CoREC: Scalable and Resilient In-memory Data Staging
for In-situ Workflows

SHAOHUA DUAN, PRADEEP SUBEDI, and PHILIP DAVIS, Rutgers Discovery Informatics In-
stitute, Rutgers University, USA

KEITA TERANISHI and HEMANTH KOLLA, Sandia National Laboratory, USA

MARC GAMELL, Intel, USA

MANISH PARASHAR, Rutgers Discovery Informatics Institute, Rutgers University, USA

The dramatic increase in the scale of current and planned high-end HPC systems is leading new challenges,
such as the growing costs of data movement and IO, and the reduced mean time between failures (MTBF)
of system components. In-situ workflows, i.e., executing the entire application workflows on the HPC sys-
tem, have emerged as an attractive approach to address data-related challenges by moving computations
closer to the data, and staging-based frameworks have been effectively used to support in-situ workflows
at scale. However, the resilience of these staging-based solutions has not been addressed, and they remain
susceptible to expensive data failures. Furthermore, naive use of data resilience techniques such as n-way
replication and erasure codes can impact latency and/or result in significant storage overheads. In this arti-
cle, we present CoREC, a scalable and resilient in-memory data staging runtime for large-scale in-situ work-
flows. CoREC uses a novel hybrid approach that combines dynamic replication with erasure coding based on
data access patterns. It also leverages multiple levels of replications and erasure coding to support diverse
data resiliency requirements. Furthermore, the article presents optimizations for load balancing and conflict-
avoiding encoding, and a low overhead, lazy data recovery scheme. We have implemented the CoREC run-
time and have deployed with the DataSpaces staging service on leadership class computing machines and
present an experimental evaluation in the article. The experiments demonstrate that COREC can tolerate in-
memory data failures while maintaining low latency and sustaining high overall storage efficiency at large
scales.

CCS Concepts: « Computer systems organization — Dependable and fault-tolerant systems and net-
works; Real-time systems; « Information systems — Data management systems;

This work was supported in part by the National Science Foundation (NSF) via grants number CCF 1725649, and by Sandia
National Laboratories, a multi-mission laboratory managed and operated by National Technology and Engineering Solu-
tions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-0003525. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-000R22725. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231. The research at Rutgers was conducted as part of the Rutgers Discovery Informatics
Institute (RDI?).

Authors’ addresses: S. Duan, P. Subedi, P. Davis, and M. Parashar, Rutgers Discovery Informatics Institute, Rut-
gers University, 100 Brett Road, Piscataway, NJ, 08854; emails: {shaohua.duan, pradeep.subedi, philip.e.davis, manish.
parashar}@rutgers.edu; K. Teranishi and H. Kolla, Sandia National Laboratory, Livermore, CA, 94550; emails: {knteran,
hnkolla}@sandia.gov; M. Gamell, Intel, Austin, TX, 78746; email: marcgamell@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2329-4949/2020/05-ART12 $15.00

https://doi.org/10.1145/3391448

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3391448

12:2 S. Duan et al.

Additional Key Words and Phrases: Data resilience, erasure codes, replication, in-situ workflows, data staging

ACM Reference format:

Shaohua Duan, Pradeep Subedi, Philip Davis, Keita Teranishi, Hemanth Kolla, Marc Gamell, and Manish
Parashar. 2020. CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows. ACM Trans.
Parallel Comput. 7, 2, Article 12 (May 2020), 29 pages.

https://doi.org/10.1145/3391448

1 INTRODUCTION

Scientific workflows running on current and emerging extreme-scale systems are providing new
opportunities for solving some of the most important problems in science and society, such as
those being addressed by the US Exascale Computing Program (ECP) [37]. However, running such
workflows at extreme scale presents significant challenges spanning all aspects of data manage-
ment, including data analysis, movement, and storage.

For example, the S3D [11] extreme scale scientific workflow, which is a coupled, multi-scale,
multi-physics turbulent combustion workflow, involves intricate data-processing that includes
multiple analyses performed at different temporal frequencies on non-overlapping subsets of data.
To address the data-related challenges associated with coupled scientific workflows such as S3D
executing at extreme scales, in-situ approaches based on data staging have emerged and are being
used by applications on current high-end computing systems [14, 33]. Figure 1 illustrates an in-situ
scientific workflow where the application components are coupled via an in-memory data staging
framework. In this workflow, the primary scientific simulation is the data producer and the data
consumer(s) include secondary simulations, analytics services, and/or visualization applications
coupled to the data producer.

However, scientific workflows running on current and emerging extreme-scale systems are also
expected to experience higher failure rates for various reasons relating to both increasing scale of
hardware and more complexity of software [9]. Even worse, data loss due to failures (e.g., process
failures, node failures) in any module of such complex workflows will impact the execution of the
entire workflow and can invalidate the final results. Consequently, it is critical to ensure the re-
silience of the end-to-end workflow. To address fault tolerance at extreme scales with the expected
commensurate higher rates of failures and data loss [9], recent research has explored techniques for
minimizing application vulnerability to failures. Various fault tolerance techniques such as check-
point/restart, process replication [17], and erasure coding [42] have been widely studied and have
been utilized to mitigate failures in individual software components of the scientific workflow.

Unfortunately, current fault tolerance techniques can not be directly used to implement resilient
data staging services due the large amount of data that is exchanged between the different appli-
cation components via the staging area. For example, using Checkpoint/Restart techniques for an
MPI-based application workflow, recovery from a failure in one of the data staging processes/nodes
would require all the tightly coupled application components of the workflow to rollback to main-
tain a consistent status of the workflow. This would result in a large amount of data transfers
from remote storage nodes or local disk and require substantial coordination between the appli-
cation components to reach a consistent state. This, in turn, can lead to significant performance
degradation and increase recovery times. Furthermore, application components and data staging
servers that have not experienced failures and/or data loss also have to be re-executed, leading to
unnecessary data transfer and computation overheads. Similarly, the process replication approach
presented in Reference [18], which can potentially provide resiliency for in-situ workflows and
data staging services, requires twice the amount of computing and storage resources, which may
not be feasible. A more traditional approach based on replication, where multiple copies of the data

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

https://doi.org/10.1145/3391448

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:3

f
i Resiliency approach

i (Checkpoint/restart) (ULFM)
L

---—Simulation B 1

i
Resiliency approach | <-:>
(Checkpoint/restart) E

i

Data Objects

(Fenix)

]
i
Resiliency approach i
i
i
i

r? In Memory Data
N N Staging oupled
----- .
Resiliency approach | ! Resiliency approach
(ULFM) i Vulnerable for failure | (Fenix)
! i

Fig. 1. A typical data staging workflow with fault tolerance.

are maintained, is a viable alternative but can have a large storage overhead [42]. For example, if
you want a system to tolerate up to two node failures, using replication would result in a stor-
age overhead of 200%. An alternate approach to achieving data reliability is using erasure coding.
While erasure coding can dramatically reduce the storage cost, it incurs the overhead of encod-
ing the data during writes and decoding the data during recovery from failures [34]. Resilience
approaches based exclusively on replication or erasure coding would result in large storage over-
head or computational overhead, respectively.

Furthermore, the components of an application workflow exhibit different failure probabilities
during execution. For example, large-scale, long-running simulations tend to have a higher prob-
ability of concurrent failures than smaller-scale and shorter-running components. Since multiple
distinct applications and workflows can share the same staging services, using a single approach
to data resiliency can be either an overkill or ineffective for some applications/workflows. As a
result, it is desirable that the staging runtime dynamically determines the level of data resiliency
based on application needs.

An added challenge in implementing resiliency in a data staging framework is process recovery.
While simply recovering the data that was lost due to process or node failures guarantees data
resiliency, the original failure will still lead to a degradation of the performance of the workflow:
When staging servers fail, it is feasible to recover the data and re-distribute the workload across
remaining staging servers. While this enables the workflow to progress, the overall performance
and the storage capacity of the staging area will be reduced due to the loss of the process/node.
This increases the data query and exchange latency experienced by the workflow components. If
we consider high failure rates and long-term execution times of the workflows, then the number
of available staging servers will progressively reduce for time, leading to degraded performance
and an increase in the total workflow execution time.

This article builds on our previous work [16] and makes contributions along multiple dimen-
sions. First, this article explores how multiple replication and erasure coding schemes can provide
different levels of data reliability with an understanding of acceptable costs and the associated
trade-offs of achieved resilience, overheads, performance, storage, and so on. Second, this article
presents a process recovery solution that cooperates with the data resiliency scheme and aims to
recover failed staging servers so as to maintain the performance of the data staging framework
over the lifetime of the workflow.

In this article, we present CoREC (Combining Replication and Erasure Coding), which is a hy-
brid approach to data resilience for staging-based in-situ workflows. CoREC provides the benefit
of data replication, i.e., high performance, while leveraging erasure coding to reduce storage costs.
CoREC uses online data classification, based on spatial/temporal locality, to determine whether to
use erasure coding or replication, and balances storage efficiency with low computation overheads

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:4 S. Duan et al.

while maintaining desired levels of fault tolerance. Moreover, to satisfy the diverse data resiliency
requirements of different workflow components, CoREC supports the use of different data re-
dundancy schemes, such as a hybrid approach combining both replication and triplication with
different erasure codes. CoREC with multilevel data redundancy (CoREC-multilevel) can dynam-
ically decide between erasure coding and replication schemes (for, e.g., duplicate, triplicate, and
Reed-Solomon codes) based on the data access patterns while maintaining application-specified
resiliency requirement and incurring minimal storage overhead. Furthermore, we develop opti-
mized load balancing and conflict-avoiding encoding for CoREC, as well as a low-overhead lazy-
recovery scheme for the staging nodes, to alleviate overheads and interference associated with
CoREC for both data-writes and data-recovery. We have used CoREC to implement resilient data
staging within DataSpaces and have also integrated ULFM (User Level Fault Migration) [7] to ef-
ficiently recover from both processes and node failures. We have deployed the resulting resilient
DataSpaces on the Titan Cray XK7 production system at Oak Ridge National Laboratory (ORNL),
the Cori Cray XC40 system at the National Energy Research Scientific Computing Center (NERSC),
and the Caliburn system at Rutgers Discovery Informatics Institute (RDI2). Our experimental eval-
uations using synthetic workloads and the S3D combustion workflow demonstrate that COREC
maintains good storage efficiency and low latency for various use cases, supporting sustained per-
formance and scalability even in the face of frequent node failures.

