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ABSTRACT

We discuss absolute calibration strategies for Phase I of the Hydrogen Epoch of Reionization Array (HERA), which
aims to measure the cosmological 21 cm signal from the Epoch of Reionization (EoR). HERA is a drift-scan array
with a 10° wide field of view, meaning bright, well-characterized point source transits are scarce. This, combined
with HERA’s redundant sampling of the uv plane and the modest angular resolution of the Phase I instrument, make
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traditional sky-based and self-calibration techniques difficult to implement with high dynamic range. Nonetheless, in
this work we demonstrate calibration for HERA using point source catalogues and electromagnetic simulations of its
primary beam. We show that unmodeled diffuse flux and instrumental contaminants can corrupt the gain solutions,
and present a gain smoothing approach for mitigating their impact on the 21 cm power spectrum. We also demonstrate
a hybrid sky and redundant calibration scheme and compare it to pure sky-based calibration, showing only a marginal
improvement to the gain solutions at intermediate delay scales. Our work suggests that the HERA Phase I system
can be well-calibrated for a foreground-avoidance power spectrum estimator by applying direction-independent gains
with a small set of degrees of freedom across the frequency and time axes.
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1. INTRODUCTION

The Hydrogen Epoch of Reionization Array' (HERA;
DeBoer et al. 2017) is a targeted, radio interferomet-
ric experiment that aims to measure the cosmological
21 cm spin-flip emission from primordial hydrogen in the
intergalactic medium (IGM) at Cosmic Dawn. One of
the last frontiers of cosmology and high redshift astro-
physics, the Cosmic Dawn marks the era when the first
stars, black holes, and galaxies formed and interacted
with the surrounding IGM. Eventually, these sources
heated and re-ionized the majority of the neutral hy-
drogen in the IGM, in an event known as the Epoch
of Reionization (EoR). A number of questions remain
about when and how the Cosmic Dawn and EoR oc-
curred, which are crucial to our broader understanding
of galaxy and large-scale structure formation. For re-
views, see Morales & Wyithe (2010); Mesinger (2016);
Liu & Shaw (2019).

One of the only direct probes of the IGM through-
out the entirety of Cosmic Dawn is neutral hydrogen’s
21 cm transition, which at redshifts of z ~ 10 appears
in the low-frequency radio band around 150 MHz. Over
the past decade, first-generation 21 cm EoR experiments
like the Donald C. Backer Precision Array for Probing
the Epoch of Reionization (PAPER; Parsons et al. 2014;
Jacobs et al. 2015; Cheng et al. 2018; Kolopanis et al.
2019), the Murchison Widefield Array (MWA; Tingay
et al. 2013; Dillon et al. 2014; Ewall-Wice et al. 2016;
Beardsley et al. 2016; Barry et al. 2019b; Li et al. 2019),
the Low Frequency Array (LOFAR; van Haarlem et al.
2013; Patil et al. 2017; Gehlot et al. 2019), the Giant Me-
tre Wave Radio Telescope (GMRT; Paciga et al. 2013),
and the Long Wavelength Array (LWA; Eastwood et al.
2019) have set increasing stringent limits on the Cos-
mic Dawn 21 cm power spectrum. Meanwhile, global
signal experiments have placed constraints on the 21 cm
monopole (Bernardi et al. 2016; Singh et al. 2017), with
a reported first detection of the signal at Cosmic Dawn
from the Experiment to Detect the Global EoR Signa-
ture (EDGES; Bowman et al. 2018). 21 cm experiments
face the challenge of separating-out the weak cosmolog-
ical signal from galactic and extra-galactic foreground
emission that is many orders of magnitude brighter.
However, the 21 cm signal is expected to be highly spec-
trally variant due to inhomogeneities in the density, ion-
ization state and temperature of the IGM along the line-
of-sight, while non-thermal foreground emission is ex-
pected to be spectrally smooth. This provides a means
for separating foreground emission from the desired cos-

! http://reionization.org/

mological signal. However, even small instrumental ef-
fects can distort these foregrounds and contaminate the
region in Fourier space occupied nominally only by the
EoR signal and thermal noise, known as the EoR win-
dow (Morales et al. 2012). High dynamic range instru-
mental gain calibration is therefore critical to 21 cm sci-
ence.
Per-antenna gain calibration is the task of solving for
a single complex number per antenna and feed polar-
ization (as a function of both time and frequency) that
best satisfies the antenna-based calibration equation for
a visibility V;; defined between antenna 7 and antenna
Js
V;r]peasured(y’ t) = W}rue(l’a t)gi(y’ t)g; (V’ t)’ (1>

where Vi?‘easured is the raw data, V" is the true vis-
ibility that would be measured by an uncorrupted in-
strument, and g; and g; are the instrumental gains for
antenna ¢ and j, respectively (Hamaker et al. 1996).
Recent work has shown how incomplete models in sky-
based calibration (Barry et al. 2016; Ewall-Wice et al.
2017; Byrne et al. 2019) and non-redundancies in re-
dundant calibration (Joseph et al. 2018; Orosz et al.
2019) can lead to gain calibration errors that contami-
nate the EoR window. Foreground and instrument sim-
ulations for HERA indicate that the fiducial EoR sig-
nal at k ~ 0.2 h Mpc™! is expected to be roughly 10°
times weaker than the peak foreground amplitude at
k ~ 0 h Mpc™! in the visibility (Thyagarajan et al.
2016). Because gain calibration is multiplicative in fre-
quency it can equivalently be thought of as a convolu-
tion in delay space, the Fourier dual of frequency. This
means that each antenna’s gain kernel, or the gain’s
footprint in delay space, must be nominally suppressed
by at least five orders of magnitude at delay scales of
7 2 400 ns (400 ns equals k| = 0.2 h Mpc™" at z = 10
or v ~ 130 MHz for the 21 ¢m line). In this case we have
chosen to represent the gains as direction-independent,
which is the component of gains we are concerned with
in this work, although much work has been devoted
to direction-dependent gain calibration (e.g. Bhatnagar
et al. 2008; Intema 2014).

HERA was deployed in two stages, Phase I and Phase
II. Phase I observed from 2017 - 2018 while only a sec-
tion of the array was built and used front-end signal
chains from the PAPER experiment. Phase II is cur-
rently under construction towards a build-out of 350 an-
tennas and will be equipped with completely new front-
end hardware (HERA Collaboration in prep). The work
in this paper uses only Phase I observations (Section 2).
HERA is a drift-scan array, meaning it is built into the
ground and cannot physically point its antennas on the
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sky. With its 10° degree field of view (FoV), the num-
ber of bright and well-characterized point sources that
transit on any given night are limited. Furthermore,
the highly redundant uv sampling and relatively short
baselines of the HERA Phase I configuration make im-
plementing self-calibration to high dynamic ranges dif-
ficult. Nonetheless, we outline a strategy for sky-based
calibration of HERA Phase I using point sources from
the MWA’s GLEAM catalogue (Hurley-Walker et al.
2017) and electromagnetic simulations of HERA’s pri-
mary beam (Fagnoni et al. 2019). We show this does
a fairly good job at bringing the data in-line with the
adopted model, and use it to characterize the frequency
and time stability of the gains. Importantly, we also
show that performing antenna-based calibration in the
presence of non-antenna-based systematics can contam-
inate systematic-free visibilities. We discuss the impact
this has on the data and the 21 cm power spectrum, and
demonstrate gain smoothing procedures to mitigate this
and other gain errors introduced in the process of cali-
bration.

Redundant calibration has been hailed as a powerful
alternative calibration strategy for 21 cm experiments
that sidesteps some of the requirements of sky-based
calibration (Liu et al. 2010; Zheng et al. 2014). How-
ever, redundant calibration still needs a sky model to
pin down certain degenerate parameters it cannot solve
for (Dillon et al. 2018; Li et al. 2018; Joseph et al.
2018; Byrne et al. 2019). In this work, we explore hy-
brid redundant-absolute calibration strategies using the
hera_cal package.” Applying them to HERA Phase I,
we show that redundant calibration seems to mitigate
some errors associated with sky-based calibration, how-
ever, it also has its own set of uncertainties due to in-
herent non-redundancies that need to be mitigated. For
low delay modes in the gains, we find that redundant
and sky calibration yield very similar results.

In this work, we use the term absolute calibration to
refer to the components of the full antenna-based gains
that are constant across the array (note these are still
frequency dependent). One example of this is the aver-
age antenna gain amplitude, which sets the overall flux
scale of the data. Indeed, these are exactly the terms
that are degenerate in redundant calibration. In sky-
based calibration these terms are automatically solved
for, which can therefore be thought of as a form of ab-
solute calibration.

The structure of this paper is as follows: in §2 we
detail the observations used in this analysis. In §3 we

2 https://github.com/HERA-Team/hera_cal

Figure 1. A single HERA antenna in the field with a cross-
dipole feed surrounded by a cage hoisted to the antenna’s
focal point. Image courtesy of Kathryn Rosie.

describe our methodology for sky-based calibration of
HERA. In §4 we characterize the time and frequency
stability of the gain solutions. In §5 we synthesize re-
dundant and absolute calibration and compare them to
traditional sky-based calibration. In §6 we calibrate the
data and investigate foreground contamination in the
power spectrum, and in §7 we summarize our results.

2. OBSERVATIONS

The data used in this work were taken with the HERA
Phase I instrument (DeBoer et al. 2017) in a 56-element
configuration on Dec. 10, 2017 (Julian Date 2458098).
HERA is located in the Karoo Desert, South Africa,
at the South African Karoo Radio Astronomy Reserve.
Data were taken in drift-scan mode for roughly 12 hours
per night starting at 5pm South African Standard Time,
of which roughly 9 hours are deemed good quality data
when the Sun is below the horizon.

The Phase I instrument repurposed many of the older
PAPER experiment components, including its signal
chains, correlator, feeds and front-end modules (FEM),
and attached them to newly designed HERA antennas.
The HERA antenna (Figure 1) is a 14-meter dish with an
optimized version of the dual linear polarization PAPER,
feed and FEM hoisted 4.9 meters to its focal height. The
optimized feed and dish were designed to minimize re-
flections within the antenna, and thus limit excess chro-
maticity induced by the signal chain (Neben et al. 2016;
Thyagarajan et al. 2016; Ewall-Wice et al. 2016; Pa-
tra et al. 2018). From the FEM, which houses an initial
stage of amplification, the analog chain consists of a 150-
meter coaxial cable connected to a node unit in the field
where the signals are fed through a post amplification
stage (PAM) and a filtering stage. From there, the sig-
nals travel through another 20-meter coaxial cable to a
container where they are digitized, Fourier transformed
and then cross-multiplied with all other antenna and lin-
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Table 1. HERA Observation Parameters

Parameter Value
Array Configuration Phase I
Number of Antennas 56

Array Coordinates -30.7° S, 21.4°E

Observing Mode drift-scan

Correlator Integration 10.7 seconds

Frequency Range 100 - 200 MHz
Channel Width 97.65 kHz
Dish Diameter 14 meter

Feed Type dual polarization X & Y dipoles

Visibility Polarizations XX, XY, YX, YY
Shortest / Longest Baseline 14.6 / 139.3 meters

Observation Dates December 10, 2017

NoTE—For the 2017-2018 observation, the HERA correlator used
the convention that the X dipole points East-West while the Y
dipole points North-South, which is not the standard Hamaker &
Bregman (1996) definition that assumes the opposite.

ear polarization streams. Additional observational pa-
rameters are detailed in Table 1.

Not all of the PAPER signal chains could be salvaged
for the HERA Phase I instrument. As a temporary stop-
gap, additional FEMs, cables and PAMs were manufac-
tured for Phase I data collection. We refer to the new
set of signal chains as “Type 1”7 and the old set of sig-
nal chains as “Type 2,” which are colored blue and red
in Figure 2, respectively. The transmission properties
of the signal chains are studied in more detail in Kern
et al. (2019b). For more details on the HERA Phase I
signal chain and electronics, we refer the reader to Par-
sons et al. (2010); DeBoer et al. (2017); Fagnoni et al.
(2019).

Before calibration, the data are pre-processed with
part of the HERA analysis pipeline. Specifically, faulty
antennas are identified and flagged at a quality met-
rics stage (crosses in Figure 2) and radio frequency
interference (RFI) is excised from the data using me-
dian filtering and a watershed algorithm (Kerrigan et al.
2019). The data are written to disk in the Miriad file
format post-correlation, which are then converted to
UVFITS using the pyuvdata software (Hazelton et al.
2017) and imported to CASA Measurement Sets via
CASA’s importuvfits task.

