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Temporal Decomposition-Based Stochastic
Economic Dispatch for Smart Grid
Energy Management

Farnaz Safdarian

Abstract—This paper presents a temporal decomposition strat-
egy to decompose security-constrained economic dispatch (SCED)
over the scheduling horizon with the goal of reducing its computa-
tional burden and enhancing its scalability. A set of subproblems,
each with respect to demand response, normal constraints, and
N — 1 contingency corrective actions at a subhorizon, is for-
mulated. The proposed decomposition deals with computational
complexities originated from intertemporal interdependencies of
system equipment, i.e., generators’ ramp constraints and state of
charge of storage devices. The concept of overlapping intervals
is introduced to make SCED subproblems solvable in parallel.
Intertemporal connectivity related to energy storage is also mod-
eled in the context of temporal decomposition. Besides, reserve
up and down requirements are formulated as data-driven non-
paramefric chance constraints to account for wind generation
uncertainties. The concept of ¢—divergence is used to convert
nonparametric chance constraints to more conservative paramet-
ric constraints. A reduced risk level is calculated with respect to
wind generation prediction errors to ensure the satisfaction of
system constraints with a confidence level after the true real-
ization of uncertainty. Auxiliary problem principle is applied
to coordinate SCED subproblems in parallel. Numerical results
on three test systems show the effectiveness of the proposed
algorithm.

Index Terms—Temporal decomposition, distributed
optimization, economic dispatch, demand response, energy
storage, chance constraint.

NOMENCLATURE

Indices, Sets, and Parameters

c Index for contingencies.

i,j Index for buses.

ij Index for lines.

k Index for iterations.

m Index for subproblems and subhorizons.
s Index for storage devices.

t Index for time intervals.
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u Index for units.

w Index for wind farms.

a,b,o Cost coefficients for generating units.

bsh load shedding cost.

PD; ; Power demand at bus i at time f.

PD; Total power demand at time f.

SP,, Subproblem m corresponding to subhorizon m.

SP;} Subproblem m with dummy time intervals.

ICC,, 1 Intertemporal consistency constraints between
two consecutive subproblems m and m + 1.

UR, Ramping up limit of unit u.

DR, Ramping down limit of unit .

T Overall time horizon.
8 Values of shared variables determined by sub-
problems SP | at iteration k — 1.

A Vector of Lagrange multipliers.

B.y Tuning parameters.

p Penalty factor.

Z,Z Minimum and maximum of a variable z.

n Efficiency of storage.

Variables

Es State of charge of storage s at time 1.

Ich s, I4c,s Binary variables for modeling storage charging
and discharging modes.

Pu.t Generation of unit # at time f.

Pch.s.t Charging power of storage s at time f.

Pdc.s.t Discharging power of storage s at time f.

Pij.t Flow in line ij at time f.

Pshiit Load shedding at bus i at time £.

8it Voltage angle at bus i at time f.

rd, Reserve down provided by unit u at time £.

Tut Reserve up provided by unit u at time f.

Em—1,m Set of shared variables pertaining to overlapping
time intervals between subproblems m—1 and m.

E}‘n, E;, Shared variables of subproblem m with its
previous and next neighbors at iteration k.

75 Values of a variable z at time ¢ after contin-

gency c.

Uncertainty Related Parameters and Functions

S, () True wind power PDF at interval 1.
Jw,t () Estimated wind power PDF at interval .
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E (ﬁw,t) Expected value of wind power generation at
time f.

f’w‘t Wind power generation at time f.

'g A random variable.

o Risk level of chance constraints.

P Probability measure.

P Estimated distribution.

fﬁ‘ﬁ Estimated quantile function (i.e., inverse CDF).

I. INTRODUCTION

NTEGRATING renewable energy sources, storage devices,

and demand response into power systems have brought new
challenges to system operation and planning problems, such
as security-constrained economic dispatch (SCED) [1]. Two
main challenges include effective uncertainty modeling and
solving large optimization problems. The size of SCED grows
by increasing the number of uncertainty sources, the size of the
system, and the number of considered contingencies. Another
important factor that increases the size and computational bur-
den of SCED drastically is the number of time intervals of the
considered scheduling horizon. Operators should solve SCED
with different time horizons, e.g., one day or one week, for
various power system analysis purposes. Intertemporal con-
straints, e.g., generators ramp limits and state of charge of
storage devices, increase the complexity and solution time of
SCED, particularly if the number of time intervals increases.

Decomposition approaches are presented in the literature to
address this challenge and solve SCED in a reasonable time
span. The majority of existing papers deal with decompos-
ing SCED over geographical areas [2]-[5]. In geographical
decomposition, a power system is decomposed into several
smaller zones and a local subproblem is formulated for each
zone. References [2], [6], [7] review decomposition and dis-
tributed optimization algorithms, such as alternating direction
method of multipliers [8], analytical target cascading [9], opti-
mality condition decomposition [10], and auxiliary problem
principle (APP) [11], that can be used to solve SCED and
optimal power flow. In [12], a distributed bisection algorithm
is proposed for economic dispatch to minimize the aggregated
cost of a network. In [13], a decentralized and self-organizing
solution framework for economic dispatch is proposed.
In [14], the distributed economic dispatch and demand
response initiatives for grid-connected microgrids with high-
penetration of wind power are studied. Distributed trans-
mission+distribution SCED using multi-parametric quadratic
programming is presented in [3]. Reference [15] introduces
a consensus-based control scheme to solve economic dispatch
distributedly. Decentralized approaches for solving economic
dispatch in smart grids are presented in [16]-[20].

