
Period Adaptation for Continuous Security

Monitoring in Multicore Real-Time Systems

Monowar Hasan∗, Sibin Mohan∗, Rodolfo Pellizzoni† and Rakesh B. Bobba‡

Email: {∗mhasan11, ∗sibin}@illinois.edu, †rodolfo.pellizzoni@uwaterloo.ca, ‡rakesh.bobba@oregonstate.edu

Abstract—We propose HYDRA-C, a design-time evaluation
framework for integrating monitoring mechanisms in multicore
real-time systems (RTS). Our goal is to ensure that security (or
other monitoring) mechanisms execute in a “continuous” manner
– i.e., as often as possible, across cores. This is to ensure that any
such mechanisms run with few interruptions, if any. HYDRA-C
is intended to allow designers of RTS to integrate monitoring
mechanisms without perturbing existing timing properties or
execution orders. We demonstrate the framework using a proof-
of-concept implementation with intrusion detection mechanisms
as security tasks. We develop and use both, (a) a custom
intrusion detection system (IDS) as well as (b) Tripwire –
an open source data integrity checking tool. We compare the
performance of HYDRA-C with a state-of-the-art multicore RT
security integration approach and find that our method does not
impact the schedulability and, on average, can detect intrusions
19.05% faster without impacting the performance of RT tasks.

I. INTRODUCTION

Multicore processors have found increased use in the de-

sign of modern real-time systems (RTS) [1]. However, the

use of such processors increases the security problems (e.g.,

due to parallel execution of critical tasks) [2]. Successful

attacks/intrusions into RTS are often aimed at impacting the

safety guarantees of such systems, as evidenced by recent in-

trusions (e.g., attacks on control systems [3], automobiles [4],

medical devices [5], etc. to name but a few). In this paper we

evaluate design alternatives to improve the security posture

of RTS through integration of ‘security tasks’ while ensuring

that the existing real-time (RT) tasks are not affected by such

integration. The security tasks could be carrying out any one of

protection, detection or response-based operations, depending

on the system requirements. In Table I we present some

examples of security tasks that can be integrated into RTS

(this is by no stretch meant to be an exhaustive list). Integrating

such tasks into multicore platforms is more challenging since

designers have multiple choices to retrofit security tasks. For

instance, is it better to statically partition cores for security

tasks or is it better to execute them continuously across any

available core (in conjunction with the RT tasks), and if so,

how to determine their periods?

Our main goal is to explore design mechanisms that can

raise the responsiveness of such monitoring tasks by increas-

ing their frequency of execution. For instance, consider an

intrusion detection system (IDS) e.g., that checks the integrity

of file systems. If such a system is interrupted (before it can

The material in this paper is based upon work supported in part by the
National Science Foundation (NSF) grant number SaTC 1718952 and by the
Natural Sciences and Engineering Research Council (NSERC).

TABLE I
EXAMPLE OF SECURITY TASKS*

Security Task Approach/Tools

File-system checking Tripwire [6], AIDE [7], etc.
Network packet monitoring Bro [8], Snort [9], etc.
Hardware event monitoring Statistical analysis based checks [10]

using performance monitors (e.g.,
perf [11], OProfile [12], etc.)

Application specific checking Behavior-based detection [13], [14]

*Note: We do not target our framework towards any specific security mechanism – our
focus is to integrate any designer-provided security technique into a multicore-based RTS.
We used Tripwire and our in-house custom-developed malicious kernel module checker
to demonstrate the feasibility of our approach (§IV) – the solutions proposed in this
paper is more broadly applicable to other security mechanisms.

complete entire checking), then an adversary could use that op-

portunity to intrude into the system and, perhaps, stay resident

in the part of the filesystem that has already been checked. If,

on the other hand, the IDS task is able to execute with as few

interruptions as possible (e.g., by moving immediately to an

empty core when it is interrupted), then there is much higher

chance of successful detection and correspondingly, a much

lower chance of successful adversarial action.

