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ABSTRACT
The 21 cm hyperfine transition of neutral hydrogen offers a promising probe of the
large scale structure of the universe before and during the Epoch of Reionization,
when the first ionizing sources formed. Bright radio emission from foreground sources
remains the biggest obstacle to detecting the faint 21 cm signal. However, the ex-
pected smoothness of foreground power leaves a clean window in Fourier space where
the EoR signal can potentially be seen over thermal noise. Though the boundary of
this window is well-defined in principle, spectral structure in foreground sources, in-
strumental chromaticity, and choice of spectral weighting in analysis all affect how
much foreground power spills over into the EoR window. In this paper, we run a
suite of numerical simulations of wide-field visibility measurements, with a variety of
diffuse foreground models and instrument configurations, and measure the extent of
contaminated Fourier modes in the EoR window using a delay-transform approach
to estimating power spectra. We also test these effects with a model of the HERA
antenna beam generated from electromagnetic simulations, to take into account fur-
ther chromatic effects in the real instrument. We find that foreground power spillover
is dominated by the so-called “pitchfork effect”, in which diffuse foreground power is
brightened near the horizon due to the shortening of baselines. As a result, the extent
of contaminated modes in the EoR window is largely constant over time, except when
the galaxy is near the pointing center.

Key words: techniques: interferometric – dark ages, reionization, first stars, instru-
mentation: interferometers, methods: numerical

1 INTRODUCTION

The Epoch of Reionization (EoR) comprises the period
of the Universe’s history after recombination when the
first luminous structures formed, emitting UV radiation
that carved out ionized regions of the neutral intergalactic
medium (IGM). The lack of bright sources and optically-
thick IGM during the the EoR limit observational prospects
through traditional high-redshift galaxy surveys and quasar
absorption measurements. The hyperfine transition of neu-
tral hydrogen, which emits a rest-frame photon with a wave-
length of 21 cm, offers a promising probe of the IGM struc-
ture during the EoR and before, when neutral hydrogen was
abundant in the Universe (see Pritchard & Loeb (2008);
Furlanetto et al. (2006) for a review). As a forbidden tran-
sition, the IGM is largely transparent to 21 cm photons,
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and so this signal is not obscured by intervening gas. As a
line transition, the redshift of 21 cm emission/absorption di-
rectly corresponds to distance. In this way, mapping the dis-
tribution of redshifted 21 cm brightness can map the three-
dimensional structure of neutral hydrogen during the EoR.

Directly imaging structures of the EoR will likely re-
quire an instrument of the scale of the upcoming Square
Kilometre Array (SKA; Mellema et al. 2013; Furlanetto et al.
2006), so current generation experiments are seeking statis-
tical measures of the EoR signal, such as the power spec-
trum. Radio interferometers are well suited to power spec-
trum measurements, since they directly sample the angular
Fourier transform of the sky, and can achieve high spec-
tral resolution, which provides good sampling of line-of-sight
Fourier modes. Many of these instrument feature highly re-
dundant, compact layouts that maximize sensitivity to large
angular scales, aiming to detect the EoR signal through their
fine spectral resolution first (Parsons et al. 2012a). Though
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an actual detection of the power spectrum has yet to be
made, experiments like the GMRT (Paciga et al. 2013, 2011),
MWA (Barry et al. 2019; Beardsley et al. 2016; Bowman
et al. 2013), PAPER (Kolopanis et al. 2019; Cheng et al.
2018; Parsons et al. 2010), and LOFAR (Patil et al. 2017),
have placed upper limits on the power spectrum amplitude
at several redshifts.

The primary obstacle to these experiments is contam-
ination of bright foreground sources, such as Galactic syn-
chrotron emission, free-free emission, radio galaxies, pulsars,
and supernova remnants, which are typically five orders of
magnitude brighter than the expected EoR signal (Furlan-
etto et al. 2006; Oh & Mack 2003; Matteo et al. 2002). For-
tunately, the smooth spectra exhibited by these sources dis-
tinguish them from the relatively complex structure of EoR
signals, making it possible – in principle – to model and
subtract them from data (Oh & Mack 2003; Liu & Tegmark
2012; Chapman et al. 2015; Sims et al. 2016; Carroll et al.
2016) or avoid them in Fourier space (Parsons et al. 2012b,a;
Pober et al. 2013; Chapman et al. 2016). Since frequency
maps directly to redshift and distance, this separation occurs
in Fourier space parallel to the line of sight (k‖). Smooth-
spectrum power will cluster around k‖ = 0, while EoR signal
power will spread farther.

Foreground mitigation strategies that rely on the spec-
tral smoothness of foreground sources must also account for
instrumental sources of spectral structure. One such effect is
due to the natural chromaticity of an interferometer caused
by the effective change of baseline length with frequency. A
baseline samples angular scales on a scale inversely propor-
tional to the baseline length in wavelengths, which means
that a baseline will sample finer scales at higher frequencies.
This is equivalent to the baseline drifting through Fourier
space with frequency, which creates a frequency dependence
in the visibility measurements. This couples k⊥ and k‖ and
spreads power to higher k‖ modes (Datta et al. 2010; Vedan-
tham et al. 2012; Morales et al. 2012; Parsons et al. 2012b;
Trott et al. 2012; Thyagarajan et al. 2013; Liu et al. 2014;
Pober et al. 2014).

Though baseline chromaticity itself is fundamental to
the measurement, its effects are confined to a well-defined
region of Fourier space called the foreground wedge, with
a maximum k‖ set by the angular extent of the field of
view, called the “horizon limit.” This leaves a region called
the EoR window which should be uncontaminated by fore-
grounds. Nonetheless, other sources of spectral structure,
including the intrinsic spectra of foreground sources, the fi-
nite bandpass of the instrument, and the chromaticity of
the antenna gains can spread foreground power beyond the
wedge into the window. This suprahorizon power is usually
accounted for in foreground avoidance approaches by avoid-
ing k‖ modes within some buffer distance of the horizon line.

Estimates of an appropriate buffer distance have been
largely motivated by simple, conservative models and ob-
servations in data. Parsons et al. (2012b) argued that fore-
ground power spillover in delay spectra is caused by the
convolution of the spectral responses of the beam and sky
brightness, and so is limited by the inverse bandwidth of
the instrument. Through simplified foreground simulations
they demonstrate that this spillover does not exceed k‖ ∼
0.13 Mpc−1. Thyagarajan et al. (2013) examined the effect
of spectral windowing on this spillover using numerical for-

mulations of point source and noise power spectra, finding
that increased foreground suppression came at the expense
of narrowing the “effective” bandwidth, and hence increas-
ing the extent to which foreground power spills into the EoR
window. Pober et al. (2013) observed suprahorizon spillover
in power spectra taken from PAPER data, finding that the
spillover is not constant with k⊥ (baseline length), and is
larger on short baselines. Imaging the data after applying
a high-pass filter to remove the wedge, they found that re-
maining contamination is dominated by unresolved diffuse
power.

More recently, Thyagarajan et al. (2016) used wide-
field visibility simulations with delay spectrum analysis to
measure the levels of foreground power in the EoR window
for baselines in the 19-element deployment of HERA. These
simulations used a HERA beam model made through elec-
tromagnetic simulation of a HERA dish and receiver ele-
ment, which incorporates spectral structure due to reflec-
tions among the various components of the antenna. They
found that, except when the galaxy is directly overhead,
foreground power can be suppressed below the EoR ampli-
tude for k‖ ≥ 0.2 h Mpc−1.