However, the computational complexity originating from
intertemporal connectivity between constraints is not consid-
ered in geographical decomposition strategies. If the number
of time intervals grows, the computational burden of SCED
increases. In addition, the solution time increases drastically
with considering N — 1 security criteria, which contribute to
increasing the number of intertemporal constraints. To solve
multi-interval problems, such as look-ahead SCED [21]-[23],

centralized optimization methods may face computational
challenges as the size or the number of considered intervals
grows. Geographical decompositions would reduce the solu-
tion time by breaking the problem, e.g., look-ahead SCED,
over geographical areas, but they do not deal with intertem-
poral constraints.

On the other hand, while some distributed approaches con-
sider uncertainties [24], many others ignore uncertainties as
they complicate distributed optimization. Chance-constrained
programming is an efficient method for modeling uncertainties
in short-term operation problems, such as optimal power flow,
SCED, and unit commitment. Chance constraints do not hinder
the complexity of distributed optimization significantly. The
majority of existing papers, particularly for distributed SCED,
use parametric chance-constrained methods [25], [26] where
a known probability distribution function (PDF) is consid-
ered for uncertain parameters. However, a random parameter
may not belong to any class of known distribution function.
Parameters and shape of PDFs might change depending on the
weather condition and geographical location.

In this paper, we aim to decrease the solution time of the
SCED problem taking into account wind generation uncer-
tainties, controllable loads, energy storage constraints, and
N — 1 contingency corrective actions. A temporal decompo-
sition strategy is proposed to decompose the problem over
the time horizon and create a set of subhorizons, each rep-
resenting a segment of the considered scheduling horizon.
The concept of overlapping time intervals is introduced to
model intertemporal connectivity corresponding to generators’
ramp limitations and energy storage constraints for transi-
tion between two consecutive subhorizons and in order to
make SCED subproblems solvable in parallel. The proposed
decomposition strategy relieves complexities originated from
intertemporal constraints and can be considered as the com-
plement of geographical decomposition. That is, temporal
decomposition can be combined with geographical decom-
position to further reduce the SCED solution time. Wind
generation uncertainties are considered and data-driven non-
parametric chance constraints are presented to model reserve
up and down requirements. The concept of ¢—divergence is
used to calculate a reduced risk level with respect to wind fore-
cast errors. Nonparametric chance constraints are reformulated
with their more conservative, equivalent parametric constraints
to ensure the satisfaction of system constraints after the true
realization of uncertainty. APP, along with a suitable initial-
ization technique, is applied to coordinate SCED subproblems
in parallel. To evaluate the effectiveness of the distributed
approach, we solve a week-ahead SCED for a 6-bus system,
the IEEE 24-bus system, and a 472-bus system. Promising
results are obtained as compared to those of the conventional
centralized algorithm.

The remainder of this paper is organized as follows.
Section II presents temporal decomposition and data-driven
chance constraints. In Section III, modeling interdependencies
between consecutive subhorizons is explained. A coordination
strategy is discussed in Section IV. Simulation results are illus-
trated in Section V, and concluding remarks are provided in
Section VI
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CP: scheduling horizon =(1,-..T}

————————————— ->)
SP1: scheduling SP:z: scheduling
subhorizon = {1, .7} subhorizon ={T; +1..., Tz}

SPu: scheduling
subhorizon = {Th=y + 1., Ty}

Fig. 1. Time decomposition concept.

II. TEMPORAL DECOMPOSITION OF SCED

Consider a centralized SCED problem (CP) with an over-
all time horizon of T. As shown in Fig. 1, we propose
to decompose CP over the time horizon to create n SCED
subproblems (SPs), each including a subhorizon of T so that:

(1,....,TI}U---U{Tu1 +1,..., T} ={L...., T} (1)

Each SP contains fewer variables and constraints, espe-
cially intertemporal constraints, than the original CP. Hence,
subproblems are computationally less expensive than CP.

A. Deterministic Constraints of Subproblem m

Consider subhorizon m with the scheduling interval of
{Tm—1 +1,..., Ty} € {1,...,T}. A single-stage nonpara-
metric chance-constrained-based SCED is formulated for SP,,
whose objective function is to minimize operational costs over
subhorizon m. The first three terms of (2) are generators cost
function, the fourth term is the reserve cost, and the fifth term
is the load shedding cost [1].

min Z Z aupu,tz + bupu,t + Out + bur:ﬂ
t u

+ Z Dsh.i tPsh,i.t (2)

1

The continuous decision variables are {Es ¢, Pu.t, Pch.s.t> Pde.s.ts
Pii.t> Pshyits it rg,,, riff’,} and the binary decision variables
are {Iops,ldcs) under normal conditions and each contin-
gency c. Constraints of SP,, include system and component
restrictions under normal condition and N — 1 security cri-
teria Vi € {T,—1 + 1,...,Ty}. Constraints under normal
condition are power balance equalities (3)-(4) and transmis-
sion line limitation (6), load shedding limitation (7), upper
and lower bounds of generating units (8)-(9), units ramping
restriction (10)-(11), units spinning reserve up and down con-
straints (12)-(15), storage state of change at time #(16), storage
charge and discharge power restrictions (17)-(18), constraints
to avoid simultaneous storage charge and discharge (19), and
upper and lower bounds of storage energy level (20) [1],
[27], [28]. To ensure system security after the occurrence
of a contingency, corrective actions should be scheduled by
adjusting control variables (e.g., power generated by units
and storage power charge/discharge) within a reasonable rage.
A set of new variables are defined for each contingency c.
System and equipment constraints corresponding to each con-
tingency ¢, known as N — 1 security criteria [1], [27], [28],
include power balance constraints (21)-(22), line flow lim-
its (24), load shedding constraints (25)-(26), thermal units
upper and lower bounds considering reserve values (27)-(32),
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thermal units adjustment capabilities after the occurrence of
a contingency as compared to their generation under normal
condition (33), and storage limitations after the occurrence of
a contingency (34)-(38). Expression (34) shows the amount
of energy that a storage unit must provide to help the system
after the occurrence of a contingency [28]. After an outage,
fast-response storage units inject or extract power instantly to
bring line flows back down within their short-term emergency
rating. The power injections or extractions from the storage
units remain constant for a period of r; (e.g., 5 minutes) until
generators start ramping. During the ramping period 72 (e.g.,
10 minutes), storage units reduce their injections or extractions
until they reach zero, while generators ramp their output up
or down. Flows in overloaded lines decrease until they reach
their long-term emergency rating [28].