In this paper we present a design-time framework (named

HYDRA-C) for partitioned1 RTS that enables continuous exe-

cution of security tasks (i.e., execute as frequently as possible)

across cores, without impacting schedulability of existing RT

tasks. HYDRA-C extends our existing work [16] (that uses

a partitioned scheduling approach and does not allow runtime

migration) to ensure better security (e.g., faster detection time)

and schedulability. We also present an implementation on a

realistic ARM-based multicore rover platform (§IV-A) and

carry out a design space exploration to study the trade-offs

for schedulability and security (§IV-B). Our evaluation shows

that proposed approach can achieve better execution frequency

(consequently quicker intrusion detection) when compared

with both fully-partitioned and global scheduling approaches

while providing same or better schedulability.

II. MODEL AND ASSUMPTIONS

A. Real-time Tasks and Scheduling Model

Consider a set of NR RT tasks ΓR = {τ1, τ2, · · · , τNR
},

scheduled on a multicore platform with M identical cores

M = {π1, π2, · · · , πM}. Each RT task τr is represented by

the tuple (Cr, Tr, Dr) where Cr is the worst-case execution

time (WCET), Tr is the minimum inter-arrival time (e.g.,

period) and Dr is the relative deadline. We assume constrained

deadlines for RT tasks (e.g., Dr ≤ Tr) and the task priorities

1Since this is the commonly used multicore scheduling approach for many
commercial and open-source OSs – mainly due to its simplicity and efficiency
[15], [16].

are assigned according to rate-monotonic (RM) [17] order.

All events in the system happen with the precision of integer

clock ticks. RT tasks are scheduled using partitioned fixed-

priority preemptive scheme [1], [15]. We further assume that

the RT tasks are schedulable, viz., the worst-case response time

(WCRT), denoted as Rr, is less than deadline.

B. Security Model

Our focus is on integrating security mechanisms (abstracted

as security tasks) into an existing (legacy) multicore RTS

without impacting its RT functionalities. While we use specific

mechanisms (e.g., Tripwire) to demonstrate our approach, it is

somewhat agnostic to the security mechanisms. The security

model used and the design of security tasks are orthogonal

problems. Since we aim to maximize the frequency of execu-

tion of such tasks, mechanisms whose performance improves

with the frequency of execution (e.g., intrusion monitoring and

detection tasks) benefit the most from our approach.

C. Security Task Integration

We propose to improve the security posture by integrating

additional NS periodic security tasks ΓS = {τ1, τ2, · · · , τNS
}

(e.g., tasks that are specifically designed for monitoring pur-

poses) – a common approach for RT security integration

frameworks [16], [18], [19]. HYDRA-C also leverages op-

portunistic execution [16], [18], i.e., security tasks will only

execute during the slack time (e.g., when a core is idle) and the

timing requirements of existing RT tasks will not be perturbed.

However, in contrast to existing work (called HYDRA) [16]

where the security tasks are statically bound to their respective

cores, in this paper we allow security tasks to continuously

migrate at runtime whenever any core is available (e.g., when

other RT or higher-priority security tasks are not running). As

we shall see in §IV, allowing security tasks to execute on any

available core will give us the opportunity to execute them

more frequently and that leads to better responsiveness (faster

intrusion detection time).
We adopt the periodic security task model [18] and represent

each security task as (Cs, Ts, T
max
s) where Ts is the unknown

period and Tmax
s is a designer provided upper bound of the

period – if the period of the security task is larger than Tmax
s

then the responsiveness is too low and security checking may

not be effective. We assume that the priorities of of the security

tasks are distinct and specified by the designers (e.g., derived

from specific security requirements). These tasks have implicit

deadlines, i.e., they need to finish execution before the next

invocation. We also assume that task migration and context

switch overhead is negligible compared to the WCETs.

III. PERIOD SELECTION

One fundamental question is to figure out how often to exe-

cute security tasks so that the system remains schedulable and

also can execute within a designer provided frequency bound

(so that the security checking remains effective).2 Mathemati-

cally period selection can be expressed as: minimize
Ts,∀τs∈ΓS

∑

τs∈ΓS

Ts,

2This is different when compared to scheduling traditional RT tasks since
the RT task parameters (e.g., periods) are often derived from physical system
properties and cannot be adjusted due to control/application requirements.

subject to Rs ≤ Ts ≤ Tmax
s , ∀τs ∈ ΓS . This is a non-trivial

optimization problem since the period of τs can be anything

in [Rs, T
max
s] and the response time Rs is a variable as it

depends on the period of other higher priority security tasks.

