
Scalable Crash Consistency for Staging-based In-situ Scientific Workflows

Shaohua Duan
Rutgers Discovery Informatics Institute

Rutgers University
Piscataway, NJ 08854, USA
shaohua.duan@rutgers.edu

Manish Parashar
Rutgers Discovery Informatics Institute

Rutgers University
Piscataway, NJ 08854, USA
parashar@ored.rutgers.edu

Abstract—As applications move towards extreme scales,
data-related challenges are becoming significant concerns for
scientific workflows, and in-situ/in-transit data processing have
been proposed to address these challenges. However, increasing
scales are expected to result in an increase in the rate of
failures and the cost of resilience. Even worse, since coupled
applications in workflows frequently interact and exchange
a large amount of data, simply applying state of the art
fault tolerance techniques to individual application components
can not guarantee data consistency in workflows after failure
recovery. Furthermore, naive use of fault tolerance techniques,
such as checkpoint/restart, to the entire workflows prohibits the
diversity of resilience of application components in workflows,
and finally incurs a significant latency, storage overheads, and
performance degradation. This paper addressed fault tolerance
challenge for extreme scale in-situ scientific workflows. We
present a loose coupled checkpoint/restart framework for in-
situ workflows. This proposed approach provides a scalable
and flexible fault tolerance scheme for in-situ workflows while
still maintaining the data consistency and low resiliency cost.
Specifically, we introduce a data logging mechanism in data
staging which is composed by the queue based algorithm and
user interface to keep data/events consistent during failure
recovery. We have implemented our approach within the
DataSpaces, an open-source data staging middleware, and
evaluated it using synthetic workflows on a Cray XC40 system
(Cori) at different scales. We demonstrated that, in the presence
of failures, uncoordinated checkpoint and hybrid checkpoint
with data logging scheme improved the workflow execution
time by up to 13.48% in comparison with global coordinated
checkpoint/restart approach.

Keywords-crash consistency; checkpointing; in-situ work-
flows; data staging;

I. INTRODUCTION

Scientific workflows running on emerging extreme-scale
system can provide new insights into some of the most
important problems in science and society, such as those
being addressed by the US Exascale Computing Program
(ECP) [1]. However, extreme scales are also leading new
challenges, such as data management, resilience, energy
efficiency, etc., and research and innovations at all levels
from the hardware architecture, the system software, the
algorithms, and applications.

In-situ workflow approaches, such as those based on data
staging and in-situ/in-transit data-management have emerged
as effective solutions to address data-related challenges

�ĂƚĂ�KďũĞĐƚƐ

/Ŷ�DĞŵŽƌǇ��ĂƚĂ�
^ƚĂŐŝŶŐ

^ŝŵƵůĂƚŝŽŶ��

^ŝŵƵůĂƚŝŽŶ��

^ŝŵƵůĂƚŝŽŶ��
�ĂƚĂ

�ŶĂůǇƚŝĐ�&

�ŶĂůǇƚŝĐ��

�ŶĂůǇƚŝĐ��

�ĂƚĂ

Figure 1: A typical data staging based workflow.

at extreme scales and are being adopted by application
workflows across current high-end computing systems [2],
[3]. These techniques leverage resources (i.e., compute and
memory) on the HPC system itself to create a data staging
area and use it to support the interaction and data couplings
required by the workflows as well as to execute data-
processing components of the workflow close to where the
data is being produced, reducing the amount of data that
needs to be moved off the system, for example, to a persis-
tent storage [4]. For example, the multi-scale, multi-physics
turbulent combustion application S3D [5] has an intricate
data-processing workflow with multiple analyses performed
at different temporal frequencies on non-overlapping subsets
of data, and staging-based in-situ frameworks such as DataS-
paces [6] have been effectively used to support these work-
flow requirements. Figure 1 illustrates a coupled simulation
workflow, wherein the primary scientific simulation is the
data producer and secondary simulations, analytics, and/or
visualization applications serve as data consumers coupled
to the producer.

However, workflows on extreme-scale system are also
expected to exhibit much higher fault rates than current one
does, for various reasons relating to both hardware and soft-
ware. For extreme-scale system, the performance increases
require a commensurate increase in the number of hardware
components. If we expect the per-component fault rates in
an extreme scale system to be similar to those observed in
current devices, a system 1,000 times more powerful will
have at least 1,000 times more components and will fail
1,000 times more frequently. Similarly, software architecture
of workflows on extreme-scale system will also become
more complex and hence more failure-prone. Multiphysics
and multiscale codes couple an increasingly large number
of distinct modules. Data visualization, simulation, and

���

�����*&&&�*OUFSOBUJPOBM�1BSBMMFM�BOE�%JTUSJCVUFE�1SPDFTTJOH�4ZNQPTJVN�8PSLTIPQT�	*1%148

����������������������������¥�����*&&&
%0*���������*1%148����������������

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

analysis are coupled into increasingly complex workflows.
Furthermore, the need to reduce communication between
modules, allow asynchrony and memory hierarchy results in
more complex software architecture in workflows. Although
the mean time between failures (MTBF) for current systems
is measured in hours (e.g., 14.51 hours for Titan Cray XK7
as shown in [7]), but it is estimated that the MTBF for an
exascale system would be measured in minutes [8].

In order to address fault tolerance at extreme scales with
the expected higher rates of failures [9], recent research has
explored techniques for minimizing application vulnerability
to failures. Various fault tolerance techniques such as check-
point/restart [10], process replication [11], and algorithm-
based fault tolerance (ABFT) [12] have been provided and
widely studied.

Unfortunately, applying these techniques to each applica-
tion components separately can not lead to the resiliency of
in-situ workflows, which are a composition of multiple in-
teracting applications. Due to the dependencies, interactions
and data exchanges between application components, this
naive uncoordinated fault tolerance scheme can not maintain
the consistent state of workflows during the recovering
phase, which finally makes the result of workflows invalid or
incorrect. Meanwhile, directly using a single fault tolerance
technique, such as global coordinated Checkpoint/Restart, to
all application components to achieve data consistency can
make the complexity and overhead for addressing failures
to be unacceptably high. Furthermore, the uniform fault
tolerance strategy restricts the diversity requirement for
addressing application resiliency, and potentially increase the
overall resiliency cost. As a result, it is important to design
a loose coupled workflow-level fault tolerance mechanism
to minimize the interference between components during
recovery, while still maintain consistent states of workflows.