The rest of this article is organized as follows: Section 2 presents the low-latency and high-
efficiency CoREC approach to data resilience for staging-based in-situ workflows, and Section 3
describes the design of CoREC. In Section 4, we present the implementation and evaluation of
CoREC. Section 5 presents related work and Section 6 concludes the article.

2 COREC (COMBINING REPLICATION AND ERASURE CODING)

In this section, we first explore resilience requirements of staging-based in-situ workflows and
investigate why traditional mechanisms, such as Checkpoint/Restart, are unable to effectively meet
these requirements. We then introduce, model, and analyze CoOREC/CoREC-multilevel, our hybrid
approach to in-staging data resilience, and present an online approach for data classification based
on data access patterns, which underlies CoREC.

2.1 Data Resilience for Staging-based In-situ Workflows

Data staging techniques leverage resources on the HPC system (i.e., cores and storage on simula-
tion nodes as well as on dedicated nodes) to store and process data as it flows (typically memory-to-
memory using Remote Direct Memory Access (RDMA)) between components of an in-situ work-
flow. For example, DataSpaces [13, 14], a data staging service targeting extreme-scale application
workflows, uses data staging cores to implement a semantically specialized, virtual shared-space
abstraction that can be associatively accessed by all applications and services and provides under-
lying runtime and RDMA-based asynchronous data transport mechanisms to support in-situ/in-
transit workflows. It enables live data to be extracted from running applications, indexes this data
online, and then allows it to be monitored, queried, and accessed by other applications and services
via the shared-space using semantically meaningful operators.

While there is an increasing body of work on scalable fault-tolerance mechanisms applicable
to individual applications [19], these mechanisms are not directly applicable to in-situ workflows,
the data staging service supporting the workflow, or the data being staged by the workflow. In the
Checkpoint/Restart approach, checkpoint data are periodically saved during application execution,
and when a failure occurs, the application uses these checkpoints to rollback to the most recent
consistent state. Using Checkpoint/Restart for fault tolerance of the data staging service presents

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:5

9000
8000 3 } M Exec M Exec-CoREC Exec-check M Checkpoint M Restart ‘

7000 ¥
6000
5000 ¥
4000
3000 ¥+
2000 +
1000 ¥

Time (sec)

4G 8G 16G 32G
Data Size

Fig. 2. Impact of checkpointing on staging-based in-situ application workflows. Exec is the total execution
time of the workflow without checkpointing; Exec-CoREC is the total execution time of the workflow using
CoREC; Exec-checkis the total execution time of the workflow with periodic checkpointing of the staged data;
Checkpoint is the total time required to checkpoint the data staging servers; Restart is the time required to
perform a global restart of the data staging servers using a checkpoint.

two concerns: The first is the impact on the runtime of application workflows that use the data
staging service.

To illustrate this impact, we performed periodic checkpointing of the data stored at the DataS-
paces servers to the parallel file system on Titan and measured the total execution time with no
server failure. Checkpointing was performed every five minutes, which is similar to the frequency
used in the experiments presented in Reference [19], for a total of eight staging servers with vary-
ing staged data sizes. This resulted in a range from 17 checkpoints for a data size of 4 G to 20
checkpoints for a data size of 32 G. The results are plotted in Figure 2. From the plots, we can see
that even if no failures are present, checkpointing significantly increases the total execution time
of the workflow as the staged data size increases. In this case, the maximum time spent to achieve
fault tolerance for just the staging servers is ~15.6% of the workflow run time without failures. In
addition, this does not include the work lost from rolling back to a previous state. As presented in
this article, failure recovery using CoREC increases the total execution time of the workflow by up
to 2.23%, which is significantly lower than using Checkpoint/Restart. Furthermore, there is no loss
of work in the case of CoREC. The second concern is the overhead due to large amounts of data
movement and potential cascading rollback. When using Checkpoint/Restart for MPI applications,
rolling back the data staging server can cause the tightly coupled application components of the
workflow to become out of sync. Since all of the tightly coupled components in the MPI com-
munication group must be rolled back to an overall consistent state, this can trigger a cascading
rollback of the workflow where the rollback of one component triggers other healthy component(s)
to rollback, and, in the worst case, cause the entire workflow to restart from the beginning. This
process can result in significant coordination and data movement overheads. Process replication
or process-redundancy [18] is another mechanism often used for fault tolerance. This approach
consists of replicating all processes and their computations. Using replication for fault tolerance
of the data staging service would require each staging server and its data to be replicated, which
doubles the compute and storage requirements and can make it infeasible.

Since ensuring access to the staged data in spite of failures is most critical for a staging ser-
vice, data resilience techniques such as data replication or erasure coding are more appropriate.
Data replication involves making multiple copies of the data object and distributing them across
multiple nodes, which enables efficient recovery by re-routing requests to a replica in case of a
failure. However, it can result in increased storage requirements, which may not be feasible for
in-memory staging due to limited memory size and increasing data volumes.

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:6 S. Duan et al.

An alternate approach to data resilience with lower storage overheads is to employ erasure cod-
ing techniques. Erasure codes are constructed using two configurable parameters n and k (where
k < n). The data are treated as a collection of fixed size units called blocks/objects. Every k original
objects (called data objects) are encoded into n — k additional equal size coded objects (called par-
ities) and the set of the n data and parity objects is called a stripe. In case of a data staging service,
objects of independently encoded multiple stripes are stored on distinct staging servers, allowing
the service to tolerate n — k server failures.

While erasure coding provides lower storage overheads as compared to the replication, it can
lead to significant computation and network overheads, as parity has to be re-computed for every
object update. If a data object in a stripe is updated, then erasure coding must update the associated
parity. This process involves reading old data objects in the stripe, re-computing parities, and up-
dating them. For example, if a stripe has six data objects and two parity objects, updating one data
object requires five data object reads (for old data), re-computing two parity objects and two parity
object writes. As a result, using erasure coding can be suboptimal for frequently written/updated
data objects.

2.2 CoREC, a Hybrid Approach

CoREC is a hybrid approach that dynamically (and intelligently) combines replication with erasure
coding based on data access patterns to balance storage efficiency with computation overheads
while maintaining desired levels of fault tolerance. Specifically, COREC uses a robust classification
of data access patterns to identify hot and cold data—the key idea is to replicate the write-hot data
while applying erasure coding for write-cold data. Using replication for write-hot data eliminates
the expensive parity updates, as we only need to update the replicas. Using erasure coding for
write-cold data ensures limited object updates and dramatically reduces storage costs as compared
to using a pure replication-based approach. For example, in a two-failure resiliency case, let us
assume that 60% of the data are identified as write-cold, which uses erasure code (n = 8,k = 6),
and the remaining 40% hot data objects are replicated for fault-tolerance. Here, using CoREC, we
incur only 100% storage overhead compared to the 200% needed for full replication, but maintain
write performance close to that of replication, assuming write-cold data are rarely updated. Note
that we do not consider read access patterns in our hot/cold classification, because data encoded
with systematic erasure codes do not need to be decoded for reads in the absence of failures [34].

2.3 Classifying Data Access

CoREC utilizes the concept of write-hot and write-cold data to identify data objects as candidates
for either replication or erasure coding. If a data object has been recently written/updated more
than a threshold number of times within a certain interval, then it is considered to be hot data;
otherwise, it is considered to be cold data. While data access patterns in real applications can
change as the application evolves, i.e., a hot data object may become cold and vice versa, access
patterns in scientific applications typically exhibit high temporal and spatial data localities, as the
data and its access is typically defined along some discretization of a physical domain (e.g., a mesh
or a grid), and the accesses are iterative in time [4].

During the execution of scientific simulation workflows, the simulation (e.g., S3D) issues a data
write request, which writes n-dimensional data, at the end of each time step/iteration. Here, we use
temporal locality of objects to indicate data objects being written/updated in consecutive time step
and spatial locality of objects to refer to data objects that are near to each other in the n-dimensional
space. As an illustrative example, consider a simulation that uses a 2-dimension Cartesian grid
as show in Figure 3(a). The simulation writes data objects in region {(2, 2), (6, 6)} of the grid at
time step 1, and this hot data turns cold at time step i (temporal locality). At time step n, another

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:7

Y - Y miamnm
m] T b
T H u 0 u
H #:: - T H HHHH
TTTT H u T H o T TS n+1
u H O TIILT TS n+1 HHEHHH H T n
H E; TSn T H TS
7|||||7 13 :III::: I'II'SHZII .
Ts 1 _ 1 Hot data Query data Cold data _
X X
(a) Single time step data locality case (b) Multi time steps data locality case

Fig. 3. An illustration of spatial and temporal data write/update patterns for a 2D data domain with N +1
time steps. The solid red regions and slash regions (i.e., hot data) indicate data written into the staging area,
while the black dot regions (i.e., cold data) are not updated since time step i.

application writes/updates only a portion of that region (say, region {(2,2), (3,3)}). In this case, it
is very likely that the surrounding data objects in region {(2, 2), (6, 6)} (due to spatial locality) will
also be written/updated at subsequent time steps, n + 1, n + 2, and n + 3 [4].

We may go beyond this one step look-ahead prediction and consider several time steps. For
example, suppose that the highlighted data objects at time step 1 and step 2 are written by one
application in Figure 3(b), and these multiple objects turn cold at time step i. If at time step n
another application writes a portion of the combined regions of {(2, 2), (4, 6)}, and {(4, 4), (7, 5)},
then it will likely access objects in the combined region during time steps n + 1, n + 2, and n + 3.
This multi-time-step look-ahead mechanism is beneficial, because an application may have several
different hot data objects at the same time step in different regions of the grid. CoREC uses these
spatial-temporal data locality attributes for multi-time-step data access prediction.

While choosing candidates for replication and erasure coding, we need to consider the properties
of both replication and erasure coding as described in Section 2.1. Since replication has advantages
in terms of write performance for frequent writes but has storage overhead as compared to erasure
coding, we use data access patterns to classify write-hot and write-cold data and apply replication
and erasure coding techniques, respectively. Specifically, newly written or updated data objects are
classified as hot data. Data objects with spatial coordinates near current hot data are anticipated to
be accessed in near future, and thus are also considered hot. The data objects with temporal locality
in previous iterations/time steps relative to the current hot data objects are also classified as hot
data objects. CoREC replicates these hot data objects while all other cold data objects are erasure
coded. We use reference counters to record the access frequency of each data object. From a pool
of replicated data objects, the object with the lowest access frequency is selected as a candidate for
erasure coding. Once it is erasure coded, its access frequency is reset back to zero and incremented
with every future access. The objects in the erasure coding pool with highest access frequencies
are selected to be transitioned to replication if and only if the current storage overhead is lower
than a user-specified threshold, i.e., CoOREC aims to maintain storage efficiency while providing
highest performance.

