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Abstract—Fast inference is of paramount value to a wide range of
deep learning applications. This work presents FTDL, a highly-scalable
FPGA overlay framework for deep learning applications, to address
the architecture and hardware mismatch faced by traditional efforts.
The FTDL overlay is specifically optimized for the tiled structure of
FPGAs, thereby achieving post-place-and-route operating frequencies
exceeding 88 % of the theoretical maximum across different devices
and design scales. A flexible compilation framework efficiently schedules
matrix multiply and convolution operations of large neural network
inference on the overlay and achieved over 80 % hardware efficiency
on average. Taking advantage of both high operating frequency and
hardware efficiency, FTDL achieves 402.6 and 151.2 FPS with GoogLeNet
and ResNet50 on ImageNet, respectively, while operating at a power
efficiency of 27.6 GOPS/W, making it up to 7.7× higher performance
and 1.9× more power-efficient than the state-of-the-art.

I. INTRODUCTION

There is an increasing demand to conduct the inference of deep
learning (DL) faster [1]–[9]. Of mainstream hardware accelerators,
field-programmable gate arrays (FPGAs), offering both massive par-
allelism and high energy efficiency, are hence the ideal platform to
expedite inference. However, most existing works simply deploy the
application-specific integrated circuit (ASIC)-oriented architectures to
FPGA without considering the FPGA underlying layout, which leads
to the architecture-layout mismatch. Such a mismatch subsequently
introduces irregular routing across underlying FPGA hardware com-
ponents, which substantially hampers the timing performance when
scaling this design up. For instance, the widely adopted systolic array
liked architecture, which connects data memories to the boundary
processing element (PE) in the PE array, suffers from this mismatch in
FPGA implementation. Because the block RAMs (BRAMs, memory
component in FPGA) are uniformly distributed on the FPGA chip,
simply connecting massive BRAMs to a boundary PE leads to
irregular routing distances, and the resultant timing reduction harms
the computational throughput in proportional. Besides the aforemen-
tioned hardware scalability issue, the existing DL architecture also
experiences the underutilization problems during scale-up. Hardware
efficiency, the ratio of attainable computational throughput to the
theoretical value, is leveraged to measure the computational resource
utilization. Most existing works achieved a hardware efficiency of 45-
70% [4], [5], [8], [10]. Although increasing batch size can maintain
high hardware efficiency [9], it is infeasible for edge devices that
need low latency.

FTDL (FPGA tailored deep learning) addresses the scalability and
hardware efficiency issues via an FPGA layout-aware architecture
along with optimal scheduling scheme of compiler. The contributions
of FTDL can be summarized as,
• FTDL proposes a novel overlay architecture for convolutional

and fully connected layers. This overlay is tailored for the
tiled structure of modern FPGAs, allowing post-place-and-route
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TABLE I
MLPERF BENCHMARKS FOR DL SYSTEMS [11] (16-BIT WEIGHT).

DL Model Structures Applications Operations #Weight
CONV MM EWOP (bytes)

GoogLeNet Image Processing 99.73% 0.07% 0.20% 13.7M
ResNet50 Image Processing 99.67% 0.05% 0.27% 51M
AlphaGoZero Operation Decision 99.86% 0.08% 0.06% 2.08M
Sentimental-seqCNN Sequence Analysis 89.86% 0.15% 9.99% 345.06K
Sentimental-seqLSTM Sequence Analysis 0.00% 99.89% 0.11% 39.9M

operating frequencies to reach over 88 % of the theoretical DSP
operating frequency across different devices and design scales.

• FTDL provides a compilation tool that maps most DL layers
to the overlay with over 80 % hardware efficiency on aver-
age. Along with the high operating frequency, FTDL achieves
402.6 FPS and 151.2 FPS on ImageNet with GoogLeNet and
ResNet50, respectively. We achieve at least 2.3× and up to 7.7×
in performance compared to the prior arts. The power efficiency
of FTDL is 27.6 GOPS/W, which is up to 1.9× compared to
previous designs.

II. BACKGROUND

A. Generality of DL Workloads

In general, the computations in deep learning systems can be
partitioned into three categories of sub-workloads, matrix multiply
(MM, e.g., fully connected layer), convolution (CONV) and element-
wise operation (EWOP, e.g., activation), where each sub-workload
uses different hardware building blocks to speed up the execution.
We studied the models in MLPerf benchmark set [11], as Table I,
and found that CONV and MM account for over 90 % computational
workload. Therefore, FTDL targets accelerating CONV and MM
computation, while the EWOP is processed by host CPU in a pipeline
fashion.

