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Abstract This study investigates the impact of direct versus indirect initialization of soil moisture (SM)
and soil temperature (ST) on monsoon depressions (MDs) and heavy rainfall simulations over India. SM/ST
products obtained from high-resolution, land data assimilation system (LDAS) are used in the direct
initialization of land surface conditions in the ARW modeling system. In the indirect method, the initial SM
is sequentially adjusted through the flux-adjusting surface data assimilation system (FASDAS). These two
approaches are compared with a control experiment (CNTL) involving climatological SM/ST conditions for
eight MDs at 4-km horizontal resolution. The surface fields simulated by the LDAS run showed the highest
agreement, followed by FASDAS for relatively dry June cases, but the error is high (~15-30%) for the
relatively wet August cases. The moisture budget indicates that moisture convergence and local influence
contributed more to rainfall. The surface-rainfall feedback analysis reveals that surface conditions and
evaporation have a dominant impact on the rainfall simulation and these couplings are notable in LDAS
runs. The contiguous rain area (CRA) method indicates better performance of LDAS for very heavy rainfall
distribution, and the location (ETS > 0.2), compared to FASDAS and CNTL. The pattern error contributes
the maximum to the total rainfall error, and the displacement error is more in August cases' rainfall than
thatin June cases. Overall analyses indicated that the role of land conditions is significantly high in the drier
month (June) than a wet month (August), and direct initialization of SM/ST fields yielded improved MD and
heavy rain simulations.

1. Introduction

During the southwest monsoon season, heavy to very heavy rainfall occurs over significant parts of India pri-
marily due to organized mesoconvective systems such as monsoon depressions (MDs), lows, and midtropo-
spheric circulations. Among these, MDs are considered responsible for nearly half to two thirds of the heavy
rainfall events occurring over the Indian monsoon region (IMR) (Hunt & Fletcher, 2019; Sikka, 1978). Most
of the MDs typically develop over the Bay of Bengal (BoB), close to land, and occasionally in the Arabian Sea
(AS) before moving inland. As the MDs approach land, they interact with the underlying land surface and
are influenced by features such as topography, as well as soil moisture (SM) and soil temperature (ST).

Prior studies report limited skill of mesoscale models for rainfall predictions from MDs (Bhowmik
et al., 2007). The model performance has shown modest but promising improvements with the assimilation
of atmospheric observations (Mohanty et al., 2012; Routray, Mchanty, Niyogi, et al., 2010; Routray,
Mohanty, Rizvi, et al., 2010). Studies such as Niyogi et al. (2016), Hunt and Turner (2017), and Baisya
etal. (2017) postulate that the limited improvements might be due to the unrealistic representation of land
surface characteristics in the models. In the recent years, satellite-derived SM products such as from Soil
Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS), and European Space Agency-
Climate Change Initiative (ESACCI) have become a useful source of spatiotemporally consistent data.
These products are available on a subdaily basis. However, they have a relatively coarse spatial resolution
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(~10-25 km or more). The coarser resolution tends to smooth out the SM peak values that are particularly
important for capturing the mesoscale boundaries and convection (Holt et al., 2006). As a result, these pro-
ducts need to be downscaled to capture the realistic heterogeneity in the SM conditions. A recent study
demonstrated the marginal improvements from the assimilation of ESACCI SM in a land-surface data assim-
ilation system over the Indian monsoon domain (Mohanty et al., 2019). Therefore, this study primarily
focuses on the initialization of land surface conditions (SM and ST) prepared off-line at a high spatiotem-
poral resolution, to improve the prediction of MD simulation and heavy rainfall using the Advanced
Research Weather Research and Forecasting (ARW) model.

