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Abstract

Comparative genomic analyses have enormous potential for identifying key genes central to human 

health phenotypes, including those that promote cancers.  In particular, the successful development of 

novel therapeutics using model species requires phylogenetic analyses to determine molecular homology. 

Accordingly, we investigate the evolutionary histories of anaplastic lymphoma kinase (ALK)—which can 

underlie tumorigenesis in neuroblastoma, non-small cell lung cancer, and anaplastic large-cell 

lymphoma—its close relative leukocyte tyrosine kinase (LTK) and their candidate ligands. Homology of 

ligands identified in model organisms to those functioning in humans remains unclear. Therefore, we 

searched for homologs of the human genes across metazoan genomes, finding that the candidate ligands 

Jeb and Hen-1 were restricted to non-vertebrate species. In contrast, the ligand AUG was only identified 

in vertebrates. We found two ALK-like and four AUG-like protein-coding genes in lamprey. Of these six 

genes, only one ALK-like and two AUG-like genes exhibited early embryonic expression that parallels 

model mammal systems. Two copies of AUG are present in nearly all jawed vertebrates. Our 

phylogenetic analysis strongly supports the presence of previously unrecognized functional convergences 

of ALK and LTK between actinopterygians and sarcopterygians—despite contemporaneous, highly 

conserved synteny of ALK and LTK. These findings provide critical guidance regarding the propriety of 

fish and mammal models with regard to model-organism-based investigation of these medically important 

genes. In sum, our results provide the phylogenetic context necessary for effective investigations of the 

functional roles and biology of these critically important receptors.

Keywords: Cancer evolution, vertebrates, genome duplication, phylogenomics, functional divergence, 

gene evolution
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Significance

Model organisms have the potential to provide vital research breakthroughs that revolutionize 

human biology and medicine. However, inferences from model organisms often fail to translate to 

humans because of evolved differences in gene function and interaction. Such evolved differences 

currently stymie translational research on the cancer driver gene ALK, its sister LTK, and the genes they 

interact with. Our comparative analysis revealed their evolutionary history, demonstrating that LTK and 

ALK have switched and subsequently duplicated gene partners between invertebrates and vertebrates,  

and that these genes have exchanged functions between humans and fish model species. These results 

illuminate the model organisms with which future research will effectively translate to human cancer 

biology—specifically for guiding the development of novel therapeutics. 
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Introduction

A diversity of non-human model species distributed across the Tree of Life have been essential to 

investigations of the biology of key genes responsible for trait evolution and human health phenotypes. 

Correspondingly, comparative investigations of the genes that prevent or promote the origin and spread of 

cancer have been fruitful for understanding human cancer biology ((Kocher & Piwnica-Worms 2013; 

O’Hagan et al. 2005; Stoletov & Klemke 2008; Rowell et al. 2011; Paoloni & Khanna 2008). However, 

the challenge to such investigations is that gene function and regulation evolves. Underlying molecular 

divergences can become obscured by convergences in phenotype that can confound our ability to infer the 

homology of receptors and their interacting partners between species. Accordingly, accurate homology 

predictions have the potential to accelerate the development of novel therapeutics. Therefore, estimating 

the evolutionary history of oncogenes provides a critical reference for translation of fundamental findings 

in model organisms (Reshetnyak et al. 2015; Gudernova et al. 2017; Mo et al. 2017; Lemke 2015).

This problem of distinguishing homology from convergence has grown particularly acute within 

anaplastic lymphoma kinase (ALK) and leukocyte tyrosine kinase (LTK), two well-known RTK proto-

oncogenes whose roles in oncogenesis and potential as therapeutic targets have been increasingly 

investigated (Chiarle et al. 2008; Bresler et al. 2011; Fujioka et al. 2006; Marzec et al. 2006; Lin et al. 

2017; Soda et al. 2007; Hallberg & Palmer 2013; Wellstein 2012; Roll & Reuther 2012; Holla et al. 

2017).  In particular, structural conservation of ALK between invertebrate models as diverse as fruit flies, 

nematodes, and humans, model organisms has been central to illuminating the biology of oncogenic 

alterations such as mutation type prevalences in cancer tissues (Ogawa et al. 2011), over-expression 

triggering abnormal activation of ALK (Zhu et al. 2012; De Brouwer et al. 2010), and ligand-dependent 

mutations (Mosse et al. 2008). However, disentangling potentially complex patterns of divergent and 

convergent evolution in ALK and LTK requires investigating three core aspects of evolutionary history, 

each establishing the extent to which model systems provide functional parallels of humans.

