furlanetto et al. 2019c; Liu et al. 2019; Burns et al.
2019). At lower redshifts, 21 cm tomography can enable intensity
mapping of self-shielded gas within galaxies, allowing for precise
measurements of baryon acoustic oscillations across cosmic time
(Chang et al. 2008; Loeb & Wyithe 2008; Cosmic Visions 21 cm
Collaboration et al. 2018; Kovetz et al. 2019; Slosar et al. 2019). At
higher redshifts, 21 cm cosmology promises a new window on the
“Cosmic Dawn”, spanning from the first stars through to the Epoch
of Reionization (EoR) by probing the intergalactic medium’s (IGM)
temperature, density, and ionization state (Furlanetto et al. 2019b;
Mirocha et al. 2019; Chang et al. 2019; Furlanetto et al. 2019a;
Alvarez et al. 2019). Both the sky-averaged 21 cm brightness tem-
perature and its fluctuations encode key information about these
processes. With the as-yet-unconfirmed detection of a surprisingly
strong global absorption signal at 𝑧 ≈ 17 by the EDGES team (Bow-
man et al. 2018), there is pressing need for followup observations of
both the global 21 cm signal and its fluctuations during the Cosmic
Dawn.

The primary challenge of 21 cm cosmology across redshifts is
distinguishing 21 cm signal from comparatively nearby astrophysi-
cal foregrounds, namely the continuum emission from our Galaxy
and other radio-bright galaxies, that are ∼105 times brighter. In
21 cm tomography with radio interferometers—the focus of this
work—that separation relies on the spectral smoothness of fore-
grounds compared to the complex spectral structure of the 21 cm
signal where different frequencies correspond to distinct regions of
the IGM. That separation is complicated by the inherently chro-
matic nature of interferometric measurements. With an ideal instru-
ment that contamination is limited in to a wedge-shaped region of
Fourier space (Datta et al. 2010; Vedantham et al. 2012; Parsons
et al. 2012a,b; Liu et al. 2014a,b), leaving the remaining modes
clean for a detection and characterization of the 21 cm signal via its
power spectrum.

★ Email: jsdillon@berkeley.edu

However, any unmodeled effects that result in additional spec-
tral structure in the instrument response risk destroying that clean
separation in Fourier space. Chief among these is the bandpass
function of each antenna’s signal chain, which multiplies the true
per-antenna voltages in our measured visibilities. This effect can be
modeled as a complex per-antenna and per-polarization gain as a
function of frequency and time, namely

𝑉obs
𝑖 𝑗 (𝜈, 𝑡) = 𝑔𝑖 (𝜈, 𝑡)𝑔∗𝑗 (𝜈, 𝑡)𝑉

true
𝑖 𝑗 (𝜈, 𝑡) + 𝑛𝑖 𝑗 (𝜈, 𝑡), (1)

where𝑉𝑖 𝑗 is the visibility measured for the baseline between anten-
nas 𝑖 and 𝑗 , 𝑔𝑖 is the gain on the 𝑖th antenna, and 𝑛𝑖 𝑗 is the Gaussian-
distributed thermal noise in that measurement. The process of cor-
recting for these gains is often called direction-independent calibra-
tion to distinguish it from the problem of accounting for the spatial
response of each antenna element. In this paper, we will just use cal-
ibration as a shorthand.1 Errors in calibration that produce spectral
structure in the effective instrument response, when multiplied by
the overwhelmingly bright foregrounds, can completely contami-
nate otherwise clean Fourier modes. For example, Ewall-Wice et al.
(2016a) saw that sub-percent-level cable reflections produce sinu-
soidal ripples in the bandpass that create attenuated but still very
bright copies of the foreground wedge centered at the line-of-sight
cosmological mode, 𝑘 ‖ , corresponding to the reflection’s delay.

Traditionally, the calibration of radio interferometers requires
precise models of the sky and antenna beams to simulate the ex-
pected 𝑉𝑖 𝑗 for each antenna pair and thus solve for each 𝑔𝑖 as part
of a large, over-constrained system of equations. Sky-based calibra-
tion is especially difficult for arrays optimized for 21 cm cosmology,
which often feature large fields of view and limited steerability of
elements. Worse, models of continuum foregrounds—especially,
diffuse and polarized emissions—are rarely accurate to better than
the percent-level. Unmodeled foregrounds, even those below the
confusion limit of current and upcoming arrays, can produce ru-
inous spectral calibration errors (Barry et al. 2016). This effect can
be mitigated by calibrating with only the shortest, least spectrally-
complex baselines (Ewall-Wice et al. 2017), though this may make

1 We also ignore the so-called 𝐷-terms, which mix polarization responses,
which are likely much smaller than the relevant calibration errors and have
less impact on the calibration of visibilities between antennas of the same
polarization—the ones most sensitive to unpolarized 21 cm cosmological
signal.

© 2019 The Authors
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the calibration less accurate as it relies more heavily on the poorly-
modeled diffuse Galactic emission. Alternatively, one can impose a
priori constraints on calibration solutions, either by the consensus
optimization technique (Yatawatta 2015; Yatawatta 2016) used in
Patil et al. (2017) and Mertens et al. (2020), via low-order polyno-
mials (Barry et al. 2019a; Barry et al. 2019b), or by directly filtering
gains (Kern et al. 2019b). This general approach relies on the in-
herent spectral smoothness smoothness of the instrument response,
including its complex, per-antenna gains. Much work has been done
with simulations (Ewall-Wice et al. 2016b; Trott et al. 2017) and
field measurements (Patra et al. 2018) to verify the smoothness and
calibratability of arrays. It remains to be demonstrated in which
regimes the a priori assumption of spectral smoothness will hold
for real-world antennas operating inside large arrays with complex
electromagnetic interactions.

An alternate approach to calibrating arrays with many pairs of
antennas with the same physical separation is to solve for the gains
and unique visibilities simultaneously, using no prior information
about the sky or the instrument other than the assumption that
elements are identical and placed correctly. This approach, called
redundant-baseline calibration, works well when the number of
unique baseline separations is much smaller than the total number
of measurements, as is usually the case when the array is constructed
on a regular grid. This approach, developed in Wieringa (1992) and
formalized in Liu et al. (2010), simplifies the problem by solving
for most of calibration’s degrees of freedom—one complex antenna
gain per antenna and one complex visibility per unique baseline
type for each frequency and polarization—using only the internal
consistency of redundant measurements.

However, redundant calibration cannot resolve a small num-
ber of degenerate parameters—four per frequency and per
polarization—and must ultimately reference the sky to resolve them
(Zheng et al. 2014; Dillon et al. 2018), a process we call absolute
calibration, since its primary purpose is to set a flux scale and
pointing center. Just as modeling errors plague sky-based calibra-
tion, redundant-baseline calibration can suffer from similar prob-
lems due to position errors and beam-to-beam variation between
antenna elements (Orosz et al. 2019) or to sky modeling errors in
the absolute calibration step (Byrne et al. 2019). Likewise, these
too can be mitigated by a priori constraints on bandpass spectral
smoothness or by using only short baselines (Orosz et al. 2019).
Hybrid techniques that transition from redundant-baseline to sky-
based calibration with increasing sky and instrument knowledge are
also being explored (Sievers 2017).

Different first-generation arrays aiming to detect the 21 cm
power spectrum were constructed to take advantage of different tech-
niques. The LOw-Frequency ARray (LOFAR; van Haarlem et al.
2013; Mertens et al. 2020) and Phase I of the Murchison Wide-
field Array (MWA; Tingay et al. 2013; Bowman et al. 2013; Trott
et al. 2020) were both designed with minimal baseline redundancy
to optimize for a 𝑢𝑣-coverage and thus the ability to image the sky
and iteratively calibrate off that image. By contrast, the technology
demonstrator MITEoR (Zheng et al. 2014, 2017) and the Donald
C. Backer Precision Array for Probing the Epoch of Reionization
(PAPER; Parsons et al. 2010; Ali et al. 2015) were built on regular
grids which both enable redundant-baseline calibration and focus
sensitivity on the measurement of a few modes for a delay-spectrum
analysis (Parsons et al. 2012b). Phase II of the MWA added some
elements on a regular grid, enabling a comparison of both types of
calibration (Li et al. 2018), as well as hybrid approaches.

As a second generation instrument, the Hydrogen Epoch of
Reionization Array (HERA; DeBoer et al. 2017) borrows ap-

proaches from its predecessors. When it is complete, HERA will
consist of 350 14 m parabolic dishes observing at 50–250 MHz
(4.7 . 𝑧 . 27). Of these, 320 are packed hexagonally into a dense
core while the remaining 30 outrigger antennas provide longer base-
lines (∼1 km) for improved imaging. HERA was designed such that
the entire array could be redundantly calibrated, including the out-
riggers (Dillon & Parsons 2016). It also features a core split into
three offset sectors to create denser simultaneous 𝑢𝑣-coverage that
improves HERA’s ability to map diffuse galactic structure (Dillon
et al. 2015).

In this work, we describe results from the redundant-baseline
of Phase I of HERA. In Phase I, HERA existed as a hybrid of PA-
PER and the final HERA system; it featured modified PAPER dipole
feeds suspended over HERA dishes (Neben et al. 2016; Ewall-Wice
et al. 2016b; Patra et al. 2018; Fagnoni et al. 2020) and used the
PAPER signal chain and correlator. The legacy PAPER components
are all now being replaced as construction on the full HERA sys-
tem continues through 2020. This work complements other recent
work with HERA on both systematics mitigation (Kern et al. 2019c;
Kern et al. 2019a) and sky-based calibration and (post-redundant)
absolute calibration (Kern et al. 2019b). Likewise, this paper com-
plements the investigation of the spectral smoothness of HERA’s
calibration solutions in Kern et al. (2019b) with an investigation
of the temporal structure of those solutions and its origin. Along
with those papers, it is meant to lay the groundwork for forthcoming
HERA Phase I upper-limits on the 21 cm power spectrum.

HERA is also an important testbed for redundant-baseline
calibration. Next-generation arrays across redshifts are being con-
sidered which rely on Fast Fourier Transform (FFT) correlation
(Tegmark & Zaldarriaga 2009, 2010) to make arrays with large num-
bers of elements feasible (Cosmic Visions 21 cm Collaboration et al.
2018; Slosar et al. 2019; Ahmed et al. 2019; The Hydrogen Epoch
of Reionization Array Collaboration 2019). FFT-correlation, which
can reduce the cost-scaling of correlating 𝑁-antenna arrays from
O(𝑁2) to O(𝑁 log 𝑁), achieves that speed-up via a form of data
compression that relies on precise relative calibration of antennas—
precisely the terms solved for by redundant-baseline calibration—in
real time. While not the only route to faster correlation (Morales
2011; Thyagarajan et al. 2017; Kent et al. 2019), redundant-baseline
calibration is likely a necessary enabling technology for futuristic
21 cm interferometers.

Previous work with PAPER (Ali et al. 2015; Kolopanis et al.
2019) and MITEoR (Zheng et al. 2014, 2017) showed both the
promise of redundant-baseline calibration and its ability to clearly
spot deviations from ideal behavior. However, HERA’s high sen-
sitivity is an opportunity to assess redundant-baseline calibration
in a more systematic way. How redundant is HERA and how do
we quantify redundancy? In this paper, we explore several ways of
answering that question using 18 days of observation with HERA
Phase I (Section 3). Along the way we review redundant-baseline
calibration, elaborating on previously unpublished implementation
details and a corrected and expanded exploration of one of the key
metrics of redundancy, 𝜒2 (Section 2). Finally, we explore how
the observed temporal structure in our calibration solutions can
be understood as a consequence of non-redundancy (Section 4),
complementing the exploration of spectral structure in calibration
solutions in Kern et al. (2019b).