Zpu,t + Z (pdc,s,.r _pch,s,t) + Z E(pw,.r)

=Y PDi;—psis Vt 3
i
8it —8ir .
pit—PDiy =) ——= Vi, Vi 4
7 X
Srefr =0 ¥t 5)
Sif—8jt = ..
Pj=pijir=———<Pj Vij, VI (6)
I
Py, : < Dshis <Pei Vi, Vt O
Bu‘f = Pu,t‘l’rﬁﬂ = I_Ju,t Yu, Vit (8)
Bu‘f = pu,t - fg,, = ?u,t Vu, Vi (9)
(pu,t+r:ﬂ)_(pu,t—l - rﬁ,r) <UR, Vu, Vt (10
(Pu,t—l"‘r:ﬁ)_(}’u.f - rﬂr) <DRy, Vu, Vit (11)
0 <r,, <URy 10min Yu, ¥t (12)
0<rl, <Put—pusr Yu, Vit (13)
0<rd, <DRyiomin Yu, Vi (14)
0<rd, <put—P,, Vu, Vi (15)
Es,t = Es,.r—] + (.upch,s,.r - pdc,s,t)A t Vs, Vit (16)
Ich,s,t . £ch,s = Pch,s,t = Ich,s,.r 'I_Jch,s Vs, Vit (17)
Idc,s,.r 'Bdc‘s = Pdc,s,t = Idc,s,.r 'I_Jdc,s VS, Vit (18)
Idc,s,.r + Ich,s,.r = 1 VS, vt (19)
E,<E;,<E; Vs, Wt (20)
ch“,f + Z (pfic,s,.r _ch,s,r) + Z E(p“",f)
73 & W
=Y Diy—pli, V. Ve 21)
l c _ s
pS,— PDiy = Z% Vi, Vi, Ve (22)
- i
7
Cre=0 Vi, Ve (23)
e 0 —8 =
P =pj,= X =P; Vij, Vc 24
I_Jsh‘;' Epﬁh‘i‘f = ?sh,i Vi, Vt, Vc (25)
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Pshit — Pspic| < A Vu, Vi, Ve (26)
P, <D Hrui’ <Pus Vu, Vt, Vc (27)
P, < pg  — 1€ <Py, Vu, VI, Ve (28)
0< r ‘< URyu 10min Yu, Vt, Vc (29)
0< rﬁf}“ <Pyt —pur Yu, Vi, Ve (30)
0 < r¢ < DR, 10min Vu, V1, Ve (31)
0<rdf <pui—P,, Vu, V&, Vc (32)
Put—Po,| <A Vu, Vi, Ve (33)
c

ES,=E,,+(u+ {;v.:srz)(mogmr _P d:;"‘)m

Vs, Vi, Ve (34)
Ichst Pops {pchst Ichs.r ﬁd,‘s Vs, Vt, Ve (35)
st Pacs = Picsst < licsi Pdes Vs, V1, Ve (36)
IS, +15,, <1 Vs, Vi, Ve 37
E <E,<E; Vs, Vt, Vc. (38)

B. Probabilistic Constraints of Subproblem m

In addition to (3)-(38), adequate reserve up and down
should be provided to compensate wind generation forecast
errors. Reserve requirements are formulated as probabilis-
tic constraints. Chance-constrained programming is a suitable
approach for modeling reserve requirements [29]. Wind power
depends on different factors and may not follow any known
class of density functions. Chance constraints are sensitive
to PDFs. If the true realizations of wind generation do not
match with the assumed PDF, the probability of satisfaction of
parametric chance constraints may violate the predetermined
confidence level that results in system security degradation.

We formulate two data-driven nonparametric chance con-
straints (41) and (42) to ensure that generation and reserve
down/up provided by thermal units and storage satisfy load
with a confidence level of 1 — « if wind power goes above
or falls below its forecast values. A confidence set for each
interval f is specified by the ¢-divergence function and toler-
ance d,,; representing the size of the confidence set [30]. We
can use the worst distribution in the confidence set (i.e., the
PDF with the largest distance from the true PDF within a tol-
erance d) to formulate nonparametric chance constraints (41)
and (42). Using historical data, we define the confidence set
for wind generation at time ¢ as [30]:

a dP,,,
Dyt = =IPWJ e My: Dw,.r(fw.t ||fw,r) <dwt. fwr= _dg_t
¢
(39

where P,, ; represents the ambiguous true distribution function
for wind power at interval f, and M, is the set of all dis-
tribution functions. The distance between the estimated and
true wind power PDFs, or ¢-divergence D ,(-||-), is defined
as [30]-[32]:

w t fw tllfw t f Cw fg )?w,f(gf)da (40)

where ¢(-) is a convex function on R*. The summation of
generation minus reserve down should be less than or equal
to demand. The reserve down is required for situations in
which the true realization of wind generation is larger than
its predicted value.

ﬁé‘% PlZﬂ:Pu.r - rg,r + Zs:pdc,s,t — Pch,s,t

+ Zpsh,i,t + Py, < PD:] >1—a vVt (41)
i

where the inf operator represents PDF with the largest distance
from the true PDF within a tolerance d. The nonparamet-
ric reserve up chance constraints is required when the true
realization of wind generation is less than its expected value.