3. SKY-BASED CALIBRATION

Standard sky-based calibration is typically done by
choosing a bright, well-characterized point source for
the model visibilities. This is made difficult for HERA
because it is a drift-scan array, meaning it cannot be
pointed to an arbitrary location on the sky. Further-
more, the larger collecting area provided by a dish, as
opposed to a lone dipole, means HERA’s primary beam
response is more compact on the sky compared to other
experiments like PAPER or the MWA: at 150 MHz,
HERA’s primary beam FWHM is roughly 10°, com-
pared to roughly 45° for the PAPER experiment. This
means that the number of bright, well-characterized ra-
dio sources that transit our field of view is low. In fact,
not a single point source within 5° of HERA’s declina-
tion exceeds 20 Jy in flux density in the cold part of the
radio sky (far from the galactic plane). Implementing
self-calibration to high dynamic range is also difficult
for HERA given its highly redundant sampling of the
uv plane, making HERA’s narrow-band grating lobes
very severe. This is compounded by the poor angular
resolution of the Phase I instrument, making it quickly
confusion noise limited (Figure 2). Redundant calibra-
tion somewhat skirts the problem of an inadequate sky
model, and indeed exploiting the power of redundant
calibration was a motivating factor behind HERA’s re-
dundant design (Dillon & Parsons 2016). However, re-
dundant calibration operates only within a specific sub-
space of the full antenna-based calibration equations,
meaning a model of the sky is still fundamentally needed
to fill in the few remaining degenerate modes (Liu et al.
2010; Zheng et al. 2014; Dillon et al. 2018; Li et al. 2018;
Byrne et al. 2019; Dillon et al. in prep.). We discuss this
in more detail for HERA in Section 5.

For power spectrum estimators that do not attempt
to subtract the dominant foreground emission in the
data (at the expense of losing low k& modes), the strin-
gent requirement of high dynamic range source model-
ing is relaxed because we are not interested in recov-
ering modes inherently occupied by foreground emis-
sion. Hybrid techniques also exist, which try to reap
the benefits of both foreground removal and avoidance
(Kerrigan et al. 2018). For foreground avoidance estima-
tors, a path towards achieving deep, noise-limited power
spectrum integrations at intermediate spatial modes of
k> 0.2 h Mpc~! with a calibration derived from the sky
may be possible even with the challenges faced by the
HERA Phase I instrument. In this section we describe
a sky-based calibration strategy for HERA using cus-
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Figure 2. Left: The HERA Phase I array layout with 56 connected antennas and 50 operational antennas.
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determined to be problematic are marked with crosses. Right: The corresponding wv sampling of the array over a 10-minute
time window and a frequency range of 100 — 200 MHz, highlighting HERA’s highly redundant uv sampling. The color gradient
represents independent uv samples throughout the total bandwidth.

tom pipelines for calibration and imaging * built around
the Common Astronomy Software Applications (CASA;
McMullin et al. 2007) package. We start by discussing
the construction of our flux density model, and then de-
scribe our calibration methodology and its validation via
imaging and source extraction.

3.1. Building a Sky Model

Our ideal model for sky-based calibration would in-
volve a single, bright point source located at the point-
ing center of the field-of-view (FoV). Because HERA is
a drift-scan array, this means our ideal calibrator would
be located at § ~ —30.7° and would transit zenith at
some point in the night. Ideally this calibrator would
be so bright that other off-axis point sources or diffuse
emission would contribute a vastly subdominant com-
ponent of the measured visibilities. Unfortunately this
is not the case for HERA, so we are forced to make
compromises. Figure 3 is a map of radio foregrounds at
150 MHz from the Global Sky Model (de Oliveira-Costa
et al. 2008) and shows the HERA stripe (white-dashed),
which denotes the track of the FWHM of HERA’s pri-
mary beam (10° at 150 MHz). We see that the HERA
stripe covers a fairly small part of the sky, demonstrat-
ing how limited we are in the amount of sky available
for identifying bright calibrators.

To select the best calibration field given our limita-
tions, we can identify some key criteria that a good field

3 https://github.com/HERA-Team/casa_imaging

should satisfy. The first criterion is that the field should
have most of its radio emission contained in the main-
lobe of the primary beam. Off-axis sources located in the
far side-lobes of the primary beam are troublesome be-
cause primary beam side-lobes are hard to model accu-
rately. One workaround is to peel these sources from the
visibilities before calibration (e.g. Hurley-Walker et al.
2017; Eastwood et al. 2019) but that requires one to
image them at a fine frequency resolution to capture
primary beam chromaticity and also with high dynamic
range, which as stated is challenging for HERA Phase
I. Additionally, we want our direction-independent cali-
bration to be representative of the instrument response
at zenith, because that is where most of the measured
EoR signal comes from. Said another way, we do not
want our direction-independent calibration to soak up
structure from direction-dependent effects introduced by
off-axis sources. Omne example of this is diffuse emis-
sion coming from the plane of the galaxy, which extends
across the entire FoV when it transits.

The second criterion for a good calibration field is that
it should have sources that are well characterized at the
observing frequencies. Furthermore, it should have a rel-
atively bright source very close to the FoV pointing cen-
ter so that we can confirm via imaging that our calibra-
tion at zenith yields a good match to the input model.
Such a source can also be useful for empirically char-
acterizing the primary beam response with drift-scan
source tracks (Pober et al. 2012; Eastwood et al. 2018;
Nunhokee et al. 2019).
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Figure 3. The radio sky at 150 MHz from the GSM (de Oliveira-Costa et al. 2008), showing the bright galactic and extra-

galactic foregrounds that stand in the way of cosmological 21 cm experiments.

The HERA stripe is shown in dashed lines

centered at HERA’s declination of -30.7° with a width of 10°, which is the FWHM of the primary beam at 150 MHz. The
three fields identified as ideal calibration fields are shown in green circles, and some bright extended sources in the vicinity are

marked as stars.

Recently, the MWA constructed the GLEAM point
source catalogue (Hurley-Walker et al. 2017) from a
deep, low-frequency survey spanning the Southern
Hemisphere, overlapping with the HERA stripe. We
searched the GLEAM catalogue for all point sources
within 2.5° degrees of 6 = —30.7° with a flux density
above 15 Jy at 150 MHz, located in the cold part of the
radio sky (LST < 6 hours). We find three such sources
in the GLEAM catalog, J0024-2929 at 0 hours LST,
J0200-3053 at 2 hours LST and J0455-3006 at 5 hours
LST. Their positions, flux densities, and spectral in-
dices are reported in Table 2. Jacobs (2016) performed
a similar exercise with the TGSS ADR catalog (Intema
et al. 2017). They also find J0200-3053 as a possible
calibrator, but do not identify the other two sources we
quote from the GLEAM catalog. For the shared source,
the quoted values between the GLEAM and TGSS ADR
catalogs agree to within 15%, which is roughly in-line
with the overall accuracy of the survey flux scales. The
green circles in Figure 3 are centered on each of these
three calibration fields, and have diameter equal to the
10° FWHM of the HERA primary beam at 150 MHz.
Stars mark the location of the nearby bright, extended
sources like Pictor A and Fornax A.

Table 2. HERA Calibrator Candidates from GLEAM

Name RA (J2000) Dec (J2000) Speak  Sint a

J0024-2929 6.126 -29.48 16.45 16.10 -0.867
J0200-3053 30.05 -30.89 19.50 17.95 -0.863
J0455-3006 73.81 -30.11 16.34 17.11 -0.781

NoTE—AIll GLEAM (Hurley-Walker et al. 2017) sources above 15 Jy,
with LST < 6 hours and —33.2 < § < —28.2. Equatorial coordinates
are in degrees, flux densities are in Jy at 151 MHz and « is the
spectral index anchored at 151 MHz.

Even though a ~20 Jy primary calibrator source ex-
ists at the pointing center of each field, they themselves
make up only a fraction of the total flux density mea-
sured by the instrument at those LSTs. For short base-
lines the dominant sky component is diffuse galactic
emission, while longer baselines are dominated by point
sources spread across the FoV. Although models of the
diffuse galactic emission exist (de Oliveira-Costa et al.
2008; Zheng et al. 2017) they are only accurate at the
~15% and furthermore extend across the entire FoV,
filling the hard-to-model sidelobes. At the moment, we
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Figure 4. Construction of the GLEAM-02H field sky model for calibration at 150 MHz. Each frequency channel in the model
is constructed independently in the same manner. Left: All GLEAM point sources in Stokes I polarization above 0.1 Jy within
20° of the pointing center. In this figure, the point sources have been convolved with a narrow 2D Gaussian merely for visual
clarity. Center: The peak-normalized primary beam response for the XX instrumental linear polarization at 150 MHz (Fagnoni
et al. 2019). Right: The Stokes I model multiplied by the XX primary beam response yields a perceived flux density model

that is then converted into visibilities for calibration.

only use point sources in our flux density model and
cut short baselines (< 40 meters) that have significant
amounts of diffuse foreground emission. Our starting
model for each field is made up of all GLEAM point
sources down to 0.1 Jy in flux density extending 20° in
radius from the pointing center, which typically results
in ~10,000 sources in the flux density model. We take
the GLEAM-reported flux density of each point source
at 151 MHz and their spectral index and insert them
into a CASA component list. All sources are assumed
to be unpolarized and their fluxes are inserted purely
as Stokes 1. For GLEAM sources without a spectral in-
dex, we take the reported flux density of the source at
122, 130, 143, 151, 158, 166, and 174 MHz and fit our
own spectral index. After constructing a component list
with all of the relevant GLEAM sources we make a 1024-
channel spectral cube image of the component list with
the CASA Image.modify task, matching the channeliza-
tion of HERA data, and export it to FITS format. The
image has a pixel resolution of 300 arcseconds, which is
6 times smaller than the synthesized beam FWHM of
~0.5 degrees.

Note that the GLEAM catalogue does not include
bright, extended sources like Fornax A and Pictor A.
As shown in Figure 3, the calibration fields are chosen
such that these sources are heavily attenuated by the
primary beam, but even still these sources can be seen
at the level of a few Jansky for the 02-hour and 05-
hour fields, for example. Fornax A and Pictor A can be
included in the component list model for the GLEAM-
02H and GLEAM-05H fields, respectively, by adopting

point source models with spectral indices informed by
recent low-frequency studies (Jacobs et al. 2013; McKin-
ley et al. 2015). Although these sources have a non-zero
angular extent to them, for HERA Phase I angular res-
olutions a point source model is a fair approximation.
Next we incorporate the effects of the direction and
frequency-dependent antenna primary beam response to
create a perceived flux density model. We use an electro-
magnetic simulation of the HERA primary beam from
Fagnoni et al. (2019), which includes effects from the
dish and feed. That work also explored the effects of mu-
tual coupling on the primary beam response given an ele-
ment embedded in the array, finding second-order effects
on the beam response near the horizon at the level of
1072 in power. Empirical studies by Kern et al. (2019b)
find similar levels of mutual coupling in the data, and
present post-calibration methods for mitigating their ef-
fects. In this work we only use the Fagnoni et al. (2019)
beam model of the antenna and feed, and defer using
the embedded element pattern in calibration for future
work. Each linear dipole in the feed, X and Y, is as-
signed its own beam model, where one is simply a 90°
rotation of the other. The beams are peak-normalized
at boresight independently at each frequency, and we
then multiply the beam response at each pixel on the
sky separately for the X and Y dipoles. This results
in two spectral cubes, one for both the XX and YY
instrumental visibility polarizations, which constitutes
our perceived model. In this work we do not construct
models for the cross-polarized XY and YX visibilities as
we will not perform polarization calibration, although
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this can be done with polarized beam models (Martinot
et al. 2018). Figure 4 demonstrates this for the GLEAM
02H field in XX instrumental polarization, showing the
initial sources (left), the XX primary beam response (or
the squared X-dipole response) at 150 MHz (center), and
the product of the two (right). Lastly, the model cubes
are transformed from the image to the uv domain via
CASA’s £t task and are inserted into the model column
of the Measurement Sets for calibration.