MNRAS 000, 1–23 (2019)
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2 THE THEORY AND PRACTICE OF
REDUNDANT-BASELINE CALIBRATION

In this section, we review the mathematical underpinnings (Sec-
tion 2.1) and practical algorithmic implementation (Section 2.2)
of redundant-baseline calibration. While some of this material has
been previously published (Liu et al. 2010; Zheng et al. 2014, 2017;
Dillon et al. 2018; Li et al. 2018), a number of the implementation
details are missing from the literature, especially the firstcal

(Section 2.2.1) and omnical algorithms (Section 2.2.3), and the
proper counting of degrees of freedom for normalizing 𝜒2 (Sec-
tion 2.3).

In implementing and refining the technique for HERA, we
have strived to maintain the independence of our techniques from
any detailed knowledge about the sky or the array. All we need need
to know about the array is where the antenna elements are and that
they are approximately identical to one another. From that point, we
can perform most of the calibration and learn quite a bit about how
well the array is functioning. This has proven especially useful for
HERA, since for both Phase I and Phase II we have commissioned
effectively brand-new arrays.

2.1 Redundant-Baseline Calibration Review

Fundamentally, redundant-baseline calibration is a process for find-
ing a solution to a system of equations of the form

𝑉obs
𝑖 𝑗 = 𝑔𝑖𝑔

∗
𝑗𝑉𝑖− 𝑗 (2)

that minimizes 𝜒2 defined as

𝜒2 ≡
∑︁
𝑖< 𝑗

���𝑉obs
𝑖 𝑗

− 𝑔𝑖𝑔
∗
𝑗
𝑉𝑖− 𝑗

���2
𝜎2
𝑖 𝑗

. (3)

Here 𝑉𝑖− 𝑗 is a shorthand for our estimate of the true visibility with
the same baseline separation as the one between antennas 𝑖 and
𝑗 , using the fact that 𝑉 true

𝑖 𝑗
depends only on that separation vector.

Ideally, 〈𝑉𝑖− 𝑗 〉 = 𝑉 true
𝑖 𝑗

, but in the real world both non-redundancy
and degeneracies make them differ from one another. 𝜎2

𝑖 𝑗
is the

variance of 𝑛𝑖 𝑗 in Equation 1. For simplicity, we have dropped the
explicit dependence on time and frequency, though all these terms
are, in principle, functions of both. Solving the system of equa-
tion generally requires linearizing Equation 2. Originally, Wieringa
(1992) proposed taking the logarithm of both sides and then solving
for the real and imaginary parts separately as two linear systems
of equations. Liu et al. (2010) showed that this logcal procedure
yields biased results and instead proposed a lincal approach using
the iterative Gauss-Newton algorithm, Taylor expanding around ap-
proximate solutions and updating the solutions, to first order, using
a linear system of equations. Similar methods have been employed
in the literature, with different non-linear optimization algorithms
such as Levenberg–Marquardt (Grobler et al. 2018). For a pedagog-
ical review, see Dillon et al. (2018). Later in this section, we will
detail an alternative iterative algorithm that avoids matrix inversion.
This omnical algorithm was originally developed for and used in
Zheng et al. (2014), but was never explained in the literature.

After minimizing 𝜒2 by whatever method, the degrees of free-
dom in calibration that leave 𝜒2 unchanged are the degeneracies of
the system of equations. When polarizations are calibrated indepen-
dently (as is the case in this work), there are four such degeneracies
per polarization and frequency. These are the overall amplitude
(𝑔𝑖 → 𝐴𝑔𝑖 , 𝑉𝑖− 𝑗 → 𝐴−2𝑉𝑖− 𝑗 ), the overall phase (𝑔𝑖 → 𝑒𝑖𝜓𝑔𝑖),

the East-West tip-tilt (𝑔𝑖 → 𝑔𝑖𝑒
𝑖Φ𝑥 𝑥𝑖 ,𝑉𝑖− 𝑗 → 𝑉𝑖− 𝑗𝑒

−𝑖Φ𝑥Δ𝑥𝑖 𝑗 ), and
the North-South tip-tilt (𝑔𝑖 → 𝑔𝑖𝑒

𝑖Φ𝑦 𝑦𝑖 , 𝑉𝑖− 𝑗 → 𝑉𝑖− 𝑗𝑒
−𝑖Φ𝑦Δ𝑦𝑖 𝑗 )

where 𝐴, 𝜓, Φ𝑥 , and Φ𝑦 are arbitrary real scalars and 𝑥𝑖 and 𝑦𝑖 are
antenna position components. While three these can be solved by
absolute calibration using a sky model as a reference, the overall
phase cannot because it is merely an arbitrary convention with no
physical significance.

2.2 Practical Implementation of Redundant-Baseline
Calibration

In practice, redundant-baseline calibration must be performed as a
series of iterative steps, each bringing us closer to a solution that
minimizes 𝜒2. Without a good starting point, phase wrapping issues
plague logcalwhile lincal and omnical converge slowly, if at all
(Zheng et al. 2014; Joseph et al. 2018). Getting “good enough” gain
phases is key to achieving convergence and avoiding the introduction
of spectral structure in the degeneracies (Dillon et al. 2018). In this
section, we explain our refined method for implementing these steps,
starting with firstcal, a sky-independent way to find a starting
point for the rest of redundant-baseline calibration.

2.2.1 Overall phase and delay calibration: firstcal

At a given time, any gain can be written without loss of generality
as

𝑔 𝑗 (𝜈) = 𝐴 𝑗 (𝜈)𝑒𝑖𝜙 𝑗 (𝜈)+2𝜋𝑖𝜈𝜏 𝑗+𝑖 𝜃 𝑗 (4)

where 𝐴, 𝜙, 𝜏,and 𝜃 are all real. Most of the spectral structure in a
gain’s phase comes the delay, 𝜏𝑗 , corresponding to the light travel
time from the antenna to the correlator. Differences in delays are
often driven by small differences in cable length. While an overall
delay added to all antennas has no effect on the measured visibilities,
delay differences are a key factor to correct for. We also include
an overall phase term, 𝜃 𝑗 , to account for antenna feeds accidentally
installed with a 180◦ rotation. Both could be absorbed into a general
frequency-dependent phase, 𝜙 𝑗 (𝜈), but it is useful for what follows
to separate them out. In past work this initial phase calibration is
accomplished by a “rough calibration” referenced to the sky (Zheng
et al. 2014; Ali et al. 2015). However, we have pursued an alternate
approach, which can be performed completely independently (and
in parallel) for each integration without reference to a sky-model.2

Our approach, firstcal, uses redundancy to solve for one
delay and phase per antenna and per polarization (but not per fre-
quency), up to a set of degeneracies that turn out to be a subset of
those listed above.3 The key idea is to look at pairs of measured
visibilities, 𝑉𝑖 𝑗 and 𝑉𝑘𝑙 , that probe the same redundant baseline,
𝑉𝑖− 𝑗 :

𝑉𝑖 𝑗𝑉
∗
𝑘𝑙��𝑉𝑖 𝑗 �� |𝑉𝑘𝑙 | ≈ 𝑔𝑖𝑔

∗
𝑗
𝑉𝑖− 𝑗𝑔

∗
𝑘
𝑔𝑙𝑉

∗
𝑖− 𝑗

|𝑔𝑖 |
��𝑔 𝑗 �� |𝑔𝑘 | |𝑔𝑙 | ��𝑉𝑖− 𝑗

��2
≈ exp

[
𝑖
(
𝜃𝑖 − 𝜃 𝑗 − 𝜃𝑘 + 𝜃𝑙

)
+ 2𝜋𝑖𝜈

(
𝜏𝑖 − 𝜏𝑗 − 𝜏𝑘 + 𝜏𝑙

) ]
.

(5)

2 In practice, we do not expect 𝜏 and 𝜃 to vary significantly over the
course of a night, but since this step is not rate-limiting computationally, we
find it useful to perform repeatedly both to make calibration more trivially
parallelizable and to provide additional data quality checks.
3 While originally developed for PAPER and HERA, a simpler, delay-only
variant of firstcal first appeared in the literature in Li et al. (2018) and
was applied to MWA data.

MNRAS 000, 1–23 (2019)



Redundant-Baseline Calibration of HERA 5

Here we have neglected any frequency-dependence of the gain
phases not captured by a delay term. Normalizing by the magni-
tude of the visibilities (as opposed to taking the ratio of visibilities)
has the added benefit of reducing the added weight that would oth-
erwise be assigned to channels with high levels of contamination
from radio-frequency interference (RFI).

Each pair of baselines within any given redundant-baseline
group gives us another equation in the form of Equation 5 that in-
volves (at most) four antennas. To linearize this set of equations,
we perform delay and phase estimation on the left-hand side using
the FFT-based Quinn’s Second Estimator (Quinn 1997; see Ap-
pendix A). This becomes two large systems of equations (one for
the 𝜃 terms and one for the 𝜏 terms), though one could likely use a
subset of the redundant-baseline groups to find a satisfactory start-
ing point for full redundant-baseline calibration.

While solving for the delay terms is fairly straightforward,
solving for 𝜃 terms is complicated by phase wrapping, since either
side of Equation 5 can have an arbitrary±2𝜋𝑁 . We find that repeated
iterations of the firstcal algorithm converge to a stable solution
that reduces 𝜒2 in Equation 3 considerably.4

To demonstrate this technique, we simulated a redundant 37-
element hexagonal array from 100–200 MHz with relatively realis-
tic, frequency-dependent complex gains, and added random overall
phases between 0 and 2𝜋 and random delays between -20 and 20 ns.
Our visibilities are random, rather than drawn from a sky model, but
they are perfectly redundant after calibration. We then add complex
Gaussian random noise drawn such that calibrated visibilities have
identical noise variance, as would be the case with pure sky-noise
(Thompson et al. 2017). We set the signal-to-noise ratio (SNR) on
the visibilities to approximately 10, roughly consistent with typical
HERA observations. In Figure 1, we show firstcal’s ability to
converge in a relatively small number of iterations, yielding a good
starting point for subsequent calibration that allows rapid minimiza-
tion of 𝜒2 despite the high dimensionality of the problem.

2.2.2 Logarithmically linearized redundant-baseline calibration:
logcal

The next step in redundant-baseline calibration, logcal, linearizes
Equation 2 by taking the logarithm of both sides. This technique
has been extensively reviewed in the literature (Wieringa 1992; Liu
et al. 2016; Zheng et al. 2014; Ali et al. 2015; Dillon et al. 2018; Li
et al. 2018) and we use it here without further refinement. However,
we will briefly review the key formalism here since it will prove
useful when we return to DoF counting in Section 2.3.

If we define our complex gains as 𝑔 𝑗 ≡ exp
[
𝜂 𝑗 + 𝑖𝜑 𝑗

]
, where

𝜂 𝑗 and 𝜑 𝑗 are both real, and if we take the natural logarithm of both
sides of Equation 2 and then break it apart into real and imaginary
terms, we get

Re
[
ln𝑉obs

𝑖 𝑗

]
= 𝜂𝑖 + 𝜂 𝑗 + Re

[
ln𝑉𝑖− 𝑗

]
and

Im
[
ln𝑉obs

𝑖 𝑗

]
= 𝜑𝑖 − 𝜑 𝑗 + Im

[
ln𝑉𝑖− 𝑗

]
. (6)

This produces two decoupled systems of linear equations, which we

4 Strictly speaking, at this point, we only have estimators for the gains but
not the unique baseline visibilities. For the purpose of calculating 𝜒2, 𝑉𝑖− 𝑗

is estimated by averaging calibrated visibilities within each group. This is
suboptimal when different baselines have different noise levels.
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Figure 1. The three stages of redundant calibration—firstcal, logcal,
and omnical—converge rapidly to a minimized value of 𝜒2. Here we show
the mean value of 𝜒2 per degree of freedom (DoF), which has an expectation
value of 1, calculated at each step in the calibration of a simulated 37-element
array. The simulation details are in Section 2.2.1. For more on the calculation
of DoF, see Section 2.3. In firstcal, where 𝑉𝑖− 𝑗 is not directly solved
for, an average of calibrated visibilities within a redundant group is used. It
should be noted that 𝑥-axis here is a bit misleading; logcal is not iterative
and the computational cost of firstcal and omnical depends on the
observation and are not always directly comparable.

can write as

Re [d] = A Re [x] and
Im [d] = B Im [x] (7)

where d is a vector of the natural logarithms of the observed visibil-
ities and x includes the gains and visibility solutions. The matrices
A and B encode the coefficients in Equation 6; every entry is either
1, 0, or in the case of B, -1. These systems of equations can be
solved with the standard linear least-squares estimators, however
the solution is biased. While it may be a step in the right direction,
it will generally not yield the absolute minimum possible value of
𝜒2, as we see in Figure 1 (Liu et al. 2010).

