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ABSTRACT

POSIX-style read() and write() have long been the stan-
dard interface for accessing data in files. However, the data
copy into and out of memory these methods require imposes
an unnecessary overhead when files are stored in fast persis-
tent memories (PMEMs). To avoid the copy, PMEM-aware
file systems generally provide direct-access (DAX)-based
mmap(), but in doing so force the programmer to manage
write-atomicity and concurrent accesses to the file.

In this work, we propose two new system calls — peek()
and patch(), and collectively called SUBZERO — that read and
update PMEM-backed files without any copies. To show its
potential, we implemented SUBZERO in two state-of-the-art
PMEM file systems, XFS-DAX and NOVA. Measurements of
simple benchmarks show that SUBZERO can outperform copy-
based read() andwrite() by up to 2x and 2.8X%, respectively.
At the application level, peek() improves GET performance
of the Apache Web Server by 3.6X, and patch() boosts SET
performance of Kyoto Cabinet up to 1.3X.
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1 INTRODUCTION

POSIX read() and write() have been the most common in-
terface for accessing file contents for many years and across
many generations of storage hardware. The semantics of
these system calls rely crucially on copying data between
(volatile) memory and a storage medium (e.g., a disk).

Copy-based semantics are a natural fit for both the per-
formance characteristics and hardware interface of conven-
tional storage technologies. Disks are slow enough that the
overhead of the copy is not significant. And even if disks
were fast, processors cannot operate directly on the data they
hold, because they are not memory.

The copy-based, atomic semantics that read() and
write() provide are also convenient for the programmer.
The copy that read() creates will not change if the file it
reads is overwritten, and write() atomically transfers a
fully-prepared buffer of data into the file.

The appearance of fast, persistent memory (PMEM) that re-
sides on the processor’s memory bus, however, upends both
of these long-standing assumptions: PMEM is fast enough
that the overhead of a copy is detrimental to performance and
the copy is not necessary since the data is already directly-
accessible to the processor.

Despite the costs of copy-based operations and because
of their convenience and ubiquity, even file systems specif-
ically designed for PMEM [9, 10, 15, 21, 23-25] implement
POSIX-compliant read() and write(). That said, PMEM file
systems generally also provide direct-access (DAX) mmap()
as an alternative that dispenses with the copy overhead.
However, DAX-mmap( ) forces the programmer to implement
atomicity and concurrency control manually, complicating
the programming model. Moreover, its unclear interaction
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with read() and write() has discouraged them from taking
the potentially interesting path that leverages both interfaces
in a single program.

To bridge the gap between POSIX read() and write()
and DAX mmap(), we propose a new IO interface called
SuBZERo that does not rely on copy-based semantics for
data access but still preserves the ease of use that read()
and write() provide. SUBZERO offers DAX-like speed with
a simple, POSIX-like interface that interacts cleanly with the
legacy POSIX interface.

Concretely, SUBZERO provides two new system calls —
peek() and patch() - that give programs access to file data
and interoperate cleanly with read() and write() system
calls. The peek() system call returns the virtual address of a
memory region holding a snapshot of requested file contents.
The snapshot is atomic with respect to other file operations
and its contents do not change if the underlying file changes.
The patch() system call takes a pointer to a memory region
containing new data and atomically incorporates that region
into the target file. patch() causes the memory region to
become read-only.

A PMEM file system can implement peek() by simply
manipulating the program’s page table. It can implement
patch() by adjusting the file’s layout to incorporate the
patched pages, as long as the pages are in persistent memory.
Benefiting from peek() and patch() requires changes to
how the application accesses file data and how it allocates
and disposes of 10 buffers.

We implemented SUBZERO in two of the state-of-the-art
PMEM file systems, XFS-DAX and NOVA. Our measurements
show that SUBZERO outperforms copy-based read() and
write() by up to 2x and 6X, respectively. At the application
level, peek() improves GET performance of the Apache Web
Server by 3.6, and patch() boosts the SET performance of
Kyoto Cabinet up to 1.3x with non-invasive changes.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the motivation of our work. Section 3 de-
scribes the details of SUBZERO IO interface and semantics.
Section 4 discusses the key implementation details and Sec-
tion 5 evaluates these techniques with micro-benchmarks
and applications. Section 6 discusses related works and Sec-
tion 7 concludes.