3.2. Calibration

Next we will describe our approach for deriving com-
plex, direction-independent antenna gains with CASA.
For simplicity, we will focus our discussion specifically
to the GLEAM-02H field, but calibration on any other
field would follow the same procedures outlined below.
As noted, the data are first processed for faulty anten-
nas and RFI flagging by the HERA analysis pipeline.
We then take five minutes of drift-scan data centered
at the transit of the primary calibrator, apply a fringe-
stop phasing to the transit LST and then time-average
the data. Averaging five minutes of data allows us to
increase the signal-to-noise ratio (SNR) of the derived
gains and is still a fairly short time interval compared to
the FWHM primary beam crossing time (at 150 MHz)
of ~46 minutes, at which point sky source decorrelation
will begin to be a problem. Due to the inherent stability
of the drift-scan observing mode, we do not expect the
gains to vary substantially over such short time scales
(although see Section 4.2 for higher-order effects).

Before proceeding with calibration, we enact a min-
imum baseline cut such that all baselines shorter than
40 meters (~ 20)\) are excluded, leaving 65% of the vis-
ibilities for calibration. HERA’s shortest baselines are
most sensitive to the diffuse galactic emission that is not
included in our point source model. After experiment-
ing with various baseline cuts we find a 40-meter cut to
be a good compromise between keeping as much data as
possible for maximal gain SNR and eliminating diffuse
foreground flux in the data that is not included in our
model.

Our process for deriving antenna gains uses a series
of standard routines in CASA. Before each calibration
step, we apply all previous calibration steps to the data
on-the-fly. The final calibration is then simply the prod-
uct of all steps in our calibration chain. We start by per-
forming delay calibration using the gaincal task, which
is done to calibrate out the cable delay of each antenna.
Next we perform mean-phase and mean-amplitude cali-
bration (which consist of two numbers for each antenna-
polarization across the entire bandwidth) also using the
gaincal task. This removes any residual phase offset

after delay calibration and sets the overall flux scale of
the data. Up to now all calibration steps are smooth
across frequency and therefore do not contain significant
spectral structure. Finally, we derive complex antenna
bandpasses using the bandpass task, which solves each
frequency channel independently from all others. This
last step has the possibility of introducing an arbitrary
amount of spectral structure into the gain solutions and
therefore deserves closer attention, which we revisit in
Section 4.

In this work we do not make any attempt to correct
for effects due to the ionosphere. This is less of a con-
cern given the higher frequency range of 100 — 200 MHz,
as well as the limited angular resolution of the array
and the fact that observations are only taken at night
when the sun is below the horizon leading to calmer
ionospheric conditions. We also do not attempt to cali-
brate the relative phase between dipole polarizations in
this work, which is difficult due to the dearth of bright
polarized sky sources (Moore et al. 2017; Lenc et al.
2017), although this can still be partially constrained
if we assert that the Stokes V visibilities be consistent
with thermal noise (Kohn et al. 2016). This is less of a
concern because in this work we are mostly interested in
the parallel-hand (i.e. XX and YY) dipole and Stokes I
data products, which are not as sensitive to this term as
the Stokes U & V data products. While previous work
has shown that ionospheric leakage of point source fore-
grounds can in principle be significant (Nunhokee et al.
2017), ionospheric-induced leakage terms have also been
shown to average down night-to-night (Martinot et al.
2018). As we will show in Section 3.3, the amount of in-
trinsic polarization leakage observed in the data is quite
small, even without performing any kind of polarization
calibration. Future HERA observations that i) extend
below 100 MHz or ii) are interested in polarized data
products will need to revisit these topics. For an in-
vestigation into direction-dependent effects and polar-
ization leakage from the HERA-19 commissioning array
see Kohn et al. (2018).

3.3. Imaging

To test the fidelity of the calibration, we make multi-
frequency synthesis (MFS) images of the calibrated
data, the calibration model and their residual visibil-
ity as a visual assessment of their agreement. The
MFS images use five minutes of data and a 60 MHz
bandwidth spanning 120 — 180 MHz. All images are
made from only the baselines involved in the calibra-
tion (|b] > 40 m), employ robust weighting with robust
= -1 and adopt the Hogbom deconvolution algorithm
(Hogbom 1974) using the tclean task. All images are
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Figure 5. Multi-frequency synthesis image of the GLEAM-02H field in XX polarization spanning 120 — 180 MHz of the
calibrated visibilities (left), model visibilities (center) and the residual visibilities (right). Each image is CLEANed with the
same parameters down to 0.5 Jy, with the restoring beam shown in the lower left. The model and calibrated data show good
agreement in the main lobe of the primary beam. At larger zenith angles the residual image shows evidence for mis-calibration,

likely due to primary beam errors.

CLEANed independently down to a threshold of 0.5 Jy
in the polarization they are imaged in. CLEAN masks
are used around the brightest sources initially and then
the CLEAN mask is opened up to the entire field. We
produce images in instrumental XX and Y'Y polarization
and also pseudo-Stokes I, Q, U & V polarization.

The HERA array is not perfectly co-planar, which
will introduce artifacts into wide-field images made with
CASA. This can be mitigated with W-projection (Corn-
well et al. 2008), however, given the field of view and
modest angular resolution of the Phase I array, we do
not expect non-co-planar effects to generate an appre-
ciable amount of error. Therefore we do not perform
W-projection in the process of imaging, which also re-
duces its overall computational cost.

5 shows the GLEAM-02H field in XX polar-
ization and images of its calibrated data (left), model
(center) and their residual visibility (right). The size of
the synthesized beam is shown in the lower left. We see
good agreement between the data and model down to
a few percent. The residual image appears noise-like in
the main lobe, but further away from the pointing cen-
ter we can begin to correlate point sources in the data
with point sources in the residual. This is a result of
an improper perceived flux density model (either with
the inherent source fluxes or, more likely, the adopted
primary beam response). This will introduce spectrally-
dependent errors into the gain solutions at some level
(Barry et al. 2016; Ewall-Wice et al. 2017) which we
explore in the following section. This can be partially

Figure

mitigated by self-calibration or redundant calibration,
although redundant calibration still suffers from this ef-
fect to some degree (Byrne et al. 2019).

We also make images of the pseudo-Stokes visibili-
ties as a diagnostic tool. The pseudo-Stokes visibilities
(Hamaker et al. 1996) are a linear sum of the linear po-
larization visibilities, defined as

Vi 100 1 Vxx
Vo 1100 -1 Vxy
=35 (2)
Vir 0110 Vax
Vi 0 —ii 0 Vyy

Note these are not true Stokes parameters, which are
only properly defined in the image plane, but can be
thought of as approximations to the true Stokes visi-
bility one would form by Fourier transforming the true
Stokes parameter from the image plane to the uv plane.
In the limit that the instrumental (direction-dependent)
Mueller matrix is the identity matrix, then the pseudo-
Stokes visibility defined in Equation 2 is identical to the
true Stokes visibility. In practice, we do not expect this
to be the case except for possibly near the pointing cen-
ter in the image where, after having performed direction-
independent calibration, we hope direction-dependent
terms are minimal.

We do not expect appreciable levels of polarized
sources in the GLEAM-02H field. For a recent study by
the MWA see Lenc et al. (2017). Given an ideal tele-
scope with no instrumental leakage, we would therefore



ABSOLUTE CALIBRATION STRATEGIES FOR HERA 11
Jy/beam Jy/beam Jy/beam Jy/beam
0 2 4 6 & 10 -02 -01 00 01 02 -02 -01 00 01 02 -02 -01 00 01 02
— [ ooeesssssse ] ooneessssssees | oos— |
I Q Us \Y%
—25° - L - .
o ‘a -_-
9 - s
=1 - =
R -t R : R -
g I - e ~
A . . <
_350_ = 3 . - lr
. - !
(o] X -
_4()0— 1 1 1 1 1 Eon 1 1 . ) 1 ) fl = 1 1 ST 1 1 1 1
40°  35°  30°  25°  20° 40° 35°  30° 25° 20° 40° 35° 30° 25° 20° 40° 35° 30° 25° 20°

Right Ascension Right Ascension

Right Ascension Right Ascension

Figure 6. Multi-frequency synthesis images (120 — 180 MHz) of the GLEAM-02H field in all pseudo-Stokes I (far-left), Q
(center-left), U (center-right) and V (far-right) polarizations. Each image is CLEANed with the same parameters down to 1 Jy,
with the CLEAN beam shown in the lower left. Even with no polarization calibration, the observed leakage from I — Q, U &

V is a few percent.

expect the pseudo Q, U and V visibilities to look noise-
like. However, we know that the primary beam response
at a given point on the sky for the X and Y dipoles are
not the same at low zenith angles, which will by itself
cause polarization leakage of observed off-axis sources
into Stokes Q (Moore et al. 2017). Furthermore, we
have not attempted to calibrate feed D-terms (Hamaker
et al. 1996) or the unconstrained relative X-Y phase pa-
rameter leftover after Stokes I calibration (Sault et al.
1996). We also know from previous studies that mu-
tual coupling exists at a non-negligible level (Fagnoni
et al. 2019; Kern et al. 2019b), which is in principle a
direction-dependent term in the Mueller matrix. This
means that we wholly expect that images formed from
pseudo-Stokes visibilities will i) not necessarily be rep-
resentative of the true Stokes parameters in the image
plane, except for maybe near the pointing center and
ii) that we should observe non-negligible amounts of
polarization leakage from Stokes I — Stokes Q, U &
V. To properly make true Stokes parameters one would
image each of the linear dipole visibilities and perform
direction-dependent corrections in the image plane be-
fore adding them in a similar manner as Equation 2.
At the moment we defer this to future works that more
carefully consider polarization calibration.

Figure 6 shows MFS images of the GLEAM-02H field
in pseudo-Stokes I, Q, U & V (left to right). The first
thing to note is that the observed leakage of Stokes I
to Q, U and V is on the order of a few percent, which
is quite low given we did not apply a polarization or
direction-dependent calibration. Looking at the pseudo-
Stokes QQ image we can see the effects of primary beam
asymmetry between X and Y dipoles: without a pri-

mary beam correction (which is not applied here), the
asymmetry will cause leakage of I — Q (Moore et al.
2017), which is exacerbated the more discrepant the pri-
mary beam responses are at a given point on the sky.
Although nearly azimuthally symmetric, the X-dipole
beam is elongated along the North-South direction while
the Y-dipole is elongated along the East-West direction
(Fagnoni et al. 2019; Martinot et al. 2018). This means
we might expect the relative amplitude of the X and
Y beams to attain a better match in the corner of our
images, and would therefore expect to see more I — Q
leakage in a quadrupolar pattern on the sky. Indeed,
this is observed in the pseudo-Stokes Q image to some
degree (Figure 6).

The pseudo-Stokes U and V images also exhibit inter-
esting behaviors, in particular the sources in the pseudo-
Stokes U image that are clearly correlated with true
Stokes I sources, as well as the rumble in the pseudo-
Stokes V image that seems to be concentrated near the
main lobe. This could be due to polarization leakage
stemming from the uncalibrated X-Y phase term, how-
ever, further work is needed to identify its exact cause.

Having shown that our calibration does a fairly good
job bringing our data in-line with our model (Figure 5)
and that, even without polarization calibration, polar-
ization leakage is observed at a few percent (Figure 6),
we should also show that our derived bandpass is an ac-
curate solution as a function of frequency. To do this
we can make a spectral cube of our calibrated data and
compare to the original catalogue used for calibration.
However, making a spectral cube with fine frequency
resolution means that the point-spread function (PSF)
sidelobes and grating lobes become increasingly a prob-
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Figure 7. The HERA Phase I point spread function (without primary beam correction) from a 5-minute observation across a
wide band (left), and a narrow band located in a low-band spectral window (center-left), mid-band spectral window (center-right)
and high-band spectral window (right). The grating lobes of the narrow band spectral windows appear in hexagonal patterns
reflecting the (un-)sampled wv spacings on the array, and reach upwards of 50% of the peak PSF response at image-center.

lem due to the sparse sampling of the uv plane. Figure 7
shows the HERA Phase I PSF across a wide 60 MHz
band (left) and three narrower 5 MHz bands (center and
right). For wide-band imaging the PSF grating lobes
are smeared out due to the large bandwidth. However,
for narrow-band imaging the grating lobes rise to above
50% the peak PSF response at image center; for nar-
rower spectral windows this is only exacerbated. Such
strong grating lobes make performing deconvolution to
high dynamic range difficult, especially in a confusion-
limited regime.