Though these earlier works predicted that foreground
power should extend as far as ∆k‖ ∼ 0.2 h Mpc−1, pub-
lished power spectrum limits usually choose narrower buffers
when binning measurements in k. Dillon et al. (2015) used
a moderate buffer of ∆k‖ ∼ 0.02 h Mpc−1 when binning
MWA power spectra in 1D, which noticeably left in some
suprahorizon emission. Ali et al. (2015) applied a buffer of
15 ns when binning power spectra for PAPER-64 data, cor-
responding with ∆k‖ ∼ 0.008 h Mpc−1 at their redshift of
z ∼ 8.74. This buffer was set by the inverse of the band-
width used for the analysis, and did not take into account
any expectations of spectral structure in the instrument or
sky. Both Beardsley et al. (2016) and the more recent Barry
et al. (2019) account for suprahorizon emission by increas-
ing the slope of the horizon line by 14%, the horizon line be-
ing the line in (k⊥, k‖) space corresponding with the horizon
limit. This choice makes for a wider buffer at large k⊥, which
runs contrary to the expectation that foreground spillover is
larger for small k⊥.

Avoiding foreground-contaminated modes is essential to
making a robust EoR power spectrum measurement, so it is
advisable to set a wide buffer beyond the horizon limit. How-
ever, setting too wide a buffer means potentially throwing
out the most sensitive measurements. It is therefore essential
to have precise predictions of how foreground power spreads
into the EoR window for different instruments in order to
use foreground avoidance techniques.

In this paper, we simulate visibility measurements from
a zenith-pointing array with realistic, frequency-dependent
antenna beams, observing a variety of diffuse foreground
models. From these simulated observations we make power
spectra using delay-transform methods and measure how far
beyond the horizon foreground power spills over as a result
of a the effects included in simulations. Such effects include
the spectral structure of the primary beam or foreground
model, baseline length, primary beam shape, and proxim-
ity of the brightest emission to the beam center. We focus
on diffuse foreground models because EoR power spectrum
estimations typically only use the shortest baselines in the
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array, which are both most sensitive to the expected EoR
signal and to diffuse foregrounds.

The following section gives some background on the
21 cm power spectrum, the delay transform estimation ap-
proach, and the sources of foreground power spillover. We
also discuss the theoretical explanation for the foreground
pitchfork, and discuss the choice of simulations to explore
these various effects. Section 3 discusses the numerical sim-
ulator and the instrument and sky model configurations
tested. Sections 4.1 to 4.4 presents measurements of the
effects of baseline foreshortening near the horizon, spec-
tral windowing, source and beam spectral structure, and
source position and baseline length. Lastly, we show the
same results with a more realistic primary beam model in
section 4.5.

2 DIFFUSE FOREGROUND POWER

The 21 cm power spectrum P21 is defined as〈
T̃b(k)T̃ ∗b (k′)

〉
= (2π)3δD(k − k′)P21(k) (1)

where Tb is the brightness temperature contrast of the 21 cm
line against the background radiation field, tildes denote the
spatial Fourier transform and δD is the three-dimensional
Dirac delta function. The wave vector k may be broken down
into k⊥ = (kx, ky), which is perpendicular to the line of
sight, and k‖ which is parallel to the line of sight. We can
form an estimator of the power spectrum from a measured
volume V.

P̂ (k) ≡

〈
|T̃ (k)|2

〉
V

(2)

2.1 Delay Transform

There are a variety of methods available for estimating T̃ (k)
from interferometric measurements, but they can be very
generally categorized as either based on the delay transform
on sky-reconstruction (see Morales et al. 2019 for a sum-
mary). In both categories, k‖ modes are accessed by Fourier-
transforming over an axis probed by frequency. We will focus
here on the delay spectrum approach (Parsons et al. 2012b,a,
2014).

The complex visibility measured by a single baseline
is given by the radio interferometer measurement equation
(RIME) (Thompson et al. 2017),

V (b, ν) =

∫
sky

A(ŝ, ν)Tb(ŝ, ν)e−2πi((ŝ−ŝp)·b)ν/cd2s, (3)

where ν is the frequency, c is the speed of light, b is the
baseline vector, and A is the primary beam function giving
directional gains of the measuring antennas. ŝp is a unit vec-
tor pointing to the phase center, and the integral is carried
out over all unit vectors ŝ over half of the unit sphere, de-
noted by “sky”. The phase center term cancels out of the
eventual estimator, so we omit it going forward.

The delay transform is an inverse Fourier transform ap-
plied along the frequency axis:

Ṽ (b, τ) =

∞∫
−∞

∫
sky

φ(ν)A(ŝ, ν)T (ŝ, ν)e−2πi(τg−τ)νd2s dν (4)

The function φ(ν) is a spectral window, which both enforces
the finiteness of the bandpass and allows us to applying
weighting to each frequency. Here τg = ŝ · bν/c is the geo-
metric delay, corresponding to the time it takes a wavefront
propagating from position ŝ to cross the baseline. Under a
flat-sky approximation, the integral over the sky is equiv-
alent to a 2D Fourier transform from ŝ to u, sampled at
the baseline position u = bν/c. The delay τ , dual to fre-
quency, is then an approximate probe of line of sight Fourier
modes.1 The delay transformed visibility is thus related to
the Fourier-transformed temperature T̃b, convolved with the
beam and taper function.

With appropriate cosmological scaling, we can form a
power spectrum estimator.

P̂ (k⊥, k‖) ≡
X2Y

BppΩpp
|Ṽ (τ)|2 (5)

The multiplicative factors in front approximate the inverse
volume factor of eq. (2). X and Y are redshift-dependent
cosmological scaling factors, with units of length per angle
and length per frequency, respectively. Bpp is an effective
bandwidth, given by Bpp =

∫
|φ(ν)|2dν, which relates to

the total line of sight extent observed. The primary beam
squared integral Ωpp =

∫
|A(ŝ)|2 gives the angular area. The

exact derivation of this factor is given by Appendix B of
(Parsons et al. 2014).2

The cosmological factors are

X(z) = χ(z) Y (z) =
c(1 + z)2

H(z)ν21
, (6)

where z is redshift, χ is the comoving distance, H(z) is the
Hubble parameter, ν21 is the rest-frame 21 cm frequency,
and c is the speed of light. The k⊥ and k‖ modes corre-
sponding to a given baseline u and delay τ are given by

k⊥ =
2πu

X
k‖ =

2πτ

Y
(7)

For the above relations, X and Y are evaluated at the cen-
ter of the bandpass and assumed not to evolve much over
the chosen bandpass. As mentioned before, the correspon-
dence between k‖ and τ is only approximate, and gets worse
for longer baselines. Throughout this paper, we will use a
ΛCDM cosmological model with parameters measured by
Planck Collaboration et al. (2016).

2.2 Foreground Power Spillover

In the case of a single point source at position ŝp, with cor-
responding geometric delay τp, and spectrum Ip(ν), eq. (4)
reduces to

Ṽ (b, τ) = (φ̃ ∗ Ã ∗ Ĩp)(τ − τp) (8)

where ∗ denotes convolution in delay and tildes indicate a
delay-transformed function. If the beam, source spectra, and
window function are all flat in frequency, and the bandpass
is infinite, then this becomes a delta function centered at

1 This correspondence is only approximate because the baseline
length in wavelengths changes with frequency. Hence, the delay

modes are not perfectly orthogonal to the k⊥ modes.
2 See also Memos #27 and #43 at reionization.org.
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the geometric delay of the point source. The maximum ge-
ometric delay is limited to the baseline length b = |b| over
the speed of light.

|τg| ≤
b

c
(9)

Under these conditions, the power from a point source on the
horizon will has the form of a delta function centered at this
maximum delay. Hence, this maximum delay is known as
the “horizon line”, and separates flat-spectrum power from
spectrally-structured emission. In cosmological terms, this
horizon limit is given by

k‖ ≤
H(z)χ(z)

c(1 + z)
k⊥ (10)

where k⊥ = |k⊥|.
This limit applies in the ideal point source case as dis-

cussed — infinite bandwidth and a flat spectrum. This power
will spread out, possibly beyond the horizon limit, once these
assumptions are relaxed. For example, assume the primary
beam A and point source flux Ip have no spectral structure,
but the window function has a limited domain. In this case,
Ã(τ) = ApδD(τ) and Ĩp(τ) = IpδD(τ), where δD is the Dirac
delta function, and eq. (8) reduces to

Ṽ (b, τ) = IpApφ̃(τ − τp) (11)

If φ is a rectangular window function, then φ̃ is a sinc func-
tion centered on τ = τp, which has sidelobes that are not
confined to the horizon. The sinc function is known to lack
the dynamic range needed to access the expected EoR ampli-
tude, so most analyses use other common window functions
such as Hamming, Blackman-Harris, or Blackman-Nuttall.
These windows suppress their sidelobe amplitude at the ex-
pense of widening the main lobe. In any case, the finiteness
of the bandpass necessarily causes even flat-spectrum power
to spread.