This paper explores the workflow-level checkpoint/restart
strategy for in-situ workflows. We employ a data/event
logging mechanism to keep data consistency among applica-
tion components during the failure recovery while decouple
fault tolerance schemes between application components in
workflows. Specifically, we perform data/event logging as
soon as the data is written or read through the staging
area. Also, we introduce global user interface to application
components, which works with the queue based algorithm
to record and replay data access events when preforming
checkpointing and rollback recovery. In this way, our check-
point/restart with data logging framework allows wide area
fault tolerance schemes to be applied in workflows with
flexibility and scalability, and minimize the interfere between
normal application components and the failed one when
performing the recovery strategy.

We have implemented a checkpoint/restart with data log-
ging framework within DataSpaces [6] and have deployed it
on Cori, a Cray XC40 production system at Lawrence Berke-
ley National Laboratory (LBNL). We then have evaluated

its effectiveness and performance using synthetic workloads.
These evaluations demonstrate that our uncoordinated/hybrid
checkpoint/restart with data logging approaches efficiently
recover workflows in various use cases and scales, sustaining
performance and scalability in spite of frequent failures.

The rest of the paper is organized as follows. In Section
II, we discuss background and motivation related to the
workflow-level checkpoint framework as well as state of the
art fault tolerance approaches for individual applications, and
introduce our checkpoint/restart with data logging frame-
work in Section III. In Section IV, we evaluate our approach
using various synthetic scientific workflows. Section V pro-
vides details of various related work, and we conclude the
paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first explore fault tolerance require-
ments for in-situ workflows and investigate why traditional
mechanisms, such as global coordinated checkpoint/restart,
are unable to meet these requirements effectively.

A. Fault Tolerance in Workflows

Extreme scale in-situ scientific workflows involve interac-
tions and data exchanges between the various components
composing the workflow. For example, consider the coupled
combustion simulation DNS-LES workflow. S3D [5] is
a massively parallel computational fluid dynamics (CFD)
solver that performs first principles based ”direct numerical
simulations” (DNS) of turbulent combustion. DNS is very
expensive both in terms of flops and data generation, since
it resolves the entire range of spatial and temporal scales
in the continuum regime of a given problem. Large Eddy
Simulation (LES) simulates a combustion environments at a
lower resolution, resulting in better performance for simu-
lating features that can tolerate this lower resolution. Many
problem classes involve features that cannot be performantly
and accurately simulated by DNS or LES alone, but can be
effectively simulated by a coupled solution, requiring in-situ
coupling of two different solvers running at different reso-
lutions. Furthermore, knowledge discovery and visualization
from a S3D simulation run can be a daunting task due to the
size of the data set generated and the complexity of the tem-
porally evolving intermittent phenomena. To understand the
correlation of scalar fields such as temperature, mixing rates
and species concentrations in turbulent flames, simulation-
time feature extraction and visualization is necessary.

Meanwhile, there is a large body of work on scalable
fault-tolerance mechanisms to individual applications. These
techniques range from checkpoint/restart (C/R), process
replication to ABFT. They provide fault tolerance for a sin-
gle application successfully. For example, checkpoint/restart
(C/R) is the most widely used general-purpose fault-tolerant
technique in high performance applications. The principle
of strategy for (C/R) is: checkpoints are periodically saved

���

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

�� � �
dŝŵĞ

� � � �^ŝŵƵůĂƚŝŽŶ

�ŶĂůǇƐŝƐ

�ĂƚĂ�^ƚĂŐŝŶŐ

�

��ǆĞĐƵƚŝŽŶ�ƚŝŵĞ͗� �ŚĞĐŬƉŽŝŶƚŝŶŐ͗�ĂƚĂ�ĞǆĐŚĂŶŐĞ͗

&ĂŝůƵƌĞ͗ZŽůůďĂĐŬ�ƌĞƐƚĂƌƚ͗�

�ĂƐĞϮ

�ĂƐĞϭ�

ǁƌŽŶŐ�ƌĞĂĚ ƵŶŶĞĐĞƐƐĂƌǇ�ǁƌŝƚĞ

Figure 2: individually checkpoint/restart for the in-situ S3D cou-
pled simulation workflow.

during application initial execution, and when processes are
subject to failures, it uses these checkpoints to rollback the
application processes to the latest consistent state, and re-
execute the program from that point. Unfortunately, applying
fault tolerance techniques to the application components
individually does not effectually address the resiliency chal-
lenge for the whole workflows due to the data coupling at
extreme scale. For example, the S3D workflow consists of
S3D simulation and visualization coupling application, as
illustrated in Figure 2. In each coupling cycle, the workflow
first executes S3D simulation for several time steps, and
generates the coupling data, which is processed by the
analytics/visualization applications for feature extraction.
When the workflow passes the coupling data between the
S3D simulation components and visualization components,
dozens of 3D scalar and vector field components (fluid ve-
locity, molecular species concentrations, temperature, pres-
sure, density, etc) are transferred using staging area. In this
scenario, if the S3D simulation and analytics are protected
by checkpoint/restart individually, and a failure happens in
the analytics, the re-executive analytics process will get the
wrong version of data from data staging considering the
S3D simulation has updated the data during the analytics
re-execution. (the case1 shown in Figure 2). Similarly, if
a failure hits the S3D simulation, the re-executive simula-
tion will unnecessarily perform the data updating operation
to data staging twice, considering data has already been
staged in staging in first execution (the case2 shown in
Figure 2). These data/events inconsistency issue finally result
in erroneous results of visualization and analysis products.
Even worse, in the case of multiphysics coupling even
small errors can have catastrophic results, especially to the
stability of non-linear PDEs. These errors have the potential
to significantly alter the accuracy of the simulation, and
make the final workflow’s result invalid.

A further challenge to fault tolerance of entire workflows
is application components in workflows exhibit different re-
siliency requirements, program properties and failure charac-
ters, which result in diversification of fault tolerance strategy
among these components. For example, the stencil-based ap-
plication which is commonly used as scientific simulations,
such as the S3D simulation, employs local recovery strategy
[13] to effectively reduce the overhead of recovery in case of
frequent process failures. This recovery strategy is based on
unique communication pattern of stencil-based applications

which implies that multiple independent failures can be
masked to effectively reduce the impact on the total time to
solution. Meanwhile, as another large group of applications,
the linear algebra applications typically utilize algorithm-
based fault tolerance (ABFT) [12] to tolerate both fail-stop
failures and silent errors. In ABFT, the application uses intri-
cate knowledge of linear algebra to maintain supplementary,
redundant data, and can be updated algorithmically to form
a recovery dataset in case of failure. Although local recovery
and ABFT can exhibit excellent performance and resiliency
for the single application, they are less generalist approaches,
and can not be appropriate for all application components
in workflows. Therefore, when such types of applications
with the specific fault tolerance strategies combine together
into a in-situ workflow, to enable these resilience techniques
working cooperatively is chanllengeable, and constructing
a workflow-level loose coupled fault tolerance framework
become necessary. Ideally, workflow-level fault tolerance
mechanism should enable individual application components
to exploit the wide area of fault tolerance techniques.