We can partially work around this by applying
CLEAN masks around bright sources and then CLEAN-
ing down iteratively while opening up the mask to dim-
mer and dimmer sources. Indeed, this is what we do to
make a coarse-channel spectral cube, which consists of
MFS images with 5 MHz in bandwidth using iterative
CLEAN runs targeting successively dimmer sources.
However, in the case of single-channel imaging even this
does not work: the grating lobes are just too severe
to deconvolve them from the image without misplacing
source flux in un-modeled sidelobes. Figure 8 shows the
result of a coarse, 5 MHz wide spectral cube CLEAN
for a spectral window centered at 155 MHz (greyscale,
left). We also show all GLEAM sources in the original
model with fluxes above 0.5 Jy in purple, which demon-
strates the high degree of confusion given our modest
angular resolution: each “source” in our images are gen-
erally two or more GLEAM sources blended together.
We therefore cannot easily relate the source flux in our
images to one or even multiple sources in the GLEAM
catalogue, as each GLEAM source will have a differ-
ent contribution to a HERA source given its distance
from it and the HERA PSF. If our goal is to compare

extracted fluxes between the data and a point-source
model we should take the PSF out of the equation. The
deconvolution on the data attempts to do this at some
level, but is limited fundamentally in precision by the
width of the synthesized beam. Another way is to sim-
ply add the PSF into the model by imaging the model
visibilities and then CLEANing and running a source
extraction in the same way as is done for the data. This
means that the inherent shortcomings of the deconvo-
lution and the limitations of the PSF (both things not
really relevant for validating gain calibration done in
the uv domain rather than the image domain) are kept
constant between data and model, so we can make a
better comparison between the two.

Source extraction is done on a source-by-source basis
with custom software. First we select the coordinates
of a desired source in the data, then the extraction pro-
cess makes a postage-stamp cutout in the shape of the
synthesized beam with twice its FWHM around the de-
sired source and fits a 2D Gaussian of variable major
axis length, eccentricity, amplitude and position angle
using the astropy.modeling module. It then records
the integrated flux of the fit in Jy and computes the fit
error by taking the RMS of the image in an annulus out-
side the cutout and dividing by the square-root of the
synthesized beam area (Condon 1997).

This is done for the GLEAM-02H field primary cali-
brator J0200-3053 for each 5 MHz-wide channel in the
coarse spectral cube of the data and model, shown in
Figure 8. The data (blue) and model (red) are in good
agreement with each other across the entirety of the
band, and are in relatively good agreement with the
primary calibrator’s original power law model from the
GLEAM catalogue (grey, Table 2). Both the data and
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Figure 8. The extracted spectrum of the primary calibrator GLEAM J0200-3053 from the GLEAM-02H field. Left: CLEANed
MFS image of the data (colorscale) across a narrow band (153.7-158.5 MHz). The purple markers show each GLEAM point
source above 0.5 Jy used in the initial model, demonstrating the degree of source confusion given the Phase I angular resolution.
Right: Extracted spectrum of J0200-3053 (center of left image) across each channel in the data spectral cube (blue) and model
spectral cube (red). The data and model are in good agreement with each other, and are well-fit by the original input GLEAM
J0200-3053 power law model (grey). Large-scale frequency deviations from the power-law fit are partially reflected in both the
data and model, suggesting that they are not due to mis-calibration but due to imperfect PSF sidelobe removal in the process
of imaging. The data cube — model cube difference shows residual structure at the ~ 5% level.
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Figure 9. Redundantly-averaged pseudo-Stokes I visibilities in delay space transformed across a 120 — 180 MHz spectral
window, ordered according to baseline length. We show the calibrated data (left), the point source calibration model (center),
and their residual (right). Short baselines to the left of the white dashed line are not used in calibration. Black regions represent
a lack of data at those baseline lengths. The data clearly show a pitchfork-like foreground wedge predicted by Thyagarajan et al.
(2016). Note that the edges of the pitchfork are not reflected in the calibration model, which will generate calibration errors.
The residual power of the main foreground lobe in the wedge is suppressed by about a factor of 10 compared to the data, but
is still seen above the noise floor of the data. Additional power at large delays (7 ~ 1000 ns) are the same systematics seen in
Kern et al. (2019b).

model exhibit sinusoidal frequency fluctuations about of these fluctuations are due to imperfect PSF sidelobe
the power law model; however, because this structure is removal in the CLEAN process, rather than calibration
represented in model spectra we can conclude that some errors. If we take the difference between the extracted
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data and model fluxes then we see residual deviations
at ~ 5% the source’s intrinsic flux. However, these de-
viations look similar in form to the first-order sinusoidal
variations about the smooth power law, possibly sug-
gesting that some of these features in the residual are
too due to imperfect PSF sidelobe removal. One possi-
bility is that the CLEAN deconvolution achieved better
sidelobe removal on the model cube compared to the
data cube, which would generate the kind of observed
sinusoidal variations in the data-to-model residual. This
would not be entirely surprising given the extra terms
in the data that are not in the model, including dif-
fuse foregrounds, which would make deconvolution more
difficult. The second-order fluctuations in the data-to-
model residual (channel-to-channel) hovers at roughly
1% of the intrinsic source flux. Overall, these lines of
evidence suggest that the quality of the spectral cali-
bration across the band is on the order of a few percent.

However, the leading uncertainty in our absolute cal-
ibration is the determination of the overall flux scale.
By adopting the GLEAM point source catalogue as our
model, we have set the flux scale of our calibration to
GLEAM, which themselves tie their flux scale to the
VLA Low-Frequency Sky Survey redux (VLSSr; Lane
et al. 2014), the NRAO VLA Sky Survey (NVSS; Con-
don et al. 1998) and the Molongo Reference Catalogue
(MRGC; Large et al. 1981). When comparing their mea-
sured source fluxes to sources from these catalogues,
their flux scaling appears to be unbiased with an un-
certainty of ~ 10%. One concern about our usage of
a single GLEAM field to set the flux scale is the fact
that GLEAM’s J0200-3053 source may be an outlier in
that distribution, implying that our flux scale could be
significantly biased. This concern is tempered by the
residual image of Figure 5, which shows that not only
J0200-3053, but all sources in the main lobe of the beam
have an unbiased residual, meaning that our final flux
scale agrees with the GLEAM flux scale for all sources
in the main-lobe of our primary beam.

To better understand the match between the data and
the flux density model, we take the full gain solutions
from the GLEAM-02H field and use them to calibrate
all baselines in the data. We then form pseudo-Stokes I
visibilities and coherently average all baselines within a
redundant group (i.e. with the same baseline length and
orientation). Then we take the Fourier transform of the
visibilities across a wide bandwidth spanning 120 — 180
MHz, having first applied a Blackman-Harris window-
ing function (Blackman & Tukey 1958) to limit spectral
leakage in the discrete Fourier transform (DFT). Be-
fore we do this, however, we must first account for the
frequency channels that have been flagged due to RFI.

These will create strong sidelobes in the Fourier trans-
form if not accounted for. To overcome this, we employ a
1-dimensional deconvolution algorithm that deconvolves
the sidelobes due to the RFI, which is conceptually iden-
tical to the CLEAN algorithm employed by radio inter-
ferometric imaging to interpolate over missing uv sam-
ples (Hogbom 1974), and can be found in the hera cal
package. In our case, we build a CLEAN model in de-
lay space out to 7 = 2000 ns, and interpolate over the
flagged channels with the CLEAN model before taking
the final DFT to the delay domain, which we do for
the data and model visibilities in an identical fashion.
We then coherently time average the 5 minutes of data
around the GLEAM-02H calibration field, take the ab-
solute value of the averaged visibilities and average all
baselines of the same length, regardless of orientation.
This is the same procedure one would take to form 2D
cylindrically averaged power spectra, but in this case
we are working with just the visibilities in the Fourier
domain.

Figure 9 shows this for the calibrated data (left),
model (center) and shows their residual (right). From
it, we can clearly see the pitchfork-like foreground wedge
with a main component centered at 7 = 0 ns and then
branches at positive and negative delay following the
horizon line of the array, which is not plotted for vi-
sual clarity and is explained in more detail in Section 6.
Recall that baselines shorter than 40-meters in length
(white dashed) are not used in calibration. The pitch-
fork branches are caused by the foreshortening of a base-
line’s separation vector at the horizon, thus increasing
its sensitivity to diffuse emission (Thyagarajan et al.
2015). The point source model, lacking diffuse fore-
grounds, clearly does not have a strong pitchfork feature.
This discrepancy will create gain errors in the calibra-
tion solutions at the delay scale of the pitchfork, which
for baselines above 40-meters begins at around 150 ns
and extends beyond that for longer baselines. This is
explored in the following section. Lastly, the data and
model are somewhat well matched at 7 ~ 0 ns, with the
residual power being suppressed by a factor of 10 com-
pared to the data but still above the noise floor of the
data outside the wedge. This residual power can come
from un-modeled diffuse flux in the main lobe of the
primary beam, but is also likely to be from calibration
errors due to mis-modeled point sources. An increase
in observed power in the data at large delays || > 800
ns is a cross coupling systematic, and is not foreground
signal (Kern et al. 2019D).

4. GAIN STABILITY
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Figure 10. Antenna gains derived from the GLEAM-02H field. Type 1 & 2 signal chains are plotted in blue and red,
respectively. The phase of the gains (top-right) are plotted after taking out the cable delay from each antenna for visual clarity.
The peak-normalized delay response of the gains show structure at delays representative of elements in the signal chain (bottom),
and also show contamination by terms that are not antenna based, like un-modeled diffuse emission and instrumental coupling
systematics (Kern et al. 2019b). We also show one of the Type 1 gains smoothed at a 100 nanosecond scale for reference

(dashed-black).

In this section we characterize the spectral and tempo-
ral properties of the derived complex antenna gains and
discuss their impact on downstream analyses. Gain cal-
ibration is a multiplicative term in the frequency and
time domain meaning it can equivalently be thought
of as convolution in the Fourier domains of delay and
fringe-rate, the Fourier duals of frequency and time re-
spectively, by a “gain kernel,” or the Fourier transform
of the gain response. Solving for and applying antenna-
based gains can therefore be thought of as trying to de-
convolve the inherent gain kernel imparted by the in-
strument. For 21 cm experiments aiming to uncover a
signal buried under noise and systematics, the princi-
pal concern when applying gain solutions to the data is
understanding how this gain kernel may or may not be
smearing foreground signal to spectral modes that are
otherwise foreground-free: any kind of deviation in the
derived gain solution from the true underlying gain will
cause such smearing, at some level.

4.1. Spectral Response

Works investigating sky-based calibration in the limit
of an incomplete sky model showed it results in gains
with erroneous spectral structure that can fundamen-
tally limit 21 cm studies (Barry et al. 2016; Ewall-Wice

et al. 2017; Byrne et al. 2019). Similar effects have been
shown to exist for redundant calibration, where inher-
ent non-redundancies of the array create a similar type
of spectrally-dependent gain error (Orosz et al. 2019).
What has yet to be studied in detail is how other kinds
of instrumental systematics, such as mutual coupling or
crosstalk, get picked up in the process of gain calibration
and what their effect is in shaping the inherent and es-
timated gain kernel. For systematics like crosstalk and
mutual coupling which are highly baseline-dependent,
one would naively expect that the antenna-based gains
would not significantly pick up on these terms due to
their decoherence when averaged across different base-
lines; however, it would not be surprising to see them at
some level reflected in the gain solutions, even if they are
averaged down to some degree. Furthermore, Figure 9
shows us that there is a non-negligible data-to-model
discrepancy caused by un-modeled diffuse emission even
for baselines above our 40-meter cut, which will also cre-
ate gain errors.

