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ABSTRACT
There are many competing definitions of what statistical properties
make a machine learning model fair. Unfortunately, research has
shown that some key properties are mutually exclusive. Realistic
models are thus necessarily imperfect, choosing one side of a trade-
off or the other. To gauge perceptions of the fairness of such realistic,
imperfect models, we conducted a between-subjects experiment
with 502 Mechanical Turk workers. Each participant compared two
models for deciding whether to grant bail to criminal defendants.
The first model equalized one potentially desirable model property,
with the other property varying across racial groups. The second
model did the opposite. We tested pairwise trade-offs between the
following four properties: accuracy; false positive rate; outcomes;
and the consideration of race. We also varied which racial group the
model disadvantaged.We observed a preference among participants
for equalizing the false positive rate between groups over equal-
izing accuracy. Nonetheless, no preferences were overwhelming,
and both sides of each trade-off we tested were strongly preferred
by a non-trivial fraction of participants. We observed nuanced dis-
tinctions between participants considering a model “unbiased” and
considering it “fair.” Furthermore, even when a model within a
trade-off pair was seen as fair and unbiased by a majority of partici-
pants, we did not observe consensus that a machine learning model
was preferable to a human judge. Our results highlight challenges
for building machine learning models that are perceived as fair and
broadly acceptable in realistic situations.
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1 INTRODUCTION
As machine learning (ML) is used to automate increasingly sig-
nificant decisions, such as predicting criminal defendants’ risk of
recidivism [7], activists and journalists have raised the alarm about
issues of bias and a lack of fairness [2]. Researchers have responded
by attempting to define fairness mathematically. There are dozens
of competing definitions that embed different notions of what is
fair [19]. Recent work has noted that these fairness definitions
address a relatively narrow set of considerations [25]. In light of
this, some have suggested that these definitions can be deployed
to understand and address specific problems [22]. Unfortunately,
some key definitions of fairness are incompatible [5, 17]. Therefore,
in reality, building models that embed some of these definitions
will require making difficult trade-offs between competing notions
of fairness. We conducted an empirical user study to understand
attitudes about these sorts of potentially difficult trade-offs.

Consider the well-worn example of COMPAS. In 2016, ProPub-
lica reported that COMPAS, an ML tool used to assess criminal
defendants’ fitness for parole or bail, had a false positive rate for
black defendants nearly twice that for white defendants [2]. The
tool’s makers responded by noting that the accuracy of the tool
was equalized between the two racial groups and that the tool was
therefore not biased [7]. Subsequent work has shown that one can-
not achieve both conditions simultaneously [5, 17]. In other words,
there was a necessary trade-off between equalizing either false pos-
itive rates or accuracy across racial groups. It is not clear whether
the makers of COMPAS were aware of the disparate false positive
rates prior to ProPublica’s reporting, so it is not clear if preferring
equalized accuracy was a conscious decision. Regardless, COMPAS
implicitly embeds the notion that equalizing accuracy, rather than
the false positive rate, is the correct definition of fairness.

A number of studies in recent years have aimed to quantify
attitudes about the fairness of particular ML models [4, 9, 14, 15,
26]. However, few studies investigate attitudes about the difficult
choices and fairness-related trade-offs inherent in realistic appli-
cations of ML. Understanding attitudes about these trade-offs can
inform technical and regulatory interventions. Documenting what
people outside of specialized fields think about these problems can
help inform and facilitate future multi-stakeholder processes.

We conducted a survey-based experiment of 502 Mechanical
Turk workers. In the context of making bail decisions, this experi-
ment tested a fairness-related trade-off randomly assigned to each
participant. Each pair captured one side of the type of trade-off
that an ML developer might face when trying to make a model as
fair as possible in realistic circumstances. For example, one set of
participants was prompted to choose between a model that equal-
ized accuracy at the expense of disparate false positive rates across
racial groups, and one that did the opposite. We tested trade-offs
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of all pairwise combination of four desirable fairness properties:
equalized accuracy; equalized false positive rates; equalized out-
comes; and explicitly excluding race as a model input. Each model
in a pair had a disparity in one model property and equality in the
other. Through this study, we investigated the following questions:

• RQ1 When choosing between models exhibiting the two
sides of a difficult trade-off, which do people prioritize?

We observed a statistically significant trend, but not full consen-
sus, in participants prioritizing the equalization of false positive
rates across groups rather than the equalization of accuracy. No-
tably, this preference is the opposite of what the COMPAS tool did,
which may partially explain the controversy around the tool. For
many other trade-offs, we saw a wide distribution in participants’
preferences. We observed a non-trivial fraction of strong opinions
preferring each side of each trade-off we tested, highlighting the
difficulty of building ML models with broadly acceptable fairness
characteristics in realistic circumstances.

• RQ2 What models that encapsulate difficult, yet realistic,
trade-offs do people perceive as fair or biased?

Participants tended toward rating most models we tested as not
biased. However, participants tended to consider it biased when
outcomes were equalized at the expense of disparate false positive
rates that disadvantaged African-American defendants. Only one
model we tested — one in whichmore African-American defendants
than White defendants were granted bail even though race was not
used as an input to the model — was overwhelmingly considered
fair. In many other cases, opinions were mixed and fairly polarized.

A model’s perceived lack of bias did not necessarily imply a
perception of fairness. We observed a number of cases in which
participants considered a model not to be biased, yet also did not
consider it to be fair. In some cases, this was because of high false
positive rates that were nonetheless equal across racial groups.

• RQ3 Do people prefer to use an imperfect model or rely on
a human judge?

For most trade-offs we investigated, we found a preference for a
human judge over either ML model the participant saw. Even when
the participant considered one or both of these models unbiased,
they often still preferred a human judge. They justified this prefer-
ence based on a human judge’s accountability, capacity for ethical
reasoning, and ability to make individualized decisions.

• RQ4 Towhat extent do responses vary based on which racial
group the model disadvantages?

For each trade-off, we randomly assigned whether White or
African-American defendants would be disadvantaged by the dis-
parate property. We observed some potential, yet not statistically
significant, differences in the distribution of responses.

In sum, our empirical user study is a first step in unpacking how
people view the bias and fairness of ML models encoding difficult
trade-offs related to fairness.

2 RELATEDWORK
We first summarize some of the most straightforward definitions of
fairness, including those we investigate in this study (Sec. 2.1). Af-
terwards, we present prior studies that, like ours, empirically inves-
tigate humans’ perceptions of the fairness of ML models (Sec. 2.2).

2.1 Fairness Definitions and Trade-offs
Researchers have proposed dozens of definitions of fairness for
ML models [19]. Many of these definitions center on one or more
properties of the model. In this section, we provide a brief overview
of two classes of fairness definitions most relevant to our study.
Definitions in the first class, group fairness, concern a model’s com-
parative treatment of different groups (e.g., demographic groups).
Definitions in the second class, procedural fairness, concern the pro-
cess by which individuals are judged. While other classes of fairness
definitions have been proposed, including definitions concerned
with the treatment of individuals, all four definitions we test in our
study fall into one of these two classes. We conclude this section by
highlighting how some of these definitions are mutually exclusive,
motivating our study of the trade-offs between definitions.