2.4 Modeling the CoREC Approach

In this section, we analyze the trade-off between replication and erasure coding and the impact of
data access classification on a simple hybrid approach.

If Nj.oe; is the data resilience level, i.e., the maximum number of simultaneous node failures that
system should be able to recover from, then using replication for fault tolerance requires Nj¢ e/
copies of each object. Therefore, the storage efficiency, which is the ratio of the size of original
data objects to the size of original data object plus redundant data objects, for replication is:

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:8 S. Duan et al.

1

Ep=—— .
Niever +1

Assume that data are transferred between servers using a streaming approach and it takes c
seconds to transfer one object from the current server to the remote server. Further assuming that
these servers have an I second latency before sending the object to other servers to make copies,
the time required to transfer Nj...; replica objects to guarantee data resiliency for one object is:

Cr = I'x Niever +c.

Using Reed Solomon Code [30], supporting Nj..; fault tolerance with a group of N, o4, servers
involves both encoding and data transfer between servers. It requires a computation overhead of
O(Niever X Nuoge) and data transfer of Njeye; + Npoge — 1 data objects for N,,p4. objects. Thus,
the storage efficiency is:

Nnode

E, = ——node
Nievel + Nnode

and the time required to encode one data object is:

I'x (Nlevel + Nnode)
+c.

C, = O(Nle‘uel X Nnode) +
€ Nhode

2.4.1 Simple Hybrid Erasure Coding. In this article, we use simple hybrid erasure coding to
refer to a hybrid approach where candidate data objects for replication and erasure coding are
selected randomly without any data classification. Suppose that an application stages n disjoint
objects and runs for a duration T while uniformly updating each object t times. Then, the resulting
object update frequency is f = % If the probability that an object will be replicated is P, and the
probability that an object will be erasure coded is P, = 1 — P,, then the storage efficiency for simple
hybrid erasure coding (Epysriq) can be computed as:

Nnode
(Nnode X (Nlevel + 1) X Pr + (Nlevel + Nnode) X Pe).

The corresponding time complexity is given by:
Chybria = (Pr X Cr + Pe X Ce) X f X1, (1)
2.4.2 CoREC. In CoREC, we classify data objects as hot or cold based on the data update fre-
quency f. Assuming that the object update frequency is non-uniform for hot and cold data, let
these frequencies be f; and fe, respectively, and that fj, > f.. For n disjoint data objects, P, X n
hot data objects are replicated and P, X n cold data objects are encoded in CoREC, where Py, and P,

are the percentages of hot and cold data objects in the data staging service, respectively. Therefore,
the time complexity for CoREC can be computed as:

Ccorec = Ph X Cr X fpXn+4+Pe X Ce X fo X n. (2)

Since each data object in the data staging service is classified as either hot or cold, P, =1 — Py,
From Equation (1), we have:

Ccorec = (Cr X frp = Ce X fo) X n X Py + Ce X fe X 1. (3)

Accordingly, the time complexity for exclusively using erasure coding Ceqsure and replication
Creplica are:

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:9

Creplica:(fh—fc)XCanXPh-i-chchn, 4)

Cerasure = (fn — fe) X Ce Xn X P + Ce X fe X 1. (5)

The advantage of CoREC as compared to simple hybrid erasure coding in terms of time complexity
can be computed as:

Gain = Chybrid = Ccorec = (Ce = Cr) X Pp X Pe X (fn = fc) X n. (6)

The storage efficiency for CoREC, which depends on percentage of hot and cold data (Ecorec), is
given by:
Nhode
(Nnode X (Nlevel + 1) X Pr + (Nlevel + Nnode) X Pe).

(7)

The prediction and classification of hot data objects depend upon the accuracy of the classifier.
If the classifier is not accurate, then it might classify cold data as hot data (or vice versa). Even
if the accuracy of the classifier is perfect, replicating all hot data objects might be infeasible due
to limited memory size. Since we can tolerate a limited storage overhead for data resiliency, in
CoREC, we introduce two parameters: miss ratio r,, and storage efficiency constraint S. We use
miss ratio, i.e., the ratio of misclassified data objects to total hot data objects, as a measure of the
accuracy of data access classification. Then, P,ry,n real hot data are classified as cold data and
encoded. Thus, the time complexity for CoOREC under miss ratio r,, can be computed as:

Ccorec = Pp(1 - rm)crfhn + Phrmcefhn + Pccefcn =
(Crfn = Cefe + (Ce = Cp) furm)nPy + Ce fen

The storage efficiency constraint S is used as an upper bound for the storage overhead that can be
tolerated, which is a lower-bound for Epypyiq and Ecorec. When Ecorgc = S, the storage efficiency
constraint limit is reached and Equation (7) can be solved to obtain value of P, as:

_E; X (S-E.)
"~ Sx(E,—E.)’

When P, < P, and P, > P, (P, — (1 — r;,) P,)n, real hot data are encoded under constraint S. Thus,
when CoREC hits the storage efficiency constraint, the time complexity for COREC with miss ratio
rm can be computed as:

Ccorec = Pr(1 = 1p)Cr fyn + (P — (1 = rm)Pr)Ce fpn + PcCe fen =
(fh - fc)cenph + Cefcn —(Ce—Cr)(1 - rm)Prfhn-

Using the time complexity equations (1), (3), (4), (5), (8), and (9), we plot relative write/update
cost versus the hot data percentage in Figure 4. When all of the data objects are cold (Marker 1 in
the figure), the write performance of CoREC is the same as simple hybrid erasure coding, because
data are written/updated rarely. With the increase in the hot data percentage, the time complexity
for CoREC increases linearly, i.e., performance is gained due to the replication of hot data objects.
If we assume that classification is accurate and there is no constraint on storage, then all hot
objects are replicated and all cold objects erasure coded. In this case, the write cost will be similar
to replication. When storage constraint limit S is reached (Marker 2 in the figure), some of the hot
data objects will be erasure coded, irrespective of their classification, which will lead to an increase
in the cost. In addition to this, if the classifier is not accurate, then there will be misclassifications,
and write/update performance will be further degraded. In conclusion, between points 1 and 2 in
Figure 4, the performance of CoREC increases due to the increase in hot data objects, but beyond

®)

r

©)

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:10 S. Duan et al.

\

Relative time complexity

i 2 8

.

0 Pr=Pr 100 PT(%)
Percentage of hot data
Fig. 4. An analytic study of the relative time complexity of CoOREC (CcorEec) with RS(4, 3) and varying miss
ratios(Rm,) and percentages of hot data objects (Py). The time complexity for erasure coding (Cerasure)
replication (Cyepjicq), and simple hybrid erasure coding (Cp,ypriq) is noted by red dotted lines, as baselines.

point 2, the storage overhead limit is reached and objects are erasure coded irrespective of their
classification, leading to a constant difference in time complexity with the full erasure coding
approach, i.e., Cergsure-

Based on Equation (6) and Figure 4, we can deduce that CoREC’s time complexity depends on
the following factors: (i) The difference in the data access frequencies of hot and cold data objects,
i.e., fp — fe. The larger the difference, the greater the benefit of CoREC. (ii) The difference in
the time complexity of replication and erasure coding, i.e., C, — C,.. The larger the difference, the
greater the benefit of CoOREC. (iii) The scale of workload n. The larger the workload, the greater the
benefit of CoREC. (iv) The miss ratio, i.e., ry,. The lower the miss ratio, the greater the benefit of
CoREC.

2.5 CoREC-multilevel, CoREC with Multilevel Data Redundancy

When dealing with in-situ workflows, each application and variable potentially has different data
resilience requirements. For example, large-scale, long-term simulation applications require high
data resiliency due to a higher probability of failures. Meanwhile, applications in a small-scale
workflow may have lower data resilience requirement. Since different workflows can share the
same data staging resource, using the same data resiliency scheme across the whole data staging
framework is not efficient. Amplifying this concern, the level of data resilience might vary for each
variable of an application. For example, in machine learning workflows performing hyperparame-
ter optimization, the hyperparameter variable is the key result of the hyperparameter tuning, and
failures affecting this dataset will significantly affect the entire workflow. In contrast, variables
used for logging purpose are less important and unavailability/corruption of such data rarely im-
pacts the final result of the workflow. This warrants a need to support the ability to set the data
redundancy level at the granularity of variables.

In the following section, we introduce CoREC with multilevel data redundancy (CoREC-
multilevel). Unlike CoREC, which only cares about data access frequency and applies a universal
data redundancy for all data, CoOREC-multilevel takes into account the resilience requirement of
applications and variables. Specifically, we enable a varying data redundancy scheme, which corre-
sponds to different n-way replications and erasure coding schemes based on the data resilience re-
quirements. In CoOREC-multilevel, each variable has an individual level of data redundancy, which
is set by the application, and the global storage efficiency constraint is set as an upper bound of
storage cost in the staging area.

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:11

Assuming that the overall cost of multilevel replications is the sum of the cost of each individ-
ual replication scheme (C,;) weighted by its percentage (P,;), the expected cost of the multilevel
method that combines n replication schemes C, is:

Cr = Prlcrl + PrZCrZ +-et Prncrn~
In the same way, the expected cost for the n erasure coding schemes C. is:
Ce = Pe1Ce1 + PeaCep + -+ - + PeCen.

From these equations and Equation (8), the time complexity for CoOREC-multilevel Ccorpcnr under
average replication C, and erasure coding C, costs can be computed as:

Ccorecr = (Crfi = Cefe + (Ceo = Cr) fulm)nPy + Ce fen. (10)
Similarly, we can get the average storage efficiency for replication E, and erasure coding E. as:

Edr =PnEq +PoErp+ -+ PryErp,

Ee = Pe1Ee1 + PegEez + -+ + PenEen.
The storage efficiency for CoREC-multilevel is then given by:

E.E,
EcorEcM = =—————=—

. (11)
E.P, + E,P,

3 COREC SYSTEM DESIGN

CoREC is composed of three key components, i.e., the grouped replication & erasure coding based
data placement scheme, the load balancing & conflict-avoid encoding workflow, and the lazy re-
covery strategy. In this section, we present the overall design and implementation details of CoREC
and describe these three components.