]P‘ei%fw,r ]P{ Zu:p“" + .":ﬁ + Xs:pdc'.s,r — Pch,s,t

+Zpsh,i,r +ﬁw,t > PD:} >1—a Vi (42)
I

We replace the risk level @ with a reduced nonnegative risk
level o/, with respect to the divergence function ¢(-) and the
divergence tolerance d. ThEI:I, as proven in [31], the predicted
PDF for wind generation, PP, can be used to reformulate (41)
and (42) as parametric chance constraint using P instead of
infpep. This procedure is described below.

«» Impose no assumption on the PDF of wind generation at
each time interval, and estimate the unknown PDF (IP)
of random parameters from historical data using adaptive
kernel density estimator (AKDE) [33].

« Form a histogram set of real data, from historical wind
generation at time f. Determine pointwise errors between
the histogram and P, and calculate the distance d from
the square of errors as [30]:

d=SE_, (43)

« Choose an appropriate divergence function ¢(-), such as
the yx divergence of order two that is suitable for small
risk levels, and solve a univariate optimization problem
to find &’ for each time interval ¢ as [31]:

d? —4d(a —a?) — (1 — 2a)d
2d +2 '

« Avoid negative risk levels as:

o =oa —

(44)

o't = max(0, o). (45)

« In (41) and (42), replace infp.p by P and by o/, .
We now rewrite reserve down constraint (41) as follows:

fP?{ ﬁw,t < PD; — (Zpu,t - fit + Zpdc,s,t — Pch,s,t
+y ps;,,f,r) } >1—off Vi (46)
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Knowing that in the probability theory P{Y <y}
P{Y > y}, we reorganize the reserve up (45) as:

ﬁ{ﬁw,r < PD; — (Zpu.r + f':ﬂ + Zpdm.t
u E

— Pchs,t + Zpsh,i,t)] = a:+ Yt (47)
i

The left sides of (46) and (47) are the estimated cumulative
distribution function (CDF) of wind generation P,, ; at time f.
By taking the CDF inverse, (46) and (47) are expressed as:

PD, — (Z Put + 1y + Y Pdesit — Pehus,t + me,;.:)
u 5 i

< CDFp, (") vt (48)

PD; — (Zpu.t - fi, + Zpdc.s.r — Pch,s,t T Zpsh,i,r)

> CDFp, (1 —a*) Vi

(49)

The left-hand sides of (48) and (49) are variables and the
right-hand sides are constant values. These linear constraints,
which are linear equivalents of (41) and (42), ensure that the
reserve up and down constraints are satisfied for all wind
power distribution functions in the confidence set.

The reduced risk level makes chance constraints more con-
servative to account for wind power PDFs estimation errors.
The level of conservativeness or the reduced risk level depends
on errors of estimated PDFs. If more data or better estimation
approaches are available to obtain more accurate wind power
PDFs, the reduced risk level becomes closer to the user’s
predetermined risk level and the level of conservativeness of
constraints goes down.

III. MODELING SUBHORIZONS TEMPORAL
INTERDEPENDENCIES

A. Recovering Centralized SCED From Subproblems

Consider two consecutive subhorizons m and m + 1 that
cover intervals {Tp,—1 + 1,..., Ty} and {T,, + 1, ..., Tipi1},
respectively. Formulating SP,, and SP,,; as presented in the
previous section models intertemporal constraints inside each
subhorizon, but it disregards constraints for transition between
two consecutive subhorizons. Thus, the constraint sets of sub-
problems (denoted by CSP) are mutually exclusive and their
intersection is empty.

CSP,y N CSPyy1 =0 (50)

This is not correct from the perspective of the central-
ized SCED. Although the overall objective function of the
centralized SCED can be recovered by combining all sub-
problems’ local objective functions, its constraint set cannot

be reconstructed since in the centralized SECD we have:
CSPr, NCSPr,,,, # Y (51)

That means collecting all elements (i.e., objective terms and
constraints sets) of subproblems by taking their union does not
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ICC,, ICCys  ICCy,
Se e
e DE=——==== > E——>
SP SP2 SPx

Fig. 2. ICCs for modeling transition between subproblems.

construct the centralized problem.

CP # SPyUSPy---USP,USP, 1 U---USP, (52)

Hence, solving these independent subproblems provide
a solution that may be infeasible or suboptimal from the per-
spective of the whole scheduling horizon T. To solve this
challenge, as shown in Fig. 2, a set of intertemporal con-
sistency constraints (ICCs) must be added to the problem to
model transition between subproblems. Now, the centralized
SCED can be reconstructed by collecting all elements of SPq
to SP, and ICCs.

CP=SP1UICC12USP,UICCy3U---UICC,_1,USP,
(53)

Although these ICCs are required for accurate SCED
decomposition over the time horizon, the two following
challenges must be addressed.

1. How to model ICCs knowing that there are sev-
eral intertemporal constraints corresponding to system
requirements and equipment models.

2. ICCs are obstacles for solving subproblems in a dis-
tributed manner independently as CSPy, N CSPy,
ICCr,,

+1 =

Tmt1-

B. Modeling Interdependencies With Overlapping Intervals

Intertemporal constraints of SCED include generators’ ramp
limits (10)-(11), and the state of charge of energy storage (16)
and (34). Modeling these constraints as ICCs in the context
of temporal decomposition becomes more challenging, taking
into account possible corrective actions after the occurrence of
a contingency, reserve up/down requirements, wind uncertain-
ties, and demand response. A naive approach is to start solving
the first subproblem and fix the state of the last interval of
a subproblem in the first interval of its next subproblem. SPq
is solved first and the variable values at the last interval are sent
to SP>. Ramping and storage constraints in SP; are formulated
using these values as a fixed initial state. This procedure is car-
ried out until SP, is solved. This process is neither sequential
nor iterative. The flow of information exchange is from one
subproblem to its next subproblems. No feedback is sent from
one subproblem to its previous one. Although this makes the
solution feasible, the first few subproblems force their desired
states to other subproblems as hard constraints that lead to
a suboptimal solution for the overall SCED problem.