The interaction between the land surface and atmosphere is considered essential and needs to be understood
in the context of cumulus convective rainfall simulations (Osuri et al., 2017). The heterogeneity in land sur-
face characteristics such as terrain, moisture, vegetation, and soil type over the IMR contributes to the heat
and moisture feedback strongly influencing the regional weather, and hydroclimate applications including
crop water management at field (Jamshidi et al., 2020). The warm, tropical region has noticeable diurnal
changes in heat and moisture exchanges between the land and atmosphere, which ultimately modifies heat
and moisture fluxes (Pielke, 2001), and evapotranspiration estimates (Jamshidi Zand-Parsa, Naghdyzadegan
Jahromi, et al., 2019, Jamshidi, Zand-Parsa, Pakparvar, et al., 2019, Jamshidi et al., 2020), within the plane-
tary boundary layer (PBL) and associated cumulus cloud activity (Taylor et al., 2011; Tuttle &
Salvucci, 2016). Initial studies suggest that land surface heterogeneity and feedback could be influential
on the convective structure of rain-bearing systems (Holt et al., 2006; Niyogi et al., 2006; Trier et al., 2004).
Studies continue to demonstrate the value of accurate representation of land surface conditions for simula-
tion of heavy rainfall events over the IMR (Chang, Kumar, et al., 2009; Chang, Niyogi, et al., 2009; Kishtawal
et al, 2010; Lei et al., 2008; Nayak et al., 2018; Osuri et al., 2017). Indeed, several studies (e.g., Koster
etal., 2004) demonstrate that the IMR is one of the prominent land-atmosphere coupling “hot spot” globally
and that SM, in particular, can significantly influence the precipitation. SM continues to be one of the critical
variables that need to be initialized in numerical weather prediction (NWP) models (Drusch, 2007;
Mahfouf, 2010). Chang, Kumar, et al. (2009), building on earlier work of Dastoor and Krishnamurti
(1991), showed a possible relation between antecedent SM representation—the so-called Brown Ocean
Effect—in the ARW model and the postlandfall evolution of MDs. A number of related studies have been
reported, such as Andersen et al. (2013), Andersen and Shepherd (2014), Bozeman et al. (2012), Kellner
et al. (2012), and Kishtawal et al. (2013), and, recently, Nair et al. (2019) highlighted the influence of LC
and SM on extreme rainfall cases from both tropical cyclones as well as MDs.

In this study, we assess two methods to update SM/ST initial conditions with the ARW modeling system. In
the first method, realistic SM/ST conditions are directly initialized into the model from a land data assimila-
tion system (LDAS). In another method, the surface conditions are adjusted through the flux-adjusting sur-
face data assimilation system (FASDAS; Alapaty et al., 2008). Currently, SM/ST observations are not readily
available over the IMR at high spatiotemporal scale to use in the direct method. Therefore, off-line-prepared
SM/ST fields from the high-resolution land data assimilation system (HRLDAS; Chen et al., 2007, hereafter
LDAS) based on the Noah land surface model (LSM) is used. These gridded, SM/ST data products are con-
sidered high quality and good surrogates for in situ, dense, SM/ST observational network (Nayak et al., 2018;
Osuri et al., 2017). The ARW model Version 3.9.1 is used to study the simulation of eight MDs, and the
impact on rainfall using the direct and indirect SM/ST initialization is investigated. The broader objective
is to improve the mesoscale simulation of MDs and associated rain and to assess the impact of enhanced land
surface conditions.

2. Methodology

There exists an emerging need for coupling land assimilation systems in the atmospheric models to improve
heavy rainfall prediction over the IMR (Niyogi, 2019). As mentioned, both direct and indirect land data initi-
alization methods have been adopted in this study. Eight MD cases that occurred from 2007 to 2013 are
simulated. The details, such as the case name, the initial date of integration, and forecast length, are given
in Table 1. A control run (CNTL) is carried out with initial and boundary conditions from the FiNaL analyses
(FNL) of the National Centers for Environmental Prediction (NCEP) in 6-hr intervals. It is the default sur-
face forcing that is adopted in most of the operational/research modeling activity over this region (Osuri
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Table 1

et al., 2017). In the direct method (experiment known as LDAS), the

Details on Model Initialization Time and Forecast Length of MD Cases SM/ST of LDAS products are used as surface fDrcing to the ARW
Cases Initialization time of monsoon depression ~ Forecast length (hours)  model. In the indirect method (hereafter called as FASDAS), the