2 MOTIVATION

Although conventional POSIX read() and write() inter-
faces have proven easy-to-use, they become a major source
of inefficiency in PMEM file systems since the media latency
of PMEM is low relative to the software overheads on top of
PMEM. In the PMEM file system software stack, the copies
inherent in the semantics of read() and write() system
calls are a major source of inefficiency.
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Figure 1: Memory copy overhead in Kyoto Cabinet.
Memory copy overheads are significant when updat-
ing large key-value pairs in Kyoto Cabinet. “others”
means application and file system level overheads ex-
cept for the memory copy.

For example, a simple data copying step between the user
buffer and PMEM pages during write() system call takes
20 - 45% of the total execution time when updating large
key-value pairs in Kyoto Cabinet database [11] backed by the
NOVA file system (Figure 1). Critically, this copying overhead
is a property of the interface, not the file system — all PMEM
file systems that implement POSIX IO incur this performance
penalty.

PMEM file systems provide DAX-mmap() as an alterna-
tive to avoid this overhead. However, this interface jettisons
the good with the bad. Although it eliminates all common-
case file system overheads for data access, it also forces the
application to manage crash consistency and concurrency
control on its own, complicating the programming model
and inviting bugs.

As a solution, SUBZERO bridges the gap between POSIX IO
and DAX IO by combining the advantages of both, offering
DAX-like speed with a simple, POSIX-like interface that
interacts cleanly with itself and the legacy POSIX interface.

3 SUBZERO IO

SuBZERO IO (or just SUBZERO) is a suite of new system calls
that avoids copy-based semantics and allows for more effi-
cient data access and modification in PMEM-based file sys-
tems. SUBZERO strives to provide simple semantics that are
easy for programmers to reason about when building so-
phisticated applications. To these ends, SUBZERO has the
following design goals:

e Zero data movement SUBZERO should not require
costly data movements to implement read and write
operations. In particular, SUBZERO performs no data
movement while the conventional “zero-copy” IO (i.e.,
conducting IO with 0_DIRECT) in disk-based file sys-
tems still requires one data movement between the
storage media and memory.

e Atomicity SUBZERO should provide atomicity guar-
antees similar to those for POSIX read() andwrite(),
since those guarantees have proven useful in building
IO-intensive applications.
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Function Semantics
9 void” peek(int fd, off_t pos, size t len) Open a read-only mapping to the target range of a PMEM file.
& int unpeek(void *addr) Close a mapping opened by peek().
int patch(int fd, void xbuf, size_t len, off_t pos)  Update a target file with a PMEM buffer. patch() returns
an error when buf is misaligned with pos or the buffer
and the target file do not belong to the same file system.
int create_pmem_pool(char *path, size_t size) Create a PMEM pool from which PMEM pages are allocated
and return a unique pool id.
&£ void delete_pmem_pool(int pool_id) Delete a PMEM pool.
§ void* alloc_pmem(int pool_id, off_t pos, size_t len) Allocate a PMEM buffer. pos is the target location where

void free_pmem(void* buf)

the buffer will be patched.
Reclaim and unmap a PMEM buffer. PMEM pages are reclaimed
to the allocator only when they do not belong to files.

Table 1: SUBZERoO 10 functions. The API includes replacements for conventional read() and write(), in addition
to ancillary functions for allocating PMEM buffers for I0. Only peek(), unpeek(), and patch() need to be system

calls.

e Clean integration with POSIX Combined with their
atomicity, SUBZERO should integrate cleanly with
POSIX read() and write() operations. This allows
programmers to freely intermingle those conventional
IO operations with SUBZERO operations.

Below, we describe the SUBZERO 1O interface at a high level
and discuss its semantics in more detail. Then we present
an example of its use and discuss the changes it requires to
existing programs.

3.1 The SUBZERO Interface

SuBZERoO introduces two new IO operations: peek() and
patch(). Table 1 summarizes the SUBZERO interface, which
includes these two and several ancillary functions. Below we
describe the interface in detail.

peek() The peek() system call returns a pointer to a mem-
ory region that contains the contents of a file at a particular
file offset. The region reflects a snapshot of the file contents
at the time peek() is executed. The snapshot is atomic with
respect to file modifications (e.g., write() or patch()). The
snapshot is immutable, so attempts to alter its contents result
in a segmentation fault. There are no alignment restrictions
(or guarantees) on the file offset or the returned pointer.