2.1.1 Group Fairness. Group fairness refers to the class of defi-
nitions that examine differences across groups, such as the different
demographic groups represented in a dataset. These definitions
frequently propose that some property, such as the model’s accu-
racy [17] or false positive rate [5, 17], should be equal across groups.
As highlighted in the COMPAS controversy, accuracy and false
positive rates are two of the most prominent examples of model
properties used to evaluate group fairness [5]. Another example of a
group fairness definition is disparate impact, or demographic parity.
Originating from employment discrimination law, disparate impact
is the idea that a sufficiently large difference in favorable classi-
fication rates is rebuttable evidence of discrimination. In the ML
context, disparate impact is frequently parameterized as attempting
to equalize outcomes across groups [8].

More complex group fairness definitions have also been pro-
posed. Under equalized odds, the true positive and false positive
rates must be equalized between groups [12]. Equalized opportunity
is less strict, requiring only the true positive rates be equalized [12].
Both equalized odds and opportunity encode the idea that fairness
consists of being right at the same rate across groups. Refinements
to these definitions often look at discrimination through a causal
lens [16]. The intuition behind causal definitions is that the same
distribution could be caused by a fair or an unfair social process.

In our study, we test conditions in which accuracy, false positives,
and outcomes vary across groups (see Sec. 3). We do not test more
complex definitions because they are difficult to explain succinctly.

2.1.2 Procedural Fairness. In contrast, procedural fairness fo-
cuses on how a model makes decisions. For instance, a procedural
fairness approach might argue that a model that makes decisions
using race as an input variable is always unfair, regardless of the
model’s outcome. The input variables most widely discussed in pro-
cedural fairness (e.g., race, gender, and age) are protected classes
under employment discrimination law. Researchers have also pro-
posed other ways of determining which variables are fair to use in
MLmodels. Some have argued that for amodel to be fair, it must give
individuals the ability to change a model’s decision [27]. Action-
able variables might include employment status, while immutable
variables would include race or the age of first arrest. Others have
proposed the notion of process fairness in which fair variables are
identified by surveying the public [11].
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In our experiment, we vary whether or not race is included as an
explicit model input. The explicit consideration of a data subject’s
race would violate almost all procedural fairness definitions. While
process fairness considers the explicit use of variables, unfair vari-
ables may be implicitly encoded in data through combinations of
seemingly fair variables. A large literature proposes techniques for
auditing models for such correlations [1, 6, 21, 23].

2.1.3 Tensions Between Fairness Definitions. Unfortunately, cer-
tain key fairness definitions are mutually exclusive or otherwise
incompatible. Kleinberg et al. [17] and Chouldechova et al. [5] both
independently argue that it is only possible to achieve equally accu-
rate risk scores across groups and equally balanced risk quantiles
across groups under very specific conditions. Grgić-Hlača et al. find
that one can sometimes achieve both process fairness and outcome
fairness, but at an accuracy cost [11]. Furthermore, the use of race
may be necessary during model development to audit the model or
to achieve group fairness [29]. Indeed, the lack of data labeled with
unfair attributes can prevent the analysis of fairness in practice [13].

Because many definitions of fairness can be mutually exclusive,
realistic ML models often cannot simultaneously satisfy all desired
definitions. In light of these inherent trade-offs, we design the
models in our survey-based experiment to be imperfect, satisfying
one definition of fairness, yet violating another.

2.2 Empirical Studies of Fairness
Researchers have begun to investigate humans’ attitudes towardML
systems. Qualitative studies have found that people from marginal-
ized communities do have experiences with algorithmic discrimi-
nation, though they do not always use that term for it [28]. Similar
to us, a handful of empirical studies have collected attitudes about
specific model properties. For example, Srivastava et al. ask partici-
pants to choose between a succession of pairs of models to identify
which group fairness definition best captures people’s perceptions
of fairness [26]. Through twenty comparisons generated through
an adaptive algorithm, they converge upon a given respondent’s
preferred notion of fairness. In both risk prediction and medical
diagnostic contexts, their participants prefer demographic parity
(equality across groups in the percentage predicted to receive a
positive classification) over other definitions. As we discuss in Sec-
tion 5.2, using a different protocol we come to a different conclusion.

Within process fairness, Grgić-Hlača et al. investigate attitudes
about what features people consider fair to use [10]. In follow-up
work, Grgić-Hlača et al. investigate why people consider those
features fair or not [9]. They find a feature’s perceived relevance,
reliability, and volitionality drive assessments. They also find that
support for the consideration of race increases from 17% to 42%
when participants are told the use of race increases accuracy.

Two additional empirical studies focus on questions complemen-
tary to ours. In a loan-allocation context, Saxena et al. quantify
attitudes about individual fairness [24]. They ask participants to
rate the fairness of three different ways a loan officer could divide
$50,000 between two individuals with different repayment rates
(and in one iteration, different races). Participants rated giving the
entire sum to the candidate with the higher repayment rate as
more fair than dividing it equally only when the candidate with the
higher rate was black. Kennedy et al. investigate the relationship

between trust and model properties. They use an experiment in
which participants choose between pairs of risk assessment mod-
els [15]. The models vary at random in overall rates (e.g., true/false
positives/negatives), the size of the training data, the number of
features, the weight of features, the algorithm source, and more.
While they investigate trust, they do not investigate fairness or test
whether differences in model properties across groups affect trust.
Awad et al. use a viral game to study variations across cultures in
how participants would solve a variation of the trolley problem in-
volving different demographic characteristics of the parties [3]. Our
work is distinct from Awad et al. both in that we seek to understand
a different form of decision, and that we do not attempt to make any
kind of generalized claims about universal moral characteristics.

3 METHODOLOGY
To investigate perceptions of fairness in imperfect, yet realistic,
ML models, we conducted an online, between-subjects, survey-
based experiment. We asked participants to rate the fairness, bias,
and utility of two models that exhibited both sides of a specified
trade-off between two fairness-related model properties randomly
selected from among the following four: accuracy, false positive rate,
outcomes, and the explicit consideration of race. We graphically
presented the properties encapsulated in this trade-off. Participants
then chose which of the two models they preferred overall, as well
as whether they preferred a human judge to either ML model.

On Amazon’s Mechanical Turk, we recruited workers 18+ years
old and located within the United States. We limited recruitment
to workers with a 95%+ rating over 500+ HITs. We paid $2.50 for
the survey, which took a median time of 14 minutes. We excluded
data from participants whose free responses were off-topic or non-
sensical (e.g., discussing the Tesla Model X car in their response).
Exclusion happened after data collection, and all participants were
paid regardless of whether we excluded their data from analysis.
Our Institutional Review Board approved this experiment.

We used Mechanical Turk for participant recruitment because
it provided a means of reaching participants who were largely
non-technical and were unlikely to have formally engaged with
academic debates about fair machine learning. We do not claim that
this participant pool is representative of some larger public. Our
participant pool largely did not have technical backgrounds.

Below, we detail the structure of the survey (Sec. 3.1) and the spe-
cific trade-offs we tested (Sec. 3.1.1). We then describe our quantita-
tive (Sec. 3.2) and qualitative (Sec. 3.3) analyses. The supplementary
appendix includes the full survey instrument.

3.1 Survey Structure
To familiarize participants with the topic of machine learning, the
survey began by giving a high-level description of how ML models
can be used to make predictions. We then told them a city was
considering using an ML model to decide whether to grant bail to
defendants charged with non-violent crimes.