The first aspect of evolutionary history with translational relevance regards the homology of ALK 

and LTK. A gene that by a simple BLAST search appears to be ALK or LTK in one model organism 
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could in fact be the other with a very divergent regulatory apparatus and functional repertoire. Second, 

key domains in ALK and LTK have been gained and lost and may have undergone convergent as well as 

divergent evolution. ALK and LTK have a tripartite structure including an intracellular kinase domain 

(KD), a single transmembrane domain (TMD), and an extracellular domain (ECD; Inoue & Thomas 2000; 

Englund et al. 2003; Bilsland et al. 2008; Weiss et al. 2012). Within the ECD, a low-density lipoprotein 

receptor class A (LDLa) repeat and two protein tyrosine phosphatase Mu (MAM) domains are also 

conserved, the latter playing a role in RTK homo-dimerization, which leads to rapid activation of the 

kinase domains across metazoans (Cismasiu et al. 2004). Knowing the history of gain, loss, and sequence 

evolution of these domains is essential to knowing functional parallels between model systems and 

humans. Third, three ligands of Alk have been identified: Jelly belly (Jeb) in Drosophila melanogaster, 

Hesitation behavior-1 (Hen-1) in Caenorhabitis elegans (Rohrbough & Broadie 2010; Lee et al. 2003; 

Ishihara et al. 2002), and Augmentor (FAM150 or AUG-α in Homo sapiens; Guan et al 2015, Reshetnyak 

et al. 2015). Understanding the identity and functional interactions of these ligands with their cognate 

receptors has been argued to be vital to the development of inhibitors and other small-molecule 

pharmaceuticals (Slavish et al. 2011; Gambacorti-Passerini 2016; Tartari et al. 2011; Grande et al. 2011; 

Fadeev et al. 2018), yet the homology of these ligands identified in diverse organisms has not been 

established (Guan et al. 2015).

In this study, we performed an exhaustive search for homologs of vertebrate ALK, LTK, and AUG 

against genomes of organisms that include all major vertebrate lineages, additional chordates, 

hemichordates, and protostomes. Across these genomes, we identified genes homologous to those known 

to encode ALK ligands, providing evidence for the origins of AUG ligands as a vertebrate-specific 

innovation. We further reconstructed ancestral sequences of vertebrate AUGs and performed phylogenetic 

analysis of the evolution of vertebrate ALKs, LTKs and AUGs to reveal the history of major events in 

their evolution, including the gains and losses of genes and the evolution of functional domains. Using the 

gene phylogenies obtained, we further identified amino acids that likely play essential roles in the 

functional divergence between gene paralogs. By determining the origins and evolution of the proto-
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oncogenic tyrosine kinases ALK and LTK and their ligands across the history of Metazoans, our results 

provide the necessary foundation for effective, phylogenetically informed investigations of the functional 

roles of these genes.

Results

The evolutionary history of ALK, LTK, JEB, HEN-1, and AUG homologs

BLAST searches (including blastp and tblastn) revealed a diversity of sequences that are 

potentially homologous to sequences of ALKs and associated ligands from model and non-model 

organisms across the genomes available at Ensembl (Kersey et al. 2017) and NCBI (NCBI Resource 

Coordinators 2017; Table S1). ALKs identified in nematode and fruit fly genomes exhibited sufficient 

conservation of sequence for homologous alignment in the GR and kinase domains. One homolog of 

vertebrate ALK (NCBI XP_032818754) was found in the sea lamprey (Smith et al. 2013, 2018b) and 

Japanese lamprey genomes (Mehta et al. 2013), that included identifiable MAM2, LDLa, and 

tyrosine kinase domains. In addition, a sequence with potential ALK similarity that was 

annotated as LTK was found (NCBI XP_032804141). This annotated LTK protein exhibited 65% 

sequence similarity with the predicted lamprey ALK protein along with conservation of a glycine-rich 

tyrosine kinase domain.  However, no MAM and LDLa domains were present in the annotated LTK 

protein. BLASTp searches using this protein yielded hits on ALK and LTK proteins in birds and 

mammals; with the highest-scoring hit against the human genome being the anaplastic lymphoma kinase 

(Ki-1) receptor, followed by ALK, then LTK. Consequently, sequence similarity alone was not sufficient 

to assign this gene to either ALK or LTK. Functional or structural domains of ALK, LTK, and ALK-like 

proteins were predicted with sequence comparison and by InterPro (Mitchell et al. 2019). We find 

orthologs of ALK are present in almost all vertebrate genomes as well as most protostomes. However, 

ALK appears to have been lost in the early diverging chordate lineage Ciona, as well as in hagfish—the 
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sister lineage to lamprey. In contrast, we detected ALK-like and Jeb-like proteins within the genome of 

lancelets.