To summarize Kern et al. (2019b), the HERA Phase
I system shows evidence for cross-coupling systematics
at large delays |7| > 800 ns, and also shows evidence
for diffuse flux and / or mutual coupling at smaller de-
lays corresponding to a baseline’s geometric horizon (for
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|b| = 45 m, this is ~ 150 ns). In Figure 10 we show
the frequency and delay response of the CASA-derived,
sky-based gains from Section 3. We plot the gain am-
plitude (upper-left), gain phase after removing the ca-
ble delay for each antenna (upper-right) and the Fourier
transform of the gains in delay space (bottom) normal-
ized to their peak power at 7 = 0 ns. We categorize
the gains into Type 1 (blue) and Type 2 (red) signal
chains (Figure 2), which shows a clear bi-modality in
the spectral structure of the gains between these groups.
This bi-modality is also seen in the reflection proper-
ties of the signal chains and is discussed in more detail
in Kern et al. (2019b). Arrows mark the expected re-
gions in delay space where certain electromagnetic ele-
ments in the signal chain can create systematics, such
as reflections within the 14-meter dish and reflections
in the 20-meter and 150-meter coaxial cables. The gain
kernels of each antenna (Figure 10-bottom) also clearly
shows that instrumental cross coupling systematics at
|7] > 800 ns are being picked up by the gain solutions.
It also shows un-modeled diffuse emission at lower de-
lays |7] > 200 ns, which may also have contributions
from mutual coupling systematics that appear at similar
delays. Because instrumental cross coupling and diffuse
emission are baseline-based and not antenna-based, they
cannot be calibrated out of the data with antenna-based,
direction-independent gains, and must be removed on a
per-baseline basis. This means that the presence of these
structures in the gains will only spread the systematics
around: in the worst case spreading them to baselines
that may have been systematic free to begin with.
Figure 11 shows the result of applying sky-based gains
to the visibility data and transforming to the Fourier
domains of delay and fringe-rate space. We apply the
gains to 8-hours of drift-scan data from a single 29-meter
East-West visibility, and we do this having filtered the
gains in three different ways: 1) the first method (simple
calibration) takes only the band-averaged amplitude and
cable delay component of the gain 2) the second method
(full calibration) just takes the full gain solution as-is,
and 3) the third method (smooth calibration) smooths
the gains across frequency out to a 100 ns scale, which
is also plotted in Figure 10 (black-dashed). The bot-
tom panel shows the time-averaged delay response of the
panels shown above. In the simple calibrated data, the
foregrounds are contained to low delays and appear pre-
dominately at positive fringe-rates, which we expect be-
cause the sky rotates in a single coherent direction in the
main lobe of primary beam (Parsons et al. 2016). Fore-
grounds can also occupy near-zero and negative fringe-
rate modes, which correspond to structures on the sky
near the South celestial pole and near the horizon, but

are attenuated by the primary beam response. If the
data were nominal then the rest of the Fourier space
would be dominated by thermal noise; however, this is
not what we observe. We also see cable reflection sig-
natures, which should appear as reflected copies of the
foregrounds at the same fringe-rates but at positive and
negative delays (marked). And we see strong cross cou-
pling features at large positive and negative delays oc-
cupying near-zero fringe-rate modes (marked).

When we go to apply the full calibration we find a
large amount of excess structure at intermediate and
large delays occupying positive fringe-rates, which is not
surprising given the gain kernels shown in Figure 10. We
see that other baselines that happened to have the sys-
tematics at intermediate delays have contaminated this
baseline at the same delays. What is more, these sys-
tematics are now occupying the same positive fringe-rate
modes as the sky,® and therefore cannot be easily re-
moved with standard cross coupling removal techniques
(Kern et al. 2019a). There are some benefits of the full
calibration, though. One is that it can calibrate out
signal chain reflections because those factor as antenna
based terms. This can be seen in the data as the sup-
pression of the cable reflections at large positive and
negative delays, and also in the suppression of the dish
reflection at 7 = £50 ns (which is most apparent as the
tightening up of the contours in the brightest spots of
the foregrounds, or the drop in the shoulder power in the
time-averaged spectra). While cable reflections at high
delays can be calibrated out with sky-agnostic modeling
(Ewall-Wice et al. 2016; Kern et al. 2019a), calibrating
out reflections at low delays that bleed into the main
foreground lobe is harder, and thus better suited to cor-
rection via standard gain calibration.

The ideal compromise, then, is to smooth our gains
to keep the gain kernel at low delays and suppress its
power at delays that we no longer trust its response. For
the calibration at hand, this seems to be at roughly 100
nanoseconds, which enables the calibration to pickup on
the dish reflection at 50 ns but suppresses the spurious
terms in the gains at 150 ns and beyond. Given our 100
MHz bandwidth with 1024 channelization, a maximum
delay range of 100 ns leads to about 15 free delay modes
in the smoothed gains, which can be thought of as a
smoothed gain with 15 spectral degrees of freedom per
antenna and dipole polarization. Applying this gain to
the data (last two panels in Figure 11), we see that we
recover the best of both scenarios: the dish reflection is

4 This happens because the gains are a multiplicative term,
meaning that although the systematics originally occupied f ~ 0
Hz, the contaminated gains spread them to f > 0 Hz modes.
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Figure 11. Sky-based gains applied to a single 29-meter East-West visibility over 8-hours of LST and transformed to delay
and fringe-rate space (see text for details). The data are peak-normalized, and contours show -30, -15, and -10 dB levels. The
time-averaged delay responses are shown in the bottom panel. Sources of cable reflection and instrument coupling are marked.
The full gain applied to the data leads to significant contamination of coupling systematics due to the full gain kernel smearing
the foreground horizontally in fringe-rate and delay space. Smoothing the calibration allows us to calibrate out the features at
low delays we know to be calibrate-able (e.g. dish reflections) and toss out features in the gain kernel above 100 nanoseconds.

suppressed as desired and we also do not spread more in-
strument coupling at intermediate and high delays over
what is already present in the data. To perform the
smoothing we use the same delay-domain deconvolution
technique described before as a low-pass Fourier filter,
which is useful given that the gains are also flagged at
certain frequency channels due to RFI. Although this
calibration is performed for a single time, one can also
take time and frequency dependent calibration solutions
and smooth across both the temporal and spectral axes
with this technique.

We can also show the effects of the smooth and full
calibration on the full dataset. We do this by apply-
ing the calibration to the data and transforming them
to the delay-domain in a similar manner as was done
for Figure 9. In this case, Figure 12 plots this for the
smooth calibrated data (left), the full calibrated data
(center) and their fractional residual (right). Note that
the calibrated data are plotted on the same colorscale as

Figure 9, but are plotted with a smaller delay range to
highlight features within the foreground wedge. We see
that the two calibrations achieve a good match at low
delays, as expected, but for delays beyond the smooth-
ing scale we find that the full calibrated data has sig-
nificant excess structure (red) compared to the smooth
calibrated data. This is indicative of the full calibration
introducing spectral features into the data, rather than
calibrating them out, which is highly suggestive of gain
errors on these scales and further motivates the 7 ~ 100
ns smoothing scale of the gains derived in Section 3.
Philosophically, this kind of approach to gain calibra-
tion, in other words keeping only degrees of freedom like
low delay modes that we trust and filtering out the rest,
is conservative from the perspective of not introducing
structure into the data that was not already there. The
cost of this approach is that we are not calibrating out
gain structure at these delays inherently introduced by
the instrument, if it exists in the first place. At the mo-
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Figure 12. Redundantly-averaged pseudo-Stokes I visibilities in delay space transformed across a 120 — 180 MHz spectral
window, ordered according to baseline length. We show the smooth calibrated data (left), full calibrated data (center) and
their fractional residual. The calibrated data (left and center) are plotted on the same colorscale as Figure 9 over a smaller
delay range to highlight the features within the foreground wedge. Within the smoothing scale of 100 ns, the fractional residual
shows the two are in good agreement as expected. Outside the smoothing scale, however, the residual shows significant excess
structure (red) in the full calibrated data not seen in the smooth calibrated data, which suggests that the structures are not

real and are errors in the gain solution.

ment, however, we do not really have much of a choice:
providing a constrained calibration with a few degrees
of freedom is the best we can currently do, and until we
have evidence that structure in the gain kernel at higher
delays is real gain structure, we should not attempt to
calibrate it out. This approach makes interpreting a
fiducial detection in the power spectrum at similar, in-
termediate delays somewhat convoluted, and a suite of
null tests and jacknives will be necessary to try to tease
out whether said detection is residual calibration struc-
ture or real sky structure.

The obvious question moving forward for HERA then
is, do we believe there to be true gain structure at low
and intermediate delays that we need to calibrate out?
The answer to this depends on the required dynamic
range. For low delays we generally need 10° in dy-
namic range performance of the gain kernel due to the
foreground-to-EoR amplitude ratio: for larger delays
this requirement becomes more stringent as the EoR
signal is expected to weaken. Therefore, do we think
HERA has true gain structure at some level above -50
dB at 7 ~200 ns? Based on simulations (Fagnoni et al.
2019) and a rough extrapolation of Figure 10 the answer
is probably yes, and therefore, we need a way to remove
the cross coupling systematics from the data before per-
forming antenna gain calibration. Cross coupling sys-
tematic removal is done by applying a high-pass filter
in fringe-rate space (KKern et al. 2019a; Kolopanis et al.
2019). This removes cross coupling, which occupies low
fringe rates, but it also removes a component of the fore-

grounds as well, which we need for calibration. Doing
this only on the data and not on the model would create
a discrepancy in the data that would act as its own form
of systematic. Fringe rate filtering therefore needs to be
done on the model and data before calibration in order
to probe the true instrument gain kernel to higher and
higher delays. Achieving high fringe-rate resolution for
a high-pass filter means simulating a large LST coverage
with a wide-field flux density model. Unfortunately, the
CASA-based calibration methodology presented in this
work does not easily lend itself to this as it only reliably
simulates short time intervals near the calibration field.
This kind of analysis is best done using a numerical vis-
ibility simulator with wide-field diffuse and point-source
maps, which we defer to future work.

Other smoothing algorithms have been investigated in
the literature, which has been motivated due to a recent
understanding of how incomplete sky models cause gain
errors in sky-based calibration (Barry et al. 2016; Byrne
et al. 2019) and non-redundancies cause gain errors in
redundant calibration (Ewall-Wice et al. 2017; Orosz
et al. 2019). The MWA for example, uses low-order
polynomials to smooth their sky-based gain solutions to
limit gain error spectral structure in 21 cm power spec-
tral analyses (Beardsley et al. 2016; Barry et al. 2019a).
The reason we opt for direct Fourier filtering of the gains
in this work is because a truncated polynomial basis is
not able to encapsulate arbitrary gain fluctuations on
large scales; in other words they do not form a complete
basis in the Fourier domain for low-delay modes. This is
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fine for mitigating small-scale structure but means one
runs the risk of not calibrating out large-scale modes
that can cause biases in narrow band power spectrum
analyses, although in simulated MWA analyses there is
no evidence for such biases (Barry et al. 2016).

4.2. Temporal Response

In this section we use the data to assess the temporal
stability of the instrumental gain. HERA observations
are taken in drift-scan mode, meaning the array does not
change or move over the course of observations. This
lends itself to a fairly stable instrument as a function of
time, and we therefore do not expect large deviations
in the gains over short time intervals. However, effects
such as ambient temperature drift and the cooling cycle
within signal chain nodes are known to cause slight drifts
in the calibration over the course of a night (e.g. Jacobs
et al. 2013). In this section we investigate the data to
quantify the amplitude of these gain drift terms and
confirm they can be calibrated out if necessary. Note
we do not actually apply time-dependent gains to the
data in the remainder of this work: we merely present
ways in which these terms can be calibrated-out for deep
integrations if necessary.

All signal chains in the HERA array are brought via
coaxial cable to an RFI-shielded and air-conditioned
container in the field where the data are converted from
analog to digital signals and are then correlated. Due to
the air-conditioning cycle within this container, which
cycles at roughly a 6-minute period, we expect the over-
all amplitude of the gains to drift at the same timescales.
We can estimate the amplitude of this drift using a
smoothed version of the auto-correlations, which is the
approach adopted by the LWA (Eastwood et al. 2019)
which faces the same issue. Assuming that the only tem-
poral structure in the auto-correlations occurs intrinsi-
cally at the time-scale of the beam crossing time (~40
minutes), we can probe time structure from the gains by
taking a time-smoothed version of the auto-correlation
and dividing it by the un-smoothed auto-correlation.
We smooth a handful of auto-correlation visibilities on a
20-minute timescale, divide their un-smoothed visibility
counterparts by them and take their square-root, which
leaves us with a set of ratio waterfalls as a function of
frequency and time for each antenna-polarization. We
show some of these in Figure 13, which plots the square-
root ratio for each time and frequency bin for four an-
tennas (top row) and also their frequency-average as a
function of LST (bottom panel). We see that the gain
fluctuations induced by the air-conditioning cycle in the
container has a coherent phase and amplitude across
all antennas and polarizations, and is also fairly con-

stant across frequency. The frequency-average of each
antenna and their respective average is shown to reflect
a sawtooth profile as a function of time, whose profile
inversely matches temperature data collected within the
container. Figure 13 shows us that the 6-minute gain os-
cillations are a very small effect at the 0.1% level, and
can be decently well-calibrated by a single number as
a function of time for all antennas, polarizations and
frequency channels in the array. The HERA Phase II
configuration will have a forced air cycling system that
will better control fast temperature variations in con-
tainer units.