Each participant was randomly assigned a pair of models exem-
plifying a trade-off between two fairness-related model properties
(see Sec. 3.1.1). Eachmodel satisfied one definition of fairness, but vi-
olated the other. We presented these properties visually (see Fig. 1).
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Figure 1: The comparison presented to participants in the
condition testing accuracy and false positives (FP-Acc).

Property Disparate Rates Equalized Rate

Accuracy (Acc) 79% vs. 53% 61%
Outcomes 65% vs. 41% 53%
False Positives (FP) 45% vs. 24% 35%
Race usage Is a model input Is not a model input

Table 1: The properties investigated. The equal accuracy
rate, as well as disparate rates for outcomes and false pos-
itives, were based on the COMPAS dataset [18].

We first presented the models individually, in randomized order.
Participants rated the fairness, bias, and utility of each on a five-
point Likert scale. Afterwards, we presented the two models side-
by-side (as in Figure 1), asking participants to rate on five-point
Likert scales which was more fair, biased, or useful. Also on five-
point Likert scales, we asked participants to select which model
they would prefer to see implemented, as well as whether they
would prefer a human judge to their choice of either model.

3.1.1 Model Properties and Trade-offs. Each participant evalu-
ated and compared two models that were imperfect in opposite
ways. We randomly assigned each participant a pair of models
representing the trade-off between two of the following four prop-
erties: accuracy, false positives, outcomes, and explicit race usage.
We chose these properties because they have been widely discussed
and can be expressed succinctly. In contrast, we chose not to test
more complex definitions like equalized odds, which requires equal-
izing both the true and false positive rates [12]. Table 1 summarizes
these properties, and their associated disparate and equalized rates.
We tried to capture realistic trade-offs by using rates taken from
ProPublica’s analysis of COMPAS data [18]. Because some of our
properties are counter-factuals, we fabricated the unknown rates
(disparate accuracy and equalized false positive and outcome rates).

Below, we list the properties (and, in italics, the abbreviations
we use throughout the paper) as we explained them to participants:

• Accuracy (Acc): “The accuracy of the model is the rate at
which the model makes correct predictions. A prediction
is correct if the model either predicts that a defendant will

show up for their trial and they would, or that they will not
show up for their trial and they would not have.”

• Outcomes: “The probability of bail is the likelihood of a
defendant being granted bail if the model is used.”

• False positive rate (FP): “A defendant who is mistakenly
denied bail is one that the model predicts would not show
up for their trial when they would have.” We explained false
positives without using the term “false positives" to avoid
confusion about what a “positive" classification meant.

• Race usage: If the model does not use race: “The model
makes decisions with no knowledge of the race of the sub-
jects. Other features like type of offense and number of pre-
vious offenses are used as input to the model.” If the model
uses race: “The model makes decisions with knowledge of
the race of the subjects. Other features like type of offense
and number of previous offenses are used as input to the
model.” We considered a model “equalized" if it did not use
race as an explicit model input. We considered a model to be
“disparate" if it did use race. This corresponds to the notion
that considering race is generally undesirable.

For each participant, we randomly selected one of the six possi-
ble pairwise combinations of these four properties. In all models,
we showed how the two properties varied across two subgroups:
White defendants and African-American defendants. We also ran-
domly assigned whether African-Americans were disadvantaged
or whether White defendants were disadvantaged in the disparate
rates, doubling the total number of conditions to twelve.

3.1.2 Terminology. As we present our results, we refer to the
trade-off participants saw using the abbreviated names of the two
properties involved, as well as the disadvantaged group. For exam-
ple, “FP-Outcome-Maj” refers to the trade-off between false posi-
tives and outcomes in which the majority group (White defendants)
is disadvantaged. At some points, we need to refer to the particular
model within the pair. We use = and , to indicate the equalized and
disparate property, respectively. For example, the FP-Outcome-Maj
condition includes the model = Outcome, , FP, Maj and the model
, Outcome, = FP, Maj. When we quote participants, we identify
them by participant number and condition (trade-off).

3.2 Quantitative Analysis
We mapped answers on five-point Likert scales to (-2, -1, 0, 1, 2).
For example, participants could rate whether they would definitely
(-2) or probably (-1) prefer a model, that they were unsure (0), or
that they would probably (1) or definitely (2) prefer a human judge.
For such answers, we tested whether participants’ answers tended
toward one answer (model), the other (human judge), or neither.
We did so using the unpaired Wilcoxon Signed-Rank test, which
tests whether a distribution is skewed around zero. Significance
indicates answers tended toward one answer or the other.

For questions where participants individually rated each model
(e.g., on fairness), we tested whether they tended to rate one model
higher than the other. As each participant rated both models, the
data was not independent. We thus used the paired Wilcoxon
Signed-Rank test, whichmeasures whether the distribution of differ-
ences between pairs of ratings is symmetric. Significance indicates
one model was seen as more fair, biased, or useful than the other.
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For each trade-off pair (e.g., FP-Outcomes), some participants saw
a version whereWhite defendants were disadvantaged (-Maj), while
others saw a version where African-American defendants were
disadvantaged (-Min). We compared the -Maj and the -Min versions
of each pair using the Mann-Whitney U test (a non-parametric
analog of the ANOVA test for comparing two groups).

For each of the above families of tests, we corrected for multiple
testing with the Benjamini-Hochberg method.

As both fairness and bias ratings were ordinal, Likert-scale data,
we calculated the correlation of these ratings with Kendall’s τ .

3.3 Qualitative Analysis
We thematically coded free-response explanations participants gave
for their choice of one model over another, their preference for
a human judge over either model, and their ratings of fairness
and bias. Two coders collaboratively developed a codebook from
a sample of answers. Two coders then independently used that
codebook to code the remaining answers. We allowed multiple
codes per answer to capture the compositionality of responses.

We created three distinct codebooks. The first was for explana-
tions of bias. It contained ten high-level codes, six of which had
sub-codes. For this codebook, Cohen’s κ = 0.77. The second was
for why a participant chose one model over the other. It had seven
codes (no sub-codes), and κ = 0.71. The last codebook assessed
explanations of why humans or models were preferred. It had eight
high-level codes, five of which had subcodes. For this codebook,
κ = 0.64. The coders met to resolve disagreements.

We saw a wide variation across participants in the length of these
responses. For example, free-response explanations of why the par-
ticipant preferred one model over the other ranged in length from
2 to 79 words, with a median of 11. Most free-response questions
had a similar distribution in terms of length.

4 RESULTS
We begin by describing our participants (Sec. 4.1). We detail which
trade-offs participants preferred (Sec. 4.2) and whether they ulti-
mately preferred a human judge (Sec. 4.3). We then unpack partici-
pants’ ratings of fairness and bias, as well as how those concepts
correlate (Sec. 4.4). Finally, we delve into the impact of varying
which racial group was disadvantaged (Sec. 4.5).

4.1 Participant Demographics
We surveyed 502 individuals in a convenience sample from Me-
chanical Turk. Table 2 summarizes our participants’ demographics,
which we compare to those of a recent study by Redmiles et al. [20]
comparing sampling methods. Our participant population skewed
male. Consistent with Redmiles et al., participants were more highly
educated than the overall population. Political affiliation was split;
48% of our participants described themselves as Democrats, 28% as
Independent, and 20% as Republican. A large portion reported no ex-
perience with computer science (48%). A roughly similar percentage
(41%) reported no experience with probability. Most respondents
(77%) reported having no experience with machine learning.