We first derive the WCRT of the security tasks (§III-A1) and

use it as a (lower) bound to find the periods (§III-B).

A. Response Time Analysis

In the following we determine the response time of a job τks
of security task τs using an iterative method and the response

time in each iteration is denoted by x.

1) Interference Caused by RT Tasks: The interference

Iτs←τi caused by a task τi on τks is the number of time units in

the busy period3 when τi executes while τks does not. We first

calculate the workload4 of the RT tasks using the following

lemma and use this to derive the interference.

Lemma 1. The maximum workload of RT tasks executed on

a given core πm (in any possible time interval of length x) is

obtained when all RT tasks are released synchronously at the

beginning of the interval.

Since RT tasks are statically partitioned to cores and they

have higher priority than any task that is allowed to migrate

between cores, their worst-case workload can be obtained

based on the critical instant [17] used for single-core fixed-

priority scheduling case (formal proof in Appendix).

Time

%0 %0 + (

$1 														$1 														$101

(

(
Fig. 1. Workload of the RT
tasks for a window of size x.
ai denotes the arrival time.

Let Γπm

R ⊆ ΓR denote the set

of RT tasks partitioned to core πm.

Based on Lemma 1, an upper bound

to the workload of RT tasks on πm

can be obtained by assuming that

each RT task τr is released at the

beginning of the interval and each

job of τr executes as early as possible after being released

(see Fig. 1). We thus obtain the workload for RT task τr:

WR
r (x) =

⌊

x
Tr

⌋

Cr +min(x mod Tr, Cr) and summing over

all RT tasks on πm yields a total workload
∑

τi∈Γ
πm
R

WR
i (x).

Note that by definition, the interference caused by a group of

tasks executing on the same core πm on τs cannot be greater

than x−Cs+1. Therefore, the maximum interference caused

by RT tasks can be bounded as: Iτs←Γπm
R

(

x,
∑

τi∈Γ
πm
R

WR
i (x)

)

=

min
(

∑

τi∈Γ
πm
R

WR
i (x), x− Cs + 1

)

.

2) Interference Caused by Other Security Tasks: We next

consider the workload of security tasks with higher priority

than τs. The workload computation for this case depends on

the arrival time of the task relative to the beginning of the

busy period. Let us define a task τi as a carry-in task (CI)

if there exists one job of τi that has been released before the

beginning of a given time window of length x and executes

within the window. If no such job exists, τi is referred to as

a non-carry-in task (NC).

3This is the maximal continuous time interval [t1, t2) until τks finishes
where all the cores are executing either higher priority tasks or τks itself.

4The workload Wi(w) of a task τi in a window of length w represents
the accumulated execution time of τi within this time interval [20].

Time
!" − $"

%0 Arrival ($") Finish (!")

$" − %0

Busy Period

Fig. 2. Busy period extension.

To calculate the number

of carry-in tasks, we extend

the busy period of τks from

its arrival time (denoted by

as) to an earlier time instance t0 (see Fig. 2) such that during

any time instance t ∈ [t0, as) all cores are busy executing tasks

with higher priority than τs [20]. Note that by definition, this

implies that there was at least one free core (i.e., not executing

higher priority tasks) at time t0 − 1.

Lemma 2. At most M − 1 higher priority tasks can have

carry-in at time t0.

Proof. The maximum number of higher priority tasks that can

have carry-in at t0 is M−1 since by definition there have to be

strictly less than M higher priority tasks active at time t0 − 1
(otherwise they will occupy all the cores).

% % + (

Time

						%0 %0 + (

		$1 														$1 														$101

(

ℛ1

Fig. 3. Illustration of carry-in
task for a window of size x.