2.3 Foreground Pitchfork

Resolved diffuse emission behaves in a fundamentally differ-
ent way from unresolved point-like sources in interferometric
measurements. The difference can be illustrated in angular
Fourier space by taking the flat sky approximation of eq. (3)
such that the exponential fringe term acts as a 2D Fourier
transform. Applying the convolution theorem, we can see
that the visibility measured by a baseline is given by the con-
volution of the primary beam and sky brightness in Fourier
space:

V (u, v) '
∫
A(l,m)T (l,m)e−2πi(ul+vm)dldm (12)

= (Ã ∗ T̃ )(u, v) (13)

Here, (l,m) are direction cosines, tildes denote the 2D
Fourier transform and (u, v) are orthogonal components of
the baseline vector measured in wavelengths. These are also
the Fourier-duals to l and m. A point source has a sur-
face brightness I in the form of a delta function, which is
constant in Fourier space. A diffuse source, however, will
be more compact in Fourier space, centered on u, v ≈ 0.
Short baselines will therefore measure more diffuse power
than long baselines, while the measured power from point
sources will be the same for both.

The increased brightness of diffuse power on short base-
lines leads to an increase in measured brightness when dif-
fuse sources are near the horizon, due to the shorter pro-
jected baseline length. This puts excess power near the hori-
zon in delay space, leading to a characteristic pitchfork pat-
tern, observed in simulations and in MWA data (Thyagara-
jan et al. 2015a,b). Since the projected baseline length can
go to effectively zero at the horizon, even a monopole signal,
normally undetectable to interferometers, produces a signal.

The pitchfork effect can potentially change our intu-
ition for how foreground power spreads beyond the horizon.
For a zenith-tracking array, measured power is highest when
bright sources are near zenith, because the primary antenna
beam is strongest there. In delay space, however, this power
is clustered around τ = 0, so how much of that power spreads
beyond the horizon depends on the spectral structure of the
emission and the instrument. Power in the pitchfork is very
close to the horizon, but is attenuated by the weaker primary
beam there. This raises a question – Does a bright patch of
the sky contaminate the window more when it’s at zenith or
near the horizon?

To answer this, we will look at how much power spreads
beyond the horizon as a function of the hour angle of the
galactic center, for a variety of primary beam models, in
simulated data. Some of these beam models have effectively
zero response near the horizon, which prevents any pitchfork
from appearing. Comparing these, we can demonstrate that
the pitchfork is the dominant source of power near the hori-
zon for most observing time, while spectral structure in the
beam or source affects how that power is spread. By taking
both effects into consideration, it is possible to set bounds
on the extent of foreground contamination.

3 SIMULATIONS

Simulations were carried out by numerically integrating the
radio interferometry measurement equation (RIME). The
integration is done from horizon to horizon, taking into ac-
count the curvature of the sky. The simulator code is publicly
available (Lanman & Kern 2019).3 The brightness temper-
ature T (ŝ describes the specific intensity as a function of
angle. We can discretize the sky by dividing it into pixels p,
each of which is defined by a function Wp(ŝ) which is 1 when
ŝ points into the pixel and 0 otherwise. The discretized form
of the RIME (eq. (3)) has the form:

V (b, ν) =
∑
p

∫
sky

Wp(ŝ)T (ŝ, ν)A(ŝ)e−2πiŝ·bν/cdΩ (14)

≈
∑
p

T (ŝp, ν)A(ŝp)e
−2πiŝp·bν/c

∫
sky

Wp(ŝ)dΩ (15)

The second step assumes that the fringe, surface brightness,
and primary beam are all constant across the pixel, and so
they can be moved outside the integral. The integral over

3 https://github.com/RadioAstronomySoftwareGroup/healvis
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Beam Models

Airy Disk Radiation pattern of a circular aperture with a 14 m diameter. eq. (17)

Achromatic Gaussian exp(−θ2/(2σ2
0)), with σ0 = 7.37◦. This is set to match the FWHM of the main

lobe of the Airy beam. eq. (18)

Chromatic Gaussian The same as achromatic, but with σ = σ0(ν/ν0)α eq. (20)

HERA CST Power beams made from far-field electric fields measured in CST simulations
of a HERA dish with crossed-dipole feeds.

Sky Models

GSM The Global Sky Model in HEALPix, generated from three principal compo-
nents per pixel (Zheng et al. 2017).

sym A model with the same angular power spectrum as the GSM, defined to be

azimuthally symmetric about the galactic center. Each pixel is given a power
law frequency spectrum.

Layout

37 hex A thirty-seven element hexagon, with 14.6 m spacing.

Imaging 80 antennas distributed randomly, with a Gaussian radial density profile with
FWHM of 230 m. The longest baseline is 608 m.

Line A line of 300 antennas, evenly spaced, east to west. Baselines are formed by

pairing each of these antennas with a 301st antenna, such that the whole array
provides East/West baselines with lengths ranging from 10 to 150 m.

Time

Off-Zenith Five 11s timesteps when the Galactic center is 4 hours off of zenith.

Transit 24 hours at 5 minute timestep, such that the galactic center transits 6 hours
from the start.

Frequency

50 MHz 100 to 150 MHz with channels of width 97.65 kHz. The channel width is chosen

to match that of the first generations of HERA.

Table 1. A summary of parameters used in simulations.

each pixel window function then reduces to the solid angle
of that pixel, ωp.

Vb(ν) =
∑
p

ωpT (ŝp, ν)A(ŝp)e
−2πiŝp·bν/c (16)

Equation (16) treats the diffuse sky model as a set of
point sources at pixel centers with specific flux densities
Tpωp. We thus refer to this as the point source approxima-
tion. As discussed in section 2.3, the difference in behavior
between point sources and diffuse models is most significant
on long baselines, so we need to ensure the map resolution is
fine enough for this approximation to be valid. Appendix A
discusses the limitations of the point source approximation
and tests its validity for the simulations discussed here.

Table 1 summarizes the various simulation configura-
tions used, including antenna layouts, primary beam models,
sky brightness distribution models, observing time ranges
and time step sizes. The same bandpass and channelization,
covering 100 to 150 MHz at 97 kHz channel resolution, is
used for all simulations. Generally, the “Off-Zenith” time
configuration is used whenever LST is not considered im-
portant to the result. This time set consists of only five 11 s
integrations, from a time when the Galactic center is in the
sky but not near the beam center (off by 4 hours). This is
considered as a typical sky brightness, an assumption sup-
ported by the tests with time dependence (using the “tran-
sit” time set). More details on the sky and beam models are
given in the subsequent subsections.

3.1 Primary Beam Models

The primary beam A(ŝ) gives the direction-dependent gains
of the antenna receiver elements, normalized to the value
at the antenna’s pointing center. The primary beam of a
given antenna can be found by considering the antenna as
a transmitter, fed by a uniform voltage, and measuring the
far-field electric field pattern, and normalizing to the value
at zenith. The power beam is obtained by taking the squared
amplitude of this electric field.

We use three analytically-defined beam models and one
numerically calculated through electromagnetic simulations
of a HERA dish. The analytic models are described in
eqs. (17) to (20).