B. FPGA Friendly Design Morphology of DL Architecture

1) Storing Weights On-chip: Weight stationary is widely adopted
in DL inference accelerator that maintains the weight in on-chip
memory during runtime to save the bandwidth and energy [12]. Com-
paring to other devices, FPGA is suitable for the weight stationary
scheme as its massive on-chip memory supplies abundant storage and
bandwidth. As listed in Table I, with the quantization technique [13],
the model weights are quantized to 16-bit fixed-point data, and the
storage requirement is in the same order of magnitude (mega byte)
to the on-chip memory resource of FPGA device. For cases that the
model cannot reside in one chip, multi-FPGAs system [14] enables
partitioning the model to multiple devices, which makes the weight
stationary feasible to most application scenarios. Therefore, FTDL
adopts the weight stationary scheme and provides a generic DL
architecture that applies to both single- and multi-FPGA cases.



2) Design with High Operating Frequency: For FPGA-based DL
architecture, the attainable maximum operating frequency (fmax) is
a critical factor that directly decides the theoretical computation-
throughput. Most prior designs achieved a fmax below 250 MHz,
while the theoretical fmax of individual digital signal processor
(DSP) and look-up table (LUT) on FPGA are 740 MHz [15]. The 66%
loss on fmax is sourced from the mismatch between the irregular
architecture design and the regular components layout of FPGA
(architecture-layout mismatch). Recently, researchers have proposed
high-fmax designs dedicated for FPGA [16]–[18]. In the work of
Samajdar et al. [16], the cascaded interconnections are leveraged
to construct a design running at 650 MHz. However, the FPGA
should be reconfigured for each layer as the design is tailored for
a specific kernel size. The characteristics of designs with high fmax

and high scalability are highlighted: First, fully utilize the fmax

of DSP and LUT; Second, consume the resource in equilibrium;
Third, the placement and routing of the design should be predictable
(architecture-layout match). These characteristics are the principles
and advantages of the FTDL hardware in this paper.

III. DISTRIBUTED ARCHITECTURE OF FTDL

The FTDL is a distributed and hierarchical architecture. The
distributed morphology fits FPGA well and benefits timing perfor-
mance of the design; The hierarchical levels provide flexibility for the
design scale-up and workload scheduling that facilitates the hardware
efficiency for different DL workloads. The hardware composition of
FTDL is described hierarchically in the following sub-sections.

A. Tiled-PE: The Basic Computational Unit

1) Layout-aware PE design: The tiled processing element (TPE),
as Fig. 1, is the basic computational unit that includes a digital
signal processor (DSP), configurable logic blocks (CLBs), and block
RAM (BRAM). The DSP performs multiply-accumulate (MACC)
operation, the most intensive computation operation in both MM and
CONV workloads. The BRAM stores a portion of trained model
weights that are required in the workload of this TPE. With the
weight-stationary scheme, the weights are preloaded to BRAM during
FPGA initialization. The distributed RAM (constructed by CLBs)
stores input-activation. In particular, the numbers of BRAM/CLB
spent on the weight buffer (WBUF) and activation buffer (ActBUF) in
TPE are configurable, and the values are determined by the resource
amount in the target FPGA device. For instance, in the layout of
FPGA primitive (underlying component) as Fig. 1, the resource ratio
of DSP to BRAM18 is one (a common ratio in most devices). Thus,
each TPE contains one DSP and one BRAM18 primitive proportion-
ally. The mapping process in FPGA implementation automatically
groups and places the primitives (including a DSP, a BRAM18, and
several CLBs) of a TPE to a local fabric area. The design advantages
are in two-fold: (i) The wires inside a TPE connect the primitives in
a local fabric area, that leads to an ultra-low net delay and a high
fmax; (ii) During connecting multiple TPEs, the intrinsic cascade
interconnection in the DSP column can be used for accumulation of
MACC operation. The interconnection can achieve the same fmax

as the DSP and avoid the cost of extra routing resources.
2) Double-pump for optimal fmax: According to vendor statis-