2007-06-21_00
2007-06-28_00
2007-08-05_00
2008-06-16_00
2008-08-09_00
2011-06-16_00
2013-06-14_00
2013-08-20_00

0O~ v Ln B W

SM is adjusted through flux-adjusting surface observational nudging
method. The size of the nested model domain (outer domain at 12 km
horizontal grid distance and inner domain at 4 km) is displayed in
Figure 1a. Note that the initialization of surface fields is conducted
in the 4-km nested domain, and the information is shared through
a two-way nesting configuration. The LDAS has been run for the
Indian domain to develop off-line SM and ST fields. The inner-nest

LLEINRNB8

domain (in Figure 1a) covers most of the Indian domain for which
the products were developed. The inner domain was thus sufficiently
large to develop the regional analysis for MD simulations. Also, we did not have ready access to additional in
situ data from other nations, which was another factor to consider in selecting the inner domain. The model
uses the Mellor Yamada Janjic (MYJ) PBL scheme, Monin-Obukhov Janjic surface-layer option, RRTM
longwave, Dudhia shortwave radiation, and WSM6 microphysics. Both the domain uses Betts-Miller-
Janjic convection scheme, following Routray, Mohanty, Niyogi, et al. (2010) and Routray, Mohanty, Rizvi,
et al. (2010).

The LDAS is an uncoupled Noah-based LSM used to prepare regional SM and ST fields at four soil layers
(0-10, 10-40, 40-100, and 100-200 cm) (Chen et al., 1996; Ek et al, 2003). The LDAS integrates
observed/analyzed near-surface atmospheric parameters (2-m temperature and specific humidity, 10-m
winds, surface pressure, model elevation, rain rate, downward shortwave, and longwave radiation) along
with the surface static fields such as land use and soil type, and monthly vegetation characteristics. The
advantage of LDAS is that it uses the same grid as the ARW model, sharing the same Noah LSM and same
geophysical parameters (land use, soil texture, terrain height, and time-varying vegetation fields) and
reduces interpolation errors. In this study, the LDAS is integrated to prepare regional SM/ST profiles at
4-km grid spacing over the IMR. The LDAS uses atmospheric forcing from MERRA (Bosilovich et al., 2012),
rain rate from TRMM-3B42v7, and initial land surface conditions from the Global Data Assimilation System
(GDAS). The methodology on the atmospheric forcing fields is available in Osuri et al. (2017) and Nayak
et al. (2018). The LDAS is initialized on 1 January 1999 and integrated up to 31 December 2015. The
first-year (1999) data are left out for spin-up (Charusombat et al., 2012).

In the indirect land-state initialization technique, the surface observations are assimilated continuously to
improve the surface and boundary layer simulation (Alapaty et al., 2001, 2008). For example, the surface
temperature and moisture observations are first nudged in the model's initial values of the ARW model.
Then the difference between observation and model-predicted surface temperature and moisture is trans-
lated to update the respective surface fluxes. The updated surface sensible is used in the ground temperature
prognostic equation, and the latent heat flux adjustment is partitioned into several new evaporative flux
adjustments. These adjustments are then applied in the prognostic equation of SM at each soil layer. Such
adjustments through the prognostic equation affect the simulation of surface fluxes in subsequent times
and thereby modify the atmospheric boundary layer development. This technique of surface flux adjustment
is known as FASDAS, and the method is proven to improve atmospheric surface and boundary layer simu-
lations (Alapaty et al., 2008). This methodology has also been applied for the IMR to improve the simulation
of MDs and associated rainfall using the Fifth-Generation Penn State/NCAR Mesoscale Model (MMS5) model
(Vinodkumar et al., 2008, 2009). In the current study, the FASDAS technique is applied to update the SM and
ST conditions using surface measurements (~2-m temperature and moisture and 10-m winds). The surface
observations are nudged 24 hr before the initial analyses in 6-hr intervals.