Since peek() allocates the memory region containing the
snapshot, the application must eventually release the mem-
ory by passing the snapshot address to unpeek().

Lines 1-3 in Figure 2 illustrate how to peek() an entire
file. Line 9 deallocates the resulting buffer with unpeek().

The peek() system call resembles DAX-mmap(), since
both map file contents into the user address space. How-
ever, there are two key differences. First, peek() does not
impose any alignment restrictions on the file offset of the
region to be peeked, while mmap() requires the offset to a
multiple of the file system page size. Similarly, unpeek()
relaxes munmap()’s alignment restriction. Second, peek() is
easier to use than mmap(), since the snapshot is explicitly
atomic relative to other file modifications and immutable.

patch() The patch() system call modifies a file by merg-
ing the contents of a buffer into a file at the given offset.
In essence, the buffer becomes part of the file rather than
being copied into it. After the patch(), the buffer becomes
immutable. The state of the patch()’d buffer is identical to
the state of a peek()’d buffer: both are immutable mappings
of a file’s contents. The patch()’d buffer is closed by calling
free_pmem().

The change that patch() makes to the file is atomic
with respect to other patch() and write() operations. Like
write(), its effects are not guaranteed to be permanent until
the program calls fsync() or fdatasync().

The benefit of patch() is realized when two conditions
are satisfied. First, the buffer should comprise PMEM that is
managed by the same file system instance as the file being
written to. A program can acquire such PMEM by creating
a temporary file in the same file system and mmap()ing it.
Second, the buffer should be access-aligned. Intuitively, this
means the page boundaries of the buffer must align with the
page boundaries in the file. That is, for a patch() operation
using a buffer B and a file offset of f on a file system with page
size S, the patch() is access-alignedif B % S == off % S.
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int in_fd = open( , O_RDONLY);

int input_length = lseek(in_fd, OL, SEEK_END);

char *in_buf = peek(in_fd, 0, input_length);

int pool_id = create_pmem_pool( , 1073741824);
void *out_buf = alloc_pmem(pool_id, 0, input_length);
int output_length = uudecode(in_buf, out_buf, input_length);
int out_fd = open( , O0_WRONLY) ;
patch(out_fd, out_buf, output_length, 0);
unpeek(in_buf);

free_pmem(out_buf);

delete_pmem_pool(pool_id);

//
//
//
//
//
//
//
//
//
//
//
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Figure 2: Computation between two PMEM files without any copies using SUBZERo. An application can use peek()
and patch() to access and update files without any copies. Here, uudecode() reads directly from the input file’s
pages and writes its result directly to the physical pages that will become the output file.

The requirement is similar to the alignment requirement
imposed by opening a file with 0_DIRECT.

To make it easy for a program to satisfy these criteria, we
have implemented a simple allocator to allocate and deallo-
cate access-aligned buffers. Program can create a pool in a file
system and use it to allocate buffers for patch() operations.

Lines 4-8 of Figure 2 demonstrate how patch() can work
with peek() to avoid any unnecessary copies. The code allo-
cates a PMEM buffer and calls uudecode() to populate it by
processing the peek()’d contents of the input. The patch()
on line 8 causes the output buffer to become the contents of
the file, and therefore no copies are necessary.

3.2 Using SUBZERO

SuBZERO removes the implicit copy from the semantics of ac-
cessing and modifying a file’s contents. Realizing its benefits
will require changes to how applications perform IO.

The most significant changes affect how the program al-
locates and manages IO buffers. First, the program can no
longer pre-allocate read buffers, since peek() allocates and
returns a populated buffer. The program will also need to
call unpeek() when it is finished with the buffer. Second, the
application needs to allocate write buffers from PMEM.

How invasive this change is will depend on how the appli-
cation performs writes. High-performance applications that
maintain their own page-aligned buffer pools and leverage
0_DIRECT will have less trouble since page-aligned buffers
are automatically access-aligned. Applications that perform
more ad-hoc writes will need to allocate an access-aligned
buffer for each write.

4 IMPLEMENTING SUBZERO

To illustrate its potential, we implemented SUBZERO in two
state-of-the-art, in-kernel PMEM file systems: NOVA [23],
a file system built from scratch for PMEM, and XFS-DAX,
a linux file system adapted to accomodate direct access

to PMEM. SuBZERoO can be implemented without invasive
changes if the file system has the ability to 1) allow multi-
ple files to share data pages and 2) support copy-on-write
updates when a write modifies shared pages.