tics [15], DSP and CLB are capable of operating at a fmax close to
740 MHz, while the theoretical fmax of BRAM is ≈528 MHz. We
adopt double-pump technique [19] to operate different primitives at
their theoretical fmax. As shown in Fig. 1, BRAM is driven by a low-
speed clock CLKl, while the DSP and distributed RAM are driven by a
synchronized CLKh with double frequency of CLKl. The double-pump
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Fig. 1. The tiled processing element (TPE) in FTDL, an FPGA layout friendly
design. The intrinsic DSP-interconnections accumulate the results of TPEs.
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Fig. 2. The SuperBlock organizes multiple TPEs in one column. Each
SuperBlock contains a partial sum buffer (PSumBUF) for accumulation.

design orchestrates the workloads of FTDL (MM and CONV) since
each weight is usually reused for multiple times during computation.
Specifically, the DSP uses different activation values (from distributed
RAM) but same weight (from BRAM) in each two consecutive clock
cycles CLKh, in order to achieve maximal computational throughput
for the whole system.

B. SuperBlock: Proper Organization of TPEs

As a primitive column in FPGA can have up to 240 DSPs that
compose the same number of TPEs. Simply cascading all TPEs in
one column loses the control-flexibility. As depicted in Fig. 2, FTDL
partitions the TPEs in one column and groups them to SuperBlocks,
and each SuperBlock is directed by an independent Controller.
Furthermore, one SuperBlock contains an on-chip partial-sum buffer
(PSumBUF) that stores intermediate results and therefore saves the
off-chip memory bandwidth. As Fig. 2 shows, the first and the last
TPE inside each SuperBlock are connected to the partial sum buffer
(PSumBUF), which stores and fetches the results for accumulation
of MM or CONV periodically. Thus, in temporal order, the TPE

can operate on the computations that sum up to different addresses
in PSumBUF. In the run-time, the Controller decodes the config
from instruction bus (InstBUS) and generates proper memory control
signals to ActBUF, WBUF, and PSumBUF that collaborate on the
computation or data transmission. Besides, the PSumBUS is connected
to SuperBlock that stores the results in PSumBUF to the off-chip
memory; In case the final results cannot be obtained in one pass
of on-chip computation, the PSumBUS can also store and reload the
intermediate results for multi-pass computation.

C. Scale-up FTDL Hardware

Scalability is the competitive advantage of FTDL that facilitates
the users to deploy it on most FPGA devices while maintaining a
high fmax. This attribute takes advantage of the FTDL hardware
scale-up method as follows.
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Fig. 3. The general system diagram with parameterized FTDL hardware.

In the horizontal axis, as Fig. 2, multiple SuperBlocks are orga-
nized with the scheme of single instruction, multiple data (SIMD).
The Controller locates at the left side of a SuperBlock row,
and the control signals are bypassed to all the SuperBlocks in the
same row via pipeline registers. Furthermore, the input activation data
(from the ActBUS) is also shared among the horizontal SuperBlocks.
Thus, the SuperBlocks in one row perform synchronized operations
with the same activation data but different weights in WBUF, which
are preloaded during FPGA configuration. We adopt SIMD and input
activation sharing scheme since the CONV and MM workload both
have regular computation patterns and activation reusability.

In the vertical axis, as Fig. 2, multiple SuperBlock rows are
stacked and working independently. Each SuperBlock row owns a
Controller, ActBUS, and InstBUS, while the SuperBlock column
shares the same PSumBUS. The data stream on PSumBUS can be
statically organized to avoid congestion.

D. Embedding FTDL To Your Design

FTDL can be embedded in most FPGA-based DL-system. Fig. 3
shows the generic system diagram while the details vary from case to
case. The InstBUS and ActBUS are connected to DRAM controller
or host interface to receive the input activation or instruction stream.
Besides the DRAM controller, PSumBUS can also be connected
to other hardware with a streaming manner, such as an ad hoc
pooling module or activation module that is designed for a particular
application.

Importantly, the FTDL hardware is parametrizable as labeled on
Fig. 3, where D1 is the TPE number in each SuperBlock, D2, and
D3 are the numbers of SuperBlock column and row, respectively. To
make the 2D hardware suitable for FPGA layout, we set constraints
on the parameter values. First, D2 is less than the number of DSP
column on the FPGA device; Second, D1 ×D3 should be less than
the number of DSP in each column, that ranges from 20 to 240
in different FPGA devices. As the values of D1 and D3 affects
the overall hardware cost and efficiency, the FTDL compiler in
Section IV can automatically select proper values for user workloads.