In a parallel to our finding of ALK and a candidate LTK homolog in the lamprey genomes, multiple 

AUG-like proteins (XP_032817706, XP_032809021, XP_032826340, XP_032810391) were also found 

in the sea lamprey and Japanese lamprey genomes. In contrast, no orthologs of Jeb or Hen-1 were found 

in any vertebrates, with Hen-1 restricted entirely to the nematodes C. elegans and Loa. Jeb was present in 

most protostomes: our identification of Jeb-like proteins in Aplysia and Strongylocentrotus respectively 

extends the presence of this ligand to mollusca and represents the first identification of this protein in a 

deuterostome. However, we found no evidence of Jeb in other chordate lineages, indicating that Jeb may 

have been lost prior to the diversification of vertebrates (Fig. 1). As lampreys are members of the earliest-

diverging lineage of living vertebrates, our finding of an ALK, a possible LTK, and multiple AUG genes is 

suggestive of two potential scenarios. One is that ALK, LTK, and two copies of AUG arose at the dawn of 

vertebrates. A second possibility is that a duplication of the ALK-AUG ligand-receptor gene pair gave rise 

to LTK and a gene for a second AUG ligand after the divergence of the lamprey lineage from the 

vertebrate ancestor and prior to the diversification of jawed vertebrates (Smith et al. 2018b; Dehal & 

Boore 2005; Fig. 1). The latter hypothesis is supported by conserved synteny: genes adjacent to ALK and 

LTK in humans are found adjacent to ALK and LTK within lineages as divergent as Anolis, elephant 

sharks, and gar, with evidence for conserved synteny between lamprey and other jawed vertebrates 

restricted to genes surrounding ALK (Fig. 2), thereby suggesting other lamprey genes to be lineage-

specific paralogs.

Phylogenetic analysis of vertebrate ALK and LTK provided further strong support for a history in 

which the duplication of ALK gave rise to LTK prior to the most recent common ancestor (MRCA) of 

jawed vertebrates. The origin of LTK mapped to the MRCA of chondrichthyans and Osteichthyes 

(sarcopterygians + actinopterygians; Fig. 1). Synteny of some genes neighboring ALK and LTK was 

conserved between and within major clades of vertebrates (Fig. 2). Moreover, there was strong support 

for the reciprocal monophyly of jawed-vertebrate ALK and LTK [Bayesian posterior probability 
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(BPP) = 1.0; Fig. 3) and strong support for a clade comprising lamprey ALK & jawed vertebrate ALK + 

LTK that excluded the annotated lamprey LTK protein (Fig. S1). Comparisons of the evolutionary history 

of ALK and LTK demonstrate divergent rates of molecular evolution as well as divergent patterns of 

domain acquisitions and losses (Fig. 3). For example, mammals exhibit a signature of decelerated 

evolution of nonsynonymous substitution in ALK, a deceleration that contrasts with a significantly faster 

rate of molecular divergence of mammal LTKs (Fig. 3; Tables S4 and S6). We found that both ALK 

(Iss = 1.08, Iss.c = 0.83, P < 0.01) and LTK (Iss = 1.21, Iss.c = 0.83, P < 0.01) have experienced severe 

amino-acid substitution saturation (Xia & Lemey 2009; DAMBE; Xia 2018) and exhibit a sharp decline 

of phylogenetic informativeness (PhyInformR; Dornburg et al. 2016) within mammals (Fig. S6). Rates of 

evolution of ALK and LTK between “fish” (ray-finned fishes, sharks, and Coelacanth) and mammals 

contrasted: mammal LTK exhibiteds significant saturation (Iss = 1.07, Iss.c = 0.84, P < 0.01) relative to 

“fish” (Iss = 0.67, Iss.c = 0.84); and ALK for “fish” exhibited significant saturation (Iss = 1.07, 

Iss.c = 0.84, P < 0.01) relative to mammals (Iss = 0.65,  Iss.c = 0.84). We found evidence for functional 

divergence in different sites between ALK and LTK, with six sites (745-Lys, 760-Leu, 767-Lys, 795-Ile, 

808-Asn, and 863-Asn positions of human ALK) identified as important to the evolution of differential 

function of ALK and LTK (P < 0.05; Fig. S3). These sites were all located between the MAM2 domain 

and the GR region, with the exception of 863-Asn, located in the GlyR domain. Functional divergence 

analyses further predicted 11 amino acids in human LTK to be of significant (P < 0.01) importance in the 

differential function of LTK between mammals and non-mammals groups (98-Thr, 120-Leu, 152-Leu, 

171-Gly, 200-Gly located before the GlyR domain and 216-Tyr, 226-Glu, 245-Arg, 261-Ala, 262-Pro, 

267-Arg located within the GlyR domain), five of which are conserved across ALK and LTK in jawed 

vertebrates (Fig. S4).