To ensure both feasibility and optimality of the obtained
solution by the temporal decomposition strategy, we propose
the concept of overlapping time intervals to facilitate modeling
ICCs between subproblems. We add dummy intervals to the
ending of all subproblems, except for the last SP,. The dummy
time interval are copies of the first intervals of all subprob-
lems, except for SP,. Let us name subproblems with dummy
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SPa-1

» SBY
> m +
Intra intervals: < " i N — SEnn
(1, s Toos} Overlapping  Intra intervals: - Inira intervals:
interval:  {Tjy—y + 2, ... T} Overlapping  {T, +2,..,T..}
Tm_i + 1 . . m g ere s Ay
interval:
Tm+1

Fig. 3. Three consecutive subhorizons with overlapping time intervals.

time intervals as SP™. Consider Fig. 3 that shows a horizon
that is decomposed into three consecutive subproblems SP+_1,
SP} and SP}, . The intra intervals of SP;" |, SP} and SP}
are {1,...,Tp 1}, {Tnm1 +2, ..., T, (T +2,..., T,

m+l }s
respectively. The overlapping time intervals, indicated by

red in Fig. 3, are T,_; + 1 between SP' . SP}. and
T,n +1 between SP;L‘ and SP:; 1 Since each overlapping time
interval is considered in two neighboring subhorizons, internal
intertemporal constraints of SPY_,, SP;" and SP:; 41 will be
satisfied locally with respect to constraints of overlapping
intervals. Now, subproblems are rewritten as follows:
SPT_:min (2)
s.t. (3) — (38), (48)&(49)
vie (1,2, ..., Tu_1} U {Tm_1 + 1}
SP}: min (2)
s.t. (3) — (38), (48)&(49)
Vi€ Ty + 1}U{Tpo1 +2, ...,
SP I min (2)
s.t. (3) — (38), (48)&(49)
Vie (Tn+ 1}U{Tn+2,...

T} U{Tn + 1}

? Tm+1}

Variables and constraints of each overlapping time interval
appear in two neighboring subproblems. By collecting all
elements of subproblems, the intersection of consecutive
subproblems, which includes variables, objective terms, and
constraints at overlapping intervals, is counted twice. The cen-
tralized problem can be recovered by taking the union of
SPy_,, SPy,, and SPy | and subtracting the intersection of

m—1°
each two consecutive subproblems from it as follows:

= (SP}_,USPFUSP! ) — (SP}_, NSP})
— (SPL NPl ). (54)

C. Converting Overlapping Interval Into Shared Variables

Control variables at overlapping interval T,,_1+1 are shared
between SP_|SP;", and variables at interval T,,+ 1 are shared
between SP$and SPjn‘ - Each pair of shared variables must
be the same to ensure consensus between subproblems and
satisfy intertemporal constraints. We use two sets of con-
trol variables as shared variables: pre- and post-contingency
variables. These sets change depending on the SCED model,
whether it is preventive or corrective. Pre-contingency shared
variables are power generated by thermal units, reserve up
and down of thermal units, storage state of charge, and stor-
age charge and discharge powers. Since corrective actions are
considered in the formulated SCED, we model generators’
power output and reserve, storage state of charge, and storage
charge and discharge powers pertaining to each contingency as

post-contingency shared variables. The set of shared variables
between SP!_, and SP;,; are:

[x]

up
m—1,m = [pu,h Ty ts fg s Es,t, Pch,s,ts Pdc,s,.r]

U{PE e P P B oD P}
Vi=Tm_1+1 (55)
Shared variables between SP+and spr are the

m4-1° Eom M)

same as (55) but for t =T, + 1

D. Consistency Constraints

Shared variables between every two consecutive subprob-
lems are duplicated. For instance, E,_1, is duplicated to
create E,_1 and E,,. A set of consistency constraints is for-
mulated and enforced in each SP to ensure that each pair of
shared variables reaches the same value. The intertemporal
consistency constraint between SP:;_I and SP; are:

ICCp_tm: Bmo1 — Em=0 (56)
and they are as follows for SP; an jn' E
ICChumt1: Ep — Emy1 =0 (57)

E, and 2, denote the shared variables of subproblem m
with its previous and next neighbors, respectively.

E. Storage Initial State of Charge

In the centralized SCED, the initial state of charge of storage
is given. However, in the proposed temporal decomposition,
the initial state of charge of storage is known only for the
first SP, not others. This is an obstacle for formulating (16)
in the first time interval of subproblems. One possible solu-
tion is to solve the first SP, pass the state of charge of storage
obtained in its last time interval to the next SP, and use it
as the initial state of charge of energy storage. This causes
two problems: 1) the subproblems cannot be solved in par-
allel that increases the solution time, and 2) each SP forces
its willingness for the state of charge of storage on its next
subproblem that makes the resulted solution suboptimal. To
solve this challenge and allow a parallel solution of subprob-
lems while satisfying the solution optimality and feasibility, we
introduce a new shared variable between every two consecu-
tive subproblems. Consider SP;,_ and SP;;. The initial state of
charge of storage in SP}, needed for the overlapping interval
Tm—1 + 1 is the state of charge of storage at interval T,,_1.
We introduce a control variable Eq to allow SP, formulat-
ing (16) at its first interval T,,_1+1. E; o and its corresponding
copy in sp; _1» i€, Eg 1,_,, are shared variables between these
two subproblems E; 1, , and E;o are added to E,_; and
Em. respectively, and the following intertemporal consistency
constraint is included in both SCED subproblems:

ES,T,,,_| - Es,[] =0. (58)

IV. COORDINATION STRATEGY

Although enforcing (56)-(58) satisfies consistency between
subproblems, it is an obstacle for solving subproblems in
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parallel and makes the solution suboptimal. We relax these
constraints in subproblems’ objective functions using aug-
mented Lagrangian relaxation and apply auxiliary problem
principle (APP) to make mismatches between shared variables
close to zero based on the concept of penalizing violations
of consistency constraints. APP is a message passing-based
iterative method that is suitable for parallel computing [11].