Unfortunately, naive using state of the art fault tolerance
approaches in workflows can not address those challenges
discussed above efficiently. One possible solution to fault
tolerance of in-situ workflows is using global coordinated
checkpoint/restart protocols shown as Figure 3. This method
requires that all processes in workflow rollback to the last
valid checkpoint place, when a failure occurs. In the case of
the Message Passing Interface (MPI), a very simple approach
have often been taken to ensure the consistency of the
snapshot: a couple of synchronizing MPI barriers can be
used, before and after taking the process checkpoints, to
guarantee that no application in-flight messages are present
at the time of triggering the checkpoint, and thus the causal
ordering of communications inside the application is avoided
entirely. Global coordinated checkpoint/restart ensures a
global state consistency, but it presents two concerns. As
the size of the system grows, the probability of failures
increase, and the minimal cost to handle such failures also
increase due to frequently rollback whole workflow for
recovery. Even worse, rollback other healthy components
which have no data coupling with the failed component
during failures time and last checkpoint time, shown as
Figure 3, are unnecessary and wasteful. The second is
global coordinated checkpoint/restart constrain the diversity
of individual application fault tolerance strategies which can
efficiently reduce the resiliency cost.

Ideally, a good candidate approach to the workflow-level
fault tolerance should maintain the data consistency between
coupled application components efficiently, meanwhile pro-
vide a compatibility with diverse state of the art fault
tolerance approaches to construct a workflow-level loose
coupled fault tolerance mechanism for the entire workflows.

���

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

�

�� � �
dŝŵĞ

� � � �^ŝŵƵůĂƚŝŽŶ

�ŶĂůǇƐŝƐ

�ĂƚĂ�^ƚĂŐŝŶŐ

�ǆĞĐƵƚŝŽŶ�ƚŝŵĞ͗� �ŚĞĐŬƉŽŝŶƚŝŶŐ͗�ĂƚĂ�ĞǆĐŚĂŶŐĞ͗

&ĂŝůƵƌĞ͗ZŽůůďĂĐŬ�ƌĞƐƚĂƌƚ͗�ǁŝƚŚŽƵƚ�ĚĂƚĂ�ĐŽƵƉůŝŶŐ

Figure 3: Coordinated checkpoint/restart for the entire in-situ S3D
coupled simulation workflow.

� �
dŝŵĞ

� � � �^ŝŵƵůĂƚŝŽŶ

�ŶĂůǇƐŝƐ

�ĂƚĂ�^ƚĂŐŝŶŐ

�

��ǆĞĐƵƚŝŽŶ�ƚŝŵĞ͗� �ŚĞĐŬƉŽŝŶƚŝŶŐ͗�ĂƚĂ�ĞǆĐŚĂŶŐĞ͗

&ĂŝůƵƌĞ͗ZŽůůďĂĐŬ�ƌĞƐƚĂƌƚ͗�

�ĂƚĂ�ůŽŐŐŝŶŐ͗ >

> > >

ƌĞƉůĂǇ�

ƌĞƉůĂǇ�

Figure 4: An illustration of uncoordinated checkpointing for a
typical workflow with simulation, Analytic.

III. WORKFLOW-LEVEL CHECKPOINTING FRAMEWORK

In this section, we first propose our workflow-level un-
coordinated checkpoint framework which is integrated with
multiple checkpoint/restart strategies. We then extend the
framework with other fault tolerance strategies such as
process replication and ABFT, and construct a hybrid check-
point approach. Finally, we design the global user interface
for the framework which is implemented in open source data
staging, DataSpaces.
A. Uncoordinated Checkpointing

To mitigate data inconsistency issue discussed in Section
II, we introduce workflow-level uncoordinated checkpoint
with data logging framework. In this framework, the work-
flow logs data transportation events and payload between
application components as it proceeds along the initial exe-
cution; without strong coordination, application components
in workflows checkpoint their state independently. In case of
application component failure, the workflow collects all its
data/event log history, and enters the replay mode. Replay
consists in following the log history, enforcing all data
transportation events of the failed component to produce the
same effect they had during the initial execution, and the
corresponding data is re-provided to this process for this
purpose. Therefore, the data dependency and consistency
between coupled application components will keep during
the replay mode. Once the history has been entirely replayed,
the application component reaches a state that is compatible
with the state of the other components in workflows, that
can continue its progress from this point on.

1) Data Logging in Staging: One way to implement
data logging mechanism for workflows is to perform data
logging in a data resilience staging area. Figure 4 shows a
typical workflow with a uncoordinated checkpoint scheme
combined with data staging. In this workflow, application
components send the data communication requests to data
staging. For data write requests, applications offload the

�ƉƉ�Ă�ĞǀĞŶƚƐ͗

�ƉƉ�ď�ĞǀĞŶƚƐ͗

ϭ

dŝŵĞ�ƐƚĞƉƐ͗

�ƉƉ�ď�ĞǀĞŶƚ�ƋƵĞƵĞ͗

Ϯ ϯ ϰ ϱ ϲ ϳ ϴ ϴ ϴ ϴ ϵ ϭϬ ϭϭ ϭϮ

ϭ Ϯ ϯ ϰ ϱ ϲ ϳ ϱ ϲ ϳ ϴ ϵ ϭϬ ϭϭ ϭϮ

Ă͗ϱ
ď͗ϴ ď͗ϴ ď͗ϴ

Ă͗ϲ Ă͗ϳ

ƚƐϭ ƚƐϮ ƚƐϯ ƚƐϰ ƚƐϱ ƚƐϲ ƚƐϳ ƚƐϴ ƚƐϵ ƚƐϭϬ ƚƐϭϭ ƚƐϭϮ ƚƐϭϯ ƚƐϭϰ ƚƐϭϱ

�
�
�
ϭ

Ϯ
ϭ

ϯ
Ϯ
ϭ

ϰ
ϯ
Ϯ
ϭ ϱ

ϲ
ϱ

ϳ
ϲ
ϱ

ϳ
ϲ
ϱ

ϳ
ϲ
ϱ

ϳ
ϲ
ϱ

ϴ
ϳ
ϲ
ϱ ϵ

ϭϬ
ϵ

ϭϭ
ϭϬ
ϵ

ϭϮ
ϭϭ
ϭϬ
ϵ

ƌĞƉůĂǇ�ĞǀĞŶƚƐ

� � � �

� Z � �

Figure 5: An illustration of queue based data consistency algo-
rithm for a coupled applications workflow. Simulation b fails and
performs rollback recovery at time step 7, then during time step 8
to 10, staging area relays the events in the queue for the simulation
b which are recorded from time step 5 to 7.

data to staging area for data transportation to coupled
components later. For data read requests, applications receive
the data from staging area which are generated by coupled
components in early time. Data staging logs the data com-
munication requests and corresponding payload, and records
the fault tolerance events such as chechpointing and failure
recovery during the initial execution. In case of failure, data
staging switches to the recovery phrase. It cooperates with
the application recovery scheme, and reproduces the data
communication requests for the recovered component, which
are determined by the log history in the initial execution. To
guarantee the data availability in staging, the data staging can
contain data resilience mechanism such as data replication
or erasure coding. It can also be integrated with the third
part framework such as FTI [14] for data resilience.