3. Data Used

In this study, various in situ observations, satellite-derived, and global analyses are used. The distribution of
in situ observations used to verify the regional SM/ST fields developed from LDAS is shown in Figure 1a. The
details of analyses and in situ observations such as period, spatial and temporal resolution are shown in
Table 2. Brief information is discussed below.
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Fi%.lre_%. (a) Model domain configuration and distribution of SM and ST measurements. (b) The daily anomaly of SM
(m” m ") obtained from various global and regional analyses (CFS, GLDAS, FNL, LDAS, ESACCI, and SMAP) along
with daily anomaly of TRMM rainfall (mm day_l) during May to September for central India. Mean SM difference
between MD formation day and 15, 10, and 5 days before formation from various analyses for (b) June cases and

(c) August cases along with 95% confidence intervals. The number of years considered in the climatology is shown in
Table 1.

Top-layer SM in situ observations from 48 agromet automatic weather stations (AWSs) of India
Meteorological Department (IMD) is obtained for the monsoon season (June — September) from CTCZ data
bank (http://www.incois.gov.in/portal/datainfo/pdctcz.jsp). The data have an hourly temporal resolution.
Half-hourly top-layer ST in situ observations at nine stations (mostly in Gujrat State, India) are obtained
from AWS of the Indian Space Research Organization (ISRO) (https://www.mosdac.gov.in/content/aws-dis-
tribution). One-hour interval SM/ST in situ observations are also available at three micrometeorological
towers (Met Tower)—Misra (85.43°E, 23.41°N), Kharagpur (87.31°E, 23.31°N), and Ranchi (85.31°E,
23.31°N). These in situ measurements are harmonized and quality controlled for outliers and implausible
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Table 2
Details of In Situ Observations and Satellite-Derived and Global Analyses Used in the Study
Data period Temporal
Products used Spatial resolution Parameter resolution References
TRMM 3B42v7 1999-2015 0.25° Rainfall 3hr Iguchi et al. (2000)
ESACCI 1979-2015  0.25° Soil Moisture (SM) 1 day Dorigo et al. (2017); Gruber et al. (2017, 2019)
SMAP 2015-2019 9 km M 3hr Entekhabi et al. (2014)
CFS 1979-2015 0.5° M 6 hr Saha et al. (2014)
GLDAS 1979-2015 0.25° M 3hr Rodell et al. (2004)
FNL 1999-2015  1° SM 6 hr National Centers for Environmental
Prediction/National
Weather Service/NOAA/US Department
of Commerce (2000)
LDAS 2000-2015 4km SM 1hr Osuri et al. (2017); Nayak et al. (2018)
Agromet AWS 2011-2013 48 stations (refer Figure 1a) SM 1hr Bhattacharya et al. (2009)
ISRO AWS-AGRI 2011-2013 9 stations (refer Figure 1a)  Soil Temp. (ST) Shr Das et al. (2009)
BIT Misra Met tower 2011-2013 85.43°E, 23.41°N SM and ST 1hr CTCZ data bank (http://www.incois.gov.in/portal/
IIT Kharagpur Met 2011-2013  87.31°E, 23.31°N SM and ST 1hr datainfo/pdctcz.jsp)
Tower
Ranchi Met Tower 2011-2013 85.31°E, 23.31°N SM and ST 1hr

values following Dorigo et al. (2012). Along with these in situ observations, global SM analyses have also
been used from various sources in this study. The SM project of the ESACCI (http://www.esa-
soilmoisture-cci.org) provides a long-term combined SM product from multiple active and passive
microwave sensors (Dorigo et al., 2017; Gruber et al., 2017, 2019). It is a daily product with a spatial
resolution of 0.25°. The SM product from SMAP (Colliander et al., 2017) at high-resolution (9-km and
3-hr interval) is also used. Besides these products, global SM analyses have also been used in this study.
The SM products obtained from (i) Climate Forecast System (CFS) developed at the NCEP (Saha et al.,
2014), (ii) Global Land Data Assimilation System (GLDAS) of the National Aeronautics and Space
Administration (Rodell et al., 2004), and the (iii) FNL analysis are also used. The CFS and FNL analysis
are available in 6-hr interval, while GLDAS is in 3-hr interval. The regional and global analyses of SM
and ST are bilinearly interpolated to the observation point for validation.