Since Lemma 2 holds for all

tasks with higher priority than

τs, an immediate corollary is that

the number of security tasks with

carry-in at t0 also cannot be larger

than M − 1. If a security task τi does not have carry-in,

its workload is maximized when the task is released at the

beginning of the busy interval. Hence, we can calculate the

workload bound WSNC

i (x) for the interval x as follows:

WSNC

i (x) =
⌊

x
Ti

⌋

Ci + min(x mod Ti, Ci). Likewise, the

workload bound for a carry-in security task τi in an in-

terval of length x starting at t0 is given by (see Fig. 3):

WSCI

i (x) = WSNC

i (max(x− x̄i, 0))+min(x,Ci−1), where

x̄i = Ci − 1 + Ti − Ri. We can bound the workload of

the first carry-in job to Ci − 1 because the job must have

started executing at the latest at t0 − 1 (given that not all

cores are busy). Finally, using the same argument as in

§III-A1, the interference of τi can be bounded as follows:

Iτs←τi(x,Wi(x)) = min (Wi(x), x− Cs + 1) , where Wi(x)
is either WSNC

i (x) or WSCI

i (x). Notice that the WCRT and

periods of security task in the carry-in workload function

is actually an unknown parameter. However, we follow an

iterative scheme (§III-B) that allows us to calculate the period

and WCRT of all higher priority security tasks before we

calculate the interference for task τs.

3) Response Time Calculation: Let hpS(τs) denote the set

of security tasks with a higher priority than τs. Note that we

do not know which (at most) M −1 security tasks in hpS(τs)
have carry-in. In order to derive the WCRT of τs, let us define

Zτs ⊂ Γ × Γ as the set of all partitions of hpS(τs) into two

subsets ΓNC
s and ΓCI

s (i.e., the non overlapping set of carry-

in and non-carry-in tasks) such that: ΓNC
s ∩ ΓCI

s = ∅,ΓNC
s ∪

ΓCI
s = hpS(τs), and |ΓCI

s | ≤ M − 1.
For a given carry-in and non-carry-in set

(i.e., ΓNC
s and ΓCI

s), we can calculate the

total interference experienced by τs as follows:

Ωs(x,Γ
NC
s ,ΓCI

s) =
∑

πm∈M

Iτs←Γπm
R

(

x,
∑

τi∈Γ
πm
R

WR
i (x)

)

+

∑

τi∈ΓNC
s

Iτs←τi

(

x,WSNC

i (x)
)

+
∑

τi∈ΓCI
s

Iτs←τi

(

x,WSCI

i (x)
)

.

The response time Rs|(ΓNC
s ,ΓCI

s) then will be the

Algorithm 1 Period Selection
Input: Set of real-time and security tasks Γ = ΓR ∪ ΓS

Output: Periods of the security tasks, T (if the security tasks are schedulable);
Unschedulable otherwise

1: Set Ts := Tmax
s and calculate Rs for ∀τs ∈ ΓS

2: if ∃τs such that Rs > Tmax
s then

3: return Unschedulable

4: end if
5: for each security task τs ∈ ΓS (from higher to lower priority) do
6: /* Find period for which all lower priority tasks are schedulable */
7: Find minimum T∗

s ∈ [Rs, T
max
s] using logarithmic search such that all low

priority task τj remains schedulable (i.e., Rj ≤ Tmax
j , ∀τj)

8: end for
9: return T := [T∗

s]∀τs∈ΓS
/* return the periods */

minimal solution of the following iteration5 [20]:

x =
⌊

Ωs(x,Γ
NC
s ,ΓCI

s)
M

⌋

+ Cs. We can solve this using

an iterative fixed-point search with the initial condition

x(0) = Cs. The search terminates if there exists a solution (i.e.,

x = x(l) = x(l−1) for some iteration l) or when x(l) > Tmax
s

for any iteration l since τs becomes trivially unschedulable

for WCRT greater than Tmax
s . Finally we can calculate the

WCRT of τs as follows: Rs = max
(ΓNC

s ,ΓCI
s)∈Zτs

Rs|(ΓNC
s ,ΓCI

s).

B. Algorithm

The security task τs remains schedulable with any period

Ts ∈ [Rs, T
max
s]. However as mentioned earlier, the calcula-

tion of Rs requires us to know the period and response time of

other high priority tasks τh ∈ hpS(τs). Also if we arbitrarily

set Ts = Rs (since this allows us to execute security tasks

more frequently) it may negatively affect the schedulability of

other tasks that are at a lower priority than τs because of a

high degree of interference from τs. Hence, we developed an

iterative algorithm that trades-off between schedulability and

monitoring frequency.