In spite of this, most participants appeared to understand the
mathematical concepts we presented to them. We tested partici-
pants’ understanding of the graphs in our survey with a series of

Ours Redmiles et al.

Gender Male 60% 50%
Female 40% 48%
Gender non-binary <1% —

Race/Ethnicity White 76% 84%
Black/African-American 10% 10%
Hispanic/Latinx 5% 4%
Other — 5%
Asian 9% —
Native American 2% —
Hawaiian/Pacific Islander <1% —

Income $0-$49,999 52% 49%
$50,000-$99,999 35% 38%
$100,000+ 11% 11%

Education < High School <1% <1%
High School 16% 12%
Some college/Two-year degree 34% 41%
Four-year degree or above 50% 46%

Table 2: Participants’ demographics, which we compare to
Redmiles et al.’s analysis of MTurk workers [20]. A dash in-
dicates that the study did not use that particular category.

graph comprehension questions at the end of the survey. These
graph understanding questions were imperfect and highly limited.
However, a majority of participants were able to correctly identify
valid and invalid inferences. Furthermore, we administered a cog-
nitive reflection test (CRT), a series of three quantitative questions
shown to correlate with quantitative reasoning ability. More than
half of participants (54%) got all three questions correct, 17% got
two, and 12% got one. The CRT was at the end of the survey and
the answers are free-response integers. Participants’ good CRT per-
formance suggests both that they were taking the survey seriously
and that they had decent quantitative reasoning skills.

4.2 Preferred Trade-offs
We investigated six pairs of trade-offs between properties, each
with variants in which majority (White) and minority (African-
American) groups were disadvantaged. We observed a preference
for equalizing false positives over equalizing accuracy. As shown in
Figure 2, this preference was statistically significant, yet not over-
whelming. Comparing false positives against accuracy, 53.7% of
participants probably or definitely preferred the model that equal-
ized false positive rates whenWhite defendants were disadvantaged,
and 56.8% of participants favored the model that equalized false
positives when African-American defendants were disadvantaged.
In contrast, only 14.6% and 18.2% of participants, respectively, prob-
ably or definitely preferred the model that equalized accuracy at
the expense of disparate false positive rates. The rest were unsure.

That we observed this preference toward equalized false pos-
itive rates is particularly notable because ProPublica’s reporting
centered on COMPAS doing the opposite: equalizing accuracy at
the expense of disparate false positive rates [2]. In short, this result
highlights that COMPAS equalized the property that our partici-
pants preferred significantly less, potentially explaining some of the
public controversy about the COMPAS system.
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Definitely ⇐ Probably ⇐ Don’t know Probably ⇒ Definitely ⇒
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= Acc, Race used, Min
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= FP, Race used, Min
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6= FP, = Outcome, Min
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6= FP, = Acc, Min

Z = 237, p = 0.044
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Z = 419, p = 0.044

6= Outcome, Race not used

6= Acc, Race not used

6= Acc, = Outcome

6= FP, Race not used

= FP, 6= Outcome

= FP, 6= Acc

Figure 2: Participants’ preferences for one model within a trade-off pair over the other. The left and right arrows indicate
preferences toward the side of the trade-off listed on the left or right axes of the graph, respectively.

Among the remaining five trade-offs, again shown in Figure 2, we
also observed a statistically significant preference toward equalizing
false positives over equalizing outcomes when White defendants
were disadvantaged (FP-Outcome-Maj). Here, 47.4% of participants
preferred the model that equalized false positives, while only 15.8%
preferred the model that equalized outcomes. This effect disap-
peared when African-Americans were disadvantaged.

Notably, for each trade-off, a non-trivial fraction of participants
preferred each side of the trade-off (see Fig. 2). Recall that partici-
pants were assigned to one of twelve conditions (six trade-off pairs
multiplied by two different groups that could be disadvantaged).
For the nine conditions in which we did not observe a statistically
significant preference, at least 24.4% of participants probably or
definitely preferred each side of the trade-off. Furthermore, at least
8.9% of participants definitely preferred each side of the trade-off. In
other words, a non-trivial fraction of participants would be unhappy
no matter which side of the trade-off was chosen.

Our qualitative analysis of participants’ free-text justifications
for their choice emphasized that participants successfully identi-
fied the characteristics we were varying, yet did not shed much
insight beyond this confirmation. When participants articulated
specific reasons for their choice, they often did so by saying that
equalizing the particularly property captured by the model they
chose was more fair or less biased (34.1% of all explanations). For
example, P452 (FP-Outcome-Min) said they chose the model that
equalized outcomes because in the alternative model, “White peo-
ple are unfairly being given bail more than blacks.” An additional
26.3% of explanations were too vague to provide additional insight.
For example, P42 (Acc-RaceUsage-Maj) wrote, “A combination of
both can provide valuable information. Not including race changes
the results significantly. Testing both models and determining how
much each factor should weigh would help improve both models.”

While few participants described fully what they meant by the
terms, accuracy (mentioned in 18.9% of all answers) the use of
race (13.3%), and equality (10.8%) were all invoked. Explanations
invoking equality tended to further mention evenness and consis-
tency. For example, P460 (FP-Outcome-Min) preferred to equalize
outcomes because the “probability of bail is consistent across race.”

When race usage was part of the trade-off, justifications often
mentioned this property. For example, P245 (FP-RaceUsage-Min)

preferred to equalize false positives even when explicitly consider-
ing race “because it is much more accurate overall.” In contrast, P25
(Acc-RaceUsage-Maj) wrote, “I’d rather not have race as an issue
for the computer to factor in because it is irrelevant to the decision
being made.” Participants who wrote that the model they saw was
fair because it did not use race generally did not expand on what
they thought “not using race” meant.

We intentionally limited our explanation for the use of race con-
dition to a simple statement that race was not an explicit variable
in the model, thus leaving the door open to participants identifying
the issue of proxy variables. This reflects the perspective of pro-
cess fairness, which is not explicitly concerned with whether some
combination of variables can combine into another (impermissible)
variable. Our qualitative responses indicate that participants largely
seem to have assumed that “not using race” meant race did not
factor into the classification at all. For the models where there was
some disparity and race was not used, 6.2% of participants’ qualita-
tive responses pointed to the disparate quantity to indicate either
that some other sensitive variable played a role in the model’s pre-
dictions, or that the disparity indicated race was used. For example,
one participant explained that a model that exhibited differences
in outcomes, yet did not use race, was not at all fair by stating,
“It states that race is not a factor, but clearly it is as it’s showing
that white have a higher probability of paying bail than African
Americans” (P206, Outcome-RaceUse-Min).

4.3 Human Judges vs. Models
After participants saw both sides of the trade-off, we asked them
whether they preferred a human judge or their choice of either of
the twomodels they had seen. For eight out of the twelve conditions,
we observed a statistically significant preference for human judges.
Figure 3 shows this graphically. Among these eight conditions, the
percentage of participants probably or definitely preferring a human
ranged from 58.3% (Acc-RaceUsage-Maj) to 80.5% (FP-Acc-Maj).