Specifically, we employ a queue based data consistency
algorithm in staging area. Figure 5 illustrates a queue based
data consistency algorithm for a coupled applications work-
flow. The workflow consists of two coupled applications, and
in each coupling cycle (1 time step), coupled simulations a,
b exchange the data through data staging. The data staging
creates a event queue for each application, and pushes the
data communication request events which related with the
application into queue. In case of failure, staging area will
replay the events from the queue during the application
recovery phase. In this example, simulation b failed and
performs a rollback recovery at time step 7, and during time
step 8 to 10, staging area relays the events in the queue for
the simulation b which are recorded from time step 5 to 7.
At the end of checkpoint cycle(ts4, ts9, ts12), data staging
will clean the event queue and reload the following event
from the front of queue. By maintaining the data request
event queue, data staging can keep data consistency between
coupled applications during failure recoveries.

As well as uncoordinated checkpoint with multiple check-
point periods shown in Figure 5, this data logging mecha-
nism can easily adapt to other checkpoint/restart strategies
such as proactive checkpointing [15] and multi-level check-
pointing [16] under minor changes.

2) Storage Cost and Garbage Collection: To reducing the
storage cost, a garbage collecting mechanism is provided in

���

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

dŝŵĞ

� � � �^ŝŵƵůĂƚŝŽŶ

�ŶĂůǇƐŝƐ

�ĂƚĂ�^ƚĂŐŝŶŐ

��ǆĞĐƵƚŝŽŶ�ƚŝŵĞ͗� �ŚĞĐŬƉŽŝŶƚŝŶŐ͗�ĂƚĂ�ĞǆĐŚĂŶŐĞ͗

&ĂŝůƵƌĞ͗ZŽůůďĂĐŬ�ƌĞƐƚĂƌƚ͗�

�ĂƚĂ�ůŽŐŐŝŶŐ͗ >

> > >

WƌŽĐĞƐƐ�ƌĞƉůŝĐĂƚŝŽŶ͗�

ƌĞƉůĂǇ�

Figure 6: An illustration of hybrid checkpoint (integrated with
a process replication) for a typical workflow with simulation,
analytic.

workflow check() send a checkpoint event to data staging.

workflow restart()
recover data staging client and notify
the recovery event to data staging.

dspaces put with log() log data to data staging.

dspaces get with log()
retrieve the logged data specified by geometric
descriptor from data staging.

Table I: User interface for checkpoint/restart in workflows.

staging area. Specifically, data staging servers periodically
delete logged data which are related with previous check-
point periods without data dependency to other application
components, and only keep the latest version of data in
staging area.
B. Hybrid Checkpointing

Beside checkpoint/restart approaches, this workflow-level
framework can also support the wide area fault tolerance
mechanism, and construct a hybrid checkpointing scheme
for the workflow resiliency. Figure 6 illustrates a hybrid
checkpoint framework which integrated with process repli-
cation and checkpoint/restart approaches. In this example, a
simulation employs checkpoint/restart approach meanwhile
the analytic uses process replication for resiliency. To make
checkpoint/restart collaborate with a replication approach,
during checkpointing periods, the data communication re-
quests between these coupled applications will be logged
in staging area. If a failure happens in the application with
checkpoint/restart, the application will rollback to last check-
point place and re-execute through the latest checkpoint, and
the data staging switches to recovery phase. The data logging
in the data staging guarantees the restarted application can
always get the correct version of data from the coupled
application. Since the application with process replication
can tolerate failures without rollback recovery, the failures
will not trigger the data staging to switch to recovery phase
and replay the events.

C. Global User Interface
In this section, we describe more details about global

user interface, and present an example to illustrate how
this interface can be used to integrate multiple application
fault tolerance approaches to a workflow-level fault tolerance
scheme.

As shown in Figure 7(a), When the application component
performs checkpointing, it first saves process states and user-
level data to the reliable storage devices. The checkpoints
can be stored through a centralized parallel file system,
assumed to be fault-free. Other options include storing the