3.1 Data Placement

3.1.1 Grouped Replication & Erasure Coding Scheme. To tolerate concurrent staging server
failures (i.e., node failure), we divide staging servers into replication groups and erasure coding
groups. A replication group includes the data object and its replica, and an erasure coding group
includes data objects and their parities. The grouped replication and erasure coding scheme over-
comes the limitation of random replication and makes data objects able to survive concurrent fail-
ures with higher probability. Figure 5 shows an example of how two-way replication and erasure
coding group (k = 3,n = 4) scheme work in a 16-server data staging.

The placement of replicas and data/parity objects on staging servers in the physical organization
can also have a critical effect on data resilience. In many cases, a single event such as a power failure
or a physical disturbance will affect multiple devices and greatly increases the risk of data loss. By
reflecting the underlying physical organization of data staging servers, our approach can model
and thereby address potential sources of correlated staging server failures. Specifically, in CoREC,
we reorder the data staging server ID based on network topology and organize them in a logical
ring. Each server is followed in the logical ordering by a server on a different node or cabinet so
that as many as n contiguous servers belong to n different nodes or cabinets. By encoding this
information into the logical network topology, our data placement policy can separate the data
object, its replicas, and parity objects across different failure groups while maintaining the desired
distribution. As depicted in Figure 5, a 16-server data staging that is located in four dedicated
compute nodes can tolerate arbitrary one node failure.

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:12 S. Duan et al.

Grouped replication & erasure coding Replication group

C1 C1 » Coding group

N 1
‘ Staging server
% >< Inject failure

Physical layout

Node 2

grouping c2

Node 3 —>
c4

eoee)
eeee) L

Fig. 5. Data Objects, Replicas, and Parity layout in data staging. Servers 1 and 2 are in the same replication
group, while servers 1, 2, 3, and 4 belong to the same coding group. This topology-aware data layout can
tolerate arbitrary single node failure.

e.00Y

c3

Data flow: ----3
Work flow: —p
Grouped Server 1 Grouped Server 2 (helper server)
Client: object put request j quest

cold cold
Encoding Encoding

low low
Keep token Keep token

Fig. 6. Encoding workflow in CoREC.

3.2 Load Balancing & Conflict-avoid Encoding Workflow

In CoREC, data objects are encoded in staging servers during transition from replication to erasure
coding. If one staging server is currently busy with a large read-write workload, then assigning
the encoding task to this server will impact other requests being served, as well as the encoding
time. CoREC addresses this interference with a load-balancing & conflict-avoid encoding work-
flow. Since hot data objects are always replicated, CoREC can simply select the staging server
with the lightest workload in the replication group to perform data classification and encoding
operation.

Figure 6 illustrates an encoding workflow with one server and one paired server, also called
helper server, executing on a replication group of size 2. The encoding workflow is triggered by
the server when it receives an object-put request from a client. Once server receives and pre-
processes the data object, data classification component classifies data objects and makes decision
for the data resilience approach based on data frequency and storage efficiency constraint. After
that, the workload measurement component decides whether to encode locally or let the helper

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:13

server encode based on its workload level. If local node’s workload is high, then it sends the replica
node (node with replica data) an encoding token to perform erasure coding. Otherwise, the server
performs encoding locally. After the server performs the encoding operation, it sends data & parity
objects to other servers in the erasure coding group.

The encoding workflow is composed of four principal components. First, a data fitting and par-
tition component pre-processes the data objects into a specific size and shape. Second, a data
classification and encoding component classifies data object and makes it resilient. Third, a work-
load measurement component measures a server’s workload level based on the frequency of client
read-write requests. Finally, a data/parity object consistency mechanism provides atomic encoding
processing for each data object. In a replication group, all servers share one encoding token and
the server can get the encoding token only if it has a low workload. Only the server that holds an
encoding token can perform an encoding operation, which ensures that exactly one stripe is placed
in the coding grouped servers. It also ensures that the less busy server in the group performs more
encoding operations than the busier one and workload is balanced throughout the coding group.

3.3 Data Size & Geometric Shape

While very small data objects suffer from metadata overheads, larger data objects have relatively
smaller metadata overheads and achieve better throughput during asynchronous communication
such as RDMA [14]. However, large-sized data objects increase the processing time required for
data encoding, decoding, replication, and transportation [40]. This leads to longer data access la-
tencies. Thus, an appropriate object size is required to balance metadata overhead and data access
latency.

To fit data objects into desirable size and shape on the servers, the data fitting and partition
component in CoREC uses Algorithm 1. In this algorithm, we first set a range of target data object
sizes. When a staging server receives a data object that is larger than the range, we partition the
object into halves along the longest geometric dimension. This is done repeatedly until all sub-
objects fall into the range of target size. This simple binary partition algorithm ensures that data
objects do not exceed a threshold size. Partitioning in this way ensures a balance between the size
of objects and the quantity of objects. Under perfect conditions, every object can be partitioned
into regular and uniform n-dimensional objects.

ALGORITHM 1: Geometric partitioning and fitting of an object

Input: Data Object (object), metadata, dimension (n), fitting size (size);
Output: Fitting data objects (object[m]), metadata (metadata[m]);
N&1
object[m] < object
while N # 0 do
if 3 obj in object[m] > size then
get maximum boundary size of obj in dimension n
partition boundary to half
partition obj to half
metadata[m] < metadata
object[m] < obj
else {Object is fitting}
return object[m], metadata[m]
end if
end while

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:14 S. Duan et al.

@ Idle staging server process . Staging server process

—» Communication / failure detection >< Inject failures

comm

Data staging area
v

comm comm

..?@@

comm

Lazy recovery mode ._'®<7.4>®47.
v

comm

Degraded mode . . . New data staging area|

Fig. 7. Data and process recovery in data staging area.

Activate idle staging servers

n comm
Process/node failure

detection . ‘H.A,‘ .
v

3.4 Recovering Data Staging Server Failures

Existing large-scale resilient storage solutions typically use an aggressive data recovery strat-
egy[12]. Whenever a failure on one or more servers is detected, all lost objects are recovered and
re-generated onto active servers immediately. The problem with such an aggressive data recovery
scheme is that it requires significant resources to recover data from a failure. Decoding operations
and data transportation may consume considerable network and computing resources in a short
time window. These overheads eventually hinder the application read-write requests. In CoREC,
we propose a new lazy recovery scheme with a time limit on delayed data recovery. As shown
in Figure 7, recovering data staging servers from failures involves four key steps: (i) failure de-
tection, (ii) data recovery in the degraded mode, (iii) process recovery, and (iv) data recovery in
the lazy recovery mode. CoREC introduces two data recovery modes (the degraded mode and lazy
recovery mode) for data recovery.

3.4.1 Failure Detection. In CoREC, the function of detection and handling of failures is dele-
gated to ULFM-enabled MPI. As a proposed extension of the MPI standard, ULFM [7, 8] includes
mechanisms to tolerate fail-stop failures without the need to restart all processes linked to the
MPI communicator. We leverage ULFM to tolerate and recover from such failures in the data
staging area. ULFM guarantees that MPI operations involving communication should return an
ERR_PROC_FAILED error code if the runtime detects a process failure in the data staging com-
munication area. ULFM-specific return codes are captured using MPI’s profiling interface and no
changes in the MPI runtime itself are required. In data staging frameworks, the data exchange
between applications happen via reads/writes from/to the staging area. The reads/writes are fa-
cilitated via asynchronous RDMA. When staging server processes fail or are unavailable, RDMA
error codes can also be used to detect these failures.

3.4.2 Degraded Mode. Once a data staging server detects a process failure, it distributes failure
notifications to the remaining data staging servers. The data staging area is then shrunk to remove
the failed staging servers and the rest of the staging servers switch to a degraded mode, as shown
in Figure 7. In this mode, only the requested data are re-constructed and transferred to the client.
These temporarily re-constructed data are discarded once the read request is served. The recon-
struction of failed data objects in the read-path increases read latency. Experimental evaluation
results for the reading performance in degraded mode are presented in Section 4.

3.4.3 Process Recovery. To be able to recover from process failures, COREC reserves a few stag-
ing server processes as backup processes. The number of backup processes is determined by the
choice of erasure code and server process density on a node. For example, if CoREC is initialized
to use erasure code with n = 8, k = 6, the goal is to tolerate 2 node failures per 6 nodes. If the each

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:15

Staging Server New/Update component : :l
___________________________ Existing component : [IINN]

Data Storage Layer Data Resiliency
Module

System Monitor

|
|
|
|
|
|
|
Object :
|
|
|
|
|
|
|
|

Parity Object [

Management

Jerasure Library
Query Engine, Data Indexi
Transportation

—————— e

Fig. 8. System architecture.

node has 8 server processes, then for process recovery, CoREC initiates 16 backup processes per 48
staging processes. When failures are detected, these idle data staging processes will be activated
and merged with the old data staging processes group. These newly activated processes will be
reassigned the same rank numbers as failed ones. An alternative approach is to spawn new pro-
cesses instead of use processes from a previously prepared process pool, if this is supported by the
job scheduler.

3.4.4 Lazy Recovery Mode. After a replacement server joins data staging, CoREC switches to
the lazy recovery mode. In this mode, each object on the failed server will be recovered imme-
diately after it is queried or updated. The recovery of all other remaining objects are triggered
based on the time limit set for delayed data recovery. The time-limit setting depends on the fault
tolerance requirement for data objects and the overall MTBF of the system. Normally, too long of
a time-limit constraint results in an unacceptably high risk of permanently losing the data, as it in-
creases the chance of multiple failures in the same group. However, too short time-limit constraint
risks interfering with the application’s regular requests in the same way as aggressive recovery.
Specifically, CoREC uses %MTBF as the recovery timeline constraint. In many data-intensive sim-
ulation applications, most of the failed objects will be recovered much earlier than the end of the
timeline due to high frequency of update and query requests.

4 EXPERIMENTAL EVALUATION

This section describes the implementation details of COREC and presents an experimental evalua-
tion using synthetic benchmarks as well as the S3D combustion simulation and analysis workflow
[11].

CoREC is implemented on top of DataSpaces [14], an open-source data staging framework. The
schematic overview of the runtime system is presented in Figure 8. In addition to modifying several
existing components of DataSpaces for the integration, the system architecture introduces three
key new components in data resiliency module: Local Object Management, Object Transporta-
tion, and System Status Monitor. The Local Object Management component maintains local data
objects, replicas, parity objects, and metadata. It also stores the data object classification informa-
tion in addition to performing the encoding, decoding, and object preprocessing tasks. We use the
Jerasure open-source library [32] to perform encode/decode operations. While evaluation results
demonstrate the efficacy of CoREC when using Reed-Solomon code, the Jerasure library offers a
variety of erasure codes to choose from and it is straightforward to change the erasure code used
in CoREC. The Object Transportation component synchronizes data objects, replicas, parities, and
metadata while managing the transportation of objects between different staging servers. Server’s

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:16 S. Duan et al.