4.1 NOVA file system

NOVA [23] is a log-structured file system for persistent mem-
ory. It manages a contiguous region of PMEM and presents
a POSIX-compatible file system interface. It supports DAX-
style mmap( ), and all file and directory operations are atomic.

NOVA stores per-inode log that contains write entries
pointing to data pages and describing the file’s layout. To
perform a write, NOVA allocates new pages, populates them,
and then appends a write entry to the log incorporating the
pages into the file. Some old pages may become obsolete as
aresult — NOVA reclaims these during garbage collection.
Log append is atomic, so writes are atomic as well. On file
open, NOVA scans the log and builds an in-DRAM index that
maps file offsets to physical pages.

peek() in NOVA  The implementation of peek() in
NOVA mirrors its implementation of mmap() with a few addi-
tions. Since peek() maps the target pages of the file into the
application’s address space, the implementation must protect
against two types of unexpected changes to the peek()’d
data. First, it must prevent stores by the application from
altering the underlying file. Second, it must prevent changes
to the file from altering the data visible to the program.

To address the first, NOVA maps the pages as read-only so
that attempts to alter the contents from the peek()’d address
will see the segmentation fault.

To address the second, NOVA does not modify data in
place, so the PMEM pages that peek() mapped remain un-
changed even if the file’s contents change. NOVA must take
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care, however, to prevent the mapped pages from being re-
claimed by garbage collection until they are unpeek()’d.

patch() in NOVA Patch allows programs to insert popu-
lated buffers of data directly into a file. This requires solving
two problems.

The first is implementing alloc_pmem() to allocate
buffers in PMEM that are suitable for being patch()’d
into the file. We solve this by building a userspace li-
brary that creates temporary files in PMEM and maps them
with DAX-mmap() to return pointers to programs that call
alloc_pmem().

The second is performing the patch() itself. In NOVA,
patch() is a special case of a normal write(): write() al-
locates PMEM pages, initializes them, and appends a write
log entry to add the new pages to the file. A patch() uses
the pages provided by the application, skips the allocation
and initialization, and appends the write entry.

Implementing alloc_pmem() and patch() this way
means the pages used by patch() belong to two files — the
temporary file used to allocate the buffer and the target file.
Similar to peek( ), the shared pages should be protected from
updates occurring either by modifying the buffer with stores
or by modifying the target file with write(). To support
this, NOVA sets the pages as read-only after they are used
by patch(), and always performs copy-on-write on modifi-
cation by write(). For non-page aligned accesses and patch
sizes, it may be required to overwrite an additional page
before and/or after the patched pages. This is easily done by
appending additional log entries describing these overwrites.

4.2 XFS-DAX file system

XFS is a widely-deployed, high-performance journaling file
system. It organizes files with variable-sized extents and
maintains a B+tree for each inode to map file offsets to those
extents. As an additional mode, XFS-DAX allows direct ac-
cess to the extents in PMEM, bypassing the page cache layer.

Although XFS-DAX, by default, updates data in-place, it
also has facilities to support out-of-place data updates as part
of its implementation of “reflink”, a feature that allows mul-
tiple files to share data pages [6, 12, 19]. Reflink allows shar-
ing pages between files and supports copy-on-write updates
when the shared pages are modified, the same mechanisms
required by SUBZERo. Therefore, implementing SUBZERO in
XFS-DAX mainly involved enabling the reflink to work with
DAX mode in addition to the page table manipulations to
mark PMEM pages as read-only.

5 EVALUATION

We evaluate the performance of SUBZERO against copy-based
read() andwrite(), as well as DAX-mmap( ), on two PMEM
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file systems, NOVA [23] and XFS-DAX [12] under Linux
kernel 4.19. We answer the following questions:

e How much speedup do peek() and patch() achieve?

e How much effort is required to modify applications to
use SUBZERO?

e How much does SUBZERO improve performance on
real applications?