A. Initialization Strategy

APP, like most distributed optimization algorithms, is sensi-
tive to the choice of initial values. We suggest an initialization
strategy to enhance the performance of the coordination algo-
rithm. The intertemporal coupling between subproblems is
neglected, the overlapping time intervals are ignored, and sub-
problems are solved independently. The obtained values for
variables corresponding to the overlapping time intervals are
used for initialization. This enhances the performance of the
coordination algorithm significantly as the obtained values for
shared variables are usually near their optimal values, even if
correlations between subproblems are ignored.

B. APP Implementation

The SCED subproblem SP;, at iteration k is modified as
follows:

min Z Z aupu‘;z + by ut + Ouy + bmr:ﬂ

t u

ol ek 2
+ sth,i,rpsh,i,t + E" C-fn - C':ak IH
i

=kt —ik—1 —kk—1 k—1)F =k
—I—y:.m(.:.m —.:.m_])—l—)t( ) En
P =k k12 kt (k=1 mick—1
+ E" St T S + yc‘m’(c‘m’ - C"'m+l)

+ &
s.t. (3) — (38), (48)&(49)
Vi={Tma+1,....Tn+1)}

rk—=1)} =k
Hm(

(39)

where T is the transpose operator. The asterisk (*) refers to
a variable whose value is determined by one of the neighbor-
ing subproblems and is kept fixed in subproblem m. SP:;_I
and SP;; 41 are formulated analogously with different time
subhorizons. Another difference is in the last term of the
penalty function that must be —A*-D7gk for SP*  and
/=Dt Efn , for SP;; 41+ After each iteration, multipliers A
and )" are updated as:

M=ok, - 2) (60)
VE= 2 o(Ek, - E) 61)

where w is a suitable constant (step size). Note that the value
of the Lagrange multiplier A in each iteration corresponds to
the cost of maintaining the consistency constraints.

C. Discussion on Convergence

APP is proven to converge if subproblems are convex
and the global optimal solution of each subproblem at each

IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 5, SEPTEMBER 2020

iteration is obtained [11]. The objective function and con-
straints of the considered SCED problem are convex, except
for (17)-(19) and (35)-(37) in which four sets of binary vari-
ables are defined for modeling storage charge/discharge status.
These constraints do not add much complexity to the model.
Solvers, such as CPLEX and Gurobi, are well advanced and
provide a very high-quality solution for each subproblem.
Therefore, at each iteration of APP, almost the global solution
of each subproblem is obtained by the solver. Thus, after each
iteration of APP, differences between shared variables decrease
and the algorithm converges to the optimal point of the whole
problem. It is also possible to convexify storage constraints
by adding two small positive cost terms for storage charg-
ing and discharging (e.g., storage operation & maintenance
costs) in subproblems objective functions and dropping binary
variables [34]. This technique prevents simultaneous storage
charge and discharge while making subproblems convex and
ensuring APP convergence.

D. Guidelines on Number of Subproblems

Increasing the number of subhorizons for a given scheduling
horizon results in smaller subproblems that are potentially less
computationally expensive. This reduces the solution time of
each iteration. However, increasing the number of subhorizons
over a certain limit increases the required number of iterations
for the distribution algorithm to converge. Hence, increasing
the number of subhorizons is not necessarily efficient for time
saving.

Our observations show that the load pattern has a significant
impact on the optimal number of subhorizons. Decomposing
the considered horizon from intervals with a low rate of change
of load as compared to their neighboring intervals reduces the
required number of iterations by the coordination algorithm to
converge. Since the pattern of load is predictable in periodic,
if an operator finds a good number of subhorizons for a load
pattern, this information can be used for similar load patterns.
Another factor that should be considered to take advantage
of parallel computing is to make subproblems with similar
size and computational complexity. This reduces the idle time
of computing processors if synchronous coordination strategy,
such as APP, is used. The strength of computing processors
is another factor that should be considered. Making subhori-
zons smaller beyond a level may not lead to significant time
saving as a computing processor could be strong enough to
solve problems with X or 2X sizes within roughly the same
time.

In a nutshell, we suggest the following steps to decom-
pose a considered scheduling horizon. 1) Estimate processors
computation time by reducing the size of the SCED problem.
2) Determine the size (assume it is X) beyond which the time
reduction is not significant (steps 1 and 2 should be performed
once, not once per load pattern). 3) Divide the size (assume
it is NX) of the SCED problem into X to determine the num-
ber subhorizons (N). 4) Determine the lowest rate of change of
load between consecutive intervals. 5) Decompose the schedul-
ing horizon into N subhorizon from intervals with the lowest
rate of change of load so that the size of subhorizons is similar.
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V. CASE STUDY

The proposed algorithm is applied to solve a week-ahead
SCED problem for a six-bus system, the IEEE 24-bus system,
and a 472-bus system. System and equipment data are given
in [35]. Simulations are carried out on MATLAB using
YALMIP [36] as modeling software and Gurobi on a 3.7 GHz
PC with 16GB of RAM. We have used one computing
processor and have solved subproblems on this processor
sequentially. To mimic parallel computing, when all subprob-
lems are solved at each iteration of APP, the longest solution
time is assumed as the runtime of that iteration. Upon conver-
gence of the distributed algorithm, the runtimes of all iterations
are summed up to determine the overall solution time.