The evolution of augmentor (AUG) in vertebrates 
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Investigation of transcriptomes and sequenced genomes revealed that AUG is an innovation shared by all 

vertebrates. Using the annotated lamprey AUG sequence and the maximum-likelihood ancestral sequence 

for the most recent common ancestor of vertebrate AUG and lamprey AUG revealed no potential 

homologs in searches of any invertebrate deuterostome, protostome, or non Metazoan genomes. Our 

reconstruction of the evolutionary history of AUG strongly supports its duplication into AUG-α and 

AUG-β prior to the most recent common ancestor of jawed vertebrates, suggesting that the other three 

AUG genes in lamprey are lamprey-specific paralogs (Fig. 1 & S5). This hypothesis is further supported 

by the loss of signaling peptides in two of the lamprey AUG genes (XP_032826340, XP_032810391) and 

the absence of conserved amino-acid motifs shared by vertebrates in the N-terminus of AUG-α or AUG-β 

in XP_032809021. In parallel, conserved synteny supports duplication and divergence: genes adjacent to 

AUG-α or AUG-β  in humans are also found adjacent to AUG-α or AUG-β across representative 

chondrichthyan, actinopterygian, and sarcopterygian lineages (Fig. 4). Collectively these lineages span 

the most recent common ancestor of all jawed vertebrates (Fig. 4 and—assuming complete and accurate 

genome annotation—provide evidence that absences of AUG-α  (Fig. 5a) or AUG-β (Fig. 5b) are a 

consequence of heterogeneous lineage-specific losses. Further, sequence comparisons of jawed vertebrate 

AUG-α and AUG-β reveal these ligands to share structural conservation with lamprey AUG: all encode 

four cysteines near the C-terminus (Fig. 5C). Functional divergence analysis further identified three sites 

in human AUG-α (81-Glu, 91-Leu, and 146-Val) as being significant (P < 0.01) to the differential 

function of the AUG paralogs.

Orthologs of AUG-α exhibited rapid evolution (high non-synonymous substitution) across jawed 

vertebrates, suggesting a comparatively conserved function of AUG-β (Table 1). This hypothesis is 

supported by a relative ratio test demonstrating significantly greater numbers of amino acid substitutions 

in AUG-α than in AUG-β (P < 0.05). Both AUG-α (Iss = 1.39; Iss.c = 0.76) and AUG-β (Iss = 1.45; 

Iss.c = 0.76) have experienced severe substitution saturation (DAMBE; Xia & Lemey 2009; Xia 2018) 

and by the sharp decline of phylogenetic informativeness (PhyInformR; Dornburg et al. 2016) of the 

protein sequence at timescales corresponding with the divergence of mammals (Fig. S6).
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Tissue-specific expression profiles of ALK and AUG in lamprey

Quantifying expression levels of ALK and AUG transcripts in lampreys identified similarities in 

expression that are consistent with their operation as a ligand-receptor pair and that align with function in 

humans. We performed PCR-based (RACE) strategies in muscle, brain, liver, and eye tissues from adult 

and ammocoete lampreys (Table S2) and analyzed RNA sequencing data from 76 experiments in eight 

transcriptomic projects of P. marinus in NCBI Sequence Read Archive (SRA). Short reads were aligned 

to the recently updated annotation of P. marinus genome from NCBI, and we quantified expression as 

raw read counts that mapped to the two ALK-like genes and four AUG-like genes (Table S3). For ALK 

and the annotated LTK gene, expression of the annotated LTK (XP_032818754) was detected in 67 out of 

the 76 experiments with an average 55 counts (maximum 483 counts), while ALK (XP_032804141) 

exhibited very low expression (1–12 counts) in 20 out of the 76 experiments as well as our RACE results. 

This suggests a restricted role for XP_032804141 in lamprey development. Expression of AUG was not 

detected from our lamprey specimens in either the ammocoete and adult life stage. Among the four AUG-

like genes, expression of XP_032826340 and XP_032810391—which have no predicted signal 

peptides—was either undetectable or very low in all 76 experiments, while AUG- XP_032817706 and 

AUG-XP_032809021 were respectively detected in 55 and 61 of the 76 experiments, always at high 

expression levels (Fig. S7). We found expression levels of the two AUG homologs—summed, as would 

be consistent with subfunctionalization—were correlated with expression of ALK, supporting the 

hypothesis that AUG and ALK are a ligand-receptor pair in lamprey (Pearson’s correlation coefficient 

r(84) = 0.59, P < 10﹣5; Table S3, Fig. S7). These findings are consistent with the hypothesis that they 

were a ligand-receptor pair in the common ancestor of lamprey and jawed vertebrates. AUG transcripts 

were found in the neurula stage, olfactory tissues after exposure to copper, meiotic testes and brains, and 

samples with post-injury spinal cord and brain tissue (Table S3). No transcripts of ALK, AUG-

XP_032817706, or AUG-XP_032809021  were detected in 8 samples, including parasitic olfactory 
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epithelium, adult olfactory epithelium, adult brain, parasitic larval brain, laval liver, parasitic liver, 

parasitic kidney and parasitic liver samples (Table S3).