The Airy beam is defined as the far-field radiation pat-
tern of a uniformly-illuminated circular aperture:

Aairy(θ, ν) =
ν/c

πD sin θ
J1

(
πD sin θ

ν/c

)
, (17)

where θ is the angle from the pointing center, J1 is the first-
order Bessel function of the first kind, c is the speed of light,
and D=14 m is the antenna aperture. The Airy beam has
a simple analytic form that behaves similarly to a physical
antenna, in that it has a non-negligible response near the
horizon and has nulls that move with frequency.

The achromatic Gaussian beam is defined by a Gaus-
sian function with a constant full-width at half maximum
(FWHM) across all frequencies, defined by a width param-
eter σ0:

AAG(θ) = exp

(
− θ2

2σ2
0

)
(18)

This beam has no sidelobes and is effectively zero at the

MNRAS 000, 1–16 (2019)
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horizon. We choose σ0 = 7.37◦, which sets the FWHM equal
to the width of the main lobe of the Airy disk beam.

The chromatic Gaussian beam is defined just as eq. (18),
but with a width that evolves according to a power law.

ACG(θ, ν) = exp

(
− θ2

2σ(ν)2

)
(19)

σ(ν) = σ0

(
ν

ν0

)α
(20)

The reference frequency ν0 is chosen to be the first frequency
channel center. Unless otherwise noted, the spectral index s
is chosen to be −1, which resembles the frequency evolution
of the Airy beam.

The last beam model is defined numerically by a set of
CST Suite4 simulations of a realistic HERA dish and receiver
done by Fagnoni & Acedo (2016). The simulated antenna in-
cluded a parabolic reflecting dish with a 14 m diameter, two
1.3 m copper dipole receivers with a pair of aluminum discs
acting as sleeves, and a cylindrical mesh “skirt” 36 cm high
around the feed to protect from reflections of other antennas
in the array (see Fagnoni & Acedo (2016) for more details).
Reflections among the various elements of the antenna in-
troduce spectral structure into the beam, which is largely
captured by the CST simulations.

These simulated beam models are stored as a set of
electric field components at altitude and azimuth positions
on a spherical grid with steps of 1◦ in both latitude and
longitude, at frequencies between 50 and 250 MHz in steps
of 1 MHz. For use in simulations of unpolarized (i.e., purely
stokes-I) sky models, we convert this electric field beam into
a power beam in the following way. The electric field beam of
an antenna feed p may be expressed in a basis of unit vectors
θ̂ and ϕ̂ along the zenith angle and azimuthal directions,
respectively:

Ap(ŝ, ν) = Apθ(ŝ, ν)θ̂ +Apϕ(ŝ, ν)ϕ̂ (21)

The components form the elements of a Jones matrix, de-
scribing the directional response of the antenna feed to the
electric field components of the sky. This is described in de-
tail in Kohn et al. (2018). For unpolarized sky models, the
response of each feed is given by the power of the electric
field:

App(ŝ, ν) = |Apθ(ŝ, ν)|2 + |Apϕ(ŝ, ν)|2 (22)

The CST simulated beams have two crossed-dipole
feeds, one oriented East/West (designated X) and the other
oriented North/South (Y). Under the same formalism, we
may think of the analytic beams defined in this section as
representing the response of an idealized single feed to an
unpolarized sky model.

3.1.1 CST Beam Interpolation

Our simulations are done at much higher spectral and an-
gular resolution than the CST simulations, so we need
to interpolate the CST simulated beam models values to
the required angles and frequencies. The beam data is

4 https://www.cst.com
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Figure 1. Comparison of the delay-transformed beam integral of
the (black dots) non-interpolated beam to the interpolated beam

with five methods of interpolation. The vertical dashed line marks

500 ns, the Nyquist sampling rate of the 1 MHz resolution beam.
The inset zooms in on the region around the Nyquist limit. There

is some disagreement among the curves at and just before this

limit, so it seems the effects o interpolation are not strictly limited
to interpolated delay modes.

handled using the new pyuvdata class UVBeam (Hazel-
ton et al. 2017).5 This class supports frequency interpo-
lation at each pixel using the methods accessible to the
scipy.interpolate.interp1d method, which includes lin-
ear, polynomial splines, and nearest-neighbor interpolation
among other methods. UVBeam handles angular interpola-
tion using bivariate spline interpolation.

Interpolating to a higher frequency resolution means
adding information in the beam model on higher delay
scales. Since the main results of this paper are to measure
the behavior of foreground power in delay space, we need
to be sure that the frequency interpolation does not have
a substantial effect on simulated data. In this section, we
interpolate the UVBeam to a finer frequency resolution us-
ing a variety of interpolation methods and compare these
interpolated beams to the original beam data under a delay
transform.

The power beam is obtained from the E-field using
eq. (22), then the values at each frequency are normalized
to their peaks. The peak-normalized power beam is then,
at each pixel, interpolated to the 50 MHz bandpass (see ta-
ble 1) used for simulations. There are two general types of
interpolation used: polynomial spline interpolation, which
we do to linear, third, and fifth order, and Gaussian pro-
cess regression (GPR) using the scikit-learn package. The
GPR method uses a radial basis function (RBF) kernel, also
known as a squared exponential, as the covariance function
of the Gaussian process. For a fixed point on the sky, we can
describe the covariance of the beam at two frequencies ν1
and ν2 as

k(ν1, ν2|`) = exp
[
− 1

2
(ν1 − ν2)`−2(ν1 − ν2)

]
, (23)

5 https://github.com/RadioAstronomySoftwareGroup/pyuvdata
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where ` is a hyperparameter that sets the characteristic scale
of the covariance function. Given a covariance function, the
GPR maximum a posteriori estimate of the underlying sig-
nal constrained by the data can be calculated at any new
frequency ν′ (Eq. 2.23 of Rasmussen & Williams 2006). The
RBF kernel has the property of producing smoothly varying
estimates with frequency structure set by the length-scale
hyperparameter. By keeping this length-scale fixed (rather
than solving for its optimal value given the data), the RBF
kernel can act as a low-pass filter, filtering out structure at
scales above the length-scale (e.g. Kern et al. 2019). Given
the inherent Nyquist sampling rate of the CST output, we
set ` = 1 MHz for our GPR interpolation method. Alto-
gether, this leaves us with five methods of interpolation to
test.

To test the effect of interpolation on the beam, we con-
struct a single metric to compare in delay space. At each fre-
quency, the interpolated beam values are summed over pix-
els. This list of 512 sums is then is multiplied by a Blackman-
Harris window function and then Fourier transformed from
frequency to delay using an inverse DFT. The result of these
steps is a quantity analogous to the power spectrum mea-
sured at k⊥ = 0. Fig. 1 shows this quantity for each of the
interpolation types. The GPR results in the plot are shown
with the chosen smoothing scales in parentheses. Overall,
all of the interpolation schemes preserve the power on the
known scales, marked with black dots, up to the Nyquist
limit (shown by the vertical dashed line). Beyond that, the
spline interpolations introduce noticeable structure. Further
testing has shown that this is likely due to some sharp fea-
tures in the spectra of pixels far off from the beam center,
which can cause aliasing under Fourier transform. The GPR-
interpolation seems to smooth out these effects well, and so
the curves for the GPR methods are relatively smooth be-
yond the Nyquist limit.

To avoid any potential issues that may depend on the
beam interpolation scheme, we avoid using delay modes be-
yond the Nyquist limit of 500 ns for any results. Simula-
tions are still carried out to the full frequency resolution
of HERA, with beams interpolated using the GPR method
with a 1 MHz smoothing scale. This is a conservative choice,
because the smoothing scale avoids accidentally smooth-
ing over sub-Nyquist scales in the beam while suppressing
the interpolation artifacts. It is of course possible that the
HERA beam has structure on scales smaller than 1 MHz,
but that cannot be determined from the existing CST sim-
ulation data.