�ƉƉůŝĐĂƚŝŽŶ�ĐŽŵƉŽŶĞŶƚƐ

�ĂƚĂ�ƐƚĂŐŝŶŐ

tͺ�ŚŬͺ/�

ĞǀĞŶƚ�ŝŶĚĞǆŝŶŐ

ĞǀĞŶƚ��ůŽŐŐŝŶŐ

�ƉƉůŝĐĂƚŝŽŶ

ƉƌŽĐĞƐƐ�ĐŚĞĐŬƉŽŝŶƚŝŶŐ

ƌĞƚƵƌŶ

ƵƐĞƌ�ĚĂƚĂ�ĐŚĞĐŬƉŽŝŶƚŝŶŐ

ǁŽƌŬĨůŽǁͺĐŚĞĐŬ;Ϳ

(a) workflows checkpointing

�ƉƉůŝĐĂƚŝŽŶ�ĐŽŵƉŽŶĞŶƚƐ

�ĂƚĂ�ƐƚĂŐŝŶŐ

tͺ�ŚŬͺ/�

ĞǀĞŶƚ�ƋƵĞƌǇŝŶŐ

ĞǀĞŶƚ�ƌĞƉůĂǇ

�ƉƉůŝĐĂƚŝŽŶ

ĨĂŝůƵƌĞ�ĚĞƚĞĐƚŝŽŶ

ƌĞƚƵƌŶ

ƉƌŽĐĞƐƐ�ƌĞĐŽǀĞƌǇ

ǁŽƌŬĨůŽǁͺƌĞƐƚĂƌƚ;Ϳ

ƵƐĞƌ�ĚĂƚĂ�ƌĞĐŽǀĞƌǇ

(b) workflows restart

ůŽŐŐĞĚ�ĚĂƚĂͬĞǀĞŶƚ�
ƋƵĞƌǇŝŶŐ

�ƉƉůŝĐĂƚŝŽŶ

ĚƐƉĂĐĞƐͺŐĞƚͺǁŝƚŚͺůŽŐ;Ϳ

�ĂƚĂ�ƐƚĂŐŝŶŐ

ƌĞƚƵƌŶ

�ƉƉůŝĐĂƚŝŽŶ�ĐŽŵƉŽŶĞŶƚƐ

ŐĂƌďĂŐĞ�ĐŽůůĞĐƚŝŽŶ

(c) data read with logging

ůŽŐŐĞĚ�ĚĂƚĂͬĞǀĞŶƚ�
ƋƵĞƌǇŝŶŐ

�ƉƉůŝĐĂƚŝŽŶ

ĚƐƉĂĐĞƐͺƉƵƚͺǁŝƚŚͺůŽŐ;Ϳ

�ĂƚĂ�ƐƚĂŐŝŶŐ

ƌĞƚƵƌŶ

�ƉƉůŝĐĂƚŝŽŶ�ĐŽŵƉŽŶĞŶƚƐ

ĚĂƚĂ�ůŽŐŐŝŶŐ

ĚĂƚĂ

(d) data write with logging

Figure 7: User interface for checkpoint/restart in workflows.
checkpoints in the node-local storage (such as NVRAM
and SSD) or bust-buffer if the hardware architecture pro-
vides these devices. After that, the application component
calls workflow check() function, and notices a checkpoint
event to data staging. When data staging receives the event
notification, it creates a checkpointing ID: W Chk ID for
this event, and then inserts it into the event queue. Since
application components may have different checkpoint time
spots, we assign an unique W Chk ID for each checkpoint
event which refer to the same application component.

For the application recovery, it involves four key steps
shown in Figure 7(b): failure detection, process recovery,
data recovery, and data staging client recovery with event
notification. To enable to recover applications from fail-
ures, application components will delete failed processes
and recover the MPI communicator through ULFM [17]
[18]; a proposed extension of the MPI standard which
includes mechanisms for MPI applications to tolerate fail-
stop failures. After that, the equal number of spare processes
join the old communicator to construct the new one. An
alternative approach is to spawn new processes instead of
using processes from a previously prepared process pool,
if this is supported by the job scheduler. After the failed
application component recovered from the latest checkpoint
spot, it calls workflow restart() function. This function
firstly initializes the data staging client, and tries to build
RDMA connection to data staging servers, and send the
recovery event notification to the servers. After receiving
the notification, the data staging servers will update the
event queue, and generate a replay script for the recovered
application.

During a workflow execution, when an application com-
ponent tries to read the coupled data from data staging, it
calls dspaces get with log() function. This function sends
data read request with the data descriptor to data staging.
Based on the log history in the event queue, the data staging
identifies whether the read request comes from a rollback
execution or an initial execution of applications, and return

���

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

�ŽŽƌĚŝŶĂƚŝŽŶ�>ĂǇĞƌ

��Zdͬ�ĂƚĂ��ŽŵŵƵŶŝĐĂƚŝŽŶ�>ĂǇĞƌ�;Z�D�Ϳ

^ƚĂŐŝŶŐ�̂ ĞƌǀĞƌ
tŽƌŬĨůŽǁ�ZĞƐŝůŝĞŶĐĞ

hƐĞƌ�/ŶƚĞƌĨĂĐĞ

�ŽŽƌĚŝŶĂƚŝŽŶ�>ĂǇĞƌ

^ƚĂŐŝŶŐ��ůŝĞŶƚ

YƵĞƌǇ��ŶŐŝŶĞ͕��ĂƚĂ�/ŶĚĞǆŝŶŐ

>ŽŐŐĞĚ��ĂƚĂ�KďũĞĐƚ

ZĞƐŝůŝĞŶĐǇ�� ƚ̂ŽƌĂŐĞ�>ĂǇĞƌ

�ĂƚĂ�KďũĞĐƚ

'ĂƌďĂŐĞ��ŽůůĞĐƚŝŽŶ

�ĂƚĂ�>ŽŐŐŝŶŐ�
DĂŶĂŐĞŵĞŶƚ

EĞǁͬhƉĚĂƚĞ�ĐŽŵƉŽŶĞŶƚ�͗
�ǆŝƐƚŝŶŐ�ĐŽŵƉŽŶĞŶƚ�͗

WƌŽĐĞƐƐ�ZĞƐŝůŝĞŶĐĞ
>ĂǇĞƌ

;h>&D͕�ZĞƉůŝĐĂƚŝŽŶͿ

�ĂƚĂ�ZĞƐŝůŝĞŶĐĞ�>ĂǇĞƌ

�ƉƉůŝĐĂƚŝŽŶ��ŽŵƉŽŶĞŶƚƐ

&ĂƵůƚ�dŽůĞƌĂŶĐĞ

WƌŽĐĞƐƐ�ZĞƐŝůŝĞŶĐǇ
h>&D

Figure 8: Implementation of workflow-level checkpoint framework
the correct version of logged data. Finally, data staging
performs garbage collection operation to erase those data
which are no longer in use.

Similarly, when an application component tries to
write the coupled data into data staging, it calls
dspaces put with log() function, and sends the data with
the data descriptor to data staging. After receiving the
request, data staging will query the events in the event queue.
If the request is from initial execution, data staging will store
data as the logged data otherwise omit the write request due
to the redundant write request from the rollback recovering
application. Table I summarize the global user interface for
application components to perform checkpoint/restart and
data communication.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the implementation details
of workflow-level checkpoint framework and perform an
experimental evaluation using synthetic benchmarks in the
presence of failures.

Our workflow-level checkpoint framework is implemented
on the top of CoREC [19], an open-source data staging
with scalable data resilience. CoREC is a branch version
of DataSpaces [6], and provides data resilience for staging
area in the case of both process and node failures while
still maintaining low latency and sustaining high overall
storage efficiency at large scales. The schematic overview
of the runtime system is presented in Figure 8. In addition
to modifying several existing components of CoREC for the
integration, the system architecture introduces four key new
components: Data Logging Component, Garbage Collection
Component, Global User Interface, and Process/Data Re-
silience Component. The Data Logging Component stores,
indexes and maintains the log data from coupled applica-
tions. Garbage Collection Component regularly cleans the
unused historical log data. User Interface provides a set of
checkpoint/restart and data logging interfaces for the ap-
plications in workflows. The Process/Data Resilience Com-
ponent manages recovering applications from failures. This
Component manages a spare process pool and implements
the detection and handling of the process failures using
ULFM, which offers a set of fault tolerance mechanisms
for MPI applications.