We did not observe a statistically significant preference for using
an ML model in any condition. The Outcome-RaceUsage conditions
had the highest percent of participants who favored the model over
a judge (44.4% for Outcome-RaceUsage-Maj and 41.5% for Outcome-
RaceUsage-Min). Furthermore, these same conditions also had the
highest proportion of people who strongly favored the model over
a judge (19.4% and 19.5% for -Maj and -Min, respectively). That
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Figure 3: Participants’ preferences for a human judge versus either model seen.

human judges were fallible and models were more objective ap-
peared in 47% of participants’ free-text justifications in these cases
where the participant preferred a model over a judge. For example,
P372 (Outcome-RaceUsage-Maj) wrote, “Human beings are biased
and easily manipulated.” Similarly, P392 (Outcome-RaceUsage-Min)
wrote, “Models lack bias and personal experiences that they will
not be able to use to make decisions.” However, being able to use
individualized judgment was also sometimes expressed positively.

In contrast, participants expressed a number of reasons for pre-
ferring a human judge. 76.7% of justifications mentioned a judge’s
ability to make individualized, case-by-case decisions. For example,
P94 (FP-Acc-Maj) wrote, “I would use a human judge because I think
that they would be able to see past the race of the offender and
recognize outliers in their personalities and past that would make
them more risky to not appear before trial.” Similarly, P127 (FP-Acc-
Maj) wrote, “A human judge would be able to take race out of the
equation.” An additional 29.1% of justifications discussed the judge
as either more accountable or more ethical. Finally, 27.4% of justifi-
cations expressed that judges have ethical reasoning capabilities
beyond those of models. According to P232 (FP-RaceUsage-Min), “I
still think human judges can see things that a model cannot such as
morals, values, and attitude. These cannot be taken into account by
the model as it only looks at conditions known to it.” Similarly, P384
(Outcome-RaceUsage-Min) wrote, “Programmers aren’t trained to
at least try not to be biased.”

Even though participants preferred equalizing false positive rates
to equalizing accuracy (as described in the previous section), they
nonetheless still significantly preferred a human judge. In partic-
ular 65.9% of FP-Acc-Min participants and 80.5% of FP-Acc-Maj
participants preferred a human judge to either model they saw.

4.4 Fairness and Bias
Prior to having participants compare the two models in their trade-
off, we asked them to rate the fairness, bias, and usefulness of each
model individually. Across most models, participants tended to
lean toward rating the model as “not at all biased” or only “some-
what biased.” For only one model did participants significantly lean
toward rating it as biased. Nonetheless, participants tended not
to rate these models as fair. In particular, for only one model did
participants significantly lean toward rating it as fair. In contrast,
for six others, they leaned towards rating it as “not at all fair” or
only “somewhat fair.” In spite of these trends, there were no models

where participants’ opinions were unanimous, and many where
opinions were strongly divided.

4.4.1 Bias. Participants rated the bias of each of the two models
they saw on a five-point scale from “completely biased” to “not at all
biased.” There were six trade-off pairs, two possible disadvantaged
groups, and two models per pair, yielding twenty-four individual
models. For sixteen of these twenty-four, participants significantly
tended towards rating the model as not biased, as shown in Figure 4.
For these sixteen models, the percentage of participants who rated
the model as either “not at all biased” or only “somewhat biased”
ranged from 56.3% to 73.9%. In contrast, for only one model (, FP, =
Outcome, Min) were responses significantly skewed toward rating
themodel as biased. That is, participants tended to consider it biased
when outcomes were equalized at the expense of disparate false
positive rates that disadvantaged African-American defendants.

We also tested differences between bias ratings within a trade-
off pair. Consistent with the results of the preferred side of trade-
offs, we found a significant difference in bias assessments between
models in the FP-Acc-Min trade-off (W = 106, p = 0.034). That
is, participants felt that equalizing accuracy was more biased than
equalizing false positive rates.

4.4.2 Fairness. As shown in Figure 4, we found fewer significant
trends in participants’ fairness ratings. For six of the twenty-four
models, participants significantly tended toward rating the model
as not fair. For these six models, between 63.6% and 87.8% of partici-
pants thought themodel was “not at all fair” or only “somewhat fair.”
In contrast, for only one of the twenty-four models did we observe a
significant trend toward considering a model fair. Overall, 80.6% of
participants rated as “mostly fair” or “completely fair” the model in
which more African-American defendants than White defendants
were granted bail even though race was not used as an input to
the model (, Outcome, Race not used, Maj). This perception of
fairness did not persist when White defendants were favored (see
Figure 4). Differences based on which group was disadvantaged are
discussed further in Section 4.5. Like bias ratings, fairness ratings
were polarized. 85% of participants rated at least one of the two
models they saw as either “completely fair” or “not at all fair.”

We also tested for differences in perceived fairness between
models in a pair. The model equalizing false positives was rated as
more fair than the model equalizing accuracy when Whites were
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Figure 5: Correlation between ratings of fairness and ratings
of bias for each model. Percentages are of total answers.

disadvantaged (W = 289.5, p = 0.043). This echoes a similar finding
in differences of their bias ratings.

4.4.3 The Relationship Between Bias and Fairness. While one
might assume that models that are not biased are thereby fair, we
observed a much more complex and nuanced relationship between
participants’ ratings of bias and fairness. Participants tended to
rate the model with equal outcomes and unequal false positive
rates disadvantaging African-Americans (, FP, = Outcome, Min) as
biased and not fair. Participants tended to rate the model where race
was not used, but outcomes were unequal disadvantaging White
defendants (, Outcomes, Race not used, Maj), as both fair and
not biased. Participants tended to rate the model with equal false
positives and unequal accuracy disadvantaging African-American
defendants (= FP, , Acc, Min) as not biased, yet also not fair.

We found that participants tended to rate models they consid-
ered biased as unfair. Graphically, the triangular nature of Figure 5
shows that models that were considered biased were almost never
considered to be fair. The most common combination was that a
model was “not at all biased” and also “completely fair.” However, a
model that they rated as not biased was not necessarily rated as fair.
39.0% of participants rated at least one model as either “not at all” or
only “somewhat” biased, yet “not at all” or only “somewhat” fair. As
shown in the leftmost column of Figure 5, some participants rated
models as “not at all biased,” yet only “mostly,” “somewhat,” or “not
at all” fair. That is not to say that there is not a strong association
between bias and fairness. The Kendall’s τ correlation coefficient
between fairness ratings and bias ratings was −0.513 (p < .001).

Ratings of a model being not biased, but also not fair, were most
frequent in response to , FP, = Outcome, Maj, composing 42.1%
of all responses to that model. Similarly, they were 36.6% of all
responses to the , FP, = Acc, Maj model. Such answers tended to
express ambivalence. For example, P447 (FP-Outcome-Maj) wrote
that the model “seems somewhat fair but mistakenly denying bail
to 35% of Whites and African Americans still seems like a high
error rate.” They then explained that they did not think the model
was biased because “Model X mistakenly denies bail equally across
both Whites and African Americans.” In other words, high error
rates could make a model unfair even though these rates were equal
across racial groups (making the model unbiased).