2.2.3 Damped fixed-point iteration redundant-baseline
calibration: omnical

Liu et al. (2010) introduced an alternative approach to logcal

that produced unbiased results using the Gauss-Newton algorithm.
Instead of taking the logarithm, we express gains as 𝑔𝑖 = 𝑔0

𝑖
+ Δ𝑔𝑖

and unique visibility solutions as 𝑉𝑖− 𝑗 = 𝑉0
𝑖− 𝑗

+ Δ𝑉𝑖− 𝑗 . Plugging
that into Equation 2 and dropping second order terms, this yields

𝑉obs
𝑖 𝑗 − 𝑔0

𝑖 𝑔
0∗
𝑗 𝑉

0
𝑖− 𝑗 = 𝑔∗0𝑗 𝑉

0
𝑖− 𝑗Δ𝑔𝑖 + 𝑔0

𝑖𝑉
0
𝑖− 𝑗Δ𝑔

∗
𝑗 + 𝑔0

𝑖 𝑔
∗0
𝑗 Δ𝑉𝑖− 𝑗 . (8)

The lincal algorithm simply solves for theΔ-terms with a standard
noise-weighted least-squares optimization, updates, and repeats un-
til convergence.

However, a faster method called omnical was developed for
Zheng et al. (2014) and used in Ali et al. (2015) without an explicit
acknowledgement that it was, in fact, a different algorithm. The key
idea of omnical is to update each gain and visibility as if all other
gains and visibilities were constant. This technique is essentially a
form of the method for solving non-linear systems of equations via
fixed-point iteration. Ideally, as our model of the data improves with
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each subsequent iteration, the statement that

𝑉obs
𝑖 𝑗 ≈ 𝑔𝑛𝑖 𝑔

𝑛∗
𝑗 𝑉𝑛

𝑖− 𝑗 (9)

becomes closer and closer to accurate (where the superscripts denote
the 𝑛 iteration). It follows then that

𝑔𝑖 ≈ 𝑉obs
𝑖 𝑗 /(𝑔𝑛∗𝑗 𝑉𝑛

𝑖− 𝑗 ). (10)

Since this equation should hold for all 𝑗 , we can use it to update 𝑔𝑖
by holding fixed all other variables in the system. Thus, to update
𝑔𝑖 , we take an average over baselines that include antenna 𝑖 with
weights 𝑤𝑖 𝑗 , giving us

𝑔′𝑖 =
©«
∑︁
𝑗

𝑤𝑖 𝑗𝑉
obs
𝑖 𝑗

𝑔𝑛∗
𝑗
𝑉𝑛
𝑖− 𝑗

ª®¬
/ ∑︁

𝑗

𝑤𝑖 𝑗

= 𝑔𝑛𝑖
©«
∑︁
𝑗

𝑤𝑖 𝑗𝑉
obs
𝑖 𝑗 /𝑦𝑛𝑖 𝑗

ª®¬
/ ∑︁

𝑗

𝑤𝑖 𝑗 (11)

where 𝑦𝑛
𝑖 𝑗

≡ 𝑔𝑛
𝑖
𝑔𝑛∗
𝑗
𝑉𝑛
𝑖− 𝑗

.
This method for iteratively updating gains (and analogously for

visibility solutions) is detailed in Algorithm 1. There we defined g

Algorithm 1: omnical
Generate initial gain and unique visibility solutions, 𝑔0

𝑖

and 𝑉0
𝑖− 𝑗

via e.g. firstcal and logcal;
for 0 ≤ 𝑛 < 𝑁max do

Evaluate all 𝑦𝑛
𝑖 𝑗

= 𝑔𝑛
𝑖
𝑔𝑛∗
𝑗
𝑉𝑛
𝑖− 𝑗

;

Update weights 𝑤𝑖 𝑗 =

(
𝑦𝑛
𝑖 𝑗

)2
/𝜎2

𝑖 𝑗
;

for 𝑔𝑛
𝑖
∈ g𝑛 do

𝑔′
𝑖
= 𝑔𝑛

𝑖

(∑
𝑗 𝑤𝑖 𝑗𝑉

obs
𝑖 𝑗

/𝑦𝑛
𝑖 𝑗

)
/∑ 𝑗 𝑤𝑖 𝑗 ;

𝑔𝑛+1
𝑖

= (1 − 𝛿)𝑔𝑛
𝑖
+ 𝛿𝑔′

𝑖
;

end
for 𝑉𝑛

𝑖− 𝑗
∈ V𝑛 do

𝑉 ′
𝑖− 𝑗

= 𝑉𝑛
𝑖− 𝑗

(∑
𝑖 𝑗 𝑤𝑖 𝑗𝑉

obs
𝑖 𝑗

/𝑦𝑛
𝑖 𝑗

)
/∑𝑖 𝑗 𝑤𝑖 𝑗 ;

𝑉𝑛+1
𝑖− 𝑗

= (1 − 𝛿)𝑉𝑛
𝑖− 𝑗

+ 𝛿𝑉 ′
𝑖− 𝑗

;
end
if | |Δx| |2/| |x| |2 < Y then

break;
end

end
Result: Gains g and visibility solutions V

as the vector of calibration solutions 𝑔𝑖 , V as the vector of visibility
solutions 𝑉𝑖− 𝑗 , x as the vector of both, and Δx as the difference
between the solutions from one iteration to the next. When we eval-
uate the gain update, we sum over all antennas. When we evaluate
the visibility solution update, we sum over all visibilities with the
same baseline separation as 𝑉𝑖− 𝑗 . To avoid over-correction on any
given step and thus speed up convergence, we damp each update by
a factor 𝛿. We generally find that 0.1 . 𝛿 . 0.5 converges fastest.
This process repeats until some convergence level Y in the 𝐿2-norm
is reached. For HERA we use 𝛿 = 0.4 and Y = 10−10.

Ideally, we would weight each visibility by the square of the
SNR on each measured visibility. While we could use𝑉obs

𝑖 𝑗
as the sig-

nal, a less noisy estimate of the quantity is the most recent iteration
of 𝑦𝑛

𝑖 𝑗
. For the noise, we use the observed visibility autocorrelations,
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Figure 2. omnical, the damped fixed-point iteration algorithm we describe
in Section 2.2.3 that avoids matrix inversion converges much faster than
the lincal while achieving the same level of precision. Here we show
the per-frequency and per-integration runtime for the two algorithms using
single-precision floating point variables. The simulation uses increasingly
large hexagonal arrays and simulates redundant visibilities using the same
technique as the one described in Figure 1 and Section 2.2.1.

𝑉obs
𝑖𝑖

:

𝜎2
𝑖 𝑗 =

〈
𝑉𝑖𝑖𝑉 𝑗 𝑗

Δ𝑡Δ𝜈

〉
≈

𝑉𝑖𝑖𝑉 𝑗 𝑗

Δ𝑡Δ𝜈
, (12)

where Δ𝑡 is the integration time and Δ𝜈 is the channel bandwidth.
The first equality follows from the radiometer equation (Thompson
et al. 2017), the later approximation uses the fact that autocorre-
lations are measured at extremely high signal-to-noise in HERA
(usually �100 in 10.7 s integrations). In Figure 1 we show that this
proper noise-weighting allows us to converge to 𝜒2/DoF ≈ 1 quite
quickly.

Even though omnical generally takes many more steps to
converge than lincal, each step is much faster because it does not
involve a matrix inversion. Comparing the total runtime to achieve
convergence at the same level of precision, we see in Figure 2 that
omnical scales with the number of antennas as O(𝑁2

ant) while
lincal scales as O(𝑁3

ant).
There are a number of ways to speed up the algorithm. Since

the calibration is independent for each time and frequency, allowing
each observation to converge independently is generally a speedup.
Being careful to reuse repeated calculations also saves time. In our
implementation, checking for convergence is actually a bottleneck;
we speed up the algorithm by updating the noise model and checking
for convergence every 10 iterations.5 The source code for omnical,6
along with firstcal, logcal, and lincal is available freely on
GitHub.7

5 Though for the simulation in Figure 1, we did a full update at every
iteration so as not to introduce confusing discontinuities in results.
6 This pure-python implementation is faster than the original C++ imple-
mentation of omnical and has fixed the convergence issue identified in
Appendix B of Li et al. (2018), thus eliminating the need for any final
lincal post-processing.
7 https://github.com/HERA-Team/hera_cal/
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2.2.4 Fixing Degeneracies

Since redundant-baseline calibration is carried out for each fre-
quency and time independently, it will generally be the case that the
calibration of different frequencies and times will fall in different
parts of the degenerate subspace of the gain and visibility solutions
that minimize 𝜒2. In principle, this is not a problem; absolute cal-
ibration is designed to fix this and Kern et al. (2019b) showed that
that technique works quite well. However, we have found that abso-
lute calibration (itself an iterative process) converges more quickly
and reliably when we start the process by taking out an overall
phase slope and an overall delay slope—precisely the degeneracies
of firstcal. It is therefore useful, as was argued in Dillon et al.
(2018), to fix the degenerate terms to avoid introducing unnecessary
spectral or temporal structure that we must later take out.

Given our absolute calibration strategy and the fact that the
degeneracies of firstcal are a subset of the degeneracies of full
redundant-baseline calibration, we use our firstcal gains as a
degenerate “reference.” For the amplitude degeneracy, all first-
cal gains have unit amplitude. Therefore, we fix our gains to have
an average product over all antenna pairs of 1. For the phase de-
generacies, we demand that the average phase and the phase slope
(computed by dotting each antenna position into its phase) to be the
same after firstcal as after redundant-baseline calibration. We
then update the visibility solutions accordingly to keep 𝜒2 constant.

2.3 The Normalization of 𝜒2

Before we turn to real HERA data and a thorough investigation of
𝜒2 as it depends on time, frequency, antenna, and baseline, it is
important to understand quantitatively what we expect 𝜒2 to be for
HERA. One might guess that, in a perfectly redundant array, 𝑉obs

𝑖 𝑗

and 𝑔𝑖𝑔
∗
𝑗
𝑉𝑖− 𝑗 differ only by the noise on the observed visibility

and thus that expectation value of Equation 3, 〈𝜒2〉, should simply
be the number of baselines, 𝑁bl. This would be true if we had an
external way to estimate 𝑔𝑖 and 𝑉𝑖− 𝑗 , but since we do not, we must
account statistically for the fitting of noise. After all, a small enough
system of equations with enough free variables can always find a
solution such that 𝜒2 = 0.