Total No. of cores 256 + 64 + 32 = 352
No. of simulation cores 8 × 8 × 4 = 256
No. of staging cores 32
No. of analytic cores 64
Volume size 512 × 512 × 256
Data size (40 ts) 20GB
Data access pattern write immediately followed by read
Coordinated checkpoint period (ts) 4
Simulation checkpoint period (ts) 4
Analytic checkpoint period (ts) 5

Table II: Experimental setup for synthetic test cases.

A. Synthetic Experiments

Our synthetic experiments were performed on the NERSC
Cori Cray XC40 system, and evaluated the write perfor-
mance and memory usage of data staging with data/event
logging. We also measured the total workflow execution
time to evaluate the benefit from workflow-level check-
point/restart framework in case of failures. To better un-
derstand its performance and effectiveness, we selected two
test cases with common data access patterns and resilience
schemes used by real scientific workflows.

In each case, the simulation wrote the coupled data into
the data staging, and the analytic read the data right after
simulation write. Checkpoint/restart and/or process replica-
tion method were applied to the individual application to
construct either uncoordinated checkpoint or hybrid check-
point scheme for the entire synthetic workflows. In the
synthetic workflows, simulation and analytic applications
have different scales and resiliency requirements which
correspond to checkpointing data to the parallel file sys-
tem with different frequencies. For the process replication
method, we use process duplication to tolerance one process
failure. In case of failures, the application tolerated by
checkpoint/restart will be rolled back to the last checkpoint
place and re-executed from that point. For the application
with replication scheme, it will be tolerated failures by
switching the task from the failed process to the replicated
process. We ran the synthetic workflow with different data
access pattern and various frequency of checkpointing. Then,
we measure write response time and memory usage of data
staging and the total execution time of workflows. In these
experiments, a failure was randomly introduced into the
application process within 40 time steps, which corresponds
to MTBF = 10min. This simulates frequent failures on
an extreme-scale supercomputer system. We compared our
approach with two other fault tolerance mechanisms: global
coordinated checkpoint (checkpoint application components
in workflows coordinately, and restart them globally) as
a baseline and individual checkpoint (individually check-
point/restart application components without guarantee of
correctness results) as the theoretical optimal lower bound.
All experiments ran on the Cori, Cray XC40 system, a
12,076-node supercomputer located at the NERSC center
at Lawrence Berkeley National Laboratory (LBNL). The
set-up of these experiments is described in Table II. The
experimental results are presented in Figure 9 followed by
a detailed discussion and analysis of each.

���

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

Total No. of cores 704 1408 2816 5632 11264
No. of simulation cores 512 1024 2048 4096 8192
No. of staging cores 64 128 256 512 1024
No. of analytic cores 128 256 512 1024 2048
Data size (40 ts)(GB) 40 80 160 320 640
Coordinated checkpoint period (ts) 8 8 8 8 8
Simulation checkpoint period (ts) 8 8 8 8 8
Analytic checkpoint period (ts) 10 10 10 10 10
MTBF (sec) / No. of failures 600 / 1, 300 / 2, 200 / 3

Table III: Configuration of core-allocations, data sizes, and failure
characters for the scalability test scenarios on 704, 1408, 2816,
5632, and 11264 cores.

1) Case 1 - Write different subsets of the entire data
domain in each time step: In this case, 20%, 40%, 60%,
80%, 100% percentages of the entire data domain are
exchanged between application components via data staging
in each time step. Meanwhile, we perform checkpointing
every 4 iterations for large simulation application, and 5
iterations for the small analytic application. With more data
exchanging through data staging, both computation cost and
storage cost for data/event logging increased. Data/event
logging increased the write response time by 10%, 12%,
14%, 14%, and 15% as compared to the original data staging
respectively. For the storage overhead of data/event logging
in data staging, as shown in Figure 9(c), data/event logging
increased the memory usage by 81% for 20%, 82% for 40%,
84% for 60%, 86% for 80%, and 86% for 100% subset, as
compared to the original data staging’s.

2) Case 2 - Write the entire data domain and perform
checkpointing with different frequencies: In this case, we
write the entire data domain in data staging, and change the
checkpoinnting periods from every 2 time steps to every 6
time steps. As seen in Figure 9(b), we got slight perfor-
mance degradation when performing data/event logging in
data staging. Data/event logging increased the write response
time by maximum 14% as compared to original data staging
under five different checkpoint frequencies. Since the less
frequent checkpoint indicates the longer data/event queue
size in staging area, the higher storage cost can be expected.
Therefore, as shown in Figure 9(d), the memory usage for
data logging increases by 76% for 2ts, 79% for 3ts, 84%
for 4ts, 89% for 5ts, and 97% for 6ts checkpoint period,
as compared to the memory usage of original data staging.

In these two cases, both uncoordinated checkpoint and
hybrid checkpoint achieved nearly same execution time as
individual checkpoint’s which is theoretical optimal lower
bound for the execution time of workflows with fault toler-
ance. Also, they achieve a decrease of 3.06% and 3.05%
in the total execution time relative to global coordinated
checkpoint in case 1. In case 2, as seen in Figure 9(e),
we get similar performance improvement with case 1. The
uncoordinated checkpoint and hybrid checkpoint reduce the
total execution time around 3.15% for 2st, 3.28% for 3st,
3.26% for 4st, 3.05% for 5st and 3.18% for 6st relative to
global coordinated checkpoint respectively.

In order to study the scalability of workflow-level unco-
ordinated/hybrid checkpoint, we also plot the total workflow
execution time at different workflow scales and MTBF.