E. Periodic Control flow with Double-buffering

This section elaborates on the control flow of FTDL, that is corre-
sponding to the Controller signals generated for each component.

As the content in ActBUF and PSumBUF are updated during exe-
cution, the control flow consists of computation and communication
two portions. To execute these two portions concurrently, double-
buffering technique is applied to ActBUF and PSumBUF, where each
buffer is divided into two sub-buffers logically. In the run-time, one
sub-buffer provides data for computation, and the rest one is updated
(load/store) with off-chip memory. The two sub-buffers exchange the

For d3=0; d3<D3; d3++
For d2=0; d2<D2; d2++
For d1=0; d1<D1; d1++

For x=0; x<X; x++
For l=0; l<L; l++
For t=0; t<T; t++
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For d21=0; d21<TD21; d21++
For d22=0; d22<TD22; d22++

For d2K=0; d2K<TD2K; d2K++

…

Sub-loops: all K workload-loops can be
 mapped to each of hardware-loops

Fig. 4. The tiled loops represent the workload scheduling in spatial and
temporal; The trips counts of sub-loops compose the mapping vector. Note
that both CONV and MM are analyzed as a K-level nested loop.

role (computation or communication) periodically. List 1 illustrates
the hardware behavior for a workload that contains X×L×T MACC
operations. Note that the original 1-level loop with a trip count of
X × L × T is tiled to 3-level nested loops (LoopX, L, T). This is
because the storage of on-chip buffers are limited and usually can fit
in neither the entire activation data nor the partial sum. Furthermore,
the storage of ActBUF (distributed-RAM, 64-256 words) comes much
smaller than that of PSumBUF (BRAM, 1024-4096 words). Thus, the
LoopT is set for ActBUF, which is updated every T cycles; and LoopL

is set for PSumBUF that communicates with off-chip memory every
T × L cycles. For real DL application, the T and L vary according
to computational intensity, which is decided by the workload and
scheduling scheme. Section IV further elaborates workload schedul-
ing on FTDL that facilitates high hardware efficiency.

IV. WORKLOAD COMPILATION FOR FTDL

The DL application consists of multiple layers with either MM or
CONV computation, and the hyperparameter (the trip count of each
loop) varies from layer to layer. Based on the hardware proposed
above, FTDL also provides the compilation scheme that efficiently
maps the custom CONV/MM layer to the parameterized hardware.
The FTDL compiler generally addresses two problems,
• With a particular FTDL hardware configuration (fixed D1, D2,

D3 in Section III-D), how to schedule a DL layer to achieve the
minimum execution time?

• With the same resource utilization (D1 ×D2 ×D3 is a const),
what is the best hardware configuration for a DL-layer?

A. Abstraction Model of FTDL Scheduling
To completely explore the workload scheduling space, the FTDL

hardware is formally abstracted as the nested loops in Fig. 4, in
which we use the tiled loops to represent the workload partition
and mapping behavior. We use 6-level nested loops to represent
the FTDL hardware behavior, where loop D1, D2, D3 represents
the spatial resources of TPE, SuperBlock column, and SuperBlock
row, respectively. These loops are executed in parallel on the FTDL
hardware. The loop levels X,L, T are corresponding to the TPE
control flow demonstrated in List 1, that are executed in sequential.
Besides these hardware loops, we represent the workload using a
K-level nested loop. For instance, K is 3 in MM and 6 in CONV.
Theoretically, each workload loop can be partitioned and mapped to
any hardware loop. Therefore, as Fig. 4 shows, each hardware loop
can be expanded to K sub-loops to represent the map information;
The trip counts of sub-loops for each hardware level is denoted as
TD1k, TD2k ... TTk, where k ∈ [1,K]. Each trip count represents
the workload size that scheduled to a particular hardware level.
For instance, TD1k is the tile size in the kth workload loop that

1 LoopX: for (x=0; x<X; x++){
2 update_PSumBUF(); //update PSumBUF every L*T cycles
3 LoopL: for (l=0; l<L; l++){
4 update_ActBUF(); //load ActBUF every T cycles
5 LoopT: for (t=0; t<T; t++){
6 TPE_OP(x,l,t) }}}; //MACC operation on TPE every cycle