4.4.4 The Relationship Between Bias and Judge Preferences. Ini-
tially, we had expected that participants who rated a model they saw
as “not at all biased” would prefer a model over a human judge since
they had an unbiased option. However, most of these participants
nonetheless preferred a human judge over either model they saw.
Figure 6 shows little difference in the distribution of preferences
for a human judge versus a model between participants who rated
both models they saw as unbiased and those who rated one model
as biased (and the other as unbiased). About half of participants in
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Figure 6: Preference for a human or a model, broken down
by the participant’s ratings of the individual models’ bias.

each case “probably” or “definitely” preferred a human judge. Par-
ticipants who reported both models they saw as at least somewhat
biased were even more likely to prefer a human judge.

It is also noteworthy that even though 80.6% of participants
thought that the,Outcome, Race not used, Maj model was “mostly”
or “completely” fair, only 44.4% of participants “probably” or “defi-
nitely” preferred a model instead of a human judge. This suggests
that even relative consensus about the fairness of a model may be
insufficient to produce consensus about whether an ML model is
more appropriate to use than a human judge.

Qualitative coding of the reasons for bias ratings showed that
participants largely understood the trade-offs, yet did not provide
much deeper insight. Most frequently, participants reported find-
ing a model biased because of disparate false positive rates (43.4%
of responses), the explicit consideration of race (34.7%), disparate
accuracy (33.5%), and disparate outcomes (29.7%).

4.4.5 Usefulness. Participants’ ratings of a model’s usefulness
were largely redundant to those of bias and fairness. In the majority
of models where we observed a statistically significant trend toward
one side, the trends were toward the model not being useful. The
one model where there was a statistically significant trend toward
a model being useful was the already discussed , Outcome-Race
not used-Maj model. The results for models’ perceived usefulness
are shown in the supplementary appendix.

4.5 The Impact of Who Was Disadvantaged
For each of the six trade-offs, half of participants saw amodel where
the majority group (Whites) were disadvantaged by the disparate
rate, whereas the other half saw a model where the minority group
(African-Americans) were disadvantaged. We observed several in-
stances in which there appear to be differences in participants’
reactions between the -Maj and -Min variants. Despite these ap-
parent differences, statistical testing did not distinguish between
the -Maj and -Min variants. The model in which outcomes were
equalized at the expense of disparate false positive rates was rated
as “mostly biased” or “completely biased” by 68.9% of participants
when African-Americans were disadvantaged, yet only by 39.5%
of participants when Whites were disadvantaged. Similarly, in the
model where race was not considered and outcomes were disparate
across groups, 80.6% of participants rated the model as “mostly
fair” or “completely fair” when Whites were disadvantaged, yet
only 51.2% did so when African-Americans were disadvantaged.
Though not statistically significant, the differences we observed
suggest a more targeted study may have found significant differ-
ences. In particular, our statistical power in comparing the -Maj
and -Min variants was relatively low given that each condition had

roughly 20 participants. Furthermore, we were also making many
comparisons and therefore correcting for multiple testing.

A few participants discussed which group was disadvantaged
in their free-text justifications. In total, ten of the 502 participants
justified their choice of one model over the other in terms of the
disadvantaged group. For example, P120 (FP-Acc-Maj) wrote, “I
would choose [the model with higher accuracy for Whites] since
I am a white American and that model has a higher success rate
for white Americans.” As P439 (FP-Outcome-Maj) wrote, the model
“disproportionately impacts white people. On the other hand, the
whole bail system disproportionately impacts Black folks, so it may
be a wash.” Overall, 4.7% of participants volunteered in one of their
free-text justifications that they considered the justice system as a
whole to be unjust.

5 DISCUSSION
After discussing our protocol’s limitations (Sec. 5.1), we compare
our findings with those of prior empirical studies on perceptions of
fairness (Sec. 5.2). We conclude by recapitulating our work’s key
lessons and proposing future work (Sec. 5.3).

5.1 Limitations
Our experiment was limited in a number of ways. First, we studied
a convenience sample that is not necessarily generalizable to any
larger group. We asked about differences in how models treated
White and African-American defendants, but did not have a suf-
ficiently large number of non-White participants to meaningfully
determine whether there was an interaction between the partici-
pant’s own demographics and what group was disadvantaged. In
addition, we only examined fully automated models and fully man-
ual human judges, whereas a hybrid approach (a human who relies
in part on an automated model) is a potential compromise. Fur-
thermore, we investigated only a single visualization of the model
properties and differences. While we piloted these visualizations
using cognitive interviews to verify their intelligibility for partici-
pants without particular statistics expertise, other work has used
different visualizations, including simple text statements of percent-
ages, tables, and novel visualizations. We used straightforward bar
graphs, annotated with the text percentage. We chose bar graphs
because they communicate difference and magnitude.

Because we used a convenience sample, the precise percentages
reported are unlikely to generalize. However, we expect the broad
patterns we saw to generalize, with implications for the design of
fairness interventions. We found that even outside of the ethics and
machine learning community, there exist strong, nuanced views
about the acceptability of different approaches to fairness. Addi-
tionally, participants expressed significant differences of opinion.

5.2 Comparison with other empirical studies
As noted in the previous section, prior empirical studies of how
humans perceive the fairness of machine learning models vary from
each other, and from our work, in how they visualize the properties
of these models. Our supplementary appendix discusses this con-
found further. While this limits our ability to directly compare with
prior work, in this section we highlight similarities and differences



FAT* ’20, January 27–30, 2020, Barcelona, Spain Harrison et al.

in conclusions among these studies. Future work could investigate
how the visualization of models impacts perceptions of fairness.

Grgić-Hlača et al. found that the fairness of explicitly considering
race to predict recidivism risk depended on how doing so impacted
model accuracy [10]. While only 21% of their participants thought
it unconditionally fair to consider race, 42% thought it fair to con-
sider race if it improved accuracy. We investigated the fairness
of explicitly considering race in a model that equalized accuracy
across racial groups, rather than strictly increasing accuracy. While
we observed high variance in fairness ratings for this model, most
participants who rated the model as not at all fair mentioned the
unfairness of using race, regardless of equalized accuracy. Among
those who rated the model as fair, most referenced equalized accu-
racy as a mitigating factor (e.g., P12 wrote, “It’s equally accurate for
people of different races, so I think that makes the use of the data
justified.”). Our findings are therefore consistent with Grgić-Hlača
et al.’s findings, suggesting that people sometimes find explicitly
considering race justified if doing so improves performance.

Saxena et al. found the race of the person advantaged in loan
allocation affected perceptions of fairness [24]. Specifically, partic-
ipants found it more fair to give the entire sum to the candidate
with the higher loan repayment rate than to divide it equally, but
only when the candidate with the higher repayment rate was Black.
In contrast, we did not observe any statistically significant effects
when we compared conditions in which Whites were negatively
impacted to those in which African-Americans were negatively
impacted. This suggests that race may be more significant when
examining individuals (as in Saxena et al.), rather than groups.

Srivastava et al. found a preference for demographic parity
(equalizing the percentage of people who receive a positive clas-
sification, which was our = Outcome condition) over other defini-
tions of fairness, like equalized false positive rates or false negative
rates [26]. In contrast, we found that equalizing the false positive
rate at the expense of having disparate outcome rates across groups
was preferred over the opposite. One possible explanation for this
lies in the different ways the two studies visualized the properties of
a model, which we discuss further in the supplementary appendix.