3.2 Sky Models

Our simulations model the Stokes-I surface brightness tem-
perature of the sky (in Kelvin) as a set of HEALPix6

maps (Gorski et al. 2005), one for each frequency channel.
HEALPix divides the sky into equal-area pixels with a res-
olution set by a single parameter, Nside, such that the in-
dividual pixel area is ω = 4π/(12 × Nside2) sr. With the
healvis simulator, there are trade-offs between resolution,
run-time, and memory requirements, which are exacerbated
by simulating wide fields of view and bandpasses. For this

6 Hierarchical Equal-Area Isolatitude Pixellization

(a) GSM

(b) Symmetric GSM

Figure 2. The GSM (a) and symmetric GSM (b) models in a

Mollweide projection of equatorial coordinates.

work we use maps at an Nside of 256, which corresponds
with a resolution of 13.7 arcmin. The highest resolution
probed by any of our simulation configurations is 14.13 ar-
cmin, corresponding with the longest baseline and highest
frequency, and shorter baselines are only sensitive to larger
scales. Appendix A shows the effect of increasing resolution
on the measured power spectrum of a GSM model is not no-
ticeably improved by increasing the resolution above Nside

256.
We use two diffuse foreground models. The first is the

2016 Global Sky Model (GSM), which is compiled from 29
different sky maps covering a total bandpass of 10MHz to
5TH (Zheng et al. 2017). The GSM is implemented in the
Python package PyGSM7, which generates HEALPix GSM
maps at an Nside of 1024 using a principal component de-
composition to model the spectral structure at each fre-
quency. We degrade this to an Nside of 256 by averaging
together high-resolution pixels nested within low-resolution
pixels, which can be done without interpolating or splitting
pixel values due to the hierarchical structure of HEALPix
maps. In our chosen bandpass, diffuse foreground power is
dominated by Galactic synchrotron emission, which gener-
ally follows a power law with a spectral index of −2.5. Most
pixels in the GSM model used here have power law spectra
with index ∼ −2.5.

7 https://github.com/telegraphic/PyGSM
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The second model is the “symmetric GSM” or “sym”,
which is constructed from the GSM but made to have az-
imuthal symmetry about the Galactic center position. The
sym model thus provides a well-defined locus of bright emis-
sion on the sky, which will make for a more meaningful test
of how spillover relates to the “position of bright emission”.
The sym model is constructed in the following way:

(i) Calculate the angular power spectrum Cl of the GSM
at 100 MHz from the Nside 256 GSM.

(ii) Generate a set of spherical harmonic expansion coef-
ficients alm, with al0 = (2l + 1)

√
Cl and alm = 0 for m 6= 0.

(iii) Apply a rotation to the alm using Wigner D-matrices
so that the (θ, φ) = (0, 0) point is at the Galactic center.

(iv) Convert the alm to an Nside 256 map.
(v) Scale each pixel in this map by a power law in fre-

quency: (ν/ν0)α for ν0 =100 MHz and spectral index α.

For most tests, we use an achromatic symmetric model, with
α = 0. The angular power spectrum calculation and spher-
ical harmonic transforms are done using healpy’s anafast

and alm2map functions, respectively. The rotation is done us-
ing rotate_map_alms. The GSM and symmetric GSM mod-
els at 100 MHz are shown in ICRS equatorial coordinates in
Fig. 2, with a log scale on each plot.

3.3 Power Spectrum Estimation and
Measurements

The form of the delay spectrum estimator was discussed
in section 2, in particular with eq. (5). In this section, we
will briefly discuss the steps in of estimating power spectra
from simulated visibilities, and define the power spillover
and fiducial EoR amplitude that will be used to quantify
the spread of power beyond the horizon. Rather than look
at the power at specific k‖ modes, we are interested in the
range of k‖ that are contaminated by foreground power.

The simulator provides visibilities V [b, t, ν] for each
baseline (b), time step (t), and frequency (ν), in units of
Jy, as well as the beam integral Ωpp at the zeroth frequency
in units of steradians. The visibilities are converted from
Jy to mK sr by weighting each channel with a frequency-
dependent conversion factor:

VmK sr[b, t, ν] = 10−20

(
c2

2kBν2

)
VJy[b, t, ν] (24)

For each baseline and time, the delay transform is done
by weighting each channel with the spectral window func-
tion and then doing an inverse discrete Fourier transform
(IDFT), and taking the absolute square:

Ṽ [b, t, τq] =
B

Nf

∑
p

φ(νp)VmKe
2πiνpτq (25)

P [b, t, k‖] =
X2Y

BppΩpp
|Ṽ [b, t,±τq]|2 (26)

In the above, νp is the pth frequency, and τq = q/(2B) for
bandwidth B are the delay modes. Note that there are two
delay modes for every k‖, since the IDFT goes to both posi-
tive and negative delays. Since the power spectrum is a real
quantity, the positive and negative delay modes are equiva-
lent, so we average them together.

This leaves us with an estimator of the power spec-
trum for each baseline, time, and k‖. We average together
power spectra from baselines with similar lengths (to within
a half meter). Additional tests show no significant variation
in the power spectrum with baseline orientation. For sim-
ulations using the Off-Zenith time configuration, averaging
power spectra incoherently over the time steps (55 seconds).
The spectrum is not observed to change significantly over
such a short period.

For comparison with the foregrounds, we consider
a fiducial EoR power spectrum amplitude of P21 =
292 mK2 Mpc3, which is approximately the amplitude at
k ∼ 1 Mpc−1 at the band-center redshift z ∼ 10.4. This am-
plitude is derived from a 21cmFAST EoR simulation with
default settings (Mesinger et al. 2011). The true EoR power
spectrum is stronger at smaller k at this redshift, so this
is a conservatively low choice for comparison with the fore-
ground power spectra.

Using the fiducial EoR amplitude, we can define the
power spectrum spillover ∆k‖ as the distance in k‖ that the
foreground power extends beyond the horizon. More pre-
cisely, the spillover is defined as the largest k‖ where the
power spectrum crosses below a set threshold of P21, such
that P (k‖) < P21 for all k‖ > ∆k, less the horizon kh:

∆k‖(P21) ≡ max
(
k‖|P (k‖) = P21

)
− kh (27)

Defining the spillover relative to the horizon makes it eas-
ier to compare the results among different length baselines,
which have different horizon limits.

Fig. 3 shows power spectra for a single baseline
with several different beam models, with the thresh-
old/horizon/spillover labelled. These spectra are from a sim-
ulation with the Off-Zenith time configuration, and with the
14.6 m baselines binned from the hex layout.

4 RESULTS

4.1 Pitchfork Confirmation

The pitchfork foreground signature in Fourier space was
first found by simulations in PRISim (Thyagarajan et al.
2015a), and later confirmed in data form the Murchison
Widefield Array (MWA) experiment (Thyagarajan et al.
2015b). PRISim was the first interferometer simulator that
could handle diffuse sky models down to the horizon, and
was thus sensitive to the effects of baseline foreshortening
there. healvis is also sensitive to sources near the hori-
zon, and so we expect to see pitchfork power in our simula-
tions. The first set of simulations used a monopole sky signal
to confirm the existence of the pitchfork, since a monopole
should have minimal power away from the horizon for most
baseline lengths.