Listing 1. Pseudo code of control flow: the hardware behavior is represented
by 3-level loops with hierarchical buffer update.



are spatially mapped to TPEs in one SuperBlock. With these trip
counts, both the spatial and temporal mapping between workload
and hardware are unique, and the relation can be formulated as,

TPE[d3][d2][d1][x][l][t]⇐ workload[i1][i2]...[iK ] (1)

(i1, ..., iK)T = [T ·H] · (d3, d2, d1, x, l, t)T (2)

T = (
#       »
TD1,

#       »
TD2,

#       »
TD3,

#    »
TX,

#   »
TL,

#   »
TT )T (3)

=


TD11 TD21 TD31 TX1 TL1 TT1

TD12 TD22 TD32 TX2 TL2 TT2

...
...

...
...

...
...

TD1K TD2K TD3K TXK TLK TTK

 (4)

H =


1 0 0 0 0 0
D2 1 0 0 0 0
D1 D1 1 0 0 0
X X X X 1 0
L L L L L 1
T T T T T T

 (5)

where the (d3, d2, d1) are the indices of spatial hardware loops,
(x, l, t) are the indices of temporal hardware loops, (i1, ..., ik) are
the indices of the workload loops. The symbol⇐ in Eqn. 1 represents
the workload mapping. The mapping relation is the product of matrix
T and H, where matrix T is composed of the mapping vectors (as
Eqn. 3), each contains the trip counts of K sub-loops. Eqn. 5 shows
H, where D1, D2, D3 is the hardware configuration, X,L, T can be
calculated as Eqn. 6,

X =

K∏
k=1

TXk, L =

K∏
k=1

TLk, T =

K∏
k=1

TTk, (6)

Therefore, we formulate the scheduling problem as finding the proper
mapping vectors (

#       »
TD1,

#       »
TD2,

#       »
TD3,

#    »
TX,

#   »
TL,

#   »
TT ) that achieve the

optimal system performance. The following contents elaborate on the
analytical model, objectives, and constraints of this problem.

B. Analytical Model

With the candidature mapping vectors, the analytical model is given
to fast evaluate the performance in three aspects: (i) computation time,
(ii) communication time, (iii) WBUF utilization. The time consumption
is measured with the cycle number of CLKh.

1) Computation Time (Ccomp): It is the time cost by MACC
operation for the workload layer, regardless of the communication
time. We have,

Ccomp =
K∏

k=1

TXk × (
K∏

k=1

TLk ×
K∏

k=1

TTk + Lat) (7)

where the pipeline latency (Lat) of TPE-chain inside a SuperBlock

is considered, and we have Lat = D1 + 6 in our implementation.
2) Communication Time (Ccomm): In general, two types of data

communication exist in FTDL system, the off-chip DRAM interface
and on-chip interface, i.e., ActBUS and PSumBUS. Each interface
bandwidth can be the potential performance bottleneck. We formulate
the communication time over on-chip interfaces as,

CActBUS
comm = fact(

#   »
TT )×

K∏
k=1

TXk ×
K∏

k=1

TLk (8)

CPSumBUS
comm = fpsum(

#   »
TT ,

#   »
TL)×

K∏
k=1

TXk ×D3 (9)

where CActBUS
comm and CPSumBUS

comm are the cycle number for ActBUS and
PSumBUS, respectively. As the data reusability is different for MM and
CONV cases, we use function fact and fpsum to represent the data
tile size of activation and partial sum that loaded (stored) to (from)
on-chip buffer in each round, respectively. For the DRAM interface,
we defined CDramRD

comm and CDramWR
comm similarly to modeling the DRAM
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Fig. 5. Adjacency matrix in mapping for the MM (a) and CONV (b) workload.

read or write time, that are obtained via dividing the transmission
volume to the pre-set DRAM bandwidth (BDramWR, BDramRD).