A steady decrease in ambient temperature after sun-
set can cause slow evolution in the performance of the
exposed part of the signal chains, in particular the low-
noise amplifier in the FEM, which is attached to the
feed. This kind of gain drift is expected to be slow but
could add up over the course of an entire night of observ-
ing, especially if we choose to calibrate the data once at
either the beginning or end of the night. To test this, we
calibrate a single night of data at three different fields
(Figure 3) at different times of a single night, and com-
pare the average gain amplitude derived from each field.
Figure 14 shows this drift having normalized the gains
to the 2-hour field, demonstrating a slow drift that over
the course of ~5 hours leads to about a 10% drift in the
gain amplitude. Also plotted is the ambient temperature
measured by a nearby weather station, which shows an
expected inverse correlation with the antenna gain. Sim-
ilarly, the band-averaged gain phase drift (after taking
out the cable delay) is kept to within 0.2 radians over
the same time interval, but unlike the average amplitude
the phase drift does not appear monotonic in time.

Using the temperature data we can derive an ambi-
ent temperature coefficient for the change in the aver-
age gain as a function of temperature difference (Jacobs
et al. 2013). We can represent a relationship for the dif-
ference in ambient temperature relative to the ratio of
the derived gain response of the analog system as

gnew

10 - 1Og10 [dB] =C- (Tnew - Tnorm) [K]a (3>

gnorm

where Thorm and gnorm are the ambient temperature and
average gain amplitude at the time of gain calibration
(i.e. our normalization time), Thew and gnew are the
temperature and gain at any new time in LST, and C
is the temperature coefficient in units dB K—!. In Fig-
ure 14, for example, we have chosen the normalization
to be at 2 hours LST. Using the three data points from
Figure 14, we derive a temperature coefficient of -0.031
dB K~! for the gains. With a similar approach, Pober
et al. (2012) also derive a gain temperature coefficient of
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Figure 13. Temperature oscillations in the instrumental gain due to an air-conditioning cycle in the field container housing the
ADC are a 0.1% effect. Top panels show the square-root of the ratio of the raw auto-correlations to the time-smoothed auto-
correlations for a few antennas and both XX and YY polarization. The oscillation looks to be of roughly the same amplitude
across different antennas, polarizations and frequencies. The bottom panel shows the frequency-averaged oscillation for a handful
of antennas (colored lines) and their average (black). This shows a saw-tooth time profile that also matches temperature data

collected in the container.

-0.03 dB K~! for the PAPER system, which used simi-
lar front-end hardware as HERA Phase 1. Jacobs et al.
(2013) also used data from two different seasons to de-
rive an auto-correlation temperature coefficient for the
PAPER system of -0.06 dB K~!, which, when divided by
a factor of two in order to map it to a gain temperature
coefficient, is also in agreement with these results.

5. COMBINING REDUNDANT CALIBRATION

A key part of HERA’s design is to exploit its inherent
redundant sampling of the uv plane for precision redun-
dant calibration (Dillon & Parsons 2016). Redundant
calibration asserts that all visibilities of the same base-
line length and orientation (uniquely defining a “baseline
type”) measure the same visibility, which with enough
redundant baselines allows for an overconstrained sys-
tem of equation while keeping the true visibility a free
parameter (Wieringa 1992; Liu et al. 2010). This means
that redundant calibration does not need an estimate of
the true model visibilities, and thus temporarily skirts
some of the issues with incomplete or inaccurate sky
models. In practice this is never exactly true, and
slight antenna position and primary beam uncertainties
therefore generate gain errors in redundant calibration
(Ewall-Wice et al. 2017; Orosz et al. 2019). Nonetheless,
we would like to explore options for combining redun-
dant and absolute calibration to exploit their comple-
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Figure 14. The average gain amplitude drift (blue)

throughout the 2458098 observing night, derived from three
independent calibration fields and normalized to the field at
2 hours. We also overplot the ambient temperature measured
by a nearby weather station (red), showing an expected in-
verse correlation with the gain drift. Using Equation 3 these
data yield a gain temperature coefficient of -0.031 dB K1,

mentary advantages, either as an alternative or hybrid
calibration pipeline.

For a baseline between antennas ¢ and j and another
between antennas j and k, both belonging to the same
baseline type of ij (for example antenna pairs 23 & 24
and 24 & 25 from Figure 2), the redundant calibration
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equations are
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Note that the model visibility for Vjj is now ViB’F‘Odel. In
this case, we are left with four free parameters, g;, g,
gr, and Vi‘;l(’del, which we can solve for by minimizing
their chi-square,
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where o2 ;; 1s the noise variance on baseline ij and the
sum is over all antenna pairs in the array. Although
a two-baseline array like the one in Equation 4 is not
redundantly calibrate-able, we can see that increasing
the number of redundant baselines will turn this into an
overconstrained system of equations (Liu et al. 2010).

However, redundant calibration is not the final answer
for antenna-based calibration, as there exist fundamen-
tal degeneracies that redundant calibration simply can-
not constrain. One of these degeneracies is the average
gain and model visibility amplitude. Looking at Equa-
tion 5, we can see that if we multiply all antenna gains
by some fraction A, and then divide all model visibilities
by A? we leave the final x? unchanged. Recall we are
free to do this because, unlike in sky-based calibration,
the model visibility is a free parameter. Thus it can
perfectly counteract such deviations in the gains and
implies that the full system of equations is insensitive to
their average amplitude. In addition to the average gain
amplitude, the other major degeneracy associated with
redundant calibration is known as the “tip-tilt” phase
gradient across the East-West and North-South coordi-
nates of the array (Zheng et al. 2014; Dillon et al. 2018).
If each antenna is assigned a vector r; originating from
the center of the array to its topocentric coordinates of
East & North, we can insert a “tip-tilt” phase gradient
into the gains as

9i — gi exp(i®Pr;) (6)
where ® = (‘I)E, @N).

The coefficient ® is therefore a phase gradient coefficient
with units of radians per meter, with separate coeffi-
cients for the East and North directions. Such a pertur-
bation to the gains is a degeneracy in redundant calibra-
tion because we can exactly cancel this out by applying
the opposite term to the model visibilities. For example,
we can express the second term in the chi-square metric
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Figure 15. Schematic showing the order of operations for
three related calibration strategies, similar to that of Li et al.
(2018). For AR and RA calibration, the gains from the first
step are applied to the data before proceeding to the second
step. In addition, the gains derived by redundant calibration
have their degenerate modes projected out before proceeding.

of Equation 5 as
model
9:Vi; g]

Ji exp(z<I>rz)Vm°del

exp(—i®r;;)g; exp(—i®r;)

= glvmodelg exp(i®r;;) exp(—iPr;;)

= g Vpedlgr, (7)

where we have made use of the fact that r;—r; = r;;, and
can see that after substitutions the term is unchanged.
This amounts to a total of three parameters, the average
gain amplitude and the east and north phase gradient,
that need to be solved for after redundant calibration
and require a sky model to pin down (per frequency,
time and polarization). Thus, the issues of inaccurate
sky models are somewhat mitigated but not totally cir-
cumvented by redundant calibration (Byrne et al. 2019).
From a sky-based calibration perspective, these degen-
eracies can roughly be thought of as the overall flux scale
of the array and its pointing center on the sky.

There are multiple ways to fill-in the missing degen-
erate parameters of redundant calibration. One ap-
proach is to take the redundant calibration solutions
and project only its degenerate components onto the
degenerate modes in the sky-based calibration solutions
(Li et al. 2018). Omne can also take model visibilities
and setup a new calibration equation that solves ex-
plicitly for the degenerate parameters (partial absolute
calibration). Finally, one can take the sky-based cal-
ibrations as a starting point by applying them to the
data and then run redundant calibration. The latter
two of these, along with standard sky calibration, are
shown in Figure 15, outlining the order of operations
of the three proposed calibration schemes: sky calibra-
tion, sky + redundant (AR) calibration and redundant
+ partial absolute (RA) calibration. Both AR and RA
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Figure 16. The distribution of gain solutions from AR calibration. The top panels show just the sky calibration (similar to
Figure 10) in amplitude, phase (after removing their cable delay) and in delay space. Middle panels show just the redundant
calibration portion of the gains in AR calibration. Bottom panels show the product of the two steps, which forms the full AR
calibration gain solutions. Note the notch in the phase plots that is canceled out by redundant calibration, which leads to some

suppression of the 200 nanosecond feature.

calibration schemes are built into the redcal module
of the hera_cal software package (which we use here),
including setting up and solving a system of equations
that specifically picks out the degenerate parameters of
redundant calibration given a set of sky model visibili-
ties, which we discuss in more detail in Appendix A. For
the RA approach discussed here, the model visibilities
used for extracting the degenerate modes are simply the
raw data calibrated with the sky-based gains.

Because redundant calibration cannot constrain the
degenerate modes inherent to its system of equations,
the output gains will generally have some random com-
bination of degenerate vectors, which will be influenced
by the convergence of the calibration solver and its start-
ing point from the raw data. To fix this, we can project
out these degeneracies by fixing them to some a priori
chosen position, which will then get filled in by absolute
calibration (Dillon et al. 2018; Li et al. 2018). The sim-
plest thing is to re-scale the gains such that the average
amplitude is 1.0 and the phase gradient is 0.0, which
is done to just the redundant calibration portion of the
gains in both RA and AR calibration.

We saw in Figure 10 the presence of antenna-based
structures that we expect to appear in the gains, like
the dish reflection and the 20-meter and 150-meter ca-
ble reflections, but we also saw significant contamination
by instrumental coupling across a wide range of delays.
To understand the kinds of structures picked up by re-
dundant calibration we can inspect the gains in a similar
manner. Figure 16 shows the distribution of the gains
at each step in the AR calibration scheme in amplitude
(left) and in phase (right) having removed the cable de-
lay for each antenna. It also shows the gains Fourier
transformed across frequency in delay space (right) and
peak-normalized. The top panels of Figure 16 show just
sky calibration (the same as Figure 10). The middle
panel shows just the redundant calibration component
of the gain, where in deriving them we first apply the
sky calibration gains to the data, and the bottom pan-
els shows the final product of the two gains. Note that
the redundant calibration gains derived here use the
same baselines as the sky calibration of |b| > 40 me-
ters. For the redundant calibration gains, we can see
that its average amplitude is one as expected, and has
similar kinds of spectral structure as the sky calibra-
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Figure 17. Redundantly-averaged pseudo-Stokes I visibilities in delay space transformed across a 120 — 180 MHz spectral
window and ordered according to baseline length, having applied the full sky calibration gains (left) and the full RA calibration
gains (center). These are plotted on the same colorscale as Figure 9. Taking their fractional difference (right) shows that the
RA calibration introduces less structure into the data at |7| ~ 200 ns for shorter baselines (blue regions), although it also seems
to introduce new structure at slightly smaller delays for long baselines (red regions).

tion gains. Looking at their product, or the AR cal-
ibration gains, we can see some of the benefits of re-
dundant calibration. Compared to the sky calibration
delay response (purple), the AR delay response (orange)
has a slightly suppressed bump at ~200 ns, which can
also be seen as the negation of the coherent ripple in
the center phase plots. We observe this ripple in the
sky-based gain phases (top-center), which seems to be
corrected-for by redundant calibration (middle-center)
such that their product (bottom-center) demonstrates
less of a ripple. One possible explanation is that this
ripple is caused by an imperfect sky model that cre-
ates spectral errors in the sky-based gain that is then
corrected by redundant calibration. However, we still
see significant power at 7 2 200 ns, which could origi-
nate from non-redundancies between nominally redun-
dant baselines specifically at the horizon, where diffuse
emission generates the pitchfork effect in the data but
also where the per-antenna primary beams are likely the
least redundant with each other. Similar to how unmod-
eled diffuse emission created gain errors in sky calibra-
tion, these kinds of non-redundancies will create errors
in redundant calibration and will appear at similar de-
lays (Orosz et al. 2019). Previous work showed that
non-redundancy seems to be worse for short baselines
(Carilli et al. 2018), but quantifying this in more detail
is still in progress (Dillon et al. in prep.). The AR cali-
bration gains also show significant power at 7 = 800 ns,
which shows that redundant calibration is not immune
to picking up cross coupling instrumental systematics.
The RA gain solutions show nearly the same structure
as solutions derived from AR calibration down to below

1% in fractional difference, so we do not plot them here
for brevity.