2.3.1 Overall degrees of freedom

The actual number of degrees of freedom in single-polarization
redundant-baseline calibration is given by

〈𝜒2〉 ≡ DoF = 𝑁bl − 𝑁ubl − 𝑁ant + 2. (13)

Here 𝑁ubl is the number of unique baselines (or equivalently, differ-
ent𝑉𝑖− 𝑗 estimated). Intuitively, the number of degrees of freedom is
given by the number of measurements minus the number of free pa-
rameters solved for in redundant-baseline calibration, i.e. the gains
and visibilities. However, since each measurement and parameter is
complex, the extra two comes from the four real degeneracies, which
reduces the number of parameters actually solved for. Equation 13
differs from the one that appears in Zheng et al. (2014), which lacks
the two. When the number of baselines is large—in the data dis-
cussed in Section 3 DoF is as large as 533—the error is quite small,
which perhaps explains why it was not caught earlier. In Figure 3, we
show the distribution of 𝜒2/DoF using Equation 13 for a 19-element
hexagonal array simulated analogously to that in Figure 1 (see Sec-
tion 2.2.1 for details). With 19 elements, we have 171 visibilities and
only 30 unique baselines, yielding 124 degrees of freedom. With
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Figure 3. A proper normalization by the number of degrees of freedom in
redundant-baseline calibration yields a histogram of simulated 𝜒2/DoF val-
ues consistent with the expected underlying 𝜒-distribution. Here we simulate
and calibrate a 19-element hexagonal array, using an analogous technique as
laid out in Section 2.2.1 and used for Figure 1. Both the mean and variance
of this simulated distribution are consistent with our expectations, indicat-
ing both good convergence of the algorithm and a correct accounting of the
number of degrees of freedom.

that normalization, we find that the average 𝜒2/DoF over 102,400
samples (1024 channels and 100 integrations) is 1.00013, consistent
with 1.0. Had we used the Zheng et al. (2014) formula, we would
have gotten 1.0156.

Furthermore, we see that the distribution of 𝜒2/DoF follows
a 𝜒2-distribution with 𝑘 = 2 × DoF degrees of freedom, the factor
of two again resulting from the fact that each complex degree of
freedom is equivalent to two real degrees of freedom.8 We see in
Figure 3 that this functional form fits the simulated histogram quite
well. Given that the expected variance of 𝜒2

𝑘
(𝑥) is 2𝑘 , then it follows

that the expected variance of 𝜒2/DoF should be DoF−1. Indeed, we
find that Var

(
𝜒2/DoF

)
× DoF = 1.0028, consistent with 1.0.

2.3.2 Per-baseline degrees of freedom

While 𝜒2/DoF is a very useful summary statistic for how consistent
our observations are with thermal noise, it is generally useful to
break apart the sum in Equation 3 to assess redundancy as a function
of baseline, unique baseline, or antenna. We know that the sum of all
〈𝜒2〉 per baseline or per unique baseline group should be the total
DoF. Likewise, if we define 𝜒2 per antenna such that each term in
the sum in Equation 3 is assigned to both antennas involved in the
visibility, then it follows that the sum of all 〈𝜒2〉 per antenna should
be 2 × DoF. It is not true, however, that the degrees of freedom

8 This factor of 2 is missing from the discussion in Section 3.1.4 of
Zheng et al. (2014). Likely, this was an oversight that does not af-
fect Figure 11 of that work. To be precise, if the probability density
function of the 𝜒2-distribution denoted 𝜒2

𝑘
(𝑥) is given by 𝑓𝜒2 (𝑥; 𝑘) =

1
2𝑘/2Γ(𝑘/2) 𝑥

𝑘/2−1𝑒−𝑥/2, then probability distribution function of 𝜒2/DoF

is given by 𝑓

(
𝜒2

DoF ; 𝐷𝑜𝐹

)
= 𝑓𝜒2 (2𝜒2; 2 × DoF)/(2 × DoF) . We choose

not to simplify further because it is generally easier to compute
this function numerically using a standard library for 𝑓𝜒2 (𝑥; 𝑘) , e.g.
scipy.stats.chisq.pdf().
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are equally distributed among the baselines or antennas. In the case
of baselines, it is trivial to see this; adding a baseline that is not
redundant with any other baseline adds one new complex data point
and one new complex variable. We expect that for that baseline, we
can always find a 𝑉𝑖− 𝑗 such that 𝑉obs

𝑖 𝑗
= 𝑔𝑖𝑔

∗
𝑗
𝑉𝑖− 𝑗 exactly, meaning

that 𝜒2 for this baseline should always be 0.
After some numerical exploration and educated guesses, we

found a method that predicts 𝜒2 per baseline quite accurately.
Specifically, we found that the expectation value of the vector of
𝜒2 values per baseline, 𝜒𝜒𝜒2, is given by

〈𝜒𝜒𝜒2〉 = 1 − 1
2

Diag
[
A (AᵀA)−1 Aᵀ + B (BᵀB)−1 Bᵀ

]
(14)

where A and B are the real and imaginary logcal matrices defined
in Equation 7 and the matrix inversions are actually Moore-Penrose
pseudoinverses, since both AᵀA and BᵀB are rank-deficient by the
number of degeneracies of redundant-baseline calibration (1 for
AᵀA, 3 for BᵀB).

While in Figure 4 we show numerically that Equation 14 works
quite well, we have been unable to prove it analytically. To numerical
precision, the sum of 〈𝜒𝜒𝜒2〉 over all baselines matches the value in
Equation 13. However the match is not perfect, perhaps due to the
biases inlogcal or an insufficient accounting for the signal-to-noise
ratio on each baseline.

We can, however, get some intuition for why this might work.
The matrix A (AᵀA)−1 Aᵀ is often referred to as the data resolution
matrix in the geophysics literature (Menke 1989) and is essentially
the extent to which the data postdicts itself. That is to say that if we
have a system of linear equations 〈d〉 = Mx with equally-weighted
data d and parameters x, then the postdicted set of data using the
parameters inferred from the measured data is

dpostdicted = Mxinferred = M (MᵀM)−1 Mᵀdmeasured. (15)

When the data resolution matrix is the identity, the parameters
contain all the information in the data. In our case, that would mean
that every baseline’s 𝜒2 should be 0. Therefore, the more that each
piece of data is predicted by other data, the more off-diagonal the
data resolution matrix is, the less the noise is fit by the parameters
and thus the more degrees of freedom there are.

3 ASSESSING HERA REDUNDANCY

With both algorithms for performing redundant-baseline calibra-
tion and mathematical structures for assessing its success, we can
now turn to an assessment of the redundancy of Phase I HERA
data. In Section 3.1, we will present the observations we analyzed.
In Section 3.2, we will explain how redundant-baseline calibration
informed our data quality assessment and selection process by look-
ing for outliers in 𝜒2 per antenna. Next, we we will examine how
𝜒2 breaks down as a function of time and frequency (Section 3.3)
and by antenna and redundant-baseline group (Section 3.4). Fi-
nally, in Section 3.5, we will take a different approach to assessing
non-redundancy and offer an answer to the more intuitive but less
mathematically well-defined question: how redundant is HERA?

3.1 Observations

The data in this section come from 18 nights of observation with
HERA between December 10, 2017 and December 28, 2017, cor-
responding to all Julian dates between 2458098 and 2458116 ex-
cept 2458100 when the correlator was malfunctioning. HERA is

located in the Karoo Radio Astronomy Reserve at −30.7215◦ lat-
itude, 21.4283◦ longitude. As a zenith-pointing, drift-scan array,
HERA observations measure a roughly 10◦ stripe (the full-width
at half-maximum of the primary beam) at 150 MHz, centered at
−30.7215◦ declination. Since HERA is sky-noise dominated, ob-
servations where the sun is above the horizon are flagged, since they
are both noisier and less redundant than nighttime observations. This
means that the observations span a range of local sidereal times of
0.164–11.566 hours, corresponding to zenith right ascensions in the
range of 2.46◦–173.49◦ .

During Phase I, HERA observed from 100–200 MHz in 1,024
frequency channels, though the upper and lower ∼50 channels were
flagged because the feed design and the band-limiting filters elim-
inated most of array’s sensitivity to those frequencies. Visibilities
were measured with 10.7 s integrations. At that time the array con-
sisted of 52 antennas, of which we eventually threw out 13 due
to non-redundancy or other issues (see Section 3.2). We show the
configuration of the array and the numbering of antennas, including
the flagged antennas, in Figure 5. All of these antennas are part of
Southwest sector of the split-core of the eventual HERA-350 design
(DeBoer et al. 2017; Dillon & Parsons 2016) and thus on the same
hexagonal grid.

For most of the redundancy metrics we assess in Sections
3.3–3.5, we exclude frequencies and times identified as possibly
containing RFI. The process for identifying RFI looks at both the
data and a variety of reduced data products, including the omni-

cal gains and visibilities, for outliers relative to neighboring times
and frequencies. Assuming RFI events are usually compact in time,
frequency, or both, the technique then looks for marginal outliers
neighboring strong outliers and grows the flagged region accord-
ingly (Kerrigan et al. 2019). The flags are then harmonized to a
single function of frequency and time for all antennas and visibil-
ities, flagging completely the channels or integrations that show
low-level contamination in the context of the full data set. A full de-
scription of this work will appear the discussion of the forthcoming
HERA Phase I power spectrum upper-limits paper.

3.2 Identification of Malfunctioning Antennas With High-𝜒2

After each night of observation, HERA’s “real-time” pipeline (RTP)
identified antennas with particularly low power and flagged them
(Ali 2018). During the period analyzed here, Antennas 0 and 50
were flagged. To be conservative, antennas were flagged even if
only one of the two antenna polarizations was malfunctioning.

Redundant-baseline calibration—in this case performed well
after the observations were taken9—gives us another tool with
which to assess the health of the array: 𝜒2 per antenna. Armed
with a proper normalization of the expected degrees of freedom in
𝜒2 per antenna derived from Equation 14, we can look for outliers.

In Figure 6 we show the result of our calibration of a single
60-integration file on 2458114 centered on LST ≈ 10 hours after
removing only antennas 0 and 50. Two antennas, 136 and 98, stand
out right away—especially the North/South-oriented polarizations,
though unsurprisingly their East/West-polarizations also appear to
be outliers. The high per-antenna 𝜒2 means that the visibilities these
two antennas participate in are particularly discrepant with other vis-
ibilities in the same redundant groups. The fact that these antennas

9 Though in future HERA observations, we plan to use these algorithms to
perform redundant-baseline calibration within 24 hours of taking the data
to provide actionable information on the health of the array to the site team.
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Figure 4. Using Equation 14 we can predict how 𝜒2 should break down by baseline—and therefore by antenna or by unique baseline. In the first row, we show
our prediction for 𝜒2 per antenna, calculated by assigning each term in the 𝜒2 sum in Equation 3 to both antennas involved. In the second row, we instead break
up the sum into unique baseline groups. Using the same simulation as in Figure 3, we show in both cases that the average simulated 𝜒2 (left column) matches
the predicted value (middle column) to ∼1% accuracy (right column).
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Figure 5. Layout of HERA antennas between Julian dates 2458098 and
2458116. These 14-m diameter dishes are on a hexagonal grid with a sep-
aration of 14.6 m and will eventually be part of the Southwest sector of
the split HERA core when HERA-350 is complete. Antennas flagged for
non-redundancy or otherwise suspected of malfunctioning (see Section 3.2)
are noted in red and excluded from the final redundant-baseline calibration
examined in this work.

are on the edge of the array and thus have different distribution of
baselines that they participate in should be taken into account by
our DoF normalization (see Figure 4). While it is difficult to know
for certain, perhaps the telephone poles from which the feeds are
suspended over the dishes were sometimes less well-balanced at the
edge of the array (normally they support three feeds each at 120◦
angles), moving the feed off-center or out of focus and thus creating
non-redundancy.

Instead of visually inspecting every piece of data for outliers in
𝜒2, we quantify the “outlierness” of an antenna using its modified
𝑧-score, defined as

𝑧(𝑥) ≡ 0.6745
(
𝑥 − Median(𝑥)

MAD(𝑥)

)
(16)

where the denominator of the right-hand side is the median abso-
lute deviation (MAD), the median absolute value of the difference
between a data point and the median of the data points. The nor-
malization of 0.6745 ensures that, with Gaussian-distributed data, a
1𝜎 outlier in the standard 𝑧-score (which uses means and standard
deviations) would also be a 1𝜎 outlier in the modified 𝑧-score.