Kennedy et al. found the size of the training data, the false pos-
itive and false negative rates, and the institutional source most
impacted which model participants trusted [15]. We also found that
equalizing false positive rates was generally valued over equaliz-
ing accuracy. Whereas Kennedy et al. found that their participants
generally expressed trust in algorithmic methods, our participants
expressed a general preference for a human judge. A possible ex-
planation for this difference is that while we showed differences
between model properties by racial group, Kennedy et al. investi-
gated only the overall false positive rate, false negative rate, and
accuracy. Had their participants been aware of differences across
racial groups, they may have been less likely to trust algorithms.

5.3 Conclusions and Future Work
Our survey-based experiment asked participants to comparatively
evaluate two models that exemplified the two sides of the realistic
trade-offs between fairness-related properties. We observed a mar-
ginal, yet statistically significant, preference for equalizing false
positives across demographic groups over equalizing accuracy. For

other trade-offs, we observed at most a weak (and non-significant)
preference. Notably, though, each side of each trade-offwas strongly
preferred by a non-trivial fraction of participants. This result casts
doubt on the possibility of achieving broad acceptance across so-
ciety that the right fairness decision was made among mutually
exclusive, yet seemingly desirable, statistical definitions of fairness.
Furthermore, we observed a general, yet not often not overwhelm-
ing, preference for a human judge over models capturing either
side of the realistic trade-offs we examined. Even when participants
thought that neither side of the trade-off was biased, over half of
them still preferred a human judge over the model. We also found
that just because a participant felt a model was “not at all biased”
did not imply that they considered the model fair.

Our findings are a starting point for future investigations of al-
gorithmic fairness from samples of participants without specialized
knowledge or deep previous engagement with algorithmic justice.
For example, a similar instrument could be used to understand
how participants with first-hand experience of the criminal justice
system approach these questions. Are the trade-offs similarly con-
tentious? Do the explanations those participants provide differ?
Though we did find a pattern of marginal support for equalization
of false positives over accuracy, even in this a bare majority of
participants supported one side over the other. Nonetheless, our
results should not be read as an attempt to make definitive claims
about which sides of trade-offs should be favored.

A machine learning developer confronted with the tough types
of trade-off decisions we investigated might be tempted to crowd-
source the decision by surveying the public. Our findings suggest
that crowdsourcing is unlikely to produce consensus or full clarity
about the decision. Deciding a trade-off on the basis of 50% + ϵ will
likely leave a significant portion of people unhappy. Furthermore,
artificially curtailing options to be just between models, rather than
leaving options to not have a model at all, is also unlikely to elicit
true preferences.

Future interventions should promote the visibility of design
decisions. Data scientists are not well-situated to resolve the ten-
sions and disagreements we have identified. Instead, data scientists
should make clear the decisions they have made and allow experts
and the public to deliberate about whether the model should be
used. To that end, future work should investigate how to facilitate
public involvement in decisions concerning fairness. In particular,
future research into tools and mechanisms for identifying decisions
during the data science workflow should be emphasized. Under-
standing the role the visualization of model properties plays in
discourse about design decisions is key.
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APPENDIX
A ADDITIONAL FIGURES
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Figure 7: Participants’ ratings of the usefulness of each model.
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Figure 8: Fairness ratings of models broken out by whether participant identified as white.
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B DEMOGRAPHIC MODELS

Bias Fairness Usefulness

Income (linear fit) −1.10 (1.31) 1.11 (1.17) 0.10 (1.18)
Education (linear fit) 1.73 (1.01) −0.76 (0.91) 0.29 (0.93)
Tech experience (linear fit) −0.19 (0.24) 0.33 (0.24) 0.05 (0.22)
Race: Black 0.37 (0.23) −0.26 (0.23) −0.11 (0.23)
Race: Asian 0.05 (0.24) −0.25 (0.24) 0.04 (0.23)
Race: Latinx −0.12 (0.29) 0.22 (0.30) −0.40 (0.30)
Race: Prefer not to say 1.37 (0.71) −0.77 (0.71) −0.44 (0.66)
Political: Independent −0.21 (0.16) 0.11 (0.15) 0.01 (0.15)
Political: Other −0.30 (0.50) −1.03 (0.51)∗ −1.60 (0.57)∗∗
Political: Prefer not to say −0.96 (0.77) 1.35 (0.77) 0.07 (0.73)
Political: Republican −0.17 (0.17) 0.39 (0.16)∗ 0.11 (0.17)
Gender: Female −0.01 (0.13) −0.16 (0.13) 0.05 (0.13)

Log Likelihood -1337.95 -1325.11 -1332.19
AIC 2761.90 2736.23 2750.39
BIC 2969.35 2943.68 2957.83
Num. obs. 920 920 920
Groups (trade-off) 24 24 24
Variance: trade-off: (Intercept) 0.22 0.29 0.21
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Random effects model coefficients for model judgments. The standard error for each coefficient is reported in paren-
theses.We treated income, education, and tech experience as ordinal variables (fit linearly)with the lowest income, educational
background, and amount of tech experience as the baselines. We treated race, political affiliation, and gender as categorical,
with White, Democrat, and Male as the baselines.

C SURVEY INSTRUMENT
Introduction
Thank you for choosing to participate in this study. After a short tutorial about machine learning, you will be asked to react to a scenario.
After this, we will ask you some demographic questions to better understand your responses. In this scenario you will be asked to play the
role of a data scientist. Specifically you will be asked to use your judgment about which model to use for a particular task.

• Machine learning models can help you use past data to make predictions.
– Training Data: To make a model that predicts if a college basketball team will make the tournament, you could first gather data
from past seasons about the characteristics, or features of teams that did or did not make the tournament.

• Machine learning models use patterns in the training data to make predictions.
– For example, it might find that the coach’s number of years of experience combined with number of seniors on the team best predict
whether the team will make the playoffs.

– The collection of patterns is the model.
• A model might not make the right prediction for every team.
– For example, a team with an experienced head coach and many seniors might also have an injured star player or might just have
bad luck, and not make the playoffs.

• Once the model has been made, it is possible to test how it will perform by applying it to data that was set aside before building the
model.
– For example, we could make the model using data from the 2015 and 2016 seasons, and see how well it works in the 2017 season.

Start of New Scenarios
The next series of questions will refer to this scenario. Metropolis city needs to decide to which people charged with non-violent offenses
they can grant bail (and thus potentially release from jail) pending trial.

• Training Data: The city created two models by gathering data from past non-violent offense charges about the characteristics of
people that did or did not show up for their trial.
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• Models: The resulting models try to predict whether a person newly charged with a non-violent offense will or will not show up for
their trial.

Based on the model Metropolis city chooses, they can decide which people to release pending trial:
• If the model predicts that a person will show up for their trial, they will be granted bail and potentially released.
• If the model predicts that a person will not show up for their trial, they will be denied bail, and remain in jail.

However, neither model they are considering is perfect. They each make mistakes in different ways.

Model X [Order of model X and model Y randomized]. Model X is one of the models Metropolis City is considering using. Below are two
graphs showing properties of model X. The top graph shows the [accuracy] of model X. The bottom graph shows the [probability of
being granted bail] when model X is used.

• if Acc a quality: Accuracy: the accuracy of the model is the rate at which the model makes correct predictions. A prediction is correct
if the model either predicts that a defendant will show up for their trial and they would, or that they will not show up for their trial
and they would not have

• if Outcome a quality: Probability of bail: the probability of bail is the likelihood of a defendant being granted bail if the model is
used

• if FP a quality:Mistakenly denied bail: A defendant who is mistakenly denied bail is one that the model predicts would not show
up for their trial when they would have

• if Race usage a quality: Race is not one of the features used: the model makes decisions with no knowledge of the race of the
subjects. Other features like type of offense and number of previous offenses are used as input to the model.