Discussion

Here we have reported our discovery that the augmentor ligands of ALK and LTK are a vertebrate 

innovation, and demonstrated that invertebrate genes JEB and HEN-1 are not homologs of AUG. This 

lineage-specific evolution of ALK and LTK function across Metazoa likely underlies a diversity of 

hypotheses regarding how human functions and phenotypes of ALK homologues relate to the functions 

and phenotypes observed in protostome models such as nematodes and fruit flies (Hallberg & Palmer 

2016; Ishihara et al. 2002; Reshetnyak et al. 2018; Hallberg & Palmer 2013). The split between ALK-

bearing vertebrates and ALK-bearing protostomes corresponds not only to a divergence in receptor-ligand 

association, but also to a greater functional divergence. For instance, ALK plays a central role in the 

visceral gut formation, growth, and neurogenesis in protostomes (Wolfstetter et al. 2017; Gouzi et al. 

2011), and a role in neuronal proliferation, differentiation, and survival in vertebrates (Yao et al. 2013; 

Weiss et al. 2012). Similarly, we have demonstrated that after the genesis of AUG, an additional 

duplication likely occurred prior to the most recent common ancestor of jawed vertebrates, giving rise to 

the ligands AUG-α and AUG-β. This duplication of AUG coincided with a duplication of anaplastic 

lymphoma kinase (ALK) creating leukocyte tyrosine kinase (LTK).

The duplication of ALK into ALK and LTK reveals striking functional similarities between these 

two lineages of tyrosine kinases. These functional similarities within ALK, within LTK, and between 

ALK and LTK encourage the use of a wide range of candidate vertebrate model species for investigation 

of the receptors, ligands, and their interactions. For instance, the LTKs of non-tetrapods, including models 

such as zebrafish, exhibit a strong signature of shared domain structure with mammal ALK. The only 

notable difference is the sequence divergence between the N-termini of ALK and LTK within the first 

MAM domain. In addition, we also found evidence for the conservation of 11 key amino acids between 
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non-tetrapod and mammal LTK. The amino-acid identity of five of these eleven amino acids is—

remarkably—also shared between non-tetrapod LTK and mammal ALK. This conservation is 

encouraging and consistent with previous research emphasizing the importance of the nonhuman models 

in ALK tumorigenesis (Hallberg & Palmer 2013). Experimental research investigating the effects of 

induced point mutations in the ALK and LTK coding sequences at the sites identified here would be 

especially likely to reveal functionally divergent aspects of ALK and LTK signaling among humans and 

relevant model species.

Structurally, we found lamprey ALK is similar to mammalian LTK: both feature the PTK and GR 

domains and lack MAM1 and LDL domains. Our rapid-amplification-of-cDNA-ends experimental results 

and our analysis of public transcriptomic data mapping to lamprey ALK and AUG demonstrated that ALK 

and AUG are coexpressed post-fertilization. Post-fertilization expression and maximal expression during 

early embryonic development and after injury to nerve or brain tissues suggests a role of ALK and AUG 

in nerve and brain development. These results are consistent with expression of ALK in mice and humans 

that is also highest during embryonic development, quickly drops after birth, and is subsequently 

maintained at a low level (Iwahara et al. 1997; Vernersson et al. 2006). Together, our results and prior 

studies suggest that the functional roles of ALK and AUG may be conserved across vertebrates. Future 

research examining spatiotemporal changes in ALK and AUG expression between species—in particular 

in response to stressors—presents an exciting and potentially fruitful avenue toward an increasingly 

thorough understanding of the general role of these genes in humans and as well as their role in human 

cancers.

 Our phylogenetic analyses of AUG-α revealed an accelerated evolutionary rate that is unexpected 

for proteins executing critical biological functions. Lower rates of sequence evolution are typically 

expected for proteins believed to have a collocalized dual specificity of interaction between genes. 

Biophysical binding data suggests AUG-α is a dual-specific ligand for both ALK and LTK (Reshetnyak et 

al. 2015). Our results demonstrate that this dual specificity has not constrained the evolution of AUG-α to 

a slower substitution rate within mammals. Instead, molecular rates of AUG-α exceed those estimated for 
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AUG-β, which is a monospecific ligand of only LTK (Reshetnyak et al. 2015). The high substitution rates 

observed in mammal LTK, non-tetrapod ALK, and jawed vertebrate AUG-α could indicate increased 

functional specificity and lower promiscuity of interaction in these genes. In contrast, we found AUG-β 

homologs to be more conserved than AUG-α homologs, a signature consistent with expectations of co-

evolution between signaling and receiving molecules (Goh et al. 2000; Monte et al. 2018; Laisney et al. 