3) WBUF efficiency (EWBUF): As the weight in individual WBUF

cannot be shared inter TPEs, duplicated weight storage exists in
cases where two operations use the same weight value but are
scheduled to different TPEs. However, less weight duplication means
more workload layers can be arranged on one FPGA device. We
defined WBUF efficiency (EWBUF), the ratio of theoretical weight storage
(without duplication) to practical value, to evaluate each mapping
vector. EWBUF is formulated as a function with input of temporal
mapping vectors (

#    »
TX ,

#   »
TL,

#   »
TT ).

C. Solution Space of Mapping Vectors

The mapping vectors contain 6×K elements that result in a huge
exploration space in the optimal solution searching. This section
defines the constraints that narrow down the set of candidature
solutions.

1) Adjacency Matrix for Workload Mapping: With the general
model in Section IV-A, each of K workload loops can be partitioned
and mapped to an arbitrary level in hardware loops (6-levels).
However, due to the hardware constraints, some loop level in CONV
or MM cannot be mapped to a particular hardware loop, and therefore
the corresponding element in mapping vectors should be 1. For
instance, the workload mapped to D2 loop of hardware should use
exactly the same input activation, as the data on ActBUS are shared
with SuperBlocks in one row; Thus, in the MM workload, only the
M -loop can be mapped to hardware D2-loop. A similar constraint
exists in D1-loop, as the results from D1 TPEs are compulsorily
accumulated in the SuperBlock. We formalize these constraints on
mapping vectors with a 6 × K adjacency matrix A. The element
A(i, j) is 0 or 1 to represent whether j-level of workload loop
can be mapped to i-level of hardware loop. Once the element is
0, the corresponding value in mapping vector is set to const 1 during
searching. The adjacency matrix for MM and CONV are given in
Fig. 5(a)(b) respectively.

2) Logical Constraints: Three logical constraints exist on the
mapping vectors. First, as Eqn. 10, the element products of the spatial
mapping vectors (

#       »
TD1,

#       »
TD2,

#       »
TD3) should not exceed resource

amounts D1, D2, D3, respectively. Second, as Eqn. 11, for any
k ∈ [1,K], the product of the kth elements of all mapping vectors
should be greater or equal to the trip count (denoted as Wk) of the
corresponding workload loop. This item ensures all the workloads
are accomplished, even if the invalid computation exists.

K∏
k=1

TD1k ≤ D1,

K∏
k=1

TD2k ≤ D2,

K∏
k=1

TD3k ≤ D3, (10)

∀k ∈ [1,K], TD1k × TD2k × TD3k × TXk × TLk × TTk ≥Wk

(11)

Third, with a particular mapping vector, the on-chip memory
requirements should below the memory capacity in hardware configu-
ration. FTDL modeling the buffer utilization function for CONV/MM
workload, and denote the designate capacity of each buffer as SActBUF,
SWBUF, SPSumBUF. The detail is emitted due to space limitation.



D. Putting It All Together

Combining the aforementioned mapping abstraction, analytical
model and constraints, FTDL finalizes the objectives of the schedul-
ing problem as follows,

1) Objective1: optimal performance: Given the hardware config-
uration (D1, D2, D3, SActBUF, SWBUF, SPSumBUF, BDramRD, BDramWR), find
the optimal mapping vectors (

#       »
TD1,

#       »
TD2,

#       »
TD3,

#    »
TX ,

#   »
TL,

#   »
TT ), that

minimizes the workload execution time,

min
T∈D

Cexe = max(Ccomp, C
PSumBUS
comm , CActBUS

comm, CDramRD
comm, CDramWR

comm) (12)

where D represents the feasible searching space defined in Sec-
tion IV-C; Cexe is the overall execution time (in cycle), which is the
maximum value of all performance metrics defined in Section IV-B.

2) Objective2: balance between performance and WBUF efficiency:
In current, FTDL evaluates performance with a single layer work-
load. One FPGA device is supposed to store weight values of multiple
layers and compute different layers in sequential. Thus, in these
cases, the WBUF efficiency (EWBUF) should be considered along with
the execution time in evaluation. We define a score to indicate the
balance between performance and EWBUF. As,

max
T∈D

Score = Cexe/C
min
exe + EWBUF (13)

where Cmin
exe is the theoretical minimum execution time with partic-

ular hardware. By doing so, two portions of Eqn. 13 are normalized,
and the Score is the summation of these two factors. The objective
is to find optimal mapping vectors that maximizes the Score.