Our proposed solution (Algorithm 1) works as follows. We

first fix the period of each security task Tmax
s and calculate the

response time Rs (Line 1). If there exists a task τj such that

Rj > Tmax
j we report the taskset as unschedulable (Line 3)

since it is not possible to find a period for the security tasks

within the designer provided bounds – this unschedulability

result will help the designer in modifying the requirements

(and perhaps RT tasks’ parameters, if possible) accordingly to

integrate monitoring tasks for the target system. If the taskset

is schedulable with Tmax
s , we then optimize the periods from

higher to lower priority order (Lines 5-8) and return the period

(Line 9). To be specific, for each task τs ∈ ΓS we perform a

logarithmic search and find the minimum period T ∗s within the

range [Rs, T
max
s] such that all low priority tasks (denoted as

lp(τs)) remain schedulable, e.g., ∀τj ∈ lp(τs) : Rj ≤ Tmax
j

(Line 7) and repeat the search for next security task.

IV. EVALUATION

We evaluate HYDRA-C on two fronts6: (i) a proof-of-

concept implementation on an ARM-based rover platform with

security applications – to demonstrate the viability of our

scheme in a realistic setup (§IV-A); and (ii) with synthetically

generated workloads for broader design-space exploration

(§IV-B).

5Note that the worst-case is when the job arrives at t0 (i.e., as = t0).
6Our implementation is available in a public, open-sourced repository [21].

available cores. For a given period, that approach is pessimistic

for our model in the sense that it over-approximates carry-

in interference from the RT tasks and hence results in lower

schedulability (i.e., identical to the GLOBAL-TMax scheme in

Fig. 6a). Researchers also studied schedulability for dynamic

priority and FIFO systems [29] while our focus here is on

fixed-priory RTS. There exists other work [30], [31] that

considers the problem of period selection, however, they are

designed for single core systems only.

Researchers proposed various mechanisms to provide secu-

rity guarantees into RTS in several directions, viz., integration

of security mechanisms [18], [19], authenticating/encrypting

communication channels [32], [33], side-channel defence tech-

niques [34], [35] and hardware/software-based frameworks

[14], [36]. Majority of those solutions are designed for single

core platforms and often require system-level modifications

and thus are not suitable for legacy systems. To our knowl-

edge this is the first work that aims to achieve continuous

monitoring for multicore-based legacy RT platforms.

VI. CONCLUSION

Threats to safety-critical RTS are growing and there is a

need for developing layered defense mechanisms to secure

such critical systems. In this paper we study mechanisms to

integrate security monitoring for legacy multicore-based RTS.

By using our framework, systems engineers can improve the

security posture of RTS. This additional security guarantee

also enhances safety – which is the main goal for such

systems.

REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp. 35:1–
35:44, 2011.

[2] C.-Y. Chen, M. Hasan, and S. Mohan, “Securing real-time Internet-of-
things,” Sensors, vol. 18, no. 12, 2018.

[3] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White
paper, Symantec Corp., Security Response, vol. 5, p. 6, 2011.

[4] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces,”
in USENIX Sec. Symp., 2011.

[5] S. S. Clark and K. Fu, “Recent results in computer security for medical
devices,” in MobiHealth, 2011, pp. 111–118.

[6] “Tripwire,” https://github.com/Tripwire/tripwire-open-source.
[7] “AIDE,” http://aide.sourceforge.net/.
[8] “The Bro network security monitor,” https://www.bro.org.
[9] M. Roesch, “Snort - lightweight intrusion detection for networks,” in

USENIX Conf. on Sys. Admin., 1999, pp. 229–238.
[10] L. L. Woo, M. Zwolinski, and B. Halak, “Early detection of system-level

anomalous behaviour using hardware performance counters,” in DATE,
2018, pp. 485–490.

[11] V. M. Weaver, “Linux perf event features and overhead,” in IEEE
FastPath, 2013.

[12] “OProfile,” http://oprofile.sourceforge.net/.
[13] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”

ACM CSUR, vol. 41, no. 3, p. 15, 2009.
[14] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “SecureCore: A

multicore-based intrusion detection architecture for real-time embedded
systems,” in IEEE RTAS, 2013, pp. 21–32.