The simulated array consists of 300 East-West oriented
baselines with lengths linearly spaced from 10m to 150m.
This provides a range of k⊥ modes to study. We do see the
pitchfork for randomly distributed antennas of all orienta-
tions as well (see Appendix A). We ran two simulations –
first using the Airy beam, eq. (17), and then with the achro-
matic Gaussian beam eq. (18). Fig. 4 shows the resulting de-
lay spectra. The pitchfork appears for the Airy disk beam,
since that has a nonzero response near the horizon. The
Gaussian beam is effectively zero at the horizon, and so no
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Figure 3. The delay spectra of the GSM for a single 14m baseline
with a variety of beam types. The fiducial EoR amplitude is shown

by the horizontal line, the black vertical dashed line shows the

horizon limit, and the foreground power spillover ∆k‖ for the
Gaussian beams is indicated by the horizontal green arrow. A

vertical dashed red line marks the Nyquist limit for the 1 MHz

resolution of the CST beam. For the results with the CST beam,
we will use a higher threshold to avoid measuring spillovers past

the Nyquist limit. Such measurements would be highly-dependent

on the frequency interpolation scheme used.

pitchfork can be seen. We also observe a strong signal on the
shortest baselines. This is evidence that short baselines of an
interferometer may be made sensitive to a global signal, as
discussed in Presley et al. (2015).

The observed pitchfork appears to extend beyond the
horizon by a consistent amount for all baseline lengths, sug-
gesting that the pitchfork represents a constant minimum
level of foreground spillover for antennas with a nonzero
horizon response. Most realistic antennas used in EoR exper-
iments have some response near the horizon, since the width
of the beam varies inversely with the effective diameter of
the antenna, and most of these experiments use relatively
small antenna elements. As we will see, the pitchfork is an
important factor of foreground spillover for most of the cases
studied here.

4.2 Window Function Comparison

As discussed in section 2.2, the shape and width of the band-
pass has an effect on the spread of power beyond the horizon,
as the intrinsic power spectrum of the source is convolved in
delay with the spectral window function and the beam. By
choosing an appropriate window function to weight the fre-
quency channels, one can reduce the amplitude of power be-
yond the horizon at the expense of widening the main lobe of
the foreground signal. In this section, we explore the effects
of several window functions on power spectra derived from a
single symmetric-GSM simulation. The simulations used the
Airy beam, Off-Zenith time configuration, and 37 hex lay-
out. The window function is applied to the delay transform
for each baseline separately, and the resulting power spectra
were averaged over time and binned in k⊥ such that spec-
tra from baselines of the same length to within 10 cm are

(a)

(b)

Figure 4. Delay spectra of a monopole signal for a variety of base-
line lengths (top axis), and their corresponding k⊥ mode (bottom
axis). (a) shows the results with an Airy beam, which has strong

sidelobes and nonzero response down to the horizon. (b) is the

same for a Gaussian beam, with width set to the width of the
main lobe of the Airy beam. Black lines show the delay corre-

sponding with sources on the horizon (b/c). Note the difference

in color scales.

binned together. The results presented here are for 14.6 m
baselines.

The most basic window function is the rectangular win-
dow, sometimes called a Dirichlet window, which applies
even weighting to all samples in the bandpass. As mentioned,
in Fourier space this has the form of a sinc function, which
has a limited dynamic range in power. We include it here
for comparison, though it is not used in most 21 cm power
spectrum analysis.

Note that applying a window function, other than the
rectangular, involves down-weighting channels toward the
end of the bandpass. This reduces the effective bandwidth
Bpp, and hence increases the width of the main lobe of the
Fourier transform, which increases the basic spillover beyond
the horizon. There is thus an implicit trade-off between the
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Figure 5. Power spectra with rectangular (rect), Blackman-
Harris (bh) window functions, as well as Dolph-Chebyshev win-

dow functions with dynamic range set to 120 dB and 150 dB

(DC120 and DC150, respectively). The horizontal black line
marks a fiducial EoR amplitude (see section 4.2). The verti-

cal dashed line marks the horizon for a 14.6 m baseline. The

Blackman-Harris function alone does not provide sufficient dy-
namic range to push the leaked foreground power below the EoR

level. By contrast, applying the right Dolph-Chebyshev window

can suppress the leaked foreground power below the EoR thresh-
old.

level of suppression in the foreground sidelobes and the loss
of low-k modes to foreground spillover.

We test two window functions, in addition to the
unweighted rectangular spectral window. The first is the
Blackman-Harris window, which is defined by a sum of three
cosine functions optimized to reduce the level of sidelobes in
Fourier space (see e.g. Harris (1978)). The Blackman-Harris
window reduce has a dynamic range of about 120 dB in
power, which is generally considered sufficient for 21 cm EoR
experiments. Thyagarajan et al. (2016) applied a squared
Blackman-Harris window to achieve additional 10 orders of
magnitude in sidelobe suppression.

The second window is the Dolph-Chebyshev, which is
designed to minimize the sidelobe amplitude for a choice
of main lobe width and thus has a tunable dynamic range
(Smith date). Functionally, it is constructed from Chebyshev
polynomials in Fourier space and then inverse-transformed
to direct space. Unlike the Blackman-Harris and rectangular
windows, the sidelobes do not drop off with k, and so usually
appear as flat lines in our power spectra. We use Dolph-
Chebyshev windows set to 120 dB, 150 dB, and 180 dB
ranges, which we refer to as DC120, DC150, and DC180
respectively.

Fig. 5 shows the comparison of power spectra with the
different window functions. The rectangular window func-
tion, which has the form of a sinc function in delay space,
does not have sufficient dynamic range to keep spilled fore-
ground power below the expected EoR amplitude. The three
Dolph-Chebyshev windows demonstrate the expected trade-
off between main lobe width and sidelobe suppression, as
can be seen in the slight spread among the curves around
P (k) ∼ 109 mK2 Mpc3). The Blackman-Harris window dis-
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Figure 6. Power spectra of a single 14.6 m baseline with a Gaus-
sian beam. The color indicates the spectral index of either the

beam or the sym sky model. For solid lines, the spectral index is

applied to the beam and the sky model is flat in frequency. For
dashed lines, the spectral index is applied to the sky model and

the beam is flat-spectrum. The black line shows the result of an

achromatic beam and sky model.

plays similar behavior to the DC120 window, and continues
to drop off at higher k‖ while the Dolph-Chebyshev window
function stays flat.

For the rest of this paper, we use the DC180 window
for all delay spectrum estimation. The Dolph-Chebyshev is
the only window tested that has sufficient dynamic range
to reach the EoR amplitude without any assumed fore-
ground subtraction,8 and does so with comparable fore-
ground spillover to the Blackman-Harris used in other work
(see, e.g., Thyagarajan et al. (2013); Parsons et al. (2012a);
Vedantham et al. (2012)).

4.3 Spectral Index Comparison

The next tests explored the effects of power law spectral
structure in the primary beam to structure in the sky model
itself. As mentioned in section 3.2, diffuse power typically
has a power law spectrum. The angular width of a beam typ-
ically evolves linearly with frequency, as for the Airy disk.
Here we look to slightly steeper evolution of the beam width
and sky brightness. Note that the structure is applied to the
model an the beam in slightly different ways – the the beam
is normalized to its peak value at all frequencies, but its
width changes with frequency. The sky model’s total bright-
ness is evolving with frequency instead.

We ran simulations with the following configurations:

• Chromatic Gaussian beam with power law index α =
{−1,−2,−3}, Flat-spectrum sym model. (Solid lines in
Fig. 6).
• Achromatic Gaussian beam, sym model with spectral

index α = {−1,−2,−3}. (Dashed lines in Fig. 6)

8 the Blackman-Harris window does drop below this flat EoR
threshold at the high k‖ for some limited cases, but not enough

to be useful for our results
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These simulations were run with the 37 hex antenna lay-
out with the Off-Zenith times (see table 1). Power spectra
were averaged in time and binned in baseline length. Fig. 6
shows the power spectra of 14.6 m baselines for these dif-
ferent sky and beam models. Solid lines are for simulations
with a chromatic beam, while dashed lines are for simula-
tions with the spectral sky model. The amplitude at low-k
shifts with spectral index for a couple of reasons. When the
spectral index is applied to the sky model, the model has
less power at higher frequencies as compared with the flat-
spectrum model, so the total power drops. When the spectral
index is applied to the beam width, the beam is narrower
at higher frequencies. A narrower beam in image space cor-
responds with a wider footprint in Fourier space, and hence
integrates more power. This causes the low-k modes of the
solid curves to shift higher with decreasing (increasingly neg-
ative) spectral index.