3) Objective3: optimal hardware configuration: Besides searching
the optimal mapping vector with a particular hardware configuration,
this objective is to find the optimal hardware configuration at the same
cost. Given the number of TPE (D1 × D2 × D3), FTDL generates
feasible sets of (D1, D2, D3) and replay the previous searching on
each search. Then the best hardware configuration with corresponding
optimal mapping is generated.

4) Searching Scheme: With the multiple constraints, the search
space is the integer hull of a non-convex high dimensional polytope.
Thus, it is infeasible to solve the problem via analytical method. In
our searching scheme, all the candidature solutions are generated un-
der the guidance of adjacency matrix. Subsequently, FTDL performs
the constraints check over the candidates and excludes the infeasible
solutions. Finally, FTDL traverses the feasible solutions and select
top-k optimal mapping vectors as the final scheduling schemes.

V. EXPERIMENTS AND EVALUATIONS

A. Experimental Methods

To evaluate the hardware and workload compilation proposed
above, we implemented FTDL as a framework. The hardware part
is written with parameterized Verilog RTL, verified with Synopsys
VCS, and implemented by Vivado 2018.2. Particularly, the primitive
macros of distributed RAM, BRAM, and DSP are leveraged to
realize the fine-grained hardware design. This method improves the
predictability of hardware implementation, as the synthesis tools
map the primitives to underlying components directly instead of
inferencing them to other logic. The hardware evaluation results are
presented in Section V-B.

We also implemented the FTDL compiler that accepts input of the
DL layer attributes (hyperparameters and layer type) and the hardware
configurations(D1, D2, D3, and buffer sizes). After searching the
feasible space, the compiler gives the optimal mapping vectors for
both Objective1, 2 in Section IV-D. The compiler also dumps the
control instructions for all Controllers in target FTDL, that can
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Fig. 6. Hardware evaluation on Xilinx-Virtex device (a) and UltraScale device
(b) after place and route. Seven hardware configurations are evaluated in
a scale-up fashion. The FTDL hardware design shows a good timing and
scalability that fmax stabilizes above 620 MHz on Virtex and 650 MHz on
UltraScale.

be loaded via InstBUS before the layer execution. With the layers
in MLPerf benchmarks (Table I), RTL simulation was conducted to
obtain the hardware efficiency and real performance. The data access
trace was dumped and sent to the DRAMPower [20], an accurate
model that supplies the DRAM performance. The DRAM bandwidth
is set to 26 GB/s that is achievable in most platforms. Note that the
EWOP layers were allocated to host CPU, and the performance was
not bounded by these layers. The overall performance and comparison
are presented in Section V-C.

B. Hardware Evaluation

As the significant advantages of FTDL hardware, the timing and
scalability are evaluated on different FPGA devices. Fig. 6 presents
the hardware results reported by Vivado after place and route, where
(a) is with a Virtex-7 device (7vx330t), and (b) is with an UltraScale
device (vu125). For each device, seven hardware configurations were
evaluated in the scale-up fashion. On both devices, the fmax of
DSP (CLKh) stabilizes above 620 MHz during the scale-up, even
the BRAM and DSP are 100% utilized. The layout-aware design
of FTDL contributes to the good timing and scalability.

C. Working with Real-world Applications

Besides the high scalability and good timing on the hardware
aspect, FTDL compiler facilitates high hardware efficiency in map-
ping different DL layers. The execution performance of FTDL is
evaluated with MLPerf benchmarks (GoogLeNet and ResNet50) on
ImageNet dataset that the frame size is 224× 224. FTDL hardware
used an example configuration (D1 = 12, D2 = 5, D3 = 20) on the
UltraScale-vu125 device that has 1200 DSPs, corresponding to 1200
TPEs, and the DSP operation frequency is set to 650 MHz.

1) Performance Visualization: To comprehend the optimal map-
ping solution searching, FTDL provides a roofline visualization tool
for performance analysis. Fig. 7 shows the roofline plot with solutions
for a CONV layer, where the color represents the WBUF efficiency
defined in Section IV-B. Two sub-figures (a)(b) plot top-200 optimal
solutions for objectives on performance(Obj.1) and balance(Obj.2),
respectively, and the chart is zoomed into the area of interest. For
Fig. 7(a), a near-to-roof performance is reached, while most solutions
suffer a low WBUF efficiency (EWBUF ≈ 0.2). However, in Fig. 7(b), the
top-200 balanced solutions with Obj.2 are plotted that all achieve a
high EWBUF (≈ 1) with only a slight loss on the attainable performance.
Apparently, for this example layer, the solutions with Obj.2 are
preferable as they save WBUF 5× than solutions with Obj.1. With the
roofline-visualization tool, users can definitely conduct performance
analysis in visual for their DL layers, and further select an optimal
solution with the trade between performance and hardware cost.