2010). In mammals, ALK is activated via both ligand-dependent (Takita 2017; Reshetnyak et al. 2015) 

and ligand-independent (Deuel 2013; Perez-Pinera et al. 2007) processes, implying multiple functions of 

ALK and high interaction specificity between ALK and its ligand(s). These lower substitution rates 

potentially indicate promiscuous interactions among AUG-β and its receptors. Biological relevance of 

these interactions has been indicated by research on both zebrafish development and human cancers 

(Reshetnyak et al. 2015; Mo et al. 2017; Guan et al. 2015). The differences in evolutionary rates between 

AUG-α & AUG-β, mammal LTK & non-tetrapod ALK, and mammal ALK & non-tetrapod LTK 

represent evolutionary trade-offs between functional specificity and the number of interactors a protein 

can achieve (Zhang & Yang 2015).

Rapidly evolving proteins have been shown to exhibit greater functional specificity—for example, 

higher tissue specificity or higher promoter methylation in mammals (Zhang & Yang 2015). If the 

different rates of evolution of these receptors and their ligands are the outcomes of evolutionary trade-

offs, we might expect a higher complexity of the protein networks associated with mammal LTK and 

non-tetrapod ALK, and expect more functional generality in networks associated with mammal ALK and 

non-tetrapod LTK. Consequent hypotheses that mammal LTK and non-tetrapod ALK regulate nerve 

development in conjunction with many highly specialized partner proteins, and that mammal ALK and 

non-tetrapod LTK play broadly important and general roles in internal developmental signaling, warrant 

further molecular biological investigation. Additional collection of data on genome-wide or gene-specific 

spatial and temporal co-expression in vertebrates would provide additional insight into regulatory gene 

interaction networks, narrowing the scope of viable hypotheses for protein-protein interaction 

experiments as well as revealing evolutionary change in the structure and function of the ALK, LTK, and 
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AUG signaling networks. Building on the evolutionary history we have here revealed, comparative 

analyses of inter-specific protein interaction networks will reveal how these genes and gene domains are 

co-opted in tumorigenesis and cancer progression. Such insights will enable translational research toward 

interventions that successfully target the cellular function of ALK and LTK in human cancers. 

Materials and methods

Identification homologs of ALK and its possible ligand in non-models—To investigate homologs of 

vertebrate ALKs, LTKs, and their associated ligands across model organisms spanning the protostomes 

and deuterostomes, amino-acid alignments of ALK homologs as well alignments of JEB, HEN-1 and 

AUGs from the genomes of zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), and nematode 

(Caenorhabditis elegans) were used to perform HMMER ortholog searches (Wheeler & Eddy 2013) against 

available genomes from genome databases in NCBI (www.ncbi.nlm.nih.gov) and Ensembl 

(www.ensembl.org; Table S1). For genomes whose annotation did not report homologs of these genes, 

additional BLASTp and tBLASTn searches were conducted with protein sequences derived from the three 

representative genomes listed above. Sequences with the mutually best matches between two sequences in 

genome pairs via BLAST search (Moreno-Hagelsieb & Latimer 2008) were subjected to further 

phylogenetic analyses to confirm their homology with annotated ALK, LTK, or ligand proteins. To 

investigate the evolution of ALK/LTK and associated AUG in vertebrates, sequences from model species 

that included zebrafish, frog (Xenopus tropicalis), chicken (Gallus gallus), zebra finch (Taeniopygia 

guttata), mouse (Mus musculus) and human (Homo sapiens) were queried against non-model vertebrate 

genomes (Table S1) using HMMER and best-hit reciprocal-BLAST searches. To illuminate the origin of 

vertebrate ALK/LTK and AUG, special attention was devoted to thoroughly ascertain the presence of 

ALK and possible ligand(s) in the genomes of the jawless vertebrates (hagfish and lampreys), as these 

animals represent the earliest-diverging extant vertebrate lineage (Shimeld & Donoghue 2012). No 

sequence in the hagfish genome exhibited any similarity to vertebrate ALK, LTK, or AUG. BLAST 

searches of multiple ALK and AUG sequences from non-tetrapod genomes recovered highly conserved 
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regions between the two lamprey genomes indicating the presence of homologs of jawed-vertebrate ALK 

and AUG. To analyze synteny of ALK, LTK and AUG orthologs among vertebrate representatives, 

predicted genes around targets were extracted from genome annotations of the sea lamprey, elephant 

shark, zebrafish, Xenopus, chicken, armadillo, pig, dog, mouse and human genomes available from the 

UCSC genome browser, as well as from the NCBI genome browser for gar, and from the Ensemble 

genome browser for the opossum.