Ϭ

Ϭ͘Ϭϱ

Ϭ͘ϭ

Ϭ͘ϭϱ

Ϭ͘Ϯ

Ϭ͘Ϯϱ

Ϭ͘ϯ

Ϭ͘ϯϱ

Ϭ͘ϰ

Ϭ͘ϰϱ

Ϭ͘ϱ

ϮϬй ϰϬй ϲϬй ϴϬй ϭϬϬй

t
ƌŝƚ
Ğ�
ƌĞ
ƐƉ
ŽŶ

ƐĞ
�ƚŝ
ŵ
Ğ�
;Ɛ
ĞĐ
Ϳ

ϭϬй
ϭϮй

ϭϰй
ϭϱйϭϰй

(a) Case 1 write latency

Ϭ

Ϭ͘Ϭϱ

Ϭ͘ϭ

Ϭ͘ϭϱ

Ϭ͘Ϯ

Ϭ͘Ϯϱ

Ϭ͘ϯ

Ϭ͘ϯϱ

Ϭ͘ϰ

Ϭ͘ϰϱ

Ϭ͘ϱ

ϮƐƚ ϯƐƚ ϰƐƚ ϱƐƚ ϲƐƚ

t
ƌŝƚ
Ğ�
ƌĞ
ƐƉ
ŽŶ

ƐĞ
�ƚŝ
ŵ
Ğ�
;Ɛ
ĞĐ
Ϳ ϭϯй ϭϯй ϭϰй ϭϰйϭϰй

(b) Case 2 write latency

Ϭ

ϭϬϬ

ϮϬϬ

ϯϬϬ

ϰϬϬ

ϱϬϬ

ϲϬϬ

ϳϬϬ

ϴϬϬ

ϵϬϬ

ϭϬϬϬ

ϭϭϬϬ

ϮϬй ϰϬй ϲϬй ϴϬй ϭϬϬй
D
Ğŵ

Žƌ
Ǉ�
Ɛŝǌ

Ğ�
;D

�Ϳ

ϴϭй

ϴϮй

ϴϰй

ϴϲй

ϴϲй

(c) Case 1 storage cost

Ϭ

ϭϬϬ

ϮϬϬ

ϯϬϬ

ϰϬϬ

ϱϬϬ

ϲϬϬ

ϳϬϬ

ϴϬϬ

ϵϬϬ

ϭϬϬϬ

ϭϭϬϬ

ϮƐƚ ϯƐƚ ϰƐƚ ϱƐƚ ϲƐƚ

D
Ğŵ

Žƌ
Ǉ�
Ɛŝǌ

Ğ�
;D

�Ϳ

ϳϲй ϳϵй ϴϰй
ϵϳйϴϵй

(d) Case 2 storage cost

ϱϰϬ

ϱϲϬ

ϱϴϬ

ϲϬϬ

ϲϮϬ

ϲϰϬ

ϲϲϬ

ϲϴϬ

ϳϬϬ

ϳϮϬ

ϳϰϬ

ϮƐƚ ϯƐƚ ϰƐƚ ϱƐƚ ϲƐƚ

dŽ
ƚĂ
ů�Ğ

ǆĞ
ĐƵ

ƚŝŽ
Ŷ�
ƚŝŵ

Ğ�
;Ɛ
ĞĐ
Ϳ

�Ɛ �ŽнϭĨ hŶнϭĨ ,ǇнϭĨ /ŶнϭĨ

(e) Case 2 workflow execution time
Figure 9: Comparison of the cumulative data write response time,
storage cost, and total workflow execution time using the synthetic
workflow on Cori. Ds: The workflow with original data staging
and failure free; Co: Global coordinated checkpoint/restart; Un:
Uncoordinated checkpoint/restart; Hy: Hybrid checkpoint/restart
with process replication; In: Individual checkpoint/restart; +1f:
with one synthetic process failure. Percentages on top of the bars
indicate the ratio of memory usage of data logging to the original
data staging’s, and the ratio of write response time delay of data
staging with data logging to the original ones.

The setup of these experiments is described in Table III.
Figure 10 summarizes the total workflow execution time
in case of different numbers of failures (from 1 to 3) and
scales (704, 1408, 2816, 5632, and 11264 cores). It can
be seen that in the presence of multiple failures, workflow-
level uncoordinated checkpoint reduced the total execution
time by up to 7.89%, 10.48%, 11.5%, 12.03%, and 13.48%
on 704, 1408, 2816, 5632, and 11264 cores scales in
comparison to global coordinated checkpoint.

These results show that workflow-level checkpoint frame-
work demonstrates good overall scalability and flexibility
with small storage overheads for different data coupling
pattern, fault tolerance schemes and processor counts.

���

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

ϱϬϬ

ϱϱϬ

ϲϬϬ

ϲϱϬ

ϳϬϬ

ϳϱϬ

ϴϬϬ

ϴϱϬ

ϵϬϬ

ϳϬϰ ϭϰϬϴ Ϯϴϭϲ ϱϲϯϮ ϭϭϮϲϰ

dŽ
ƚĂ
ů�Ğ

ǆĞ
ĐƵ

ƚŝŽ
Ŷ�
ƚŝŵ

Ğ�
;Ɛ
ĞĐ
Ϳ

EƵŵďĞƌ�ŽĨ�ĐŽƌĞƐ

�Ž hŶ �ŽнϭĨ hŶнϭĨ �ŽнϮĨ hŶнϮĨ �ŽнϯĨ hŶнϯĨ

Figure 10: Summary of the total workflow execution time in case
of failures (1, 2, and 3) and at different scales (704, 1408, 2816,
5632, and 11264 cores).

V. RELATED WORK

The most commonly deployed strategy to cope with
application failures is checkpointing, in which processes
periodically save their state, so that computation can be
resumed from that point when some failure disrupts the
execution. Checkpointing strategies are numerous, and rang
from fully coordinated checkpointing [20], uncoordinated
checkpointing with message logging [21], multilevel check-
pointing [16], on-line checkpointing with local recovery
[13] to proactive checkpointing [15]. Simultaneously, other
techniques such as process replication or redundancy tech-
niques [22] and algorithm-based fault tolerance (ABFT)
[12] also introduce fault tolerance mechanisms to scientific
applications. In contrast to these efforts, we employ the
data logging mechanism for tight coupled in-situ workflows
to cooperate with these techniques together, and provide
fault tolerance for application components in workflows
effectually and efficiently.

Although In-situ processing paradigms and data staging
techniques [6] [23] [24] can effectually address the data
related challenge in scientific workflow, there are limited
research efforts focused on fault tolerance in scientific in-
situ workflows. The study in [25] exploits the reduction
style processing pattern in analytic applications and reduces
the complications of keeping checkpoints of the simulation
and the analytic consistent. Research efforts in [26] use a
synchronous two-phase commit transactions protocol to tol-
erate failures in high performance and distributed computing
system. In comparison to these efforts, our checkpoint/restart
with data logging approach specifically targets tight coupled
in-situ workflows, and is more flexible, asynchronous and
scalable.

VI. CONCLUSION AND FUTURE WORK

Cutting-edge in-situ workflows are applied at an ever-
growing scale. Fault tolerance is an important issue that
needs to be addressed in order to allow these workflows to
continue scaling efficiently. In this paper we have presented
a checkpoint/restart with data logging framework for tight
coupled in-situ workflows to enable diverse fault tolerance
schemes to be used in workflows effectively and efficiently.

Specifically, we apply data logging in staging area to effec-
tively decouple fault tolerance schemes between application
components while maintaining data consistency. We have
also provided a user interface for integrating this framework
with application fault tolerance schemes.