2) Overall Performance and Related Works Comparison: With
the FTDL framework, we obtained the optimal mapping solutions
for each layer in GoogLeNet and ResNet50. The comparison with



TABLE II
OVERALL PERFORMANCE OF FTDL AND COMPARISON WITH RELATED WORKS.

Work [10] [2] [3] [4] [5] [7] [8] [21] [1] [9] FTDL (this work)
Weight Quantization 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit
DSP Frequency (MHz) 150 100 125 167 200 200 150 150 170 240 650
Hardware Efficiency 45.4% 73.0% 72.0% 67.5% 48.3% 48.2% 71.9% 70.8% 76.5% 89.1% 81.1%/74.8%
GoogLeNet Perf. (FPS) 52.0 (1.0x) 55.7 (1.1x) 68.7 (1.3x) 86.1 (1.7x) 73.8 (1.4x) 73.5 (1.4x) 82.3 (1.6x) 81.1 (1.6x) 99.3 (1.9x) 163.3 (3.1x) 402.6 (7.7x)
ResNet50 Perf. (FPS) 21.2 (1.0x) 22.7 (1.1x) 28.0 (1.3x) 35.0 (1.7x) 30.1 (1.4x) 29.9 (1.4x) 33.5 (1.6x) 33.0 (1.6x) 40.4 (1.9x) 66.5 (3.1x) 151.2 (7.1x)
Power Efficiency (GOPS/W) N/A 16.8 (1.2x) N/A 21.4 (1.5x) N/A N/A 14.5 (1.0x) 30.4 (2.1x) N/A N/A 27.6 (1.9x)

(a) Optimal for Performance (Objective1) (b) Optimal for Balance (Objective2)
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Fig. 7. Roofline-based visualization tool for performance analysis. (a) and
(b) plot top-200 optimal solutions by FTDL compiler for performance and
balance objectives respectively. The solution in (b) is preferable as they saves
WBUF 5× to (a) with only slight performance loss. Note that the y-axis has
been scaled to the area of interest.

previous works in terms of performance and power efficiency are pre-
sented in Section II. FTDL achieved an average hardware efficiency
of 81.1% and 74.8% in GoogLeNet and ResNet50, respectively. That
can be translated to a processing throughput of 402.6 and 151.2
frames per second (FPS) on ImageNet dataset processing. We also
compared the design operating frequency and hardware efficiency on
the same type of DL benchmarks and using same weight quantization
scheme. For a fair comparison, we obtained the FPS results of
previous works with their own statistics but the same DSP number
to our example FTDL design. As a result, FTDL achieves 7.7× and
7.1× processing throughput to the baseline design; 2.5× and 2.3×
to the state-of-art design. The notable performance improvement is
contributed from both the high operating frequency of our FPGA
layout-aware design and the high hardware efficiency achieved in
the compilation. On the power aspect, although the power reaches
45.8 W due to the 650 MHz operating frequency, the power efficiency
achieves a competitive value of 27.6 GOPS/W, which is 1.9× energy
saving compared to the baseline design.

VI. CONCLUSION

In this work, we propose FTDL, an FPGA tailored architecture
for deep learning, to address the scalability issue caused by the
architecture-layout (FPGA) mismatch in existing designs. The FTDL
framework provides a hierarchical and parameterized architecture
design that can operate at a frequency of 650 MHz in most FPGAs
with different scales. Further, we develop a compilation tool to
schedule different DL workloads to the FPGA architecture automat-
ically and achieve high hardware efficiency. Taking the advantages
of both high operating frequency and hardware efficiency, FTDL
realizes significant improvement in MLPerf benchmarks. FTDL
achieves significant improvement in terms of performance and power
efficiency on ImageNet with GoogLeNet and ResNet50, compared
to the existing designs. With a flexible design, we expect FTDL
will be able to serve as the underlying execution platform, which is
combined with other algorithm level acceleration techniques such as

model compression and quantization, to accelerate DL applications
at scale.
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