To further show the effects of redundant calibration on
the data, we take the full gains (this time from the RA
calibration scheme) and apply them to the data. We
then redundantly average and Fourier transform them
similar to Figure 9. Figure 17 shows this process having
applied the full sky calibration and full RA calibration,
and also shows the fractional difference between the two
(right). Areas where the RA calibration is introducing
new structures show up as red, and areas where sky cali-
bration is introducing structure where RA is not show up
at blue. We see that for shorter baselines and delays near
|7] ~ 200 ns, that RA calibration is inserting less struc-
ture into the data compared to sky calibration, which
agrees with our observation earlier that spurious gain
structure at those delay scales seem suppressed. How-
ever, we see that at slightly smaller delays and larger
baseline lengths, RA calibration is also inserting addi-
tional power compared to sky calibration, which is likely
a result of its own gain errors. Additionally, at small de-
lays (|7] < 100 ns) the two are in good agreement with
each other.

The take-away from this section is: 1) all three cali-
bration schemes yield gains that are similar at low de-
lays; 2) hybrid redundant calibration seems to correct
for some of the errors in the sky-based calibration but
still introduces its own set of errors; 3) both sky and
redundant calibration suffer from gain errors that are
induced by baseline-dependent instrumental systemat-
ics. Moving forward, future analyses will benefit from
attempting to model diffuse emission and removing in-
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strumental cross coupling systematics before calibration
in order to calibrate intermediate delay scales and ex-
ploit the full power of a combined redundant and abso-
lute calibration approach.

Li et al. (2018) performed a similar comparison with
the MWA, using the Fast Holographic Deconvolution
package (FHD; Sullivan et al. 2012) for sky-based cali-
bration and the omnical package (Zheng et al. 2014) for
redundant calibration. Similar to this work, they find
marginal improvements with a combined sky + redun-
dant calibration approach.

6. POWER SPECTRUM PERFORMANCE

We use the visibility-based, delay spectrum estimator
of the 21 cm power spectrum to further assess the quality
of the calibration and the overall stability of the array.
The delay transform is simply the Fourier transform of
the visibilities across frequency into the delay domain

V(u,7)= /du 2TV (u, v), (8)

where u = b/\ is the uv vector of the baseline and A
is the observing wavelength (Parsons et al. 2012a; Liu
et al. 2014; Parsons et al. 2014). The Fourier dual of
frequency, 7, is not a direct mapping of the line-of-sight
spatial wavevector k| but under certain assumptions it
is a fairly good approximation. This is known as the
“delay approximation” and has been shown to be fairly
accurate for short baselines (Parsons et al. 2012a). The
delay spectrum estimate of the 21 cm power spectrum is
the delay transformed-visibilities squared, multiplied by
the appropriate scaling factors,

2 2 2

where X and Y convert angles on the sky and delay
modes to cosmological length scales, 2,, is the sky-
integral of the squared primary beam, v is the average
frequency in the delay transform window and B, is the
delay transform bandwidth, as defined in Appendix B
of Parsons et al. (2014). The relationships between the
Fourier domains inherent to the telescope, u and 7, and
the cosmological Fourier domains are

2
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where X = c(1+ 2)%vy" H(2)™1, Y = D(2), va1 = 1.420
GHz, H(z) is the Hubble parameter, D(z) is the trans-
verse comoving distance, b is the baseline length and A is
the observing wavelength (Parsons et al. 2012b; Liu et al.

2014). For this analysis, we adopt a ACDM cosmology
with parameters derived from the Planck 2015 analysis
(Planck Collaboration et al. 2016), namely Q5 = 0.6844,
Q = 0.04911, Q. = 0.26442 and Hy = 67.27 km/s/Mpc.

Due to the chromaticity of an interferometer, fore-
ground emission that is inherently spectrally smooth
(such as galactic synchrotron) will have increased spec-
tral structure in the measured visibilities. The delay
at which the instrument imparts this spectral structure
is dependent on the geometric delay of the source sig-
nal between the two antennas that make up a baseline,
given as

L |b| sin()

c

)

(11)

where 6 is the zenith angle of the incident foreground
emission and b is the baseline separation vector. We can
see that spectrally-smooth foregrounds incident from
zenith will appear at lower delays and therefore have less
induced chromaticity, while foregrounds incident from
large zenith angles will have more induced chromatic-
ity. The maximum delay a smooth spectrum foreground
can appear at is called the horizon limit, in which case
Thorizon = T(0 = 90°). If we could perfectly image the in-
terferometric data we could also reconstruct the smooth
spectrum foregrounds. However, this is in practice never
the case, as effects like missing uv samples and imag-
ing via gridded Fourier transforms create low-level chro-
matic sidelobes that corrupt the images with spectrally-
dependent residual foregrounds. Visibility-based power
spectrum estimators that do not even attempt to im-
age the data are stuck with the most severe amounts of
instrument-induced chromaticity, generally out to the
baseline horizon delay. The horizon limit is a function
of baseline length (Equation 11), and as such it forms
a wedge-like shape in the data’s Fourier domain and
has come to be known as the foreground wedge (Datta
et al. 2010; Morales et al. 2012; Parsons et al. 2012a;
Thyagarajan et al. 2013; Liu et al. 2014; Morales et al.
2019). Because HERA has a fairly compact primary
beam we expect most foreground power to lie within
7 < |b|sin(d = 5°)/c; however, the vast amounts of dif-
fuse emission near the horizon means that we still expect
to see some amount of foreground power out to the hori-
zon limit, even though it is significantly attenuated by
the primary beam (Thyagarajan et al. 2016).

The issue of whether foregrounds actually appear
tightly confined within the foreground wedge is an open
question: 21 cm foreground studies seem to indicate that
supra-horizon foreground power tends to extend only
slightly beyond the horizon (Pober et al. 2013; Bernardi
et al. 2013; Gehlot et al. 2018; Lanman et al. 2019), but
whether this is truly the case down to EoR sensitivi-
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Figure 18. Wide-band, two-dimensional power spectra of each linear dipole polarization XX (left) and YY (right) having
applied the smooth sky-based calibration, and after systematic removal and an incoherent average (i.e. after squaring the
visibilities) from 0 to 2 hours LST. Power spectra are formed between 139 — 178 MHz having applied a Blackman window to
limit spectral leakage in the discrete Fourier transform. The black line marks the FWHM of the primary beam (£5° from
zenith) and the white line marks the baseline horizon. Both lines have an additive buffer of k; = 0.014 h Mpc™! to account for
the width of the Blackman kernel in Fourier space. The dashed green line marks the maximum delay scale of the smoothed gain
solutions. Most of the foreground power is confined within the horizon limit of the array, however there is evidence for some

supra-horizon leakage at short baselines.

ties is not known. There are a number of effects that
can contribute to measured supra-horizon foreground
emission, including intrinsic foreground spectral struc-
ture, unflagged RFI, primary beam chromaticity, and
also gain calibration errors. As discussed in Section 4,
the intrinsic gain kernel of the instrument may have a
non-negligible extent to large delay modes, which if left
uncalibrated will push foreground power out to higher
delays. Similarly, gain errors will introduce structure
at these scales and have the same effect. Smoothing
the gains eliminates the latter concern but still leaves
the possibility of the former effect. To asses the de-
gree of foreground containment we can form wide-band,
visibility-based power spectra as a diagnostic.

This is complemented by an understanding of how
thermal noise appears in the power spectra. Given our
knowledge of the noise properties of our antennas, we
can compute a theoretical estimate of the noise power
spectrum, Py, which is equivalent to the root-mean
square (RMS) of the power spectrum if the only com-
ponent in the data were noise. This is one measure of
the uncertainty on the power spectra due to noise, but
also represents the theoretical amplitude of the power
spectra in the limit that they are noise dominated (as
opposed to signal or systematic dominated). This is

given in Cheng et al. (2018) as
X2Y QT2
tinthohcrcnt Vv 2-N'incohcrcnt '

where the X and Y scalars are the same as before, Ty is
the system temperature in milli-Kelvin, t;, is the corre-
lator integration time in seconds, Ncoherens is the number
of sample averages done at the visibility level (i.e. be-
fore visibility squaring), and Nicoherent 1S the number
of sample averages done at the power spectrum level
(i.e. after visibility squaring). Qe is the effective beam
area given by Qeg = Q2/Q,,, where Q, is the integral
of the beam across the sky in steradians, and €, is
the integral of the squared-beam across the sky in stera-
dians (Pober et al. 2013; Parsons et al. 2014). Using
similar data products, Kern et al. (2019b) showed that
the HERA Phase I system achieves an antenna-averaged
Tsys ~ 250 K at 160 MHz, which we adopt in this work.

The raw data are flagged for radio frequency interfer-
ence (RFT) and are thus nulled at the flagged channels.
This leads to a highly discontinuous windowing function
that when taking a Fourier transform will spread fore-
ground power and contaminate the EoR window. To
prevent this, we employ the same 1D delay domain de-
convolution as the gain smoothing filter (Section 4) on
each visibility, filling in model CLEAN components out
to 2000 nanoseconds. HERA Phase I data are contami-

Py =

(12)
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Figure 19. Delay spectra of three redundantly averaged East-West baseline types for the instrumental Y'Y polarization, showing
the data calibrated with the smooth sky calibration (blue), the smooth RA calibration (red) and their residual (red), along with
the thermal noise floor (dashed-black) assuming a Tsys = 250 K. The two calibration yield nearly the same averaged power

spectra across all delays, which show consistency with the theoretical noise floor outside k) 2 0.2 h Mpc™".

nated by cable reflection and cross coupling instrumen-
tal systematics (Ilern et al. 2019b). Because we are
concerned with foreground leakage due to calibration in
this work, we remove these systematics before forming
power spectra for visual clarity. Specifically, we apply a
time-domain filter to suppress cross coupling in all vis-
ibilities with a projected East-West length greater than
14 meters (throwing out all other visibilities). This time-
domain filter is performed in the delay domain, and iso-
lates a rectangle spanning |7]| > 0.87herizon and fringe-
rates given by the 99% EoR power bounds in Kern et al.
(2019a) for each baseline independently. We also cali-
brate out a single cable reflection term for each of the
20-meter and 150-meter cables in the analog system per
dipole polarization also using the methods in Kern et al.
(2019a).

We form power spectra across a spectral window from
139 — 178 MHz and apply a Blackman window prior to
taking the Fourier transform to limit spectral leakage in
the discrete Fourier transform. Baselines are only cross-
multiplied with themselves, and are not cross-multiplied
with other baselines in a redundant group. Normally
this would produce a noise-bias in the power spectra, so
instead we cross-multiply baselines with themselves at
adjacent time integrations, having first rephased them
to the same pointing center (Pober et al. 2013). We do
this for all baselines for each time integration pair in the
range of 0 — 2 hours LST. After squaring the visibilities,
we incoherently average the power spectra across LST
and then average all power spectra of the same baseline

1

length (regardless of orientation), which is equivalent to
cylindrically gridding k space into k; and kj annuli.
Figure 18 shows the 2D power spectra in instrumental
XX and YY visibility polarizations with the smooth sky
calibration gains applied to the data (smoothed out to
7 = 100 ns). We also show the primary beam FWHM
limit (black) and the full horizon limit (white) in both
instrumental XX and Y'Y visibility polarization. Both
lines have an additive buffer of k| = 0.014 h Mpc~! to
account for the width of the Blackman kernel in Fourier
space. The dashed green line shows the maximum de-
lay scale of the applied gains after smoothing. We find
that most of the foreground power is contained within
the horizon limit, with some amounts of supra-horizon
leakage for short baselines. The strong pitchfork fea-
ture of the foreground emission tracing the horizon line
is not as prominent in this plot as it was in Figure 9,
which is due to the fact that it was partially removed in
the cross coupling filter applied to the data. Kern et al.
(2019b) showed that the edges of the pitchfork are slowly
time variable and thus can be separated from the cos-
mological 21 cm signal and filtered out with a high-pass
time filter. Figure 11 also demonstrates this, showing
that the two lobes at £7 = 100 ns are also centered
at f = 0 mHz, meaning they primarily contain slowly
time-variable terms. This means that the time filter de-
signed to eliminate cross coupling also helps to reduce
some of the strongest foreground emission straddling the
boundary of the foreground wedge and EoR window.
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To first order, Figure 18 tells us that our single field,
smoothed sky-based calibration with restricted degrees
of freedom has done a fairly good job calibrating the
data and has largely kept foreground power contained
within the foreground wedge. For short baselines, how-
ever, we can begin to see evidence for some amount
of supra-horizon emission that could be due to uncali-
brated gain terms or imperfectly removed cross coupling,
the latter of which is harder to remove for shorter base-
lines. This supra-horizon emission is located beyond the
smoothing scale of the gains and appears in amplitude
slightly larger than predictions of the high-order dish
reflections (Patra et al. 2018), but is contained within
k< 0.2 h Mpc™" down to nearly ~ 10° in dynamic
range against the foreground peak. Note that, possi-
bly coincidentally, this supra-horizon excess seems more
prevalent for baselines shorter than our initial baseline
cut of 40 meters. Deeper integrations will help to dis-
criminate whether the observed supra-horizon emission
extends further out in k| space at lower noise levels.