We performed experiments on a dual-socket machine pro-
vided by Intel Corporation. The CPUs are 24-core Cascade
Lake engineering samples with a similar spec as the previous-
generation Xeon Platform 8160. Each core has exclusive 32 kB
L1 instruction and data caches, and 1 MB L2 caches. All cores
share a 33 MB L3 cache. Each CPU has two iMCs and six
memory channels (three channels per each iMC), and each
memory channel is attached with a 32 GB Micron DDR4
DIMM and a 256 GB Intel Optane DC Persistent Memory
Module (Optane DCPMM). Overall, the system has 384 GB of
DRAM and 3 TB of PMEM. Every experiment is configured
to access the DRAM and PMEM in the same socket.

5.1 Micro-benchmarks

To understand how SUBZERO performs compared to other
legacy IO operations, we compare the performance of
SUBZERO operations against that of read(), write(), and
DAX-mmap( ) -based IO methods. To calculate the latency, we
read or write a large number of files with each IO method
while varying the IO size from 4 kB to 4 MB. We repeated this
single-thread benchmark 100 times and report the average
latency.

Most importantly, understanding the performance benefit
of SUBZERoO requires investigating not only the cost of IO
system calls themselves, but also that of their related oper-
ations — memory allocation, population, consumption, etc.
For this, the latency in all IO methods in our experiments
includes the time to allocate/free the buffer (if applicable).
In case of read, the latency also includes the time to load all
bytes from the target file after each IO method. In case of
write, the latency also includes the time to persist all bytes
to the target file.

Read Latency Figure 3 compares the latency of peek()
against read() and DAX-mmap( ) -based load. Here, we differ-
entiate two different read() cases: read denotes cases where
the DRAM buffer is not reused for subsequent read() oper-
ations whereas read-opt represents cases where the buffer
is reused either by the application or the glibc malloc().
As aresult, the relative speedup of peek() largely depends
on whether the buffer is reused in using read(): peek()
outperforms read by 1.6-2X and 1.6-1.7X in NOVA and
XFS-DAX, respectively while the speedup of peek() over
read-opt reduces to 6-17% in both file systems. The reduc-
tion in speedup mainly comes from the operating system
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Figure 3: Read operation latency. All latencies are nor-
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Figure 4: Write operation latency. All latencies are nor-
malized to write latency. Lower is better.

overheads avoided by the buffer reuse in read(). Otherwise,
any new buffer allocation normally requires a system call
(i.e., mmap() or sbrk()) and page fault overheads. Overall,
the result indicates that replacing read() with peek() is
mostly beneficial when the target program does not reuse
the DRAM buffer frequently or it is hard to do so due to the
memory allocation pattern in the program.

Compared to mmap(), peek() shows comparable perfor-
mance (-5-10%) since the underlying page table mapping
mechanism is fundamentally identical.

Write Latency  Figure 4 compares the latency of patch()
against write() and DAX-mmap()-based store. As with read,
write-opt denotes the buffer reuse case. For patch(), -a
and -ua indicate page-aligned and unaligned access, respec-
tively. After write() and patch(), we call fdatasync() to
ensure the written data is made durable.

Of note, aligned patch() (patch-a) outperforms write()
up to 2.8% and 2.2x in NOVA and XFS-DAX, respectively.
The speedup is small when the access size is small, but it
starts increasing as the access size increases. When the buffer
is reused during write(), aligned patch() performs 10-30%
slower for 4 kB, but starts outperforming from 16 kB, and
achieves up to 1.7x in both file systems. Unaligned patch()
(patch-ua) performs slower than aligned patch() due to
the additional overheads from copying head and tail pages.
The gap reduces to close to zero as the access size grows.
4 kB unaligned patch() falls back to the copy-basedwrite()
operation since there is no page to share.
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Figure 6: Application performance. SUBZERO boosts
application performance by a wide margin with small
code changes.

Compared to mmap(), aligned patch() underperforms
1.8X and 4.3% for 4 kB in NOVA and XFS-DAX, respectively,
but the gap reduces as the access size grows. Beyond 64 kB,
aligned patch() outperforms mmap(). The main reason is
that patch() saves the page fault cost by using pre-faulted
buffer pages whereas mmap() includes the cost in the critical
path. Also, despite its higher speed on the smaller accesses,
mmap() only provides the atomicity for 8 bytes while patch()
provides the crash-consistency of each IO operation.

Uudecoding files We evaluate the example code seen in
Figure 2 where a combined use of peek() and patch() can
boost the performance of computation between different
PMEM files. We used the same code in Figure 2 with base64
encoding schemes with results in Figure 5. As a result, using
peek() and patch() over read() and write() achieved up
to 1.6x and 2x speedups on NOVA and XFS-DAX, respec-
tively.