The effects of the beam chromaticity are much more
noticeable, shifting the overall amplitude higher, than the
skymodel chromaticity. Since the diffuse foreground power
is known to largely follow a clean power law within this
range, we take this to mean that the spectrum of the sky
has a negligible effect on the foreground spillover. Increasing
beam chromaticity does also shift the spillover out to slightly
higher k‖, although not to the degree that can be seen in a
more complicated beam response as with the CST beam as
seen in Fig. 3.

4.4 Foreground Spillover

The foreground spillover is estimated by fitting a polynomial
spline to the power spectrum measurements and finding the
points where the spline crosses the threshold. The spline fit
is done in log-log space where it is most stable. The largest
k‖ of intersection, less the k‖ of the horizon, is taken as the
measured foreground spillover ∆k‖, as defined in eq. (27).

4.4.1 Time

We ran a set of simulations that covered 24 hours of LST
in steps of 5 minutes (the “transit” time set), in order to
measure how foreground power spillover on single baselines
changes with the hour angle of the galactic center (recall
that the “galactic center” also refers to the center of the sym
model). As the galactic center moves away from the zenith,
the brightest part of the sky is shifted toward a weaker part
of the primary beam, but the delay spectrum peak moves
closer to the horizon. Brightness near the horizon is further
enhanced on all baselines by the pitchfork effect, so it is
interesting to see how the power spillover vs. time changes
with different baseline lengths.

Fig. 7 shows the power spectra vs. galactic center hour
angle for a 14.6 m baseline for the symmetric GSM model
with Airy (top) and achromatic Gaussian (bottom) beams.
The vertical dashed line marks the horizon and the horizon-
tal line marks the chosen threshold Pthresh = 292 mK2 Mpc3.
There is a clear increase in total power as the galactic cen-
ter (hence, brightest part of the symmetric sky model) tran-
sits overhead. For the aGauss beam, this causes the first
sidelobe of the Blackman-Harris window to rise up through
the threshold, quickly pushing the ∆k‖ higher. For the Airy
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Figure 7. 1D power spectra for a 38.6 m baseline vs. the absolute

value of the galactic center hour angle. Each curve corresponds
with a different hour angle of the galactic center, for the symmet-

ric GSM model. The vertical dashed line marks the horizon limit,

and the horizontal line marks the fiducial EoR amplitude. The
top is for the Airy beam; the bottom is for the achromatic Gaus-

sian beam. There Airy beam shows a persistent “shoulder” near

the horizon that is due to the foreground pitchfork, while power
spectra with the gaussian beam do not. The pitchfork keeps the

spillover at the EoR threshold line very nearly constant for all

hour angles, despite the changing amplitude within the horizon.

beam, the pitchfork effect is apparent as a persistent bump
near the horizon line, and the spillover stays relatively con-
stant except for when the galactic center is overhead.

Fig. 8 shows the measured foreground spillover vs.
galactic hour angle for the symmetric GSM (8a) and the ac-
tual GSM (8b) sky models for a 14.6 m baseline. As will be
shown in the next section, the spillover is highest on short
baselines because the foreground power is strongest there.
Vertical dashed lines mark the rise and set times for the
galactic center, which in both cases is the brightest part of
the sky. The symmetric GSM model shows roughly the same
behavior as the GSM, with a few minor differences. The sym-
metric GSM is flatter and more symmetric with hour angle,
as expected. The GSM is less peaked at hour angles near
zero, probably because the full power is more spread out
across the sky than in the sym model. For the Airy beam,
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Figure 8. The foreground spillover at the threshold shown in Fig. 7, for a 14.6 m baseline (top row), plotted against the hour angle, for

the three analytic beams. Vertical dashed lines mark ±6 hours, when the galactic center (or, symmtric GSM center) is rising or setting.

The spikes near ' 0 hrs arises from the Dolph-Chebyshev sidelobe ripples rising above the threshold. Overall, the spillover remains fairly
constant with time, with the Airy disk beam showing consistently higher spillover due to the constant presence of the pitchfork. On a

longer baseline (bottom row), the overall amplitude is lower since longer baselines collect less power from diffuse emission.

which has a non-negligible response near the horizon and
thus has a consistent pitchfork, the spillover is higher. It
is clear that the pitchfork dominates suprahorizon emission
during times when the galaxy is out of the primary beam.
The two Gaussian beams show very similar behavior, with
minimal spillover at times when the galactic center is away
from the zenith.

4.4.2 Baseline Length

The last set of simulations looked at effect of baseline length
on foreground power spillover. For this set we use the Line
antenna layout, which provides 300 East-West baselines with
lengths spanning 10 to 150 m (the “line” configuration). The
150 m baseline here is the longest baseline used here for
foreground spillover measurements. We note that this is still
within the range of baseline lengths where the point source
approximation is good (see Appendix A). These simulations
used the Off-Zenith time set, and power spectra were aver-
aged over that time span.

Fig. 9 shows the results with the symmetric GSM (9a)
and full GSM (9b). In both cases, the foreground spillover is
dominated by the pitchfork for the Airy beam above about
50 m, and is pushed up by the first sidelobe of the BH win-
dow on shorter baselines. For the Gaussian beams, which
have no pitchfork, the spillover simply drops off with increas-
ing baseline length. In all cases the spillover decreases with
increasing baseline length, albeit more slowly for the Airy
beam, due to the decrease in power measured with longer
baselines, as is expected for diffuse models.

4.5 CST Beam Results

In this section we share the results of simulations with the
CST beam. Fig. 11 shows the power spectra vs galactic cen-
ter hour angle for the achromatic sym model with the CST
XX beam at two baseline lengths. The pitchfork is present
for both baseline lengths, but is clear persistent on the longer
baseline at a higher amplitude than the power at smaller k‖.
As we have seen with the analytic beams, the pitchfork is
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Figure 9. The foreground spillover at the threshold shown in Fig. 7, plotted against East-West baseline length, for the three analytic

beams. The black line marks the horizon. These simulations were done with the Off-Zenith time configuration, when the spillover is

maximized. Spillover increases steadily with decreasing baseline length. Note that a negative spillover means that foreground power is
contained within the horizon limit at the EoR amplitude.

largely independent of baseline length. Note also that for al-
most all time, the power spectrum drops below the EoR am-
plitude threshold (solid black horizontal line) at k‖ well past
the Nyquist limit. We therefore choose a higher threshold of
1011 mK2 Mpc3 (the horizontal, dashed, gray line) for mea-
suring foreground spillover with the CST beam. This avoids
measuring modes that were only reached by interpolation.
Though these results are not at the EoR amplitude, they
demonstrate the general behavior of the foreground spillover
with the CST beam.

Fig. 10 shows the spillover vs. hour angle for the CST
beam with the GSM Fig. 10a and sym Fig. 10b models.
The symmetric model more clearly demonstrates a pattern
– the spillover is generally higher for the shorter baseline,
because total power is higher on the shorter baseline. When
the galactic center is near the horizon, the baseline length
becomes less important to the spillover and the curves come
together. This is because the strongest foreground compo-
nent, near the galactic center, is near to the horizon in delay
space, so its power extends further beyond the horizon than
when it is at a smaller delay.

Fig. 12 shows the spillover vs. baseline length for the
GSM and sym models. The overall decrease with baseline
length is apparent, as in Fig. 9, but is much lower overall
than for the Airy beam.

5 SUMMARY

Smooth-spectrum foreground sources are expected to be
well-behaved in Fourier space, which leaves a clear and well-
defined window in which to seek an EoR detection. Spectral
structure of the foregrounds, chromatic effects of the base-
line and primary beam, and chosen bandpass and window
function all contribute to the breakdown of this simple pic-
ture and the spread of power into the EoR window.