Table 1. Experimental Setup for Synthetic Tests

Total number of cores 64+32+8=104
No. of parallel writer cores 4X4x4=064
No. of staging cores 8

No. of parallel reader cores 32

Volume size 256 X 256 X 256
In-staging data size (20 TSs) 2560 MB

No. of replica 1

No. of data objects 3

No. of parity objects 1

Coding technique Reed-Solomon Code
Storage efficiency for hybrid erasure coding | 67%

Storage efficiency lower-bound for COREC | 67%

workload monitoring and failure detection is performed by the System Status Monitor component.
To recover from failed staging server processes, we also introduce an additional process resiliency
module. This module manages a spare process pool and implements the detection and handling
of staging server failures using ULFM, which offers a set of fault-tolerance mechanisms for MPI
applications.

4.0.1 Synthetic Experiments. Our synthetic experiments were performed on both the ORNL Ti-
tan Cray XK7 system and the NERSC Cori Cray XC40 system. These experiments evaluate the read
and write performance of applications with different data read and write patterns when they use
CoREC for resilient data staging. To better understand the performance and effectiveness of our
approach, we selected five test cases with common data reading and writing patterns used by real
scientific simulation workflows. In these cases, we assume that scientific applications write data
to a 3-dimensional global space (data domain). We also assume that data are written in multiple
iterations (time steps) as described in five test cases below. We compared CoREC with five other
fault tolerance mechanisms: DataS_PFS (replicates all data objects and places replicas on the par-
allel file system), DataS_BB (replicates all data objects and places replicas on burst buffer nodes),
Replication (replicates all data objects and places replicas on peer staging servers), Erasure Coding
(encodes all data objects locally and places data/parity objects on peer staging servers), and Hy-
brid Erasure Coding (data objects are classified and selected for replication/erasure coding under
the LRU algorithm and a defined constraint on storage overhead). We additionally compared our
results to the performance of data staging without any fault tolerance. To evaluate the balance
between the write response time and the storage cost for various data resilience techniques, we
introduce write efficiency, which is a ratio of application’s observed write response time to the
storage efficiency of the data resiliency technique. The low write efficiency value indicates a bet-
ter balance between time and storage cost for data resilience. The setup of these experiments is
described in Table 1. The experimental results are presented in Figure 9 (collected on Cori) and
Figure 10 (collected on Titan), along with a detailed discussion and analysis of these results.

(1) Case 1 - Write the entire data domain in each time step: In this case, the data of the entire
domain are written at every simulation time step. Since there is no data replication, encoding, data
movement, or metadata synchronization overhead, the data staging without fault tolerance has
the best relative data write response time. For the fault tolerance approaches, although the repli-
cation approach with unlimited storage constraint on peer memory or burst buffer does not incur
the overhead of data encoding, I/O operation, or extra data transportation overhead, these ap-
proaches have only achieved 6.9% and 2.6% smaller write response time in comparison to CoREC,

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:17

06 0.8 0.16 025 0.16 025
- fo7 To14 S o014
057 8 Lo2 & L 0.2
b £06 o5 012 ge 012 >
Z
E o4 fo05 55 01 Fois 55 01 Fos 5
@ Lo Lo =
2031 £ 04 £2 008 £2 0.08 £
o o o
§o021 03 25008 POl 22006 Fo1 g
P £ 35 == =
% on 1 0.2 g 0.04 E 005 _g 0.04 b o.0s
2 £ 01 =002 = 0.02
0 L o 0 L o
S O X 2 @& DX L PO P @ R
L Y S K & K P N
P o 2 Q* § R oo ,é-,/ &L S
S ¢ &S <
(a) Case 1 (b) Case 2 (c) Case 3
0.35 0.4
g 03 CRGaE
2 2
2 2 031
2 025 32
= £E 025 ¥
5 02 S
2 %2 0.2 F+
S 015 P
2 £ 015 ¥
g £8
s 01 25 o013
g 0.05 & 005 3
0 0
& @ R R Y
2 5 ‘0‘ S x> VAP
Sl & S SIS
& P &S E S
(d) Case 4 (e) Case 5

Fig. 9. Average data write and read response time (blue bars) and Write Efficiency =
Write response time/Storage Efficiency (red line) of different data resilience mechanisms for the five
test cases using different writing patterns. DataS: Data staging without fault tolerance; DataS_PFS: Data
are stored in PFS for resilience; DataS_BB: Data are stored in Burst Buffer for resilience; Replicate: Data
are replicated in peer memory for resilience; Erasure: Data are erasure coded for resilience; Hybrid: hybrid
erasure coding with LRU data classification; CoREC+1d and CoREC+2d: CoREC in degraded mode with 1
and 2 server failures; CoREC+1f and CoREC+2f: CoREC in lazy recovery mode with 1 and 2 server failures;
Erasure+1f and Erasure+2f: Erasure coded data staging with an aggressive recovery strategy under 1 and 2
server failures.

Htransport M metadata Mencode M classify

69 66.8 66.8 67.6
< 688 I 66.7 66.7 67.5
%i P | 66.6 BB 66.6 67.4 0.008
£ 632 1 0.009 |66.5 66.5 67.3
2 68 ¥ 66.4 0.006 |66.4 | 67.2
S 678 % 66.3 66.3 67.1
3 676 ¥ 66.2 66.2 0.004| 67
3 2;-‘2‘] 66.1 66.1 B (669
s e 1 66 66 66.8
2 668 1 65.9 65.9 66.7
66.6 65.8 65.8 66.6
‘ & @ {\b Qfé" ' & @ \b &) & @ RS Qi(/(’ ' PR QL &
Q@Q\\c Q/@" & Q&Q\\“ Q,@“’ QAQ (5% Q@Q\\c be" &0 Q‘é}\“ %@" & Qoq‘
(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Fig. 10. Breakdown of the total execution time (in seconds) for the workflows in Figure 9. transport: Time
spent in data movement; metadata: Time spent to update the distributed metadata; encode: Time spent to
perform data encoding; classify: Time spent for data classification in CoREC (listed as number).

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:18 S. Duan et al.

respectively. Meanwhile, storing the replicated data into PFS gets the worst write access perfor-
mance and the longest total workflow execution time due to intensive I/O operations. Also, the
result for the erasure coding method shows the second worst performance for both write access
and total workflow execution time, because of the overhead associated with frequently encod-
ing the original data objects and the placement of data/parity objects on peer servers. Although
only a portion of data objects are erasure coded in hybrid erasure coding, frequently switching
between replication and erasure coding approach on the same data object makes this approach’s
write performance just slightly better than the erasure coding approach and has longest total
transportation time. For CoREC, due to the write-intensive workload, the workload balance and
conflict-avoid encoding workflow plays a vital role in minimizing the interference to regular re-
quest. CoREC achieves a decrease of 48.7% and 53.2% in encoding time and an improvement of
13.5% and 10.1% in the write response time, relative to erasure coding and hybrid erasure coding,
respectively. The lower-bound constraint for storage efficiency in CoREC causes some data ob-
jects to be erasure coded, even if they are hot, and this leads to a 6.9% increase in write-time as
compared to replication.

(2) Case 2 - Write the entire data domain in multiple time steps: In this case, the entire data do-
main is divided into four subdomains, and each subdomain is written in a time step. This means
that in every four time steps, the entire data domain is written. Since each subdomain has the same
write access frequency, all data objects in that subdomain are either hot or cold. However, COREC
leverages its multi-time-step look-ahead mechanism to efficiently convert data objects from cold
to hot, i.e., moving from erasure coding to replication. Thus, CoREC has better (around 12.7%)
performance improvement for write response time and 38.4% decrease in the encoding time with
respect to hybrid erasure coding, while incurring an overhead of 4.3% in the write response time
over replication. In addition, the conflict-avoid encoding workflow and less data conversion from
replication to erasure coding contributes to having smaller data transportation overhead than hy-
brid erasure coding.

(3) Case 3 - Write a subset of the data domain at a higher frequency than others: In this case, data
objects of a subdomain in a particular domain are written at higher frequency and data objects
in other subdomains are written just once. This setup addresses the presence of hot spots in the
data domain. Both CoREC and hybrid erasure coding with LRU can easily identify these hot data
objects and apply the corresponding resiliency technique. Since erasure coding always selects all
data objects as candidates for erasure coding, CoREC improves the write response time by 11.3%
and 1.1% and decreases encoding time by 50.4% and 16.5%, respectively, while increasing the write
response time by just 8.8% as compared to replication.

(4) Case 4 - Write subsets of the data domain with random access pattern: This case differs from
the previous case, as the subdomains of the data domain are randomly chosen for writing/updating.
The random access pattern reduces the accuracy of the data classifier, which is based on temporal
and spatial locality. However, the workload balance and conflict-avoid encoding workflow opti-
mizations enhance the performance of CoREC by 13.8% and 5.8% and decrease encoding time by
14.6% and 17.8% compared to erasure coding and hybrid erasure coding, respectively.

Figure 10 shows the breakdown of the normalized execution time for workflows in aforemen-
tioned cases in failure-free case. The plots show that CoREC has lower overheads compared to
hybrid erasure coding and pure erasure coding in all cases. COREC has less data transport time
than erasure coding and hybrid technique, because fewer erasure coded objects incur updates and
it minimizes the parity update operations, which leads to less encoding time also. While replication
has better performance, it should be noted that it suffers from high storage overhead.

(5) Case 5 - Read entire data domain in each time step: The data of the entire domain are read for
every time step. In this case, the replication method, either in peer memory or burst buffer, has a

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:19

0.09
0.08 ¥ l
0.07 +

1failure, recovery =~ =------ 2 failure, recovery ‘

0.06 1
0.05
0.04

Read Time (sec)

0.03 1
0.02
0.01 +

0 "
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time Step

Fig. 11. The average read response time for reading the entire data domain with 1 and 2 failures, along with
failure recovery, for 20 time steps. The first failure occurs at time step 4, and second failure occurs at time
step 6. First failure-recovery begins at the 8th time step and another recovery is initiated at the 12th time
step, and they end at time steps 9 and 13, respectively.

similar read response time to data staging without fault tolerance, meanwhile replicating data to
the PFS results in the worst performance among all fault tolerance approaches. Since erasure cod-
ing splits original data objects into small objects and distributes them among the staging servers,
a single read request can be distributed across multiple servers and consequently erasure coding,
hybrid erasure coding, and CoREC have better read response times than both replication and the
original data staging technique. We also performed experiments for various cases of reads as we
did for writes, but the results are not presented in this article due to the similar patterns as case 5.
We also evaluated read response time of CoREC in the presence of failures. In degraded mode, the
read response time increases by 7.93% and 21.7% for single and double server failures, respectively,
as compared to failure-free case. However, when using lazy recovery, the read response time in-
creases by 2.66% for single failure and 13.9% for double server failures as compared to failure-free
case.