Searches for ALK, LTK, and paired ligands were additionally conducted against transcriptomes of 

sea lampreys (Petromyzon marinus), including 86 publicly available transcriptomes (Table S3). RNAs 

were additionally sampled from tissues of an ammocoete and an adult sea lamprey. The ammocoete 

lamprey was flash-frozen in liquid nitrogen before tissues of head, muscle, and viscera were dissected for 

RNA extraction. Tissues of the large adult lamprey were dissected from muscle, eyes, liver, brain, and 

heart. All tissues were preserved in RNAlater, then maintained at ﹣76 C prior to RNA extraction. Total 

RNA was extracted from homogenized tissue with TRI REAGENT (Molecular Research Center). 

Messenger RNA was purified using Dynabeads oligo(dT) magnetic separation (Invitrogen). A cDNA 

library was generated using a SMARTer 5’/3’ RACE Kit (Takara cat no. 634860) as per the 

manufacturer’s instructions. First-Strand cDNA synthesis was performed using 11 uL of RNA extract and 

1 uL of 3’-CDS Primer A. Rapid amplification of cDNA ends (RACE) was also performed as per the 

manufacturer's instructions with custom gene-specific primers (GSPs, Table S2).

The genome sequence of the lamprey P. marinus was downloaded from Ensembl (Aken et al. 

2017) and was used as the reference sequence for HISAT2 (Kim et al. 2015) to build the index and 

perform read alignment. Transcripts were assembled and gene-expression levels were quantified using 

StringTie (Pertea et al. 2015). Sequence read data totaled 323 Gb, and the largest single dataset (based 

on paired-end sequencing with the Illumina HiSeq 4000 platform) amounted to 21.7 Gb. We used the 

most recently annotated P. marinus genome at NCBI as a reference for mapping reads, specifying the 

HHEX gene as a control (Sharman & Holland 1998). Due to its high efficiency,  HISAT2 (Kim et al. 
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specified. For amino-acid sequences, a mixed model of amino-acid substitution was specified that 

allowed each model of amino-acid substitution to contribute in relation to its posterior probability. We 

deemed branches that exhibited a posterior probability (PP) higher than 0.98 to be strongly supported 

(Figs. 2–3, Fig. S1). We conducted analyses on both the aligned amino-acid and nucleotide sequences 

separately.

Ancestral reconstruction

Using phylogeny reconstructed for ALK and AUG homologs in vertebrates, ancestral sequence 

reconstructions were performed using both likelihood and Bayesian approaches as implemented in 

PAML 4 (Yang 2007). We used codeml to conduct codon-based ancestral sequence reconstruction of the 

common ancestor of mammals as well as all vertebrates. Reconstructed sequences of ALK and AUG for 

the common ancestor of lampreys and jawed vertebrates were also used to search against non-vertebrate 

genomes for possible homologs. Ancestral states of MAM domains in vertebrate genomes were estimated 

using maximum likelihood (ML) criteria in BayesTraits (Pagel & Meade 2004; Pagel 1999). We coded 

the presence or absence of MAM domains for ALK and LTK, and used the multiState method of discrete 

character evolution to reconstruct gains or losses of MAM domains (Fig. S2).

Selection tests

To test for positive selection along specific branches in vertebrate ALK/LTK  and AUG evolution, 

we used branch models implemented in PAML (Yang 2007, 1997), in which the ratio of nonsynonymous 

to synonymous substitution (ω) was allowed to vary among branches in the phylogeny (Table S4, S5). 

The ratio ω was estimated for the branch of interest (the ‘foreground’ branch) and the rest of the tree (the 

‘background’) in the phylogeny reconstructed from a multiple sequence alignment. To evaluate whether 

there was a statistically significant difference between the branch model and the null model, a likelihood 

ratio test (LRT) was applied. To search for positively selected sites, site models permitting ω to vary 

among sites were used. We set NSsites to equal 0, 1, 2, 7, and 8, then conducted likelihood ratio tests 
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between pairs of the models to identify the best fitting model comparing M1a (nearly neutral) against M2a 

(positive selection), and M7 (beta) against M8 (beta & ω), each with two degrees of freedom. A Bayes-

Empirical Bayes analysis was performed to identify the sites evolving under significant positive selection 

(Yang et al. 2005). Clade-model C was fit to the data to evaluate whether ⍵ differed between ALK and 

LTK and between AUG-α and AUG-β in mammals (Bielawski & Yang 2004; Yang et al. 2005). The 

improved model M2a_rel was used as the null model for the likelihood ratio test on clade-model C 

results (Weadick & Chang 2011). 