In our case, we first compute the median value of each antenna’s
𝜒2 over all frequencies and times in a single file. This avoids giv-
ing undue influence to observations with very high 𝜒2 due to RFI
(seen as spikes in Figure 6). Then we take these single median 𝜒2

values for each antenna and compute the median and MAD over all
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Figure 6. Here we show an example of our observed, normalized 𝜒2 per antenna, taking the median over time in single file (60 10.7 s integrations). The data
were taken from a field at ∼10 hours of LST on 2458114 have had only Antennas 0 and 50 removed. The resulting data show that Antennas 98 and 136 remain
clear outliers from the others, meriting flagging for extreme non-redundancy. This process is then repeated as eliminating outliers makes less clear outliers
stand out better.

antennas. This gives us a modified 𝑧-score, which is less sensitive
to extreme outliers than a standard 𝑧-score.

That said, outliers in redundancy cannot always be so cleanly
identified with just a single round of calibration. While redundant-
baseline calibration has the virtue of insulating the calibration at
a given frequency and time from bad frequencies and times (e.g.
when there is a strong RFI event), it necessarily cannot isolate bad
antennas from the rest of the gain and visibility solutions. Every
antenna is involved in baselines with the worst antennas, which
means that every antenna’s 𝜒2 will be somewhat elevated. Our
strategy is thus to remove all antennas that are 4𝜎 outliers and then
recalibrate, lowering the median over all antennas and exposing new
outliers. We repeat until no new outliers appear.

That is not quite the end of the story. When we calibrate the
entire dataset in this way, we find that our method for identifying
bad antennas does not always produce consistent results within
each night or across nights. In Figure 7 we show the results of
our outlier detection across the entire dataset, condensing each file
to a single pixel. After removing data when the sun was above
the horizon (yellow) and antennas flagged by the RTP (purple) or
declared suspect by the HERA commissioning team based on the
RTP results (magenta), the result of this outlier detection algorithm
is shown in maroon. Antennas 54, 98, are 136 are very-consistently
identified as bad, but not quite always. Other antennas are flagged
inconsistently with flagging patterns that often repeat night-to-night
as a function of LST. Clearly, the position of sources affects the
level of observed non-redundancy because different antennas are
more or less redundant with the bulk of the array along different
lines of sight, i.e. their primary beams differ. We will return to this
observation in Section 3.3 and assess some of its consequences in
Section 4.

Given our goal to conservatively select the best, most reliable
data, it is prudent to assume that an antenna that is a 4𝜎 outlier
at many LSTs and over many nights is probably a not-quite-4𝜎
outlier the rest of the time. We therefore choose to flag Antennas
24, 53, 54, 67, 69, 98, and 136 for the entire data set (orange).
We repeat this process one more time, looking for new outliers
(dark blue) once all the most consistently bad antennas are removed
consistently. On the next round of hand-flagging (light blue), we
remove antennas 2 and 122. We also remove antennas 11 and 139

which did not show any substantial non-redundancy but were hand-
flagged during absolute calibration (Kern et al. 2019b). We then
perform one final round of redundant-baseline calibration with all
of those antennas removed and continue to remove the occasional
4𝜎 outlier (green), but perform no further whole-antenna flagging.
Ideally, with redundant-baseline calibration operating in near-real-
time, bad antennas can be identified on a nightly basis and removed
from future calibration until they are fixed.

3.3 Overall 𝜒2 Results

With our clear theoretical understanding of the behavior of 𝜒2 in an
ideal array and with our selection of high-quality data, we are now
prepared to compare the two. Though 𝜒2 is a reduced statistic, it is
still calculated for every frequency, time, polarization, and night. In
this section we examine a few different ways to slice these data and
begin to interpret the results.

We start by looking at the observed probability density function
of 𝜒2, with an eye towards replicating Figure 3 with real data. We
see in Figure 8 our first clear indication of HERA’s non-redundancy.
We plot the distribution of 𝜒2/DoF separated out along several axes.
We compare this to an ideal 𝜒2-distribution in Footnote 8 where
we used DoF ≈ 520, the mean number of degrees of freedom over
our all observations. This is a bit lower than the 533 DoF we would
get from only the antenna flags in Figure 5. Since each individual 𝜒
measurement is normalized by the correct DoF, the effect of varying
per-observation DoF is minimal.

In most cases, we find that 𝜒2/DoF peaks between 1.3 and
1.4, meaning that HERA exhibits persistent non-redundancy ∼20%
larger than the thermal noise level. Despite that, the data are ex-
tremely inconsistent with the null hypothesis that non-redundancy
in visibilities is attributable to pure noise, as the histograms in
Figure 8 make clear. Overall, we find a mean value of 𝜒2/DoF
of 1.389. This is somewhat difficult to compare to previous re-
sults which have different noise levels normalizing 𝜒2. In Ali et al.
(2015), PAPER reported a mean 𝜒2/DoF of 1.9. While PAPER’s
elements had significantly less collecting area and thus sensitivity,
it had substantially larger frequency and time bins (493 kHz 42.9 s,
compared to 97.7 kHz and 10.7 s with HERA). MITEoR reported
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Figure 7. Here we show our per-antenna data quality assessment and flagging as a function of night and LST. Each pixel shows whether an antenna was
completely flagged for a file and at what stage in the process. After throwing out daytime data (yellow) and bad antennas caught by the RTP and the
commissioning team (purple and magenta), we proceed through three rounds of redundant-baseline calibration of the entire data set, iteratively flagging 4𝜎
outliers in the modified-𝑧 score of their per-antenna 𝜒2 (maroon, dark blue, green). After the first two rounds of calibration and flagging, we hand-flag antennas
(orange, light blue) that were frequently identified as outliers or were externally removed in subsequent processing (Kern et al. 2019b). This gives us the data
set we analyze in the rest of this work and from which we plan to produce the first HERA EoR power spectrum limits. (The one piece of data missing from
every antenna during the night of 2458114 is due to a correlator restart.)

a mean 𝜒2/DoF of 1.05, however its integration time (5.37 s) and
frequency resolution (49 kHz) are both roughly half HERA’s and
its elements were even smaller. The fact that the instruments have
different fields of view and, in MITEoR’s case, a northern latitude,
further complicate the comparison. Motivated in part by this diffi-
culty, we introduce a relative non-redundancy metric in Section 3.5
that is ideally independent of the noise level. We do not believe
the elevated 𝜒2/DoF is attributable to poor convergence due to low
visibilities SNR; as Gorthi et al. (2020) showed in a simulation of a
perfectly redundant array, redundant-baseline calibration of an ar-
ray this size can achieve 𝜒2/DoF ≈ 1 even when the visibility SNR
is .1.

The observed 𝜒2/DoF level appears consistent both for the
East/West- and North/South-oriented polarizations and from night
to night.10 However, it does exhibit an interesting and clearly non-
monotonic dependence on frequency. To understand that structure
better, it is easier to look at the median of these distributions (the
median is taken to avoid any low-level RFI) as a function of fre-
quency, LST, or both, marginalizing over night and polarization

10 2458104 and 2458109 are excluded from the middle panel of Figure 8
because they both are flagged due to heavy RFI early in the night. That
flagging includes Fornax A’s transit, making their 𝜒2 distributions appear
artificially low compared to other nights (see Figures 9 and 10).

MNRAS 000, 1–23 (2019)



12 J. S. Dillon et al.

0.5 1.0 1.5 2.0 2.5 3.0
2/ DoF (Unitless)

0

2

4

6

8

10

Pr
ob

ab
ilit

y 
De

ns
ity

Ideal 2

Distribution
Both Polarizations
E/W-Polarized
N/S-Polarized

0.5 1.0 1.5 2.0 2.5 3.0
2/ DoF (Unitless)

0

2

4

6

8

10

Pr
ob

ab
ilit

y 
De

ns
ity

Ideal 2

Distribution
All Nights
2458098
2458099
2458101
2458102
2458103
2458105
2458106

2458107
2458108
2458110
2458111
2458112
2458113
2458114
2458115
2458116

0.5 1.0 1.5 2.0 2.5 3.0
2/ DoF (Unitless)

0

2

4

6

8

10

Pr
ob

ab
ilit

y 
De

ns
ity

Ideal 2

Distribution
Whole Band
105 - 120 MHz
120 - 135 MHz
135 - 150 MHz
150 - 165 MHz
165 - 180 MHz
180 - 195 MHz

Figure 8. Here we show the distribution of 𝜒2/DoF over the entire data
set. We compare this to an ideal 𝜒2-distribution (see Footnote 8) with
DoF ≈ 520, the mean over observations with different antenna flagging. In
contrast to our simulations where the distribution matched the expected one
(Figure 3), here we see clear evidence for the hypothesis that the data cannot
be completely described by unique visibility baseline group and one complex
gain per antenna—the model for which we are computing 𝜒2 in Equation 3.
In other words, we see evidence for non-redundancy. This appears to be
consistent for both polarizations (top panel) and from night to night (middle
panel). However, we do see clear evidence for different distributions when the
histogram is broken out into rough frequency bands, indicating varying and
non-monotonic levels of non-redundancy as a function of frequency. This
effect is seem more clearly in Figure 9 and the second panel of Figure 10.
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Figure 9. The median unflagged value of 𝜒2/DoF over night and polar-
ization reveals complex spectral and temporal structure in this metric of
non-redundancy. While close to the ideal value of 1.0 in places, significant
deviations are apparent at certain LSTs, especially those associated with
bright point sources (see Figure 10).

which seem to have little effect. The results are shown in Figures 9
and 10. Figure 9 shows clear evidence of temporal and spectral
structure in 𝜒2/DoF, both of which are summarized in Figure 10.

The temporal structure of 𝜒2/DoF, seen both in Figures 9 and
10 is the easier of the two to understand. By far the largest excess
is clearly associated with the transit of Fornax A through the beam.
Fornax A, which is at 3.378 hours of right ascension and −37.21◦
declination, transits relatively deep into HERA’s primary beam,
but at 750 Jy at 154 MHz (McKinley et al. 2015) it is substantially
brighter than anything else in the field. At roughly 1◦ across, Fornax
A is effectively a very bright point source for HERA Phase I since
it is slightly smaller than the synthesized beam. When it transits
through the main beam, it is the dominant source in the field.

In the extreme case when the sky is a single point source,
antenna-to-antenna beam variations are reduced to a single pierce-
point as a function of time and frequency, meaning that they can be
wholly subsumed into temporal and spectral gain variations without
raising 𝜒2. This is consistent with the finding that redundancy of
closure phases also improves when Fornax A transits (Kent et al.
2018). When Fornax dominates, beam and gain variations become
less distinguishable and 𝜒2/DoF becomes a poorer metric of non-
redundancy. By contrast, when Fornax A is in a sidelobe, its appar-
ent flux density likely varies more from antenna to antenna because
sidelobes vary comparatively more than the main lobe, due to the
increased relative impact of cross-coupling and other non-idealities
(Fagnoni et al. 2020). As long as other sources of comparable ap-
parent brightness are elsewhere in the beam, that variation along
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Figure 10. Collapsing Figure 9 along both the frequency and time axis
(while breaking it up into two polarizations) reveals significant structure in
𝜒2, likely due to the primary beam. We attribute the temporal structure to
bright point sources moving through the main lobe of the primary beam—
lowering 𝜒2 by making gain and beam variations degenerate—or through the
sidelobes—highlighting the antenna-to-antenna variation. We explore this
explanation more in Section 4. The frequency structure appears correlated
with beam directivity, though the underlying cause of that correlation is less
well understood.

the line of sight to Fornax A cannot be absorbed into the gains. This
explains the dual-peaked structure around Fornax A in Figure 10
and the peak near the transit of Pictor A, which at a declination of
−45.78◦ only ever passes through HERA’s sidelobes. It also explains
the narrowing of the dual peak structure at high frequencies visible
in Figure 9. At higher frequencies, the beam narrows, so Fornax A
enters the sidelobes later, spends less time in the main lobe, and
exits the sidelobes earlier. We return to more quantitatively assess
this explanation and the effect of non-redundancy on the temporal
structure of the gains in Section 4.