While we demonstrated that CoOREC performs better on average than both erasure coding and
hybrid erasure coding, replication might seem like a good choice for fault tolerance. However, we
also need to consider the storage overhead associated with each fault tolerance mechanism. We
also plot the ratio of write-response time and storage efficiency in Figure 9. It can be seen that
data staging without fault-tolerance provides best performance along with best storage efficiency.
However, fault-tolerance introduces overheads on both write response time and storage efficiency.
Among the fault-tolerant mechanisms, CoREC provides the best balance for storage efficiency and
write response time in all the data access patterns studied.

To study the impact of lazy recovery in CoREC, we also perform the experiment on Titan and
plot the read response time at every time step for 20 time steps in Figure 11. For a single failure
case, we inject a staging server failure at time step 4 and recover it at time step 8. For the two
failure cases, we inject a first staging server failure at time step 4 and a second failure at time
step 6 and then start recovering them at time steps 8 and 12, respectively. In both the cases, the
entire data domain was read for all time steps. We observe that, unlike aggressive recovery, our
lazy recovery approach does not trigger data recovery for the failed server immediately, which
may result in an increased data read response time. From time step 8 to time step 9, our approach
gradually recovers unavailable data objects, which leads to a nominal increase in the data read
response time for recovery from multi-server failure. After time step 14, the data read response
time resets back to what it had been before the failure was injected.

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:20 S. Duan et al.
Table 2. Configuration of Core-allocations, Data Sizes, and Data Resilience
for the Three Test Scenarios on 4,480, 8,960, and 17,920 Cores
No. of cores 4,480 8,960 17,920
No. of simulation cores 16 X 16 X 16 = 4,096 32X 16X 16 =8,192 | 32X 32X 16 = 16,896
No. of staging cores 256 512 1,024
No. of analysis cores 128 256 512
Volume size 1,024 X 1,024 X 1,024 | 2,048 X 1,024 X 1,024 | 2,048 X 2,048 x 1,024
Data size (GB) 160 320 640
No. of replica 1 1 1
No. of data objects 3 3 3
No. of parity objects 1 1 1
Storage efficiency 67% 67% 67%
4

a5 1 @S3D disk W DataSpaces OReplicate B Erasure B CoREC ‘

h,’ Erasure+1f B CoREC+1f B Erasure+2f B CoREC+2f

g 2_2 : 21,5436 sec 22.7551 sec foseotsec

§ 1.5 4

& 05]] !

o] : f :
4480 8960 17920

No. of cores

Fig. 12. Comparison of the cumulative data read response time using the S3D and coupled analysis workflow
on Titan.

4.0.2 Large Scale S3D Experiment. We also performed large-scale tests for CoREC using the
lifted hydrogen combustion simulation workflow using S3D [11] and an analysis application on
Titan and compared it to pure replication and erasure codes. CoOREC was tested using three dif-
ferent core counts (4,480, 8,960, and 17,920) and corresponding grid domain sizes so that each
core was assigned a spatial sub-domain of size 64 X 64 X 64. In terms of the data access pattern,
in this experiment, the S3D simulation wrote the vector field component pressure of entire do-
main to data staging at each time, which was processed for feature extraction by the visualization
application later. For comparison purpose, we also ran S3D without data staging, S3D with data
staging but without resilience, and S3D with data staging and resilience. The cumulative time for
reading/writing data over 20 time steps was measured. The core configurations, the data region
assignments, and data resilience for our experimental setup are summarized in Table 2.

Figure 12 and Figure 13 illustrate the experimental results for the S3D coupled simulation and
analysis application workflow for various resiliency settings. Since the PFS (parallel filesystem)
based S3D does not have data staging and the data are saved to disk, it has the longest read and
write response time. While data staging without resilience shows best performance, it is not able
to recover from failures. Among the resilient data staging techniques studied, CoREC reduces the
write response time by 7.3%, 14.8%, and 5.4% as compared to pure erasure coding on 4,480, 8,960,
and 17,920 cores, respectively. In comparison to replication, CoREC has an overhead of 4.2%, 5.3%,
and 17.2% in write response time on 4,480, 8,960, and 17,920 cores, respectively. It can also be seen
that in the presence of failures, CoREC reduces the read response time by up to 40.8% and 37.4%
for one and two server failures, respectively, as compared to pure erasure coding.

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:21

N
N

20 3| BS3Ddisk W DataSpaces OReplicate @Erasure B CoREC
§ 18 | OErasure+lf BCOREC+1f BeErasure+2f BCoREC+2f
w16 T 346.68 sec
Ewui
= 234.42 sec 7)
2127 16646 sec |*| F
S 10 1 ﬁ =
o %
et NrER 0
o 6% ?
£ .

2 3 A

o : : 218

4480 8960 17920
No. of cores

Fig. 13. Comparison of the cumulative data write response time using the S3D and coupled analysis work-
flow on Titan.

These results show that CoREC demonstrates good overall scalability and better storage effi-
ciency with small overheads for different processor counts and data sizes while providing data
resiliency for extreme-scale HPC systems.

4.1 Experiments with Node Failures

The goal of these experiments is to demonstrate that CoREC is capable of handling data and process
recovery under high-frequency node failures.

4.1.1 Experimental Setup. We have deployed CoREC with ULFM on the Caliburn cluster, which
consists of 560 compute nodes, each containing two 18-core Intel Xeon E5-2695v4 processors, 256
GB of main memory, and an Intel Omni-Path Host-Fabric interface adapter at Rutgers Discovery
Informatics Institute (RDI2). In this experiment, we evaluate the overhead related to data recovery
for staging node failures. In our experiments, a staging node failure is equivalent to N staging
server processes failures at same time, where N is the total number of processes per dedicated
staging node. To perform these experiments, node failures are injected by simultaneously sending
SIGKILL signals to all the staging server processes running on a particular node. Since the data ob-
jects, parity objects, replicas, and metadata are stored in process memory, killing server processes
make such data unavailable. This is consistent with the behavior of real node failures. In our ex-
periments, one compute node of the Caliburn cluster runs 8 staging processes, which translates
to N = 8 for node failures. Unless specified otherwise, all tests have been repeated five times. We
ran some preliminary experiments for high values of MTBFs (such as 5 minutes, 10 minutes, or
30 minutes, etc.) and observed negligible recovery overheads relative to the total execution time.
Subsequent experiments were run under MTBFs for less than a minute. The data size for each data
staging server was 50 MB. We also ran this workflow with a failure-free case as the baseline. The
setup of these experiments is described in Table 3.

4.1.2 Experiment Description and Results. For node failure experiments, we studied the
read/write response time for different data/process recovery strategies in the data staging. We
also evaluated the total overhead for workflows to empirically demonstrate the low cost of data
recovery and small latency impact. We performed these experiments on a 256-core (32 node) data
staging area. Figures 14 and 15 plot the average read/write response time for different frequencies
of node failures injected for a synthetic workflow with a total execution time of about 150 seconds.
The synthetic failure rates range from 18 to 150 seconds, and the corresponding total number of
failures range from 8 processes (1 node) to 64 processes (8 nodes), as noted on top of each bar, over
a total time period of about 150 seconds.

Figure 14 shows the cumulative read-response time for 50 time steps. The read-response time
increases with the failure rate. In the worst case (8 node failures), the read-response time increases

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:22 S. Duan et al.

Table 3. Experimental Setup for Node Failures Tests

Total number of cores 1,024 + 256 + 128 = 1,408
No. of parallel writer cores 8 X 8x16 = 1,024
No. of staging cores 256 (32 nodes)

No. of parallel reader cores 128

Volume size 128 x 128 X 256
In-staging data size (50 TSs) 3.2 GB

No. of replica 1

No. of data objects 3

No. of parity objects 1

Coding technique Reed-Solomon Code
Storage efficiency lower-bound | 67%

%)
[%2]

@ Failure Free @ lazy mode & degraded mode

wv
o

8
?
’

Y
v

ey
o

%
?
’
0

A

w
(%]

Read response time (sec)

w
o

MTBF (sec)

Fig. 14. Comparison of the cumulative data read response time using the synthetic workflow on Caliburn.
FF: in the x-axis represents CoREC in failure-free case.

5.5

@ Failure Free lazy mode & degraded mode

el
~ [«

w
"

Write response time (sec)

MTBF (sec)

Fig. 15. Comparison of the cumulative data write response time using the synthetic workflow on Caliburn.
FF: CoREC with failure-free case.

9.58% in degraded mode and 6.77% in lazy mode as compared to the failure-free case (FF). The
write-response time shown in Figure 15 shows the similar trend with the read-response time. The
write-response time increases by only 2.41% in degraded mode and 1.13% in the lazy mode for
an MTBF of 150 seconds. For the MTBF of 18 seconds, the write-response time increases 10.88%
in degraded mode and 8.11% in lazy mode as compared to FF. As a whole, the experiment results

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:23

185

@ Failure Free lazy mode & degraded mode

180

175

170

165

Total execution time (sec)

160

MTBF (sec)

Fig. 16. Comparison of the total execution time using the synthetic workflow on Caliburn. FF: CoREC in
failure-free case.

demonstrate that grouped replication and coding scheme with lazy recovery mode can tolerate
frequent node failures with minimal overhead.

We also study the impact of data and process recovery on the total workflow execution time,
which includes the overhead of data replication, encoding, decoding, and process recovery. Specif-
ically, we compare the end-to-end workflow execution time under varying MTBFs and the failure-
free case. The leftmost bar in Figure 16 shows the total workflow execution time for the failure-free
case. By using lazy recovery, we obtain much lower performance penalties even at the higher fail-
ure rates. In comparison to the baseline failure-free case, the total execution time is increased by
only about 0.8% in degraded mode and by 0.5% in lazy recovery mode for the MTBF of 150 sec-
onds. For the case of failures occurring every 18 seconds, the workflow execution time increases
by about 5.69% in degraded mode and by 4.25% in lazy recovery mode. In short, CoOREC can handle
data recovery under frequent node failures with total overheads of up to 5.69% in degraded mode
and 4.25% in lazy mode for the worst-case scenario.