The study also uses the Version 7 TRMM multisatellite precipitation analysis (i.e., the TMPA 3B42), 3-hourly
combined microwave-infrared estimates and adjusted to the rain gauge data sets (Iguchi et al., 2000). The
description of the data is provided in Table 1. This product is widely used for various rainfall events and con-
sidered as one of the best products for the Indian domain (Ankur et al., 2019; Prakash et al., 2015).

4. Results

The MD cases analyzed in this study are in June and August. The onset (June) and withdrawal (September)
months receive relatively less rainfall when compared with the active (July-August) months (Gadgil &
Asha, 1992; Krishnamurthy & Shukla, 2000; Shrivastava et al., 2017). Figure 1b presents the mean of daily
SM anomaly over central India (74-87°E, 16-26°N) from above-mentioned global and regional analysis

Table 3
Verification of SM Analyses of ESACCI, LDAS, and FNL in 6-hr Interval at 51 IMD Stations and ST at 12 Stations During
Monsoon Season

Soil moisture (m3 m_3} Soil temperature (K)

IMD (obs) ESACCI-SAT LDAS FNL ISRO (obs) LDAS
Mean 0.28 0.28 0.28 0.31 303.8 302.8
SD 0.12 0.09 0.14 0.06 39 4.0
BIAS 0.03 0.01 0.07 —-08
RMSE 0.09 0.09 0.11 2.7
CORR 0.54 0.65 0.53 0.74
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Figure 2. Verification of top-layer SM of (a) ESACCI derived and (b) LDAS along with their (c) probability density
function of SM error at 51 in situ observations (48 IMD agromet stations and 3 microtower observations).

(d) Top-layer ST (K) of LDAS is verified at 12 in situ observations (nine ISRO agromet and three microtower
observations) and (e) corresponding ST error PDFs for the monsoon season (June-September) of 2011-2013.

along with satellite-derived products. The climatological rainfall, as obtained from TRMM-3B42v7, is also
shown in Figure 1b. Each data set exhibited signature of dry surface from May to most of the June (onset)
due to relatively lesser rainfall. Later during mid-June, with increasing rains, the SM shows notably higher
values. As July and August receive high monsoon rains, the surface is relatively wet with a positive anomaly
in all the analyses. Note that the modest hydraulic conductivity of clay soil in central India allows higher
moisture retention for longer times. Hence, the daily anomaly of SM in September remains positive as it
recedes slowly. The SMAP-SM and FNL-SM anomalies show notable differences when compared with other
global as well as regional products. The SM from SMAP and FNL is relatively higher in May and less during
monsoon season. The SMAP-SM anomaly is prepared based on its 5 years of climatology (2015-2019).

Previous studies established the positive feedbacks between SM anomalies and atmospheric anomalies and
their impact on the ST (Hardie et al., 2011; Namias, 1960; Rind, 1982; Shukla & Mintz, 1982). Considering
the importance of antecedent SM on surface/near-surface temperatures, the antecedent SM conditions 15,
10, and 5 days before the formation of MD cases are analyzed to understand the land state prior to the
MD formation (Kishtawal et al., 2013). The SM difference between value on the day of MD formation and
the 15-, 10-, and 5-day prior-SM conditions for each MD case is used, and the average is shown for June
and August cases in Figures 1c and 1d. The day of MD formation is shown in Table 1 and is considered as
Day 0 or reference SM. A positive value of SM difference indicates that the surface on the day of MD forma-
tion (or the model initial time) is wet. In contrast, negative indicates drier soil as compared to prior SM con-
ditions. It is clear that the soil is drier in June for different time lags (of 15, 10, and 5 days) and all the data sets
exhibit similar behavior. The SM becomes higher from 15 to 5 days before the MD event (Figures 1c and 1d).
The magnitude of SM difference varies among the data sets with values about 0.05-0.08 m* m™ for June
cases (Figure 1c), and about 0-0.04 m® m™ in August (Figure 1d). It indicates that the soil is relatively
wet in August than June and consistent with the rainfall and SM climatology shown in Figure 1b. It is impor-
tant to note that the 15- to 10-day prior-SM conditions are nearly similar, showing a slight variation in SM
difference. In comparison, the 5-day prior-SM conditions differ considerably in June (Figure 1c). In the
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case of August, there is a significant change in SM conditions from 15 to 10 days, while the SM conditions are
almost similar from 10 to 5 days (Figure 1d).