The frequency dependence again shows a non-monotonic
trend. Its origin is not obvious. A similar hump between ∼165 MHz
and ∼185 MHz in 𝜒2/DoF was seen by Ali et al. (2015) using PA-
PER (see their Figure 5). Given that PAPER and HERA Phase I
share feeds and signal chains, perhaps this is attributable to some
property of the spectral or spatial response of the analog system.
However, no comparable peaks at low or middle frequencies are
seen in Ali et al. (2015). Comparing this spectrum to average ab-
solute calibration bandpass determined for HERA in Kern et al.
(2019b) also shows spectral structure at roughly the same scale, but
it does not appear to be correlated with the structure seen here—

some dips in the bandpass are also dips in 𝜒2/DoF, but other dips
in the bandpass are bumps in 𝜒2/DoF. The highest peak in 𝜒2/DoF
is perilously close to 137 MHz, the frequency of the ORBCOMM
constellation of satellites (seen as a spike in Figure 6 which is made
prior to RFI flagging and as a hole in the lower panel of Figure 10).
Given both our aggressive RFI flagging and the fact that the me-
dian should be relatively immune to occasional unflagged RFI, this
explanation also seems incomplete.

Our best hypothesis is that the spectral structure in 𝜒2/DoF
reflects beam directivity; the peaks and troughs are roughly aligned
with those in HERA’s total gain (see Figure 18 of DeBoer et al.
(2017)). Equivalently, 𝜒2 appears anticorrelated with beam to-
tal area Ω𝑝 as defined in Appendix B of Parsons et al. (2014).
Naively, one might expect that higher beam directivity should lower
𝜒2/DoF—relatively less sensitivity to the sidelobes should dampen
the effect described above to explain the temporal structure. How-
ever, Figure 9 shows spectral structure that is fairly consistent in time
and thus independent of the sky configurations. Perhaps greater
directivity comes at the cost of more well-defined sidelobes and
deeper beam nulls, which might in turn exacerbate the relative vari-
ation from antenna to antenna. This question is difficult to answer
without a high-fidelity beam and source model in order to under-
stand how much flux is in the sidelobes for a given visibility for a
given time, frequency, and baseline. It merits further study beyond
the scope of this work.

3.4 Assessing the Antenna- and Baseline-Dependent
Structure of 𝜒2

But first, we would like to push the exploration of 𝜒2 beyond where
previous applications of redundant-baseline calibration have gone,
namely to examine the breakdown of how different baseline groups
and different antennas contribute to it. This discussion builds upon
the mathematical framework for calculating the expectation value
of 𝜒2 for specific baselines developed in Section 2.3.2 and on the
antenna cuts based largely on 𝜒2 that we presented in Section 3.2.

We start with each antenna’s individual 𝜒2, which is the sum
of all the terms in the overall 𝜒2 in Equation 3 that involve the
particular antenna, normalized by the degrees of freedom calculated
using Equation 14. We plot the mean values over all unflagged times,
frequencies, and nights for all unflagged antennas in Figure 11.

After removing the worst antenna outliers, little pattern remains
in the antennas. One might expect, if antenna beam deformation due
to neighboring antennas were a dominant source of non-redundancy,
that antennas near the edge of the array would be particularly non-
redundant. We see no clear evidence for this. Interestingly, we also
see no significant correlation between 𝜒2 seen by the two polar-
izations of each antenna, though this was not the case for the most
egregious outliers, as was clearly demonstrated in Figure 6 with An-
tennas 98 and 136. For the highest-quality antennas, this indicates
that the dominant source or sources of non-redundancy are not ones
that should affect the two polarizations roughly equally—like feed
height or dish position errors. Rather, errors in feed horizontal po-
sitioning or orientation seem likelier culprits, since they can more
easily affect the way the two polarizations differentially illuminate
an imperfect dish surface. Unfortunately, since these dishes have
already been retrofitted with HERA Phase II broadband feeds, there
is no way to verify this hypothesis.

Next we examine the structure of 𝜒2, broken down by the
redundant-baseline groups involved. In Figure 12, we show this in
the case of our fiducial calibration scheme—the one used in the rest
of this work. After removing our worst antennas, we also restrict
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Figure 11. Here we show our per-antenna 𝜒2, normalized by the expected
number of degrees of freedom and averaged over all unflagged times, fre-
quencies, and nights. After having removed the strongest outliers (white
dashed circles; see Section 3.2), we see little clear pattern in the remaining
antennas. 𝜒2 does not appear to depend strongly on position in the array
nor does it appear strongly correlated on the same antenna for the two po-
larizations. While a useful data quality check, this gives us limited physical
understanding of the origin of our non-redundancy since the dishes have
been retrofitted with new feeds since the data were taken.

the baselines used in calibration. We exclude all baselines longer
than 90 m, motivated by the detrimental impact of long baselines on
calibration spectral structure (Orosz et al. 2019). We also exclude
the three shortest baselines, which show the strongest impact of
cross-coupling (Kern et al. 2019a). For the baselines we exclude
from calibration, we apply the gain calibration solutions derived
from the other baselines and then average within the redundant
group to estimate the visibility solution. To normalize the result,
we divide by the number of degrees of freedom that that baseline
would have had if no baselines were excluded from calibration.

Figure 12 shows that the highest 𝜒2 appears on the short-
est baselines. This can be attributed, at least in part, to a num-
ber of factors. The shortest baselines have the greatest contribu-
tion from bright, but mostly spatially-smooth Galactic synchrotron
emission—much of which appears in the sidelobes and thus likely
varies more from antenna-to-antenna than emission in the main
lobes of the primary beam (see the second panel of Figure 10). The
shortest baselines also exhibit the largest effect of temporally-stable
cross-coupling systematics (Kern et al. 2019a), the impact of which

is unlikely to affect redundant baselines equally. The additional
contribution from bright galactic emission also increases the SNR
on these baselines. This increases the impact of non-redundancy
𝜒2—by increasing the amplitude of both terms in the numerator of
Equation 3 relative to the denominator. Thus the same fractional
non-redundancy produces a larger 𝜒2 than it would on other base-
lines. We will return to the question of fractional non-redundancy
and try to assess it in a way that is ideally independent of both noise
and signal strength in Section 3.5.

That said, to some extent high 𝜒2 on short baselines was a
self-fulfilling prophecy. By excluding them from the calibration, we
removed their impact on the overall minimization of 𝜒2, effectively
trading higher 𝜒2 on short baselines for lower 𝜒2 on all other base-
lines. To check this effect, we also performed redundant-baseline
calibration without excluding any baselines. We show the results
in Figure 13. Letting the shortest baseline affect the calibration
raises 𝜒2 elsewhere, especially on the moderate-length baselines.
This fact, along with the reasons enumerated above, underlies our
decision to exclude these baselines from our main analysis. How-
ever, it would be useful to return to this question in the future in
order to tease apart the origin of non-redundancy on the short base-
lines to see if it can be mitigated—especially if other systematics
are reduced sufficiently so that the shortest baselines can be confi-
dently included in future power spectrum measurements (Kern et al.
2019a).

3.5 Fractional Non-Redundancy

It is clear that 𝜒2—whether overall, per-antenna, or per-baseline—
is a metric that can show evidence for non-redundancy. It does
not, however, answer a seemingly much simpler question: how non-
redundant is HERA? Answering this question would be useful both
for quantifying the deviations from ideality in the construction of our
array and for comparing HERA to future redundant arrays—which
is challenging to do with 𝜒2 alone, as we saw in Section 2.3.1.

To put it another way, 𝜒2 compares differences between the
data and our redundant model of the data to the noise, but how do
those differences compare to the data itself? Two factors complicate
this simple question. The first is that some of that non-redundancy
is due to noise and is thus “uninteresting”—we want to know how
much our visibility solutions deviate from the calibrated data beyond
the variance expected from thermal noise. The second arises when
we want to start comparing different baselines, times, frequencies,
or nights by averaging over the other dimensions. While the noise
used to normalize 𝜒2 has relatively smooth temporal and spectral
structure, that is not necessarily the case with our visibilities. When
averaging together relative error measurements, we might worry that
when the particular visibilities pass through destructive interference
nulls, the relative error metric blows up.

We address the first problem by defining a relative error metric
that looks for evidence of non-redundancy beyond that expected
from noise alone. We define our estimate of the relative error on a
baseline group 𝜂𝑖− 𝑗 as

𝜂𝑖− 𝑗 ≡

���𝜎2
𝑖− 𝑗 ,𝑉

− 𝜎2
𝑖− 𝑗 ,𝑁

���1/2��𝑉𝑖− 𝑗

�� (17)

where 𝜎2
𝑖− 𝑗 ,𝑉

is our estimate of the visibility variance in a
redundant-baseline group corresponding to antenna separation 𝑖− 𝑗

and 𝜎2
𝑖− 𝑗 ,𝑁

is our proxy for the noise variance in that group. Since
gains and visibility solutions are estimated from the same data
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Figure 12. Here were show 𝜒2 for each redundant-baseline group, averaged over all unflagged times, frequencies, and nights. In our fiducial calibration scheme,
baselines longer than 90 m or shorter than 15 m are excluded from calibration (dashed outlines) and are instead solved for afterwards. Baselines in white are
unique separations, meaning that 〈𝜒2 〉 = 0 and thus undefined after normalization. In general, shorter baselines have more non-redundancy structure. The
precise cause of this effect is unclear, but several factors may contribute. First these baselines have larger contributions from bright but spatially smooth galactic
emission, especially in the sidelobes. Relatedly, they have higher SNR, making any non-redundancy appear larger relative to the noise in 𝜒2. They also exhibit
the strongest cross-coupling systematics (Kern et al. 2019a), which also source non-redundancy.
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Figure 13. Here we show the same 𝜒2 per baseline metric we calculated in Figure 12, this time without excluding any baselines from calibration. While 𝜒2 on
the shortest baselines is reduced relative to Figure 12, this comes at the cost of higher 𝜒2 across other baselines, especially those of moderate length. We can thus
justify our fiducial choice of baseline cuts by arguing that is useful to keep the non-redundancy contained and not let these short baselines disproportionately
affect our calibration.

that we now compare to those visibility solutions, our estimate of
the variance should take this into account. And since that data is
weighted in omnical by the inverse noise variance, 𝜎−2

𝑖 𝑗
, we use

the weighted sample variance estimator:

𝜎2
𝑖− 𝑗 ,𝑉 =

∑
𝑖 𝑗 𝜎

−2
𝑖 𝑗

(
𝑉𝑖 𝑗

𝑔𝑖𝑔
∗
𝑗

−𝑉𝑖− 𝑗

)2

∑
𝑖 𝑗 𝜎

−2
𝑖 𝑗

−
(∑

𝑖 𝑗 𝜎
−4
𝑖 𝑗

)/ (∑
𝑖 𝑗 𝜎

−2
𝑖 𝑗

) . (18)

Likewise, since some of the thermal noise is absorbed in the visibil-
ity solution, we use the same formula for 𝜎2

𝑖− 𝑗 ,𝑁
, substituting the

noise variance for the calibrated visibility difference and yielding,

𝜎2
𝑖− 𝑗 ,𝑁 =


∑︁
𝑖 𝑗

𝜎−2
𝑖 𝑗 − ©«

∑︁
𝑖 𝑗

𝜎−4
𝑖 𝑗

ª®¬
/ ©«

∑︁
𝑖 𝑗

𝜎−2
𝑖 𝑗

ª®¬

−1

. (19)

Ideally, this estimator addresses our first problem by statistically
isolating the portion of the observed non-redundancy due to thermal
noise.