5.2 Applications

We explored the impact of SUBZERO on real applications
with two examples, Apache Web Server and Kyoto Cabinet.

Apache Web Server To apply SUBZERO to Apache Web
Server, we modified the Apache Portable Runtime library,
a supporting library for the web server, to use peek(). We
measured the performance of HTTP GET request serving
static files using a built-in web performance benchmark,
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ApacheBench [1], on our modified NOVA. When reading file
contents with read( ), Apache Web Server uses an 8 kB buffer
by default. For peek(), we set the access size to be the same
as the file size since it performs the best. Figure 6 (a) plots the
throughput of GET requests normalized to the read()-based
method. As a result, peek() outperforms read() from 1 MB
(1.7x) and achieves up to 3.6X better throughput. Since the
default read() suffers the overhead of frequent system calls,
we increased the read()’s buffer size to be the same as the
file size (read- full). On this setting, peek() still offers up
to 1.9% speedup.

To benefit from these speedups, peek() required 48 LOC
changes.

Kyoto Cabinet Kyoto Cabinet [11] (KC) is a high perfor-
mance database library that stores variable-sized key-value
records in a single file. KC supports fast access to the records
via hash table or B+tree, and makes every operation trans-
actional using write-ahead logging (WAL) to a separate log
file. By default, KC updates the database and the WAL file
using the write() operation. To demonstrate the benefit
of SUBZERO, we applied patch() to the hash table-based
HashDB database to speed up updating key-value records in
the underlying database file and measured the throughput of
transactional SET operations. Note that our modified KC per-
forms unaligned patches to the database file as each record
is padded with preceding metadata fields. In Figure 6 (b),
patch() performs similar to the write()-based operation
for value sizes 32, 64 kB, but after the 128 kB value, it be-
gins to outperform write() and the speedup monotonically
increases up to 1.3X.

To experience these speedups with SUBZERO, we required
57 LOC changes.

6 RELATED WORK

Avoiding data movement in storage systems The
techniques to avoid data movement have been explored
in a variety of systems, ranging from persistent storage to
DRAM. For file systems, Ext4 supports an ioctl operation,
EXT4_IO0C_MOVE_EXT, to allow swapping extents between
files by modifying inodes [2, 4]. A recent system SplitFS [13]
extended this feature in Ext4-DAX but still requires the data
movement that SUBZERo avoids since it supports copy-based
read(), write() semantics. Other file systems [6, 12, 19]
have similar functionality called “reflink” that could be a use-
ful facility to implement SUBZERo. The technique to remap
pages to avoid data movements has also been explored for
flash drives [14, 16, 22]. For DRAM, operating systems, such

APSys 20, August 24-25, 2020, Tsukuba, Japan

as OSX, that inherit the Mach [5] support memory copy via
vm_copy that remaps the regions as copy-on-write pages [3].

PMEM allocator For fast and efficient PMEM allocation,
several schemes have been proposed from both industry
and academia. PMDK [18] is an open-source, PMEM library
bundle from Intel. It offers large virtual address pools by
memory-mapping to PMEM files. Schewalb et al. [20] pro-
posed a general-purpose memory allocator for PMEM that
combines both DRAM and PMEM for fast allocation and re-
covery. Makalu [7] offers an integrated allocator and garbage
collector that avoids memory leaks on failures while offering
better integration with existing PMEM libraries [8]. Palloca-
tor [17] improves defragmentation by maintaining multiple
PMEM regions instead of having a single large pool. Com-
pared to these allocators, our allocator focuses on highly
fast allocations (by pre-faulting pages and partitioning) and
the correct recovery of both buffer and regular files. The
SuBZERro allocator is currently very simple; it could be im-
proved by incorporating techniques from these projects.

7 CONCLUSION

We have described and implemented SuBZERO, a new IO
mechanism that avoids most or all data movement for reads
and writes to PMEM-backed files. In addition to minimizing
movement, our implementation of SUBZERO provides both
fast read access and strongly consistent updates. Our evalu-
ation shows that SUBZERoO outperforms copy-based read()
and write() by a wide margin. In summary, SUBZERO IO
is a straight-forward way for programmers to improve their
applications’ performance on PMEM file systems.
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