(1) Do you think model X is fair? (Not at all fair, Somewhat fair, Mostly fair, Completely fair, Don’t know)
(2) Why?
(3) Do you think model X is biased (Not at all biased, Somewhat biased, Mostly biased, Completely biased, Don’t know)
(4) Why?
(5) Do you think model X is useful (Not at all useful, Somewhat useful, Mostly useful, Very useful, Don’t know)
(6) Why?
(7) Given a choice between model X and a human judge to make bail decisions, what would you choose? (Definitely model X, Probably

model X, Unsure/can’t decide, Probably human judge, Definitely human judge)
(8) Why?

Model Y. Model Y is one of the models Metropolis City is considering using. Below are two graphs showing the properties of model Y.
The top graph shows the [percent probability of being granted bail] when model Y is used. The bottom graph shows what percent of
defendants are [mistakenly denied bail] when model Y is used.

• Descriptions the same as in question about model X
• Questions the same as for model X

Changed Answers?
(1) Did seeing the second model change the answers you wished to give for the first model you saw? (Yes, No)
(2) What aspects of your model would you wish to change and why?

Model Comparisons [Figure showing model X next to model Y].

(1) Which model is more fair, model X or model Y? (Definitely model X, Probably model X, Models X and Y are equally fair, Probably
model Y, Definitely model Y)

(2) Why?
(3) Which model is more biased, model X or model Y? (Definitely model X, Probably model X, Models X and Y are equally biased, Probably

model Y, Definitely model Y)
(4) Why?
(5) Which model is more useful, model X or model Y? (Definitely model X, Probably model X, Models X and Y are equally useful, Probably

model Y, Definitely model Y)
(6) Why?
(7) Given a choice between model X and model Y, which would you choose? (Definitely model X, Probably model X, Unsure/can’t decide,

Probably model Y, Definitely model Y)
(8) Why?
(9) Given a choice between using a model (either model X or model Y) or a human judge to make the decision, what would you choose?

(Definitely a model, Probably a model, Unsure/can’t decide, Probably human judge, Definitely human judge)
(10) Why?

Graph Understanding. Below is a question relating to the following graph. Do not use information you may have seen in other
graphs in answering this question.
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[if accuracy a trade-off, figure showing a Group A having 79% accuracy and Group B having 53% accuracy]
Please select which statement(s) can be validly inferred from this graph.

(1) More people in group A will receive bail than people in group B
(2) Predictions about people in group A will be more likely to be correct than predictions about people in group B
(3) People in group A will be more likely to be mistakenly denied bail than people in group B
(4) People in group A will be more likely to be mistakenly granted bail than people in group B

[if FP a trade-off, figure showing a Group A having 24% false positives and Group B having 45% accuracy]
Please select which statement(s) can be validly inferred from this graph.

(1) More people in group A will receive bail and not show up than people in group B
(2) Predictions about people in group B will be more likely to be mistakenly denied bail than people in group A
(3) People in group A will be more likely to be mistakenly granted bail than people in group B
(4) People in group A will be more likely to receive bail than people in group B

[if outcome a trade-off, figure showing a Group A having 65% bail probability and Group B having 41% bail probability]
Please select which statement(s) can be validly inferred from this graph.

(1) More people in group A will receive bail than people in group B
(2) People in group A will be more likely to receive bail than people in group B
(3) Predictions about people in group A will be more likely to be correct than predictions about people in group B
(4) People in group B will be more likely to be mistakenly denied bail than people in group A

Cognitive Reflection Test.

(1) A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost?
(2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?
(3) In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake,

how long would it take for the patch to cover half the lake?

Demographic Questions. You will now be asked a series of demographic questions.

(1) What is your age (18-24 years old, 25-34 years old, 35-44 years old, 45-54 years old, 55-64 years old, 65+ years old, prefer not to say)
(2) What is your gender (Male, Female, Gender non-binary, Other not listed, prefer not to say)
(3) Please select the set of categories that describe your racial or ethnic background. You may select multiple categories (American Indian

or Alaska Native, Asian, Black or African American, Hispanic or Latino, Native Hawaiian or Pacific Islander, White, prefer not to say)
(4) What is your highest level of formal education? (Less than high school, High school graduate, some college, 2 year degree, 4 year

degree, Professional degree, Doctorate, prefer not to say)
(5) Generally speaking do you think of yourself as a Republican, Democrat, Independent or something else? (Republican, Democrat,

Independent, Other, prefer not to say)
(6) What is your annual household income? (Less than $20,000,$20,000 to $49,999, $50,000 to $99,9999, $100,000 to $249,999, Over $250,000,

prefer not to say)
(7) What is your experience with computer science? Please select as many or as few options that apply.

• I have taken a computer science course
• I have taken a course where computer science was mentioned as a topic or read about computer science topics online
• I have or had a job where computer science tasks were part of my job duties (I have written, documented, or manipulated code)
• I have never received computer science education or held a computer science job

(8) What is your experience with machine learning? Please select as many or as few options that apply.
• I have taken a course in machine learning
• I have taken a course where machine learning was mentioned as a topic or read about machine learning topics online
• I have or had a job where machine learning tasks were part of my job duties (model training, model debugging etc)
• I have never received machine learning education or held a job in which it was used

(9) What is your experience with probability? Please select as many or as few options that apply.
• I have taken a course in probability
• I have taken a course where probability was mentioned as a topic or read about probability topics online
• I have or had a job where probability related tasks were part of my job duties
• I have never received probability education or held a job in which it was used
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D COMPARISON OF MODEL VISUALIZATIONS WITH OTHER EMPIRICAL WORK
In work by Srivastava et al. [26] participants were asked to make twenty comparisons generated through an adaptive algorithm meant
to converge upon each participant’s preferred notion of fairness. First, we note that the examples generated under this methodology do
not necessarily encode any notion of trade-off between properties. Second, the way in which the information was displayed may play a
role in their finding of a preference for demographic parity. The study used a display showing stylized pictures of people with different
combinations of races and genders along with the true label. Below this were two rows each containing a color coded prediction for each
person (see Figure 9). We hypothesize that this display may require a greater amount of cognitive load to compare quantities like accuracy or
false positive rates, relative to demographic parity. In order to calculate such a quantity, the survey taker would need to count and remember
the number of misclassifications by group. Then the survey taker would need to calculate the rate between groups. Demographic parity is
much more visually clear. A survey taker could count the number of positive classifications for each group. Since there were ten people
displayed, an approximate count would suffice to move towards demographic parity. Srivastava et al. also performed a survey where they
asked survey respondents to choose between three models with differing overall and intergroup accuracy. However in this experiment, they
did not test qualities against one another.

By contrast, our way of depicting differences between models encodes far less information (see Figure 10). At the same time, it is much
more clear about the differences we are trying to test.

At the time of publication, visual depictions of models used by Kennedy et al. [15] were unavailable.

Figure 9: Visualization used by Srivastava et al. [26] in their investigation of fairness considerations.

Figure 10: A visualization of two models from our study. This one depicts the two models in the Acc-Outcome-Min condition.
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