The estimator of relative error 𝜂𝑖− 𝑗 in Equation 17 is straight-
forward to compute as a function of baseline, time, frequency, and
night. However, when we try to form any summary statistics we
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immediately run into a problem. In Figure 14, we plot 𝜂𝑖− 𝑗 as a
function of both LST and frequency for a pair of baselines, averag-
ing over night and either frequency or LST. When the amplitude of
the visibility is low, this statistic swings wildly, sometimes yielding
relative error estimates of 10 or more. These times and frequencies
end up dominating the average and sometimes even the median.
This heavy variability in time, seen most clearly in the top panel of
Figure 14, produces mean estimates of 𝜂 well above the medians.
Since our goal is to develop a somewhat array-independent metric
of redundancy, it seems odd for the quantity to depend so strongly
on the particular time of observation. The array is not changing sub-
stantially during this time, so do we really trust all of these estimates
of 𝜂𝑖− 𝑗 equally? We propose a weighting scheme for averaging 𝜂𝑖− 𝑗

where each estimate is weighted by

𝑤𝑖− 𝑗 ≡
��𝑉𝑖− 𝑗

��2
𝜎2
𝑖− 𝑗 ,𝑁

. (20)

This SNR2-weighting gives the most weight to the visibilities mea-
sured with the highest signal to noise and removes the undue in-
fluence of visibility nulls. In Figure 14 our SNR2-weighting pro-
duces substantially smoother estimates of 〈𝜂𝑖− 𝑗 〉 for both baselines
plotted. We use this weighting to investigate how non-redundancy
depends on baseline group in Figure 15.

With the exception of the shortest and longest baselines, most
baseline groups show non-redundancy at the sub-10% level. This
result is consistent with other metrics of non-redundancy, e.g. clo-
sure phase (Carilli et al. 2018). Likewise, this is consistent with
the rough level of non-redundancy seen in the fiducial simulations
of Orosz et al. (2019), which take as inputs to their parameterized
non-redundancy the construction tolerances of HERA dish and feed
positioning. The longest baselines are the most infrequently mea-
sured, so the estimate of the sample variance in Equation 18 is likely
quite noisy. Similarly, we expect the shortest baselines to be the least-
redundant, in part due to their sensitivity to diffuse galactic structure
in the sidelobes, which likely vary more from antenna-to-antenna
than other parts of the beam. Still, they are only non-redundant
at the ∼20% level, which is encouraging given that they were ex-
cluded from the determination of the gains in redundant-baseline
calibration.

4 THE EFFECT OF NON-REDUNDANCY ON
CALIBRATION TEMPORAL STRUCTURE

Because spectral smoothness is so key to 21 cm cosmology, one
may worry that any calibration using incomplete knowledge—be
it sky or beam knowledge in sky-based calibration (Barry et al.
2016; Ewall-Wice et al. 2017) or unknown deviations from redun-
dancy (Orosz et al. 2019; Byrne et al. 2019)—might impart spurious
spectral structure on calibration solutions. We see clear evidence for
non-redundancy at a level comparable to the fiducial ∼10% error
level in Orosz et al. (2019), so this concern appears to be pressing.
However, it does not appear to be the leading-order contribution to
unsmooth gains; Kern et al. (2019b) shows clear evidence for spuri-
ous spectral structure in HERA’s solved gains using both sky-based
and redundant-baseline calibration attributable to cross-coupling
systematics (Kern et al. 2019c; Kern et al. 2019a). As was sug-
gested in the conclusion of Orosz et al. (2019), Kern et al. (2019b)
demonstrate that low-pass filtering of calibration solutions appears
to be a robust way of mitigating this effect. This approach follows a
“do-no-harm” philosophy, relying on the instrument to impart less

spectral structure than we would with analysis errors. Whether that
approach can carry us through to a detection and characterization
of the 21 cm cosmological signal remains to be seen.

While Kern et al. (2019b) has thoroughly explored the spectral
structure of calibration solutions, they have largely set aside the
effects of non-redundancy on temporal structure. As we will show
in Section 4.1, we see clear evidence for temporal structure well
in excess of the expected gain drifts with ambient temperature. In
this final section of the paper, we quantify the apparent temporal
structure in our calibration solutions and attempt to assess how much
of it is real and how much of it is an artifact of non-redundancy,
invoking analogous simulations to those of Orosz et al. (2019) in
Section 4.2. This study lets us motivate future temporal filtering
of gains, analogous to how Zheng et al. (2014) used the Fourier-
space statistics of the calibration solutions to develop a Wiener filter
kernel.

4.1 Observed Temporal Structure in Gains

Temporal structure in calibration solutions, in and of itself, is not ev-
idence for non-redundancy. Signal chain elements can be sensitive
to temperature, for example. The real smoking gun that something
is amiss is that the variability in our gains repeats from night to night
at fixed LST—just as 𝜒2 did (see Figure 10). In Figure 16 we show
calibration gains after both redundant-baseline calibration and ab-
solute calibration. The procedure for absolute calibration is detailed
in Kern et al. (2019b). We include absolute calibration to eliminate
temporal discontinuities due to antenna flagging. However, because
absolute calibration was performed on a single field and transferred
to an entire night, we expect most of the temporal structure to be
attributable to calibration errors introduced by redundant-baseline
calibration.

While the calibration solutions shown in Figure 16 vary from
day to day due to noise, there is clear evidence for repeated struc-
ture. Perhaps unsurprisingly, the strongest apparent variations occur
during the transit of Fornax A, further evidence for our hypothesis
that bright point sources, combined with antenna-to-antenna beam
variation cause redundant gains to be erroneously dragged around.
The phases are contiguous, so this does not appear to be an LST-
dependence due to phase wrapping as was simulated in Joseph et al.
(2018). The particulars of the peaks and troughs vary from antenna
to antenna and frequency to frequency, but the general features seen
in the Figure 16 are representative. This raises a question: with
the exception of the temporal variation which repeats from night
to night, do we see any evidence for real temporal structure not
attributable to noise or non-redundancy?

To study this problem statistically and understand the relevant
timescales in the problem, we produce the temporal power spectra
of all of our gains at a particular frequency—in our case ∼125 MHz,
though the results are similar across the band. To interpolate over
RFI gaps, we use the iterative deconvolution algorithm of Parsons
& Backer (2009), smoothing the calibration solutions on a 1 minute
timescale. We do the same for the nightly average (black line in
Figure 16). Assuming that our gain solutions are separable as the
product of a LST-dependent systematic and time-dependent intrin-
sic fluctuations, we divide out the nightly averages, producing our
best estimate of “intrinsic” gain variability. These continuous gains
and gain ratios are then tapered with a Hann window, Fourier trans-
formed, squared, and then re-normalized to peak at unity.

We show our temporal power spectrum results in stages in
Figure 17. In general, we find that dividing out the nightly aver-
age removes all apparent spectral structure on timescales shorter
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Figure 14. Here we show our metric of relative non-redundancy in baseline groups, 𝜂𝑖− 𝑗 defined in Equation 17, which was devised to separate out “true”
non-redundancy in baseline groups from non-redundancy attributable to thermal noise. We compute 𝜂𝑖− 𝑗 for all frequencies, LSTs, nights, and baseline groups.
However, reducing this statistic along one or more axes is complicated by the nulls in the visibility. Means and even medians show substantial temporal structure
(top panel), largely due to this effect. If we assign the highest weight to the best-measured visibilities while averaging using Equation 20, this effect is smoothed
out substantially. While the apparent deviations from redundancy can be as big as the visibilities themselves, in general we see .20% relative non-redundancy
across most of the band for short baselines and .10% on longer baselines.

than 6 hours, at least up to a noise floor at the ∼0.1% level in
the gains. This appears to be true over antennas and nights, and
is confirmed by the fact that the temporal power spectrum of the
nightly averages themselves contains the same temporal structure as
in the original redundant-calibration gains. Given the short period
of observation (18 days), it is possible that some of the apparently
LST-locked behavior is attributable to cyclical changes in local con-
ditions, such as the effect of ambient temperature on gains or HERA
dish/feed structure. We expect this effect to be more pronounced in
the antenna-independent overall amplitude of the gains—a degen-
eracy of redundant-baseline calibration—but we cannot completely
rule out local effects on timescales between 6 hours and the ∼1 hour
that LST changes relative to local time over the observing campaign.

This result leads us to the conclusion that we can safely smooth
our calibration solutions on 6-hour timescales without losing any
real temporal structure above that∼0.1% level. To be clear, this does
not mean that our calibration solutions are correct to ∼0.1%—only
that any errors above that level are isolated to timescales longer than
6 hours.

4.2 Explaining Temporal Structure in Terms of
Non-Redundancy

Without precise knowledge of antenna-to-antenna beam variation,
it is not possible to predict the precise way in which redundant-
baseline calibration of a not-quite redundant array will cause an-
tenna gains to vary in time. Those measurements are quite chal-
lenging and are the focus of other work (e.g. Jacobs et al. 2017;
Nunhokee et al. 2020). However, given the statistical understanding
we have developed in Section 4.1 of the imprint of non-redundancy
on redundant-baseline calibration’s gains, it is reasonable to ask
whether that structure is reproducible in a relatively simple simula-
tion.

To test this idea, we simulate visibilities at 125 MHz using
the same set of antennas and the same range of LSTs as those ob-
served. Our sky model consists of four components. First we use
the Global Sky Model of diffuse emission (de Oliveira-Costa et al.
2008) at a HEALPix resolution of NSIDE= 128. We then add the
1000 brightest beam-weighted point sources from the GLEAM cat-
alog (Hurley-Walker et al. 2017) and all of the bright radio sources
that were peeled from that catalog but included in Table 2 of Hurley-
Walker et al. (2017). Lastly, since Fornax A was excluded from the
GLEAM catalog but not included in Table 2, we model it as a single
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Figure 15. Our metric of relative non-redundancy of baseline groups, 𝜂𝑖− 𝑗 , defined in Equation 17 and averaged over LST, frequency, and night using
SNR2-weighting (Equation 20). Most of our baselines show sub-10% relative non-redundancy, consistent across both instrumental polarizations. Larger
relative non-redundancy is observed for the shortest baselines and some of the longest baselines which were excluded from calibration (dashed outlines, see
Section 3.4). The longer baselines are also less sampled, so their estimates of visibility sample variance are themselves noisier.
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Figure 16. One consequence of non-redundancy in redundant-baseline calibration is the introduction of calibration errors which depend strongly on the
configuration of sources in the beam at a given LST and thus repeat from night to night. Plotting our calibration solutions as a function of LST for a single
antenna and frequency for all nights demonstrates this effect. Here we show gain amplitudes and phases for a single antenna—in this case, the East/West
polarization of antenna 88—at a single frequency (∼125 MHz). Each different colored line is a different night in our data set after redundant-baseline calibration,
absolute calibration to fix the degeneracies, and RFI flagging. The ∼20% level fluctuations is typical of antennas and frequencies. While some of that fluctuation
is expected from thermal noise, but the coherent fluctuations that repeat from day to day (especially around the transit of Fornax A at ∼4 hours) at the same LST
indicate systematic error. In black we show the average across night after excluding daytime data and the most RFI-contaminated nights (2458104, 2458105, and
2458109). To avoid temporal structure in the degenerate subspace, we apply absolute calibration after redundant-baseline calibration. Since absolute calibration
was performed only a few fields and then transferred to whole nights (Kern et al. 2019b), we do not expect it to contribute significantly to the temporal structure
seen here.
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Figure 17. We compute temporal power spectra of our gains to look for “intrinsic” variability beyond the LST-locked component we saw in Figure 16 and
attributed to non-redundancy. First we show the power spectrum of the same antenna as in Figure 16 after dividing out the average over all nights from a gains
on a single night, 2458098 (top left panel). To look for overall trends, we average these power spectra incoherently over E/W-polarized antennas, plotting a
selection of the results as a function of night (top right), and over nights, plotting a selection of the results as a function of antenna (bottom left). While these
averages produce a less noisy estimate of the temporal power spectra, they reveal little structure beyond 6 hours. Because the average is incoherent, the noise
floor remains fixed. Finally, in the bottom right panel, we compare temporal power spectra before (blue) and after (green) dividing out the nightly average
gain, in both cases averaging gain power spectra incoherently over nights and antennas. The discrepancy between the two is the spectral structure attributed to
systematics that repeat from night to night at fixed LST, most likely non-redundancy. As a cross-check, we also plot the temporal power spectrum of the nightly
averages, averaged incoherently over antennas (orange). As expected, this matches the observed temporal structure of the measured gains at long and medium
timescales, but drops to a lower noise floor because the nightly average is coherent. The lack of structure at timescales shorter than 6 hours justifies smoothing
on that timescale, since it will not eliminate any real temporal structure in the gains above the ∼10−3 level.