[15] J. Chen, “Partitioned multiprocessor fixed-priority scheduling of spo-
radic real-time tasks,” in Euromicro ECRTS, 2016, pp. 251–261.

[16] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “A design-space
exploration for allocating security tasks in multicore real-time systems,”
in DATE, 2018, pp. 225–230.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” JACM, vol. 20, no. 1, pp. 46–61,
1973.

[18] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni, “Exploring
opportunistic execution for integrating security into legacy hard real-
time systems,” in IEEE RTSS, 2016, pp. 123–134.

[19] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “Contego: An
adaptive framework for integrating security tasks in real-time systems,”
in Euromicro ECRTS, 2017, pp. 23:1–23:22.

[20] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time bounds
for fixed priority multiprocessor scheduling,” in IEEE RTSS, 2009, pp.
387–397.

[21] “Implementation codes of the security integration framework,” https:
//github.com/mnwrhsn/multicore-continuous-security-monitoring.

[22] “Raspberry Pi,” https://tinyurl.com/rpi3modelb.
[23] L. Fu and R. Schwebel, “Real-time Linux wiki,” https://rt.wiki.kernel.

org/index.php/rt preempt howto, [Online].
[24] “Linux ARM shellcode,” https://www.exploit-db.com/exploits/21253/.
[25] “Linux rootkit,” https://github.com/crudbug/simple-rootkit.
[26] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis

of multiprocessor tasksets,” in WATERS, 2010, pp. 6–11.
[27] Y. Sun and M. Di Natale, “Assessing the pessimism of current multicore

global fixed-priority schedulability analysis,” in ACM SAC, 2018, pp.
575–583.

[28] A. Gujarati, F. Cerqueira, and B. B. Brandenburg, “Schedulability
analysis of the Linux push and pull scheduler with arbitrary processor
affinities,” in Euromicro ECRTS, 2013, pp. 69–79.

[29] A. Biondi and Y. Sun, “On the ineffectiveness of 1/m-based interference
bounds in the analysis of global EDF and FIFO scheduling,” RTS,
vol. 54, no. 3, pp. 515–536, 2018.

[30] E. Bini and A. Cervin, “Delay-aware period assignment in control
systems,” in IEEE RTSS, 2008, pp. 291–300.

[31] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in ACM DAC, 2007, pp. 278–283.

[32] V. Lesi, I. Jovanov, and M. Pajic, “Network scheduling for secure cyber-
physical systems,” in IEEE RTSS, 2017, pp. 45–55.

[33] M. Lin, L. Xu, L. T. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu, “Static
security optimization for real-time systems,” IEEE Trans. on Indust.
Info., vol. 5, no. 1, pp. 22–37, 2009.

[34] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba, “Integrating se-
curity constraints into fixed priority real-time schedulers,” RTS Journal,
vol. 52, no. 5, pp. 644–674, 2016.

[35] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha, “TaskShuffler: A
schedule randomization protocol for obfuscation against timing infer-
ence attacks in real-time systems,” in IEEE RTAS, 2016, pp. 1–12.

[36] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Guaranteed physical security with restart-based design for cyber-
physical systems,” in ACM/IEEE ICCPS, 2018, pp. 10–21.

APPENDIX

Proof of Lemma 1: Since RT tasks are partitioned and they

have higher priorities than security tasks, the schedule of RT

tasks executed on πm does not depend on any other task in

the system. Now consider any interval [t, t + x) of length x.

We show that we can obtain an interval [t′, t′ + x) where all

tasks are released at t′, such that the workload of RT tasks on

πm is higher in [t′, t′ + x) compared to [t, t+ x).
First step: let t′ be the earliest time such that πm continu-

ously executes RT tasks in [t′, t); if such time does not exist,

then let t′ = t. By definition, πm does not execute RT tasks at

time t′−1. Also since RT tasks continuously execute in [t′, t),
the workload of RT tasks in [t′, t′+x) cannot be smaller than

the workload in [t, t+ x).
Second step: since πm is idle at t′ − 1, no job of RT tasks

on πm released before t′ can contribute to the workload in

[t′, t). Hence, the workload can be maximized by anticipating

the release of each RT task τr so that it corresponds with t′.

This concludes the proof.