We have implemented uncoordinated and hybrid check-
point framework on top of the DataSpaces, and deployed
them on Cori. We have evaluated the effectiveness and
performance of our approach through synthetic tests. Our
experiments demonstrate that compared with global coordi-
nated checkpoint, our uncoordinated checkpoint and hybrid
checkpoint with data logging framework can effectively
reduce the execution time of scientific in-situ workflows.

As future work, we plan to integrate the approach de-
scribed in this paper with other fault tolerance methods such
as proactive checkpointing and hierarchical checkpointing,
and experimentally evaluate them using real application
workflows.

ACKNOWLEDGMENT
This worked was supported by the National Science Foun-

dation (NSF) via grant number CCF-1725649. and by Sandia
National Laboratories, a multi-mission laboratory managed
and operated by National Technology and Engineering So-
lutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Sci-
ence User Facility operated under Contract No. DE-AC02-
05CH11231. The research at Rutgers was conducted as part
of the Rutgers Discovery Informatics Institute (RDI2).

REFERENCES

[1] U.S. Department of Energy, Office of Sci-
ence. (2018) Exascale computing project.
https://www.exascaleproject.org/exascale-computing-project/.

[2] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K.
van Dam, K. Moreland, M. Parashar, L. Ramakrishnan,
M. Taufer, and J. Vetter, “The future of scientific workflows,”
The International Journal of High Performance Computing
Applications, vol. 32, no. 1, pp. 159–175, 2018.

[3] M. Parashar, “Addressing the petascale data challenge using
in-situ analytics,” in Proceedings of the 2Nd International
Workshop on Petascal Data Analytics: Challenges and
Opportunities, ser. PDAC ’11. New York, NY, USA: ACM,
2011, pp. 35–36. [Online]. Available: http://doi.acm.org/10.
1145/2110205.2110212

[4] J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy,
T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay,
D. Thompson, H. Yu, F. Zhang, and J. Chen, “Combining in-
situ and in-transit processing to enable extreme-scale scien-
tific analysis,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference
for, Nov 2012, pp. 1–9.

���

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

[5] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries,
E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-
Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S.
Yoo, “Terascale direct numerical simulations of turbulent
combustion using s3d,” Computational Science & Discovery,
2009.

[6] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an in-
teraction and coordination framework for coupled simulation
workflows,” in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, ser.
HPDC ’10, 2010, pp. 25–36.

[7] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures
in large scale systems: Long-term measurement, analysis, and
implications,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis (SC’17), November 2017.

[8] J. Dongarra and et al., “The international exascale software
project roadmap,” International Journal of High Performance
Computing Applications, vol. 25, no. 1, pp. 3–60, 2011.

[9] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and
M. Snir, “Toward exascale resilience: 2014 update,” in Su-
percomputing Frontiers and Innovations: an International
Journal, vol. 1, no. 1, 2014, pp. 5–28.

[10] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey
of fault tolerance mechanisms and checkpoint/restart imple-
mentations for high performance computing systems,” in The
Journal of Supercomputing, vol. 65(3), 2013, pp. 1302–1326.

[11] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and
C. Engelmann, “Combining partial redundancy and check-
pointing for hpc,” in at the 32nd IEEE International Confer-
ence on Distributed Computing Systems (ICDCS), 2012.

[12] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou,
“Algorithm-based fault tolerance applied to high performance
computing,” Journal of Parallel and Distributed Computing,
vol. 69, no. 4, pp. 410–416, 2009.

[13] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla,
J. Chen, and M. Parashar, “Local recovery and failure mask-
ing for stencil-based applications at extreme scales,” in High
Performance Computing, Networking, Storage and Analysis
(SC), 2015 International Conference for, November 2015.

[14] L. B. Gomez, D. Komatitsch, and N. Maruyama, “Fti: high
performance fault tolerance interface for hybrid systems,” in
2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Nov 2012, pp.
728–740.

[15] M. S. Bouguerra, A. Gainaru, L. B. Gomez, F. Cappello,
S. Matsuoka, and N. Maruyam, “Improving the computing ef-
ficiency of hpc systems using a combination of proactive and
preventive checkpointing,” in Proceedings of the 27th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’13), May 2013, pp. 501–512.

[16] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski,
“Design, modeling, and evaluation of a scalable multi-level
checkpointing system,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis (SC’10), November 2010, pp. 1–11.

[17] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Don-
garra, “Post-failure recovery of mpi communication capabil-
ity: Design and rationale,” in International Journal of High
Performance Computing Applications, vol. 27, August 2013,
pp. 244–254.

[18] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and
J. Dongarra, “An evaluation of user-level failure mitigation
support in mpi,” in Proceedings of the 19nd European MPI
Users’ Group Meeting (EuroMPI’12), September 2012.

[19] S. Duan, P. Subedi, K. Teranishi, P. Davis, H. Kolla,
M. Gamell, and M. Parashar, “Scalable data resilience for
in-memory data staging,” in Proceedings of the 32th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’18), May 2018, pp. 105–115.

[20] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A survey of rollback-recovery protocols in message-passing
systems,” ACM Computing Surveys (CSUR), vol. 34, no. 3,
pp. 375–408, September 2002.

[21] A. Bouteiller, T. Ropars, G. Bosilca, C. Morin, and J. Don-
garra, “Reasons for a pessimistic or optimistic message log-
ging protocol in mpi uncoordinated failure, recovery,” in 2009
IEEE International Conference on Cluster Computing and
Workshops, August 2009, pp. 1–9.

[22] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Fer-
reira, and R. Brightwell, “Detection and correction of silent
data corruption for large-scale high-performance computing,”
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis
(SC’12), November 2012.

[23] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and
M. Parashar, “Stacker: An autonomous data movement en-
gine for extreme-scale data staging-based in-situ workflows,”
in High Performance Computing, Networking, Storage and
Analysis (SC), 2018 International Conference for. ACM,
2018.

[24] S. Duan, P. Subedi, P. Davis, and M. Parashar, “Address-
ing data resiliency for staging based scientific workflows,”
in High Performance Computing, Networking, Storage and
Analysis (SC), 2019 International Conference for. ACM,
2019.

[25] J. Liu and G. Agrawal, “Supporting fault-tolerance in pres-
ence of in-situ analytics,” in 2017 17th IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing
(CCGrid), May 2017, pp. 304–313.

[26] J. Lofstead, J. Dayaly, I. Jimenezz, and C. Maltzahn, “Effi-
cient, failure resilient transactions for parallel and distributed
computing,” in 2014 International Workshop on Data Inten-
sive Scalable Computing Systems, November 2014, pp. 17–
24.

���

Authorized licensed use limited to: Rutgers University. Downloaded on December 03,2020 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