750 Jy point source at 150 MHz and extrapolate to a 125 MHz us-
ing a spectra index 𝛼 = −.81 (McKinley et al. 2015). Since we are
only interested in a statistical comparison of the effect on redundant-
baseline calibration, accurate sky modeling is not strictly necessary.
Source mismodeling and double-counting are unlikely to affect our
temporal power spectra substantially.

To simulate non-redundancy, we adopt the simplified model
of HERA developed in Orosz et al. (2019). In our simulation, an-
tennas are perturbed from their ideal positions by Gaussian random
displacements with 𝜎 = .03 m in both directions. Our beams are
Airy functions parameterized by pointing errors (𝜎 = 0.15◦) and
beam FWHM errors (𝜎 = 0.28◦) in both directions. There is no
statistical difference between the two polarizations; the “average”
beam is circular. For mathematical details, see Section 2.1 of Orosz
et al. (2019). We simulate visibilities with perfect calibration, but
then allow omnical to move us away from gains of 1.0 in its attempt
to minimize 𝜒2.

By renormalizing our gain temporal power spectra to peak
at unity, we can compare our simulation directly to the observed

gain variability. In Figure 18 we show how our calibration of sim-
ulated data with non-redundancy compares with our real calibra-
tion solutions. On timescales longer than the beam-crossing time
(∼40 minutes), our simulation matches the observed temporal power
spectra very well. This makes sense since over a beam-crossing
time, calibration errors due to, for example, bright point sources
moving through non-redundant sidelobes should be highly corre-
lated, contributing minimally to temporal variability. Likewise, we
expect our simulation to diverge from the data on short timescales
because the data hits a noise floor and the simulation is noise-free.
There is tentative evidence for minor disagreement at intermediate
timescales—the simulated power spectrum appears to be falling a
bit faster than the data. This could be attributed to the simplicity
of the beam model, which probably has less spatial structure than
the real beam and thus produces more correlated gain variations on
timescales associated with sources passing through beam substruc-
ture, though that conclusion is rather speculative.

To be clear, our simulation is not a fit to the data. By simple
guess-and-check we found remarkably good agreement with HERA
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Figure 18. Comparing our simulation of the effect of non-redundancy on gain temporal power spectra to the statistics of our observed HERA gains reveals
good agreement on timescales longer than a beam-crossing time. Here we show our measured gain temporal power spectra averaged incoherently over antennas
and nights (the blue line is the same as the blue line in Figure 17). At shorter timescales they disagree because our observed gains hit a thermal noise floor
while the simulation is noise-free. The agreement on long timescales demonstrates the plausibility of our hypothesis that the difference between the observed
and “intrinsic” gain power spectra in Figure 17—and thus all observed temporal structure on timescales shorter than 6 hours—is attributable to the effect of
non-redundancy on redundant-baseline calibration.

data when using error levels 50% higher than the “fiducial” error
level in Orosz et al. (2019). In that work, the fiducial errors produced
visibility variances at the ∼10% level on the shortest baselines, so
increasing that by 50% is entirely in line with the non-redundancy
of HERA we observed and quantified in Section 3. We did not
attempt to measure the levels of individual types of non-redundancy
individually. Likely the effect of these different error types is highly
degenerate in their effect on the gain temporal power spectra and
we know that this simple 6-parameter model for each antenna does
not capture the full complexity or variability of HERA elements.
Despite all that, the simulation makes it clear that the observed
LST-locked temporal structure in our gain solutions is largely, if not
entirely, attributable to the non-redundancy we observe in HERA.

5 SUMMARY

In this work, we comprehensively survey the method of redundant-
baseline calibration and its application to HERA. This includes
a pedagogical review of the mathematical and algorithmic under-
pinnings of the technique, a revised quantification of the statisti-
cal expectation of 𝜒2 (correcting a minor error in the literature),
and a new formalism for predicting how different baselines, anten-
nas, or redundant-baseline groups contribute to 𝜒2. We apply this
technique to HERA data, producing redundant-baseline calibration
solutions that solve for most of the internal degrees of freedom
and enable future absolute calibration to fix the last few degenerate
modes. Kern et al. (2019b) show that that process works well with
HERA and that the combination of redundant-baseline and subse-
quent absolute calibration compares favorably to pure sky-based
calibration with HERA. That said, both techniques introduce spec-
tral structure into the calibration solutions—likely attributable to
cross-talk systematics—that must be filtered on delay scales larger
than ∼100 ns. Exploring methods of redundant-baseline calibration
that are immunized to these sorts of systematics remains an active
area of research.

We also use redundant-baseline calibration to assess the health
of the array and study the origins of non-redundancy—an impor-

tant systematic for 21 cm cosmology that affects calibration and
can adversely narrow the EoR window if not taken into account
(Orosz et al. 2019; Byrne et al. 2019). We study 𝜒2—the quantity
redundant-baseline calibration seeks to minimize—and show how
particular antennas contribute disproportionately to it, likely point-
ing to some flaw in their construction. We find the largest deviations
from redundancy on short baselines, both in terms of 𝜒2 and in
terms of relative error. We attribute them to some combination of
larger cross-talk effects and higher sensitivity to diffuse emission in
the sidelobes the array which are believed to be relatively more non-
redundant than the main lobe of the primary beam. By one metric,
we find that almost all of our putatively redundant-baseline groups
show visibility variance at or below the 10% level, roughly in line
with our expectations given the construction tolerances of element
construction and placement. To study this, we develop a metric
for non-redundancy that is ideally comparable between HERA and
other redundantly arranged telescopes and largely insensitive to the
specific sky configuration within the beam.

Since Kern et al. (2019b) already studied the spectral struc-
ture of redundant-calibration solutions in detail, we then turn to an
assessment of the impacts of redundant-baseline calibration on the
temporal structure of calibration solutions. Though we see substan-
tial temporal structure in gain solutions, we find that it repeats from
night-to-night at fixed LST, indicating a systematic effect. Taking
out the nightly averages, we find little evidence for intrinsic variation
temporal structure on timescales shorter than 6 hours, justifying a
long smoothing timescale. Inspired by Orosz et al. (2019), we sim-
ulate this effect in a simplified model of the array and find that the
entire effect can be explained by non-redundancy at roughly the
level we see in HERA.

Overall, we find that redundant-baseline calibration is a pow-
erful tool for making sense of data from a new array without the
requirement of substantial prior knowledge about that array or even
the sky at the observed frequencies. While redundant-baseline cali-
bration is vulnerable to systematics introduced by non-redundancy,
so too is sky-based calibration if that non-redundancy is not pre-
cisely measured and forward-modeled. Nevertheless, considerable
progress has already been made on understanding the origin and
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nature of these systematics and a number of ideas—from cali-
brating with only relatively short baselines to filtering calibration
solutions—have been proposed to mitigate them. Hopefully, the
tools we have detailed, refined, and applied to HERA here will con-
tinue to serve HERA and future 21 cm arrays in quantifying and
avoiding systematics in the quest to separate bright astrophysical
foregrounds from high-redshift 21 cm signal.
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Figure A1. In general, one can estimate a delay in a spectrum by looking
the delay where the absolute value of the FFT peaks. Here we compare
that that method (blue lines) to two variants that use information about the
two neighboring values of the FFT. In the quadratic method (orange lines),
those three points are interpolated with a parabola to find the peak 𝜏. This
is an improvement, but even more sophisticated methods exist in the signal
processing literature. We use Quinn’s Second Estimator (Quinn 1997), which
we explain quantitatively in Appendix A. The method uses the same three
pieces of information—the peak of the FFT and its neighbors—to produce
results orders of magnitude more accurate in our noise-free demonstration
(green lines). All three methods produce perfect delays when the input 𝜏 is
an integer multiple of 1/𝐵, where 𝐵 is the bandwidth (in our test, 100 MHz).

APPENDIX A: METHODS FOR ESTIMATING DELAYS
FROM GAINS OR VISIBILITIES

In redundant-baseline calibration, precise determination of antenna
delays—the dominant term in the phase of antenna gains—helps
later iterative steps (e.g. omincal) converge faster and more reli-
ably. It also avoids the complication of adding spectral structure in
the degenerate subspace of redundant-baseline calibration that must
be later removed via absolute calibration (Dillon et al. 2018). De-
termining those delays via firstcal (see Section 2.2.1) requires
estimating delays from visibilities or visibility products, as in Equa-
tion 5. Before solving a system of equations, as in firstcal, we
must determine delays 𝜏 from complex data products 𝑑 (𝜈) (be they
gains, gain products, visibilities, visibility products, etc.) that look
like

𝑑 (𝜈) ≈ 𝑑0𝑒
2𝜋𝑖𝜈𝜏 . (A1)

To the extent that Equation A1 holds, the problem of estimating
𝜏 from 𝑑 (𝜈) is equivalent to finding the peak of the Fourier transform
of 𝑑 (𝜈). The simplest peak finding algorithm is to take the FFT of
𝑑 (𝜈), which we define as 𝑑 (𝜏), and find the delay corresponding
to the maximum absolute value. In an measurement with 100 MHz
of bandwidth, this technique yields delay resolution of 10 ns and
thus errors as large as 5 ns (see Figure A1). As Dillon et al. (2018)
showed, delay errors that large create phase wraps that add spectral
structure in the phase degeneracies.

This problem is well-studied in the signal processing literature,
where it is usually framed as the problem of frequency estimation
from time series data. There exist other, more accurate algorithms
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that are not more computationally intensive than taking an FFT.
Perhaps the next simplest is to find the peak absolute value of the
FFT and interpolate between it and two nearest neighbors with the
unique parabola that describes the three points. The interpolated
peak is thus the maximum value of the parabola, which is shifted
from the maximum value of the FFT toward the larger of the two
neighbors. This technique still has the virtue of computational sim-
plicity and locality in delay space. In the simple case of a single input
tone, Figure A1 shows that this method produces smaller errors than
the maximum FFT approach.

Interestingly, it is possible do substantially better just using the
same three pieces of information—the peak of the FFT and its two
neighbors—if ones uses both their real and imaginary parts rather
than taking the absolute value. One such method is Quinn’s Second
Estimator (Quinn 1997). Since this method has not, to best of our
knowledge, been used in the radio astronomy literature, we repro-
duce it concisely here. If 𝑑 (𝜏) is maximized at 𝜏0 for the discrete set
of delays produced by the FFT, and if the two neighboring delays
are denoted 𝜏−1 and 𝜏+1, each Δ𝜏 from 𝜏0, then Quinn’s Second
Estimator of delay, �̂�, is given by

�̂� ≡ 𝜏0 + Δ𝜏

[
𝛿−1 + 𝛿+1

2
+ 𝜅

(
𝛿2
−1

)
− 𝜅

(
𝛿2
+1

)]
. (A2)

Here the 𝛿±1 terms are defined as

𝛿±1 ≡
∓Re

[
𝑑 (𝜏±1) /𝑑 (𝜏0)

]
1 − Re

[
𝑑 (𝜏±1) /𝑑 (𝜏0)

] , (A3)

and 𝜅(𝑥) is defined as

𝜅(𝑥) ≡ 1
4

ln
(
3𝑥2 + 6𝑥 + 1)

)
−
√

6
24

ln

(
𝑥 + 1 −

√︁
2/3

𝑥 + 1 +
√︁

2/3

)
. (A4)

While mathematically more complicated (and certainly far less in-
tuitive), this estimator is simple to compute and performs orders of
magnitude better than the quadratic method in the simple scenario
of a single delay with no noise (Figure A1). It is also, as Quinn
(1997) shows, a robust estimator in the presence of noise.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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