A. Six-Bus Test System

This case serves as a tutorial for the proposed algorithm.
The system includes six buses, three generating units, seven
lines, three load points, one storage device, and a wind farm.

Validation of Nonparametric Chance Constraints for
Reserve Procurement: The confidence level « is set to 0.95 for
all intervals. To study the effectiveness of the proposed
data-driven nonparametric chance constraints modeling with
a reference point, we consider that the wind power follows
a Gaussian PDF and generate 100 samples for each interval.
The wind generation mean values over the scheduling hori-
zon are given in [37], and the standard deviation is assumed
to be 20%. Assuming that we do not know that wind gener-
ation follows Gaussian distribution, AKDE is applied to find
nonparametric wind generation PDFs from the dataset. The
pointwise error is calculated, and the adjusted risk levels of
chance constraints are computed. For time interval 15, for
instance, the squared pointwise error is 0.01 and according
to (43), d =1e- 04 Plugging d in (44) yields a’ﬁg = 0.048. The
resulted CDF ™! (- o'+) and CDF™! (a"") are 24.3376
and 23.5679, respectlvely These values are used to formulate
chance constraints and the centralized SCED is solved. The
operation cost is $391,225. As we assumed Gaussian PDFs
for wind power, we can formulate classical parametric chance
constraints and obtain the benchmark operation costs if com-
plete information of wind power distributions is known. Table I
shows that the relative error between the obtained costs is
3e-05.

We have also assumed that wind generation follows
Gamma distribution. The same procedure as of that for
Gaussian distribution is implemented, and the results are
depicted in Table II. The relative error is 3e-5. The small rel-
ative errors reported in Tables I and II show that the proposed
nonparametric approach can be adopted to formulate a data-
driven SCED problem if only historical data is available and no
information is known about the type of wind generation PDFs.

Sensitivity to Confidence Level: We have used three different
values for a to study the performance of nonparametric mod-
els under different risk levels. It is assumed that wind power
follows Gaussian distribution and 100 samples are generated
for each interval. Table IV shows operation costs obtained by
parametric and nonparametric models. For all three cases, the

TABLE I
COMPARISON BETWEEN PARAMETRIC AND NONPARAMETRIC CHANCE
CONSTRAINTS USING GAUSSIAN DISTRIBUTION AS BENCHMARK

Method SCED cost (§)  Relative error

Parametric (benchmark) $391,213 -

Nonparametric $391,225 Je-5
TABLE II

COMPARISON BETWEEN PARAMETRIC AND NONPARAMETRIC CHANCE
CONSTRAINTS USING GAMMA DISTRIBUTION

Method SCED cost ($) Relative error

Parametric (benchmark) 399,054 -

Nonparametric 399,068 3e-5
TABLE 11T

OPERATION COSTS UNDER DIFFERENT RISK LEVELS

Parametric . Relative

a (benchmark) Nonparametric error
0.1 $39,1116 $391,124 2e-5
0.05 $391,213 $391,225 3e-5
0.01 $391,496 $391,514 S5e-5

relative error between the nonparametric model and bench-
mark results is acceptable, which shows that the proposed
nonparametric chance-constrained programming works well
under different risk levels.

Distributed SCED Analysis: The scheduling horizon is
decomposed into seven equal-sized subhorizons, each of which
includes 24 intervals. Line outage contingencies are consid-
ered. Adding the overlapping intervals results in a SCED
subproblem with 25 time intervals for each subhorizon. There
are 26 shared variables between every two consecutive SCED
subproblems. The suggested initialization strategy is applied
and its results are used to initialize APP. The distributed algo-
rithm converges after ten iterations plus one initialization step.
Fig. 4 shows the differences between shared variables over the
course of iterations. Mismatches go to zero as more iterations
are carried out. The majority of pairs of shared variables reach
the consensus after six iterations. However, mismatches of Eg
and E7 become less than the stopping threshold after ten iter-
ations. As an example, Fig. 5 shows Pffc,l,zy storage discharge
power after contingency one, from the perspective of SP; and
pffc,l,] obtained by SP;. These two variables reach the same
value after ten iterations.

Comparison With Centralized SCED: We have compared
the values of decision variables obtained by the distributed
and centralized SCED approaches. For instance, Figs. 6 (a)
and (b) show generated powers by units one and two in the
first subhorizon, and Figs. 6 (c) and (d) depict the storage
discharge power and energy level in subhorizon seven. The
optimal values obtained by the two approaches are almost the
same. In addition, a convergence index is defined to measure
the relative error between the operation costs determined by
the distributed SCED (f?) and the centralized SCED (f7),
which is considered as benchmark results. The closer the con-
vergence measure becomes to zero, the more precise solution
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The convergence measure rel is depicted in Fig. 7. This
index is 9e-05 upon convergence, which shows the accuracy
of the proposed distributed SCED algorithm.

Storage Initial State of Charge Modeling: Ignoring the ini-
tial state of charge consistency constraint (58), the distributed
SCED is solved. The obtained solution is infeasible. For
instance, the state of charge of storage at the last interval
of §SP3, determined by SP3, is 19 MWh. However, the ini-
tial state of charge of storage at the first interval of SP4,
determined by SP4, is 100 MWh. Since these two values
refer to the same physical variables, the obtained solution is

rel = (62)

Fig. 6. The optimal values of (a) py ¢, (b) p2, ¢ in subhorizon one, and (c)p4c.t,
and (d) E; in subhorizon seven.
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Fig. 8. Overall solution time versus number of subproblems.

infeasible. Incorporating (58) makes the solution feasible from
the perspective of the whole scheduling horizon.