4.1. LDAS Verification for Indian Monsoon Season

The top-layer SM (m* m™>) is obtained from the ESACCI (SAT hereafter), and LDAS is verified against 51 in
situ observatories (48 agromet stations and 3 microtower observations) at 6-hr intervals in the monsoon sea-
sons (1 June to 30 September) of 2011-2013. The distribution of observations is shown in Figure 1a, and all
the observations are within the nested domain. Figure 2 indicates the scatter diagram of SM and ST analysis
and in situ observations, and corresponding error statistics are shown in Table 2. The seasonal mean and
standard deviation (SD) of in situ SM observations is 0.28 and 0.12 m*> m™> (Table 2). Scatter diagram indi-
cates that the SAT and LDAS overestimates low SM conditions and underestimates high SM conditions
(Figures 2a and 2b). The satellite-derived SM analyses show a relatively high correlation (0.54) and less
RMSE (~0.09 m* m™>) and bias (~0.03 m*® m™3) with almost the same mean SM. The SAT analysis has lim-
ited variability (SD is ~0.09 m* m™>) and does not capture the extremes/peaks of SM over this region
(Table 2). The high-resolution regional (LDAS) SM analysis is consistently better with modestly high corre-
lation (0.65) and low RMSE and bias (~0.09 and 0.01 m® m™). The higher SD of LDAS analyses indicates its
ability to replicate SM extremes over the region during monsoon season (Table 2) as compared to satellite
analyses. The mean SM error frequency distribution suggests that the ESACCI-SM error has a primary peak
centered at —0.02 m® m™> (~31%), while the LDAS SM error peaks at +0.015 m> m™> at 35% (Figure 2c). The
default SM conditions in the CNTL run are also verified with in situ measurements (Table 2). Unlike other
analyses, the FNL overestimates (bias is 0.07 m?® m™>) the SM, showing the seasonal mean as ~0.31 m?*m3,
The SD indicates limited skill in capturing SM extremes (0.06) over this region. The seasonal mean RMSE is
maximum in FNL analysis as compared to the others. Month wise, FNL analysis overestimates the SM in
May-June and September (the onset and withdrawal months), while it underestimates in July-August
(active monsoon months). It is consistent with the earlier result that the FNL overestimates the SM during
premonsoon seasons in most parts of the region (Osuri et al., 2017).

The top-layer ST (K) is compared with in situ observations at 12 in situ stations (nine agromet stations and
three microtower stations), and the distribution is shown in Figure 1a. From Figures 2d and 2e, the ST values
less than 305 K typically show an agreement with in situ observations, while the higher ST values are under-
estimated by the LDAS (Figure 2d). The observed mean and bias of ST are ~303.8 and 3.9 K. The regional
LDAS analyses showed a high correlation (0.74), and low RMSE (2.7 K) and bias (—0.8 K). Though the
LDAS underestimates the ST, the SD is somewhat similar (4.0 K). From Figure 2e, the maximum error fre-
quency distribution showed that LDAS-ST error is centered at 0 to —2 K (~30%). This further highlights the
underestimation of ST from the analysis fields over the IMR.