4.2 Experiments for COREC with Multilevel Data Redundancy

In this section, we demonstrate that CoREC-multilevel can efficiently provide varying levels of
data redundancy based on application requirements. Although CoREC-multilevel uses different
redundancy schemes to satisfy resiliency requirements, the storage efficiency constraint is main-
tained by managing the trade-off between storage and performance, and duplication/triplications
and erasure coding. Since COREC-multilevel is intelligent enough to make dynamic decisions based
on data access characteristics, we did not observe a significant impact on application performance.
The synthetic workflow writes two variables into data staging. These two variables are intended to
representative high- and low-redundancy datasets. Within the workflow, the coupled components
write and read these two variables into the data staging area concurrently in each time step, and
the response time is measured.

For high data redundancy, we use RS(6,4) and triplication to tolerance-concurrent failures in
two arbitrary staging servers. For low data redundancy, we use RS(6, 5) and duplication to toler-
ate one staging server failure. To study the impact of lazy recovery in the presence of concurrent
failures for COREC-multilevel, we insert failures into two staging servers concurrently. During a
total runtime of 20 time steps the failures were inserted only once and then recovered in sub-
sequent time steps using the lazy recovery mechanism. Since two staging servers have failed,
only high-redundancy data can be recovered. As CoREC-multilevel can re-direct write requests to
other staging servers when failures are detected, the low-redundancy data sets for all time steps
are available except for the particular time step when the failures were introduced and detected. In

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:24 S. Duan et al.

M Failure free [2 failures

Read response time (sec)
Write response time (sec)

0% 10% 20% 30% 0% 10% 20% 30%
Percentage of high data Percentage of high data
redundancy redundancy

(a) Read response time of variables (b) Write response time of variables

Fig. 17. Read and write response time of variables under the percentage of high data redundancy in CoREC-
multilevel. Failure-free: CoREC-multilevel in failure-free case.

Table 4. Experimental Setup for Multilevel Redundancy Tests

Total number of cores 512 + 120 + 512 = 1,144
No. of parallel writer cores 8X8x8 =512
No. of staging cores 120

No. of parallel reader cores 512

Volume size 256 X 256 X 256
In-staging data size (20 TSs) 3,200 MB
Replication for high data redundancy | Triplication
Replication for low data redundancy | Duplication
Coding for high data redundancy RS(6, 4)

Coding for low data redundancy RS(6, 5)
Storage efficiency lower-bound 66.7%

our experiments, the total data exchanged between readers and writers is kept constant. We vary
the percentage of high-redundancy data with regards to total data from 0 to 30 while keeping a
constant storage efficiency constraint in COREC-multilevel. Since the total data are composed of
high- and low-redundancy data, it can also be viewed as varying low-redundancy data from 100%
to 70%. Figure 17 shows both cumulative read-response and write-response time. A failure-free
case is considered as baseline in our tests. The details of the experimental setup is listed in Table 4.

In Figure 17(b). We observed that when the percentage of high-redundancy data increases, the
cumulative write-response time increases in Figure 17(b). This increase corresponds to the higher
complexity or overheads of erasure coding and replication for higher data redundancy. When
the amount of high redundancy increases, more data can be recovered and correspondingly the
write response is affected to a higher degree in presence of failures. When all of the data are low
redundancy, the data cannot be recovered when multiple failures are inserted. Thus, no write and
read-response time is reported for 0% high-redundancy data. As compared to the failure-free case,

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:25

3900 - 120
] E==== Duplication 1 Triplication E
] =SS RS(6,1) EZZZZA RS(6,2) + 100
3400 1| —e—Replication —— Erasure coding r =
o 1 N <
S 1 — —x T8 T
3 2900 = : g
&] 7 60 &
=] o ™ s @
S 2400 1 - = E o
5]] o + 40 ©
=] =% = / :]
1 []
1900] § & S E 4 IR
I BN BN N
1400 0
0% 10% 20% 30%

Percentage of high data redundancy

Fig. 18. Storage cost and efficiency for the percentage of high data redundancy in test scenarios.

CoREC-multilevel has an increase in cumulative write response time by around 2.2%, 4.5%, and
3.2% as compared to failure-free case.

When no failures are present, the read-response time remains fairly constant across varying
percentages of high and low dataset. In the presence of failures, read-response times are directly
impacted, because data need to be recovered first and then sent to the reader application. Un-
der the presence of concurrent failures and data recovery, the read response time of CoREC-
multilevel increases by around 4.1%, 7.9%, and 15.5% as compared to the failure-free cases, when
high-redundancy data are set to 10%, 20%, and 30%, respectively.

To understand the impact of different data resiliency techniques on the overall storage capacity
of the staging area, we measure the total memory consumed by the data in the staging area and also
show the storage efficiency in Figure 18. When the percentage of high-redundancy data increases,
the storage efficiency of replication decreases from 50% to 45%. Similarly, the storage efficiency of
erasure coding also decreases from 83.3% to 78.3%. Correspondingly, the memory consumption for
replication decreases from 3,200MB to the least 2,576 M B, and the consumption for erasure coding
increases from 1,920MB to the largest 2,683MB so as to maintain total storage usage is constant.
Since the total amount of raw data written to the staging area is fixed, the overall storage efficiency
also remains the same for different percentages of high- and low-redundancy data. From these
results, we can infer that CoOREC-multilevel is performant and can provide various data resiliency
levels based on application needs.

5 RELATED WORK

The increasing performance gap between compute and I/O capabilities has motivated recent de-
velopments in both in-situ and in-transit data processing paradigms. In-situ and in-transit data
processing allows analytics to directly access simulation data and has been used for visualiza-
tion, indexing building, data compression, statistical analysis [5, 41], and so on. A number of in-
memory data staging solutions such as DataSpaces [13] /ActiveSpaces [15], PreDatA [43] provide
services for supporting in-situ and in-transit approaches, e.g., Reference [4], with a primary fo-
cus on fast and asynchronous data movement off simulation nodes. An alternative solution [6,
10, 31, 36] for in-situ and in-transit data processing is to perform data analysis on storage node
storage controllers such as solid-state device (SSD), where the data already reside. Unfortunately,
these frameworks do not address the resilience of in-situ/in-transit data processing, which is an
important concern at extreme scales.

While supporting resilience in contexts other than in-situ/in-transit data analytics—such as
Checkpointing [1, 20, 21, 38] and Replication/Erasure Coding [12, 39]—has been widely studied,

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:26 S. Duan et al.

there are limited research efforts focused on in-situ/in-transit data processing systems. The study
in Reference [26] exploits the reduction style processing pattern in analytics applications and re-
duces the complications of keeping checkpoints of the simulation and the analytics consistent.
Research efforts in Reference [27] use a synchronous two-phase commit transactions protocol to
tolerate failures in high performance and distributed computing systems. In comparison to these
efforts, our data resilience approach specifically targets data staging based in-situ workflows and
is more flexible, asynchronous, and scalable. Furthermore, it can handle dynamic execution and
failure patterns across multiple applications that are part of in-situ/in-transit workflows.

Burst buffers are being increasingly used in HPC systems [2, 24, 25, 35] with the initial goal of
relieving the bandwidth burden on the parallel file systems by providing an extra layer of low-
latency storage between compute and storage resources. CoREC can easily be extended to use
burst buffers. In this setting, CoREC would store the hot data in local DRAM memory and keep
the cold data in the non-volatile storage layer on the burst buffer nodes to achieve faster read/write
performance for workflows generating large amount of data . However, burst buffers themselves
are not immune to failures. Furthermore, due to the difference in the physical typologies in burst
buffers provided by vendors, the fault model and resiliency for burst buffers are complicated and
remain an open challenge. The fault tolerance of burst buffers needs to explored further before
any of the data resiliency methods, explored in the article, can be used on such devices.

Recent research [3, 22, 23, 28, 29] indicates temporal and spatial properties of failures in differ-
ent software and hardware components. CoREC can easily tolerate such concurrent and correlated
process/node failures using topology-aware grouped replication and erasure coding schemes dis-
cussed in Section 3.1. We believe CoREC can also be adapted to tolerate other classes of failures
such as a GPU failure, which will potentially result in data loss at staging servers by extending the
failure detection and handler mechanism to those failures.

While aspects of COREC may appear conceptually similar to Cocytus [42], where replication is
used for small-sized and scattered data (e.g., metadata and key) and erasure coding is used for large
data (e.g., value), CoREC uses data access frequency rather than data size for data classification. In
contrast to Cocytus, which is designed for cluster storage systems, CoREC targets in-situ/in-transit
data processing on large-scale HPC systems.

6 CONCLUSION AND FUTURE WORK

Data-staging frameworks have emerged as effective solutions for addressing data-related chal-
lenges at extreme scale and supporting in-situ/in-transit workflows. However, the resilience of
these frameworks remains a challenge. This article addresses data resiliency for staging-based
in-situ/in-transit workflows. In this article, we presented CoREC and CoREC-multilevel, a scal-
able hybrid approach to data resilience for data staging frameworks that used online data access
classification to effectively combine replication and erasure codes and to balance computation
and storage overheads. CoREC-multilevel can support different data resiliency techniques to sat-
isty the varying data resiliency requirements of multiple applications. Furthermore, utilizing lazy
recovery and conflict-avoid encoding workflow optimizations, we reduced the interference due
data-resiliency on the simulation/analysis components of the workflow.

We have implemented CoREC on top of the DataSpaces data staging services and deployed it
on the Titan Cray XK7 at OLCF, Cori Cray XC40 at NERSC, and the Caliburn system at RDI2. To
evaluate its effectiveness and performance, we used both synthetic benchmarks and real-world
large-scale S3D application. Our experiments demonstrated that CoREC can dynamically classify
data objects based on data-driven access pattern and provide efficient data recovery in the presence
of frequent process and node failures. The source code for our prototype implementation of CoOREC
is publicly available at https://github.com/shaohuaduan/datastaging-fault-tolerance.

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

https://github.com/shaohuaduan/datastaging-fault-tolerance

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:27

As future work, we plan to expand CoREC to support multiple storage layers, for example, using
NVRAM and SSD, and designing new models for data resilience that incorporate utility-based data
placement across these layers.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable feedback and suggestions.

REFERENCES

(1]

(2]

[3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

Leonardo Arturo, Bautista Gomez, Naoya Maruyama, and Franck Cappello. 2010. Distributed diskless checkpoint for
large scale systems. In Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
(CCGrid’10). 263-272.