Figure 19 shows the same power spectra but focuses on
three unique baseline types: purely East-West baselines
of 14.6 m, 43.8 m, and 73 m in length. In addition to
showing power spectra of the data with the smooth sky
calibration (blue), we also show the smooth RA calibra-
tion (also smoothed out to 7 = 100 ns) and the residual
between the two. This demonstrates that the calibra-
tion strategies, post-smoothing, have nearly the same
impact on the averaged power spectrum. We also show
the theoretical noise-floor of the data (dashed-black),
which more clearly demonstrates the agreement of the
data with the noise floor outside k; 2 0.2 h Mpec .
Note that the noise floor for longer baseline types is
higher because there are fewer physical baselines, mean-
ing less averaging is done in the (coherent) redundant
average.

7. SUMMARY

In this work we discuss sky-based and hybrid-
redundant calibration strategies for Phase I of the Hy-
drogen Epoch of Reionization Array. We present a
CASA-based calibration pipeline for constructing sky
models, applying primary beam corrections and per-
forming direction-independent, antenna-based complex
gain calibration. We use this to characterize the time
and frequency stability of the gain solutions, finding
that slow and fast nightly time drifts in the gain’s over-
all flux scale are order 8% and 0.1% effects, respectively.
We also show that unmodeled diffuse foregrounds, mu-
tual coupling and other cross coupling systematics in
the HERA Phase I system are picked up in the process
of both sky and redundant calibration, and limit the

accuracy of our gain calibration at intermediate delay
scales 7 2 100 nanoseconds. By low-pass filtering the
gains with a Fourier filter, we can restrict the degrees
of freedom of the gains and we show that this mitigates
the effect of these gain errors. Additionally, while we
do not perform any kind of polarization calibration, we
find that polarization leakage from Stokes I to Q, U &
V is on the order of a few percent.

We also present a hybrid approach for combining re-
dundant and absolute calibration techniques and, sim-
ilar to Li et al. (2018), find that the hybrid technique
marginally improves the gain solutions over just sky-
based calibration, although we did not perform any self-
calibration iterations which would likely have improved
the fidelity of the sky-based gains. This was omitted
because of the difficulty of implementing this to high
dynamic range given the mediocre Phase I angular reso-
lution, but will be explored in future work. Additionally,
we show that the hybrid calibration scheme is also lim-
ited by gain errors at similar 7 2 100 ns scales as the sky
calibration, which we suggest can be further mitigated
by enacting a larger minimum baseline cut in the calibra-
tion as well as attempts to include the diffuse emission
component of the sky into the calibration model.

Finally, we form two-dimensional power spectra across
139 — 178 MHz from 0 — 2 hours LST, and show that
most of the foreground power measured by HERA is
contained within the horizon limit of the array, but we
do observe non-negligible supra-horizon power for short
baselines that were not included in the calibration. This
emission is confined within k| < 0.2 h Mpc™! down to
the noise floor of the data, which achieves a dynamic
range of nearly 10® against the peak foreground power.
This could be due to uncalibrated gain terms at these
scales or also from residual instrumental systematics.
Deeper integrations will help make this clearer and will
help us understand how far in k) the supra-horizon emis-
sion extends. In repeating the analysis for both the
smooth sky calibration and smooth hybrid calibration,
we find that they have nearly the same impact on the
power spectra. Future observing seasons with the full
HERA array will make high dynamic range imaging and
direction-dependent calibration easier to implement and
may be a way to mitigate some of the errors observed in
the gain solutions. Overall, our work shows that HERA
Phase I can be relatively well-calibrated for a foreground
avoidance power spectrum estimator with only a few de-
grees of freedom across the time and frequency axes.
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APPENDIX
A. PARTIAL ABSOLUTE CALIBRATION

Partial absolute calibration is the process of taking a set of sky model visibilities and setting up a system of equations
that solves for just the degenerate components of redundant calibration. The number of degenerate modes in redundant
calibration depends on the kind of redundant calibration being employed (Dillon et al. 2018). Here we discuss the
degeneracies associated with the “2-pol” scheme, which calibrates the X and Y dipoles separately and ignores cross-feed
polarization terms. As shown in Section 5, there are three main degeneracies in redundant calibration for each dipole
polarization: the average gain amplitude (or the absolute flux scale of the instrument) and a “tip-tilt” phase gradient
as a function of distance from the center of the array for both the East and North spatial axes (or the overall pointing
center of the instrument). Each of these parameters has an arbitrary frequency dependence, meaning that various
kinds of spectral structure can occupy these degenerate modes. We can express these parameters in the ith antenna
gain of the X dipole as

9i,x (V) = exp(Nabs, x () + 270 (T x1i,p + TN x7i,n) +i(Pp,x (V)rip + PN x (V)riN)), (A1)

where r; g is the East distance of antenna ¢ from the center of the array in meters and we have explicitly included the
frequency dependence of the gain and its parameters. Note that we have redefined the phase component into the sum
of two terms, a spatial delay gradient Ty = (Tr,x,Tn x), and a spatial phase gradient ®x = (Pg x, PN, x). Note
that the delay gradient parameter has units of nanoseconds / meter and is itself frequency-independent, but has the
effect of creating a phase slope in the gain across frequency. The delay gradient manifests as a delay plane across the
array that sets the phase center. It forms a subspace of the original phase gradient space so we simply pull it out and
redefine the phase gradient term ® to be a deviation about the delay plane. This is important because when we go to
solve the calibration equation we want the phase measurements to be near zero or at least considerably less than 27
to mitigate phase wrapping (Liu et al. 2010). Phase wrapping creates local minima that confuse the calibration phase
solver, which can be alleviated through pre-conditioning of the system of equations by first solving for and eliminating
the delay gradient term.

Using a logarithm to linearize the calibration equation, the average antenna amplitude for the X dipole is found by
solving the following system of equations
Sd)t(dx

model
Viixx

In

2
Bl [ =A% = | 2 | (e ) (A2)
3! . ’
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where we have specified now that the visibilities are from the X X instrumental polarization. We use the linear and
non-linear equation solving package linsolve to solve these systems of equations.
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Figure 20. The delay gradient (left) and East-West phase gradient (right) derived by partial absolute calibration for the X
dipole polarization using the GLEAM-02H field flux density model. We observe a significant amount of spectral structure in
the phase gradient parameter, meaning it cannot be overlooked in partial absolute calibration.

The delay gradient parameter can be isolated by taking the phase of the data-model ratio:

Vmodel

Vdata
angle [ —22X (v) = 2mvTxr;, (A3)
i5,X X

where the angle(x) operator is tan™!(Im(x)/Re(x)). However, we can see that the delay gradient parameter is not
inherently a function of frequency, so instead of solving this equation at each frequency we should re-cast it in a form
that is frequency independent and then solve that equation. This can be expressed as

Vd_ata
delay <V”’XX > =Txr;j, (A4)

model

i, X X
where the delay(x) operator takes the Fourier transform of its argument and identifies the delay of its peak in amplitude
via quadratic interpolation of the three strongest Fourier modes. The system of equations for the delay gradient of
the X dipole is then

V,d,ata
delay | &2ar
o Tij, B Tij,N 7
_ ydata AL E.X
Y= delay ‘;n’j;,ifjf =AX=| rjpE TiRN . : (A5)
kXX ) TN x

The estimated delay gradient gain is then expressed as §; x (v) = exp(i27ru’i‘ XTi)-
After dividing the data visibilities by the estimated delay gradient gains, we can solve for the leftover phase gradient

parameter for the X dipole with the system of equations

Ve,
angle ( (A5
T Tij, B Tij,N b
. i}plata . s E,X
Y = angle | 2% =AX=| 1jKE TikN . ) (A6)
Vmodel J J
ik, X X . (I)N,X

where V92t denotes the fact that we have first divided the data visibilities with the delay gradient gain (or equivalently
multiplied the model visibilities by the delay gradient gain). The average amplitude parameter, being orthogonal to
the phase parameters, does not necessarily need to precede these steps. The full partial absolute calibration gain is
then simply Equation Al filled with our estimates of the degenerate parameters.

One interesting feature about delay and phase gradient calibration is that they do not require a reference antenna.
Because phase is a periodic coordinate system, sky-based phase calibration requires that we select a reference antenna
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whose phase is identically zero, which is a way to constrain the overall phase parameter which does not have a physical
meaning. If the array coordinates are defined in East-North-Up coordinates, then for delay and phase gradient
calibration we can change the overall phase of the gain solutions by moving the estimated delay plane or phase plane
up or down along the Up axis (i.e. the z-axis if the array is defined in X-Y-Z coordinates). Moving the delay and
phase planes up or down does not change the relative delay and phase between antennas, which is really what we care
about. We can pin this free parameter by selecting the Up-axis intercept of the plane, which is equivalent to setting
the origin of the r; vector coordinates that, up to now, we have defined as the center of the array. We can see now that
setting it at the center of the array is not strictly required, but it does make computations easier if done so. Therefore,
the act of setting the origin of the antenna position coordinate system plays the same role in delay and phase gradient
calibration as the reference antenna does in standard sky-based phase calibration.

In Figure 20 we show the derived delay gradient (left) and phase gradient (right) parameters across the array for
the X dipole polarization. The phase gradient terms shows significant amounts of spectral structure, highlighting its
ability to pickup on non-trivial spectral terms in the data. For a large, 3504 element array these steps may take too
long to calibrate the data in real time using all ~ N? baselines. However, for partial absolute calibration we may get
away with only using some of the baselines instead of all of them. The degenerate parameters of redundant calibration
outlined above are not actually specific to any individual antenna in the array: they are only properties of the array
itself. We could, for example, use only a fraction of the longest baselines in the array for partial absolute calibration,
which gives us a lever-arm advantage for estimating the delay and phase gradient terms. Concern about this approach
are 1) increased noise in the gains due to less data points in our y vector and 2) if the baselines selected are drawn
from a unique population of antennas relative to all other antennas in the array, in which case the average amplitude
and phase gradients estimated with the longest baselines (which will preferably come from antennas near the edge of
the array) will be mis-estimates for the other antennas not represented in the system of equations. One could devise
strategies for mitigating these kinds of concerns by, say, ensuring that while only a fraction of the baselines are used
in calibration, every antenna is at least somewhat represented in the system of equations.

B. SOFTWARE

The analysis presented in this work relies heavily on the Python programming language (https://www.python.org),
and Python software developed by HERA collaboration members. Here we provide a list of these pack-
ages and their version: aipy [v2.1.12] (https://github.com/HERA-Team/aipy), healvis [v1.0.0] (https:
//github.com/RadioAstronomySoftwareGroup/healvis; Lanman & Kern 2019), hera.cal [v2.0] (https://
github.com/HERA-Team/hera_cal), hera_sim [v0.0.1] (https://github.com/HERA-Team/hera_sim), pyuvdata
[v1.3.6] (https://github.com/RadioAstronomySoftwareGroup/pyuvdata; Hazelton et al. 2017), and uvtools
[v0.1.0] (https://github.com/HERA-Team/uvtools). These packages in turn rely heavily on other publicly
available software packages, including: astropy [v2.0.14] (https://astropy.org; The Astropy Collaboration
et al. 2013), healpy [v1.12.9] (https://github.com/healpy/healpy), hbpy [v2.8.0] (https://www.hbpy.org/),
matplotlib [v2.2.4] (https://matplotlib.org), numpy [v1.16.2] (https://www.numpy.org), scipy [v1.2.1]
(https://scipy.org), and scikit-learn [v0.19.2] (https://scikit-learn.org).
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