B. IEEE 24-Bus System

We have studied the impact of increasing the number of sub-
horizons on the solution time using the IEEE 24-bus system.
We have increased the number of subproblems up to 168.
Fig. 8 shows the solution time versus the number of subprob-
lems. Increasing the number of subproblems up to 24 results
in the overall solution time reduction (although some jumps
are observed, the general pattern is decreasing). While increas-
ing the number of subproblems from 24 to 84 does not have
a considerable impact on the solution time, increasing the
number of subproblems beyond 84 increases the solution time.
Such a curve with this trend is reported in parallel computing
literature.
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TABLE IV
OPERATION COSTS UNDER DIFFERENT APP MULTIPLIER @

TABLE V
COMPARISON BETWEEN DIFFERENT APPROACHES TO SOLVE SCED FOR
THE 994-BUS SYSTEM

Algorithm Time Time
’ @ Cost (3) rel (s) saving Method Time (sec) rel
Centralized - 41,281,398 - 654 - Centralized (benchmark) 46 -
1 41,283,289  4e-5 312 53% Geographical decomposition 31 =0
Distributed 0.2 41,281,975  le-5 346 47% Temporal decomposition 25 =0
0.05 41,281,401 2e-8 396 40% Hybrid geographical + Temporal 10 =0

C. 472-Bus Test System

This system, which is created by connecting four IEEE 118-
bus systems, has 216 generators, 784 lines, 364 load points,
one storage device, and a wind farm. The confidence levels
of chance constraints are set to 0.95. The size of the central-
ized problem is relatively large. As illustrated in Table IV, the
solver takes 654 seconds to solve the centralized SCED and
return the optimal operation cost of $41,281,398.

We partition the overall time horizon into seven subhori-
zons and implement the proposed algorithm. We have selected
three values for step size o for updating Lagrange multipliers.
Increasing the value of @ speeds up the solution procedure.
However, it affects the relative error. In general, the larger @
is, the faster the algorithm would converge and the larger the
rel index would be. While @ = 1 yields the least solution time,
312 seconds, w = 0.05 results in the least rel index, almost
zero. Comparing the solution time and rel, we select @ = 0.05.
The distributed algorithm converges after 11 iterations within
396 seconds. The proposed distributed SCED algorithm is 40%
faster than the centralized SCED, while the operation costs
obtained by both algorithms are almost the same.

D. Hybrid Geographical and Temporal Decomposition

We demonstrate that temporal decomposition can be
combined with geographical decomposition to enhance the
performance of distributed SCED. A 944-bus test system,
whose information is given in [35], is used. The considered
scheduling horizon includes 168 intervals. For the sake of
explanation and simplicity, we have ignored energy storage,
wind generation, load shedding, and contingency. As shown
in Table V, the centralized approach takes 46 seconds to solve
the problem, and the total cost is $88,749,812. The system is
decomposed into two regions, and geographical decomposition
is applied [38]. The distributed SCED converges after 31 sec-
onds with rel ~ 0. The proposed temporal decomposition is
applied. Each subhorizon includes 24 intervals. The algorithm
takes 25 seconds to converge to rel = 0.

We have combined geographical and temporal decomposi-
tion strategies to solve SCED in a distributed manner. This
hybrid approach has two loops, an inner loop and an outer
loop. In the outer loop, subproblems obtained by geographi-
cal decomposition are solved, and the corresponding Lagrange
multipliers are updated iteratively using APP. Whereas in the
inner loop, each subproblem of geographical decomposition
is further decomposed over the time horizon, and APP is
applied to coordinate subproblems. To have a fair compari-
son, similar to solely geographical decomposition and solely
temporal decomposition, we have considered two zones and

seven subhorizons. The hybrid decomposition strategy outper-
forms both geographical and temporal decompositions and
converges within ten seconds with rel =~ 0. This shows
that the temporal decomposition can be combined with geo-
graphical decomposition to enhance the performance of the
distributed SCED.

VI. CONCLUSION

A temporal decomposition approach is proposed to decom-
pose the SCED problem over the scheduling horizon with the
goal of reducing the computational burden of the optimization
problem. Two data-driven nonparametric chance constraints
are formulated for reserve up and down requirements consider-
ing wind generation uncertainty. These constraints are replaced
by their equivalent parametric constraints to make SCED solv-
able by standard solvers. Generators’ ramp limits and the state
of charge of storage for the transition between subhorizons are
modeled by introducing overlapping intervals and 12 sets of
shared variables. It is discussed that the initial state of charge
of storage at the beginning of each subproblem must be the
same as the state of charge of storage at the interval before
the overlapping interval; otherwise, the solution will be infea-
sible. An initialization strategy is suggested to enhance the
performance of the distributed coordination algorithm.

A tutorial is presented based on a small system, the impact
of number of subhorizons on the algorithm is studied using
the IEEE 24-bus system, and the results for a 472-bus system
show that the SCED solution time is reduced by a factor of
1.65 as compared to that of the centralized SCED. As the
size of the optimization problem increases, the effectiveness
of the proposed method is more considerable. In addition, it
is illustrated that data-driven nonparametric chance constraints
provide a solution close to the benchmark results obtained
using the complete information of wind generation density
function.

A direction of research is to combine reserve up (or
down) requirements at all intervals in a probabilistic constraint
and develop a nonparametric joint chance constraint model.
Another possible research direction is to develop methods to
find an optimal time decomposition strategy and to improve
the convergence performance of the coordination algorithm by
using momentum and second-order derivative information for
Lagrange multipliers updating.
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