We carried out a series of simulations to characterize

and measure this power spread for diffuse models in a vari-
ety of controlled cases. We used the Global Sky Model, and
a symmetrized version of it with varied spectral steepness,
in comparison to a fiducial EoR amplitude threshold. The
analytic beams, antenna layouts, and frequency channeliza-
tion and time step sizes are all chosen to resemble the design
of HERA.

The choice of a spectral window function has the
strongest effect on suppression of foreground power beyond
the horizon; windowing along the frequency axis is required
to reach the EoR level at all. Applying a window function ef-
fectively narrows the bandpass, which means that the main
lobe of foreground power is made wider. The lowest k‖ modes
are therefore lost to foreground spillover. This trade-off be-
tween foreground suppression and spillover is necessary for
a detection without substantial foreground removal.

For most of potential observing time, the most signif-
icant source of suprahorizon power appears to be the fore-
ground pitchfork, which exists for primary beams with a
response near the horizon. The pitchfork arises from the
shortening of projected baselines near the horizon. As short
baselines are more sensitive to diffuse structure, even faint
monopole power near the horizon produces a strong re-
sponse. This response can be observed for long baselines
which are normally insensitive to diffuse power.

It is worth noting that the simulations used here do not
take into account mutual coupling effects among antennas,
as discussed in Fagnoni et al. (2019). In a real array, the
response of an antenna to sources near the horizon will be
affected by the presence of the other antennas that interfere
with the propagation of light. To take an extreme case, a
bright source exactly in line with both antennas in a base-
line will only be visible to the antenna nearer to it, since
the farther antenna is in the near one’s shadow. In this case,
the correlation between the two antennas is zero. However,
it may be that the effect of baseline projection is still signif-
icant enough to produce a pitchfork when emission is near
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Figure 10. The spillover vs. hour angle for the (a) GSM and

(b) sym models, for 14.6 m (blue) and 25.3 m (orange) baselines.
Horizon lines are marked in the same colors. The strong response

of the CST beam near the horizon causes the spillover to increase

when the galactic center is near the horizon, at ± 6 hours (marked
with dashed vertical lines). The longer baseline has less power

spillover than the shorter for most hour angles, likely because

the total power it measures is less, but at the horizon the curves
approach each other. This pattern is especially clear for the sym
model.

the horizon but not in the shadow of other antennas. The
full effects of mutual coupling are too sophisticated an effect
to model with healvis at this time, and so we leave this to
future work.

The Airy disk beam and CST simulated power beam
both have a strong response near the horizon, and so have a
constant foreground spillover due to this pitchfork for most
times and baseline lengths. Avoiding LSTs when the galactic
center is near the beam center, and choosing an appropri-
ate constant buffer beyond the foreground wedge, appears
to be sufficient to avoid diffuse foreground power, absent
other systematic effects. It is difficult to draw a conclusion
about foreground suppression at the level of the EoR for
the CST beam, since those power spectra do not reach the

EoR amplitude within the Nyquist limit of the CST simu-
lations. What is apparent is that some degree of foreground
subtraction is necessary for an avoidance strategy to work.
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A POINT SOURCE APPROXIMATION

The simulator used in this paper assumes that variations
in the primary beam, brightness, and interferometric fringe
are negligible on the scale of a single pixel, such that the
contribution of each pixel can be treated as that of a point
source at the pixel center. This appendix derives a rough
bound on the error due to this point source approximation
(PSA) for the sky and beam models used in this paper. A
forthcoming paper will explore the validity of this simulator
against analytic solutions for diffuse sky models, and will
delve into more detail on the limitations of the PSA.

We test the validity of our simulator here by performing
a set of monopole simulations at different resolutions with an
antenna layout featuring a broad range of baseline lengths.
Our test array consists of 80 randomly-distributed antennas,
forming baselines with lengths spanning 2 to 608 m, with
the Airy beam and a bandpass of 100 to 120 MHz at 97 kHz
channel width. The monopole sky makes for a useful test
because it should minimize the power within the foreground
wedge, which makes any erroneous simulated power stand
out.

Fig. 13 shows the cylindrically-binned power spectra for
these three simulations, for maps with Nside 128, 256, and
512 from top to bottom. Note that the longest baseline used
in this paper, for the “spillover vs. baseline length” results,
was only 50λ. The pitchfork feature is clearly visible in each
plot around the horizon (marked with the dashed line). At
Nside 128, there is excess power on long baselines (equiva-
lently, at large k⊥) which disappears at Nside 256. There is
marginal improvement from raising the resolution again to
Nside 512.

The pitchfork is largely independent of map resolution,
which is further evidence that it is caused by the projection
of baselines near the horizon. The error in the point source
approximation is worse for longer baselines, but the power in
the pitchfork comes from the shortening of baselines near the
horizon. We note also the presence of faint vertical striping,
and nonzero power within the wedge for all resolutions. The
exact visibility for a monopole sky signal with an Airy beam
is given by the convolution of a circular disk (of diameter
14 m, in this case) with a sinc function of the baseline length.
We suspect that the sidelobes of this sinc function are the
cause of the stripes, as well as the broad spread of power at
small k⊥.

MNRAS 000, 1–16 (2019)



Quantifying EoR delay spectrum contamination 15

10 2 10 1 100

k  [Mpc 1]

102

105

108

1011

1014

1017

1020

P(
k)

 [m
K2  M

pc
3 ]

14.6 m

0

2

4

6

8

10

12

|H
ou

r A
ng

le
| [

ho
ur

s]
10 2 10 1 100

k  [Mpc 1]

101

104

107

1010

1013

1016

1019

P(
k)

 [m
K2  M

pc
3 ]

38.6 m

0

2

4

6

8

10

12

|H
ou

r A
ng

le
| [

ho
ur

s]

Figure 11. Power spectra vs. galactic center hour angle for the achromatic sym model and the CST XX beam. The vertical dashed lines
in each plot are the horizon and Nyquist limit, while the horizontal lines show the EoR amplitude threshold used before (solid, black)

and the new threshold for section 4.5.

20 40 60 80 100 120 140
Baseline Length [m]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

k
k h

 [M
pc

1 ]

Nyquist Limit
GSM
sym

Figure 12. The spillover vs baseline length for the CST beam,
for GSM (blue) and sym (orange) models. The black line indicates

the Nyquist frequency cutoff of the UVBeam model. On especially

long baselines, the spillover exceeds this limit, but continues in the
general trend seen before. The jumps near small baseline length

are due to the increase spectrum amplitude shifting some of the
features at higher k‖ above the threshold.

REFERENCES

Ali Z. S., et al., 2015, The Astrophysical Journal, 809, 61

Barry N., et al., 2019, arXiv:1909.00561 [astro-ph]

Beardsley A. P., et al., 2016, arXiv:1608.06281 [astro-ph]

Bowman J. D., et al., 2013, Publications of the Astronomical
Society of Australia, 30

Carroll P. A., et al., 2016, Monthly Notices of the Royal Astro-

nomical Society, 461, 4151

Chapman E., et al., 2015, arXiv:1501.04429 [astro-ph]

Chapman E., Zaroubi S., Abdalla F. B., Dulwich F., JeliÄĞ V.,
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Figure 13. Power spectra for a monopole signal on HEALPix

maps with Nside 128, 256, and 512 (from top to bottom). The
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mode, and the dashed line marks the horizon. Excess power within

the foreground wedge is erroneous for a monopole signal, and

is clearly visibible at larger k⊥ for the Nside 128 simulations.
Clearly errors are reduced by switching from Nside 128 to 256, but
further resolution improvement does not yield much noticeable

improvement. Note that the longest baseline used for any results
in this paper is at 50λ, for the spillover vs. baseline length tests.

Further, the foreground pitchfork is not strongly influenced by
the resolution of the map, as expected since it is a result of the

projected baseline lengths being small near the horizon.
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