The degree of saturation of substitutions for ALK, LTK, and AUG proteins was assessed by 

DAMBE (Xia & Lemey 2009) and by inspection of phylogenetic informativeness profiles (Townsend 2007) 

visualized with the R package PhyInformR (Dornburg et al. 2016). To estimate site rates, we used 

HyPhy (Cummings 2004) in the PhyDesign web interface (López-Giráldez & Townsend 2011). Profiles 

of phylogenetic informativeness were depicted along a relative ultrametric guide topology generated in 

BEAST v. 2.4.7 (Drummond et al. 2012) with a prior root height of 1.0. As the depths of divergence 

examined exhibited some evidence of saturation with regard to substitutions, we compared their 

maximum-likelihood rates of sequence evolution using a likelihood-ratio test conducted in Hyphy 

(Cummings 2004), enabling meaningful comparisons of relative-rate differences between AUG paralogs.

Functional divergence analysis

We used DIVERGE 3.0 (Gu et al. 2013) to test for functional divergence of the gene pairs. DIVERGE 

tests for site-specific shifts in evolutionary rates after gene duplication or speciation. The coefficient of 

divergence (θD) was calculated to test against a null hypothesis of no functional divergence between ALK 

and LTK, between mammal ALK and fish ALK, between mammal LTK and fish LTK, and between 

AUG-α and AUG-β. We employed the default posterior probability cutoff of 0.5 for detection of site-

specific shifted evolutionary rates (Gu et al. 2013). Amino acids with significant (P < 0.05) roles in 

functional divergence between gene paralogs were predicted.
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Availability of Data and Materials

All data is available on NCBI. Alignments of sequences accessed for this study have been deposited on 

Zenodo under DOI: 10.5281/zenodo.3972039.

Supplementary Material

Supplementary materials are available at Genome Biology and Evolution online.
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Figure Legends

Figure 1. Phylogenetic distribution of HEN-1 (red), JEB (blue), ALK (brown), LTK (yellow), AUG-α 
(green), and AUG-β (teal) orthologs in metazoan genomes (arcs span taxa with each gene; light blue 
taxon names correspond to model organisms discussed in the text). Identification of homologous genes 
was confirmed with phylogenetic analyses, and gene accession numbers are provided (Table S1; Photo 
credits Dan Warren [koala], Katerina Zapfe [squirrel], Bronwyn Williams [urchin], Matt Bertone 
[Drosophila], Lynn Ketchum [zebrafish: creative commons, cropped from the original], and Alex 
Dornburg [all others]). 

Figure 2. Synteny (dotted lines and curves) of up to ten genes (syntenic with human ALK: black 
rectangles; non-syntenic with human ALK: light grey rectangles) that are annotated as present in 
genomes on either side of ALK (light blue bars; orange trace) and LTK (dark grey bars; blue trace) across 
major clades of vertebrates.

Figure 3. Phylogeny of vertebrate ALKs and LTKs. ALK in Lamprey (Petromyzon) features only GR and 
PTK domains (sand and onyx blocks). M2, L, and possibly M1 domains (teal, light brown, and light gray 
blocks) are duplicated in jawed vertebrates, giving rise to ALK and LTK (black dotted lines from simple 
ALK, indicated with gray lines from inset text). Dashed lines from MAM domains indicate the presence of 
M1a and M1b in ALK and LTK, respectively. Some domains in some lineages exhibited low levels of 
sequence similarity to domains observed in other vertebrates (“?”s on GR block on the lineage to 

Tursiops, and M2 on the lineage to both Latimeria and Taeniopygia). Domain losses (﹣) are indicated at 

internodes where they were reconstructed to occur (e.g. loss of M1, L, and M2 in LTK in mammals—

highlighted with a gold gradient, and loss of M1, L, and M2 in Tursiops in ALK). Unlabeled internodes all 
exhibited strong statistical support (Bayesian posterior probability > 0.98), labels on internodes indicate 
other BPP values. Photos: AD.

Figure 4. (A) Synteny (dotted lines or curves—blue: synteny to a non-tetrapod, brown: synteny within 
tetrapods) of up to ten genes (syntenic with human AUG-α or AUG- β: black rectangles; not syntenic with 
human AUG-α or AUG- β: light grey rectangles) that are annotated in genomes as present on either side 
of AUG-α (light blue bars; orange trace) and AUG- β (dark grey bars; blue trace) across across major 
clades of vertebrates. (B) In zebrafish, an AUG-α paralog is located within 15 genes of LTK.

Figure 5. Phylogeny of vertebrate (A) AUG-β and (B) AUG-α, in which labels at branches indicate 
Bayesian posterior probabilities < 0.98, illustrated with (C) an amino-acid alignment of selected AUGs 
demonstrating sequence conservation between lamprey AUG and its homologs in mammals and 
zebrafish including key cysteine positions near the C-terminus (aquamarine columns). The lamprey 
alignment possessed unique sequence insertions (vertical lines) that are not shown here. An asterisk (*) 
indicates the Petromyzon sequence that is most similar to jawed-vertebrate AUG. Some lamprey AUG 
sequences have lost their signalling peptide (grey shading). Images: AD (Possum at dinner courtesy of 
Dan Warren).
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