Guillaume Aupy, Olivier Beaumont, and Lionel Eyraud-Dubois. 2019. Sizing and partitioning strategies for burst-
buffers to reduce IO contention. In Proceedings of the 33rd IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS’19). 631-640.

Leonardo Bautista-Gomez, Ana Gainaru, Swann Perarnau, Devesh Tiwari, Saurabh Gupta, Christian Engelmann,
Franck Cappello, and Marc Snir. 2016. Reducing waste in extreme scale systems through introspective analysis. In
Proceedings of the 30th IEEE International Parallel and Distributed Processing Symposium (IPDPS’16). 631-640.

J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, Tong Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P.
Pebay, D. Thompson, Hongfeng Yu, Fan Zhang, and J. Chen. 2012. Combining in-situ and in-transit processing to en-
able extreme-scale scientific analysis. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’12). 1-9.

Janine C. Bennett, Vaidyanathan Krishnamoorthy, Shusen Liu, Ray W. Grout, Evatt R. Hawkes, Jacqueline H. Chen,
Jason Shepherd, Valerio Pascucci, and Peer-Timo Bremer. 2011. Feature-based statistical analysis of combustion sim-
ulation data. IEEE Trans. Vis. Comput. Graph. 17, 12 (2011), 1822-1831.

E. Wes Bethel, Martin Greenwald, Kersten Kleese van Dam, Manish Parashar, Stefan M. Wild, and H. Steven Wiley.
2016. Report of the DOE workshop on management, analysis, and visualization of experimental and observational
data—The convergence of data and computing. In 2016 IEEE 12th International Conference on e-Science (e-Science).
213-222.

Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Dongarra. 2013. Post-failure recovery
of MPI communication capability: Design and rationale. Int. J. High Perform. Comput. Applic. 27, 3 (2013), 244-254.
Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and Jack Dongarra. 2012. An
evaluation of user-level failure mitigation support in MPL In Proceedings of the 19th European MPI Users’ Group
Meeting (EuroMPI'12).

Franck Cappello, Geist Al, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir. 2014. Toward exascale resilience:
2014 update. Supercomput. Front. Innov. Int. J. 1 (2014), 5-28.

Alexis Champsaur, Jay Lofstead, Jai Dayal, Matthew Wolf, Greg Eisenhauer, Patrick Widener, and Ada Gavrilovska.
2017. SmartBlock: An approach to standardizing in situ workflow components. In Proceedings of the IEEE 31st Inter-
national Symposium on Parallel and Distributed Processing Symposium Workshops (IPDPSW’17).

J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-
Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo. 2009. Terascale direct numerical simulations of
turbulent combustion using S3D. Comput. Sci. Discov. 2, 1 (2009).

Asaf Cidon, Ryan Stutsman, Stephen Rumble, Sachin Katti, John Ousterhout, and Mendel Rosenblum. 2013. Min-
Copysets: Derandomizing replication in cloud storage. In Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’13).

Ciprian Docan, Manish Parashar, and Scott Klasky. 2010. DataSpaces: An interaction and coordination framework
for coupled simulation workflows. In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing (HPDC’10). 25-36.

Ciprian Docan, Manish Parashar, and Scott Klasky. 2012. DataSpaces: An interaction and coordination framework
for coupled simulation workflows. Cluster Comput. 15, 2 (01 June 2012), 163-181.

Ciprian Docan, Fan Zhang, Tong Jin, Hoang Bui, Qian Sun, Julian Cummings, Norbert Podhorszki, Scott Klasky,
and Manish Parashar. 2014. ActiveSpaces: Exploring dynamic code deployment for extreme scale data processing.
Concurr. Comput. Pract. Exper. 27, 14 (2014).

Shaohua Duan, Pradeep Subedi, Keita Teranishi, Philip Davis, Hemanth Kolla, Marc Gamell, and Manish Parashar.
2018. Scalable data resilience for in-memory data staging. In Proceedings of the 32nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS’18). 105-115.

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

12:28 S. Duan et al.

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

(35]

(36]

Ifeanyi P. Egwutuoha, David Levy, Bran Selic, and Shiping Chen. 2013. A survey of fault tolerance mechanisms and
checkpoint/restart implementations for high performance computing systems. . Supercomput. 65, 3 (2013), 1302—
1326.

James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Ferreira, and Christian Engelmann. 2012. Combining
partial redundancy and checkpointing for HPC. In Proceedings of the 32nd IEEE International Conference on Distributed
Computing Systems (ICDCS’12).

Marc Gamell, Keita Teranishi, Michael A. Heroux, Jackson Mayo, Hemanth Kolla, Jacqueline Chen, and Manish
Parashar. 2015. Local recovery and failure masking for stencil-based applications at extreme scales. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage and Analysis (SC’15).

Shen Gao, Bingsheng He, and Jianliang Xu. 2015. Real-time in-memory checkpointing for future hybrid memory
systems. In Proceedings of the 29th ACM International Conference on Supercomputing. 263-272.

Leonardo Bautista Gomez, Dimitri Komatitsch, and Naoya Maruyama. 2012. FTI: High performance fault tolerance
interface for hybrid systems. In Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis. 728-740.

Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. 2017. Failures in large scale systems: Long-
term measurement, analysis, and implications. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC’17).

Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James Rogers, and Don Maxwell. 2015. Understanding and ex-
ploiting spatial properties of system failures on extreme-scale HPC systems. In Proceedings of the 45th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’15). 37-44.

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun, and Jay Lofstead. 2018. Harmonia: An interference-aware
dynamic I/O scheduler for shared non-volatile burst buffers. In Proceedings of the IEEE International Conference on
Cluster Computing (CLUSTER’18).

Anthony Kougkas, Matthieu Dorier, Rob Latham, Rob Ross, and Xian-He Sun. 2016. Leveraging burst buffer coordi-
nation to prevent I/O interference. In Proceedings of the IEEE 12th International Conference on e-Science (e-Science’16).
Jiaqi Liu and Gagan Agrawal. 2017. Supporting fault-tolerance in presence of in-situ analytics. In Proceedings of the
17th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid’17). 304-313.

Jay Lofstead, Jai Dayaly, Ivo Jimenezz, and Carlos Maltzahn. 2014. Efficient, failure resilient transactions for parallel
and distributed computing. In Proceedings of the International Workshop on Data Intensive Scalable Computing Systems.
17-24.

Bin Nie, Devesh Tiwari, Saurabh Gupta, Evgenia Smirni, and James H. Rogers. 2016. A large-scale study of soft-errors
on GPUs in the field. In Proceedings of the IEEE International Symposium on High Performance Computer Architecture
(HPCA’16). 519-530.

Bin Nie, Ji Xue, Saurabh Gupta, Tirthak Patel, Christian Engelmann, Evgenia Smirni, and Devesh Tiwari. 2018. Ma-
chine learning models for GPU error prediction in a large scale HPC system. In Proceedings of the 48th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’18). 95-106.

1. S. Reed and G. Solomon. 1960. Polynomial codes over certain finite fields. J. Soc. Industr. Appl. Math. Vol. 8, 2 (1960),
300.

Hyogi Sim, Youngjae Kim, Sudharshan S. Vazhkudai, Devesh Tiwari, Ali Anwar, Ali R. Butt, and Lavanya Ramakrish-
nan. 2015. AnalyzeThis: An analysis workflow-aware storage system. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC’15).

James S. Plank, J. Luo, Catherine D. Schuman, L. Xu, and Z. Wilcox-O’Hearn. 2009. A performance evaluation and
examination of open-source erasure coding libraries for storage. In Proceedings of the 7th USENIX Conference on File
and Storage Technologies (FAST 09). 263-272.

Pradeep Subedi, Philip Davis, Shaohua Duan, Scott Klasky, Hemanth Kolla, and Manish Parashar. 2018. Stacker:
An autonomic data movement engine for extreme-scale data staging-based in-situ workflows. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage, and Analysis. IEEE Press, 73.
Pradeep Subedi and Xubin He. 2013. A comprehensive analysis of XOR-based erasure codes tolerating 3 or more
concurrent failures. In Proceedings of the IEEE 27th International Symposium on Parallel and Distributed Processing
Symposium Workshops and PhD Forum (IPDPSW’13).

Kun Tang, Ping Huang, Xubin He, Tao Lu, Sudharshan S. Vazhkudai, and Devesh Tiwari. 2017. Toward managing HPC
burst buffers effectively: Draining strategy to regulate bursty I/O behavior. In Proceedings of the IEEE 25th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’17).
Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhkudai, Youngjae Kim, Xiaosong Ma, Peter J. Desnoyers, and Yan
Solihin. 2013. Active flash: Towards energy-efficient, in-situ data analytics on extreme-scale machines. In Proceedings
of the 11th USENIX Conference on File and Storage Technologies (FAST’13). 119-132.

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows 12:29

(37]
(38]

(39]

U.S. Department of Energy, Office of Science. 2018. Exascale Computing Project. Retrieved from https://www.
exascaleproject.org/exascale-computing-project/.

Dirk Vogt, Cristiano Giuffrida, Herbert Bos, and Andrew S. Tanenbaum. 2013. Techniques for efficient in-memory
checkpointing. In Proceedings of the 9th Workshop on Hot Topics in Dependable Systems. 263-272.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. 2006. Ceph: A scalable,
high-performance distributed file system. In Proceedings of the 7th Symposium on Operating Systems Design and Im-
plementation (OSDI’06). USENIX Association, 307-320.

Matt M. T. Yiu, Helen H. W. Chan, and Patrick P. C. Lee. 2017. Erasure coding for small objects in in-memory KV
storage. In Proceedings of the 10th ACM International Systems and Storage Conference (SYSTOR’17).

Hongfeng Yu, Chaoli Wang, Ray W. Grout, Jacqueline H. Chen, and Kwan-Liu Ma. 2010. In situ visualization for
large-scale combustion simulations. IEEE Comput. Graph. Applic. 3 (2010), 45-57.

Heng Zhang, Mingkai Dong, and Haibo Chen. 2016. Efficient and available in-memory KV-store with hybrid erasure
coding and replication. In Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST’16).
Fang Zheng, H. Abbasi, C. Docan, J. Lofstead, Qing Liu, S. Klasky, M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf.
2010. PreDatAPreparatory data analytics on peta-scale machines. In Proceedings of the IEEE International Symposium
on Parallel Distributed Processing (IPDPS’10). 1-12.

Received June 2019; revised December 2019; accepted February 2020

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 12. Publication date: May 2020.

https://www.exascaleproject.org/exascale-computing-project/
https://www.exascaleproject.org/exascale-computing-project/