Overall, the LDAS products (SM/ST) are closer to the observations, and satellite analyses exhibit smaller
error metrics as compared to other analyses. Therefore, the satellite SM analyses can be used for the verifica-
tion of model-simulated SM products in the absence of high spatiotemporal in situ measurements over this
region. Similarly, the value addition due to the LDAS data is the higher spatial resolution and the ability to
capture extremes in the surface conditions (higher SD). Generally, the highest (SM) values have relatively
smaller spatial scales, and hence, the high resolution is desirable to provide realistic structures of SM hetero-
geneity. The coarser resolution tends to smooth out these fine-scale SM peaks, which change the location of
surface heterogeneity boundaries and the feedback on the simulation of mesoscale fields.

4.2. Initial SM

The top-layer (0- to 10-cm depth) volumetric SM (m* m ™) from the CNTL experiment is compared against
the ESACCI-SM. The differences between FASDAS and LDAS SM from the CNTL run have also been pre-
sented for the representative MD cases in Figure 3. These include Cases 1, 5, 7, and 8 corresponding to onset
month (June) and active month (August) of the monsoon season. As seen in ESACCI-SM analysis, northern
India is relatively drier (SM range is 0.05-0.20 m® m™) in June cases (Figures 3a and 3i) as compared to
August cases in which the SM varies between 0.3 and 0.5 m® m™ (Figures 3e and 3m). Analyses of all cases
indicate that the CNTL analysis relatively overestimates SM in the northwest and northeast parts of India
(Figures 3b, 3f, 3j, and 3n) as compared to SAT-SM analysis (Figures 3a, 3e, 3i, and 3m). The difference of
LDAS in Case 1 in the central to northern parts of India is negative (~0.06 m® m™>), indicative of lower
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Figure 3. Spatial distribution of top-layer SM analyses from (a) ESACCI SAT, (b) CNTL, and the SM difference of (c) LDAS-CNTL and (d) FASDAS-CNTL run for
Case 1. (e-h, i-1, and m-p) The same as (a)-(d) but for Cases 5, 7, and 8.

SM in the LDAS run. Overall, the LDAS appears to be close to the ESACCI-SM analysis (Figure 3c). In the
case of FASDAS-SM analysis, there is minor difference across the majority of central India (+0.01 m* m™).
At the same time, the northeast parts show some positive difference, indicating more wet soil (Figure 3d).
Considering the August case (Case 5), the LDAS shows a positive SM difference of an order of
0.05m* m™3, indicating wetter soil in August (Figure 3g). These results also indicate that the CNTL soil is
drier, mostly in the central and southern parts of India (Figure 3f). The FASDAS analysis also exhibits posi-
tive differences mainly in the study domain, except for some parts across the east coast of India (Figure 3h). It
is noteworthy that the central monsoon region is identified as an SM coupling hot spot and is dominated by
clayey soil. The clay soil typically has higher moisture retention for longer times as compared to sandy soil.
These features are seen in other June and August cases from the LDAS experiments. Overall, the FASDAS
experiments could show little difference in SM as compared to CNTL run (Figures 3d, 3h, 31, and 3p).
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Figure 4. Mean forecast errors of (a) 2-m air temperature (K), (b) 2-m relative humidity (%), (c) soil temperature (K), and
(d) soil moisture (m3 m_3) of CNTL, LDAS, and FASDAS for 2013061400 case. (e-h) The same as (a)~(d) but for the
2013082000 case.

When comparing the direct and indirect initializations, there is a considerable difference in the SM field over
India, considering the CNTL-SM as reference. In the northeastern parts of India, the SM difference com-
pared to CNTL for LDAS and FASDAS is negative and positive, respectively. It infers that the LDAS reduced
the overestimation of SM, and FASDAS enhanced the SM conditions in those parts. The performance of
LDAS for representing the SM in central India is consistent with the previous study (Mohanty et al., 2019;
Nayak et al., 2018). Analyzing the actual SM, the LDAS appears realistic in reproducing SM heterogeneity
over India during these monsoon months. The bias noticed in the CNTL-based SM is reasonably corrected
in the direct initialization of SM than the indirect method. Results also show that the spatial SM loading
in the LDAS is comparable with the satellite analyses, showing the minor discrepancy in spatial distribution.
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Noah Residual (W m-z) August case, the average error of surface variables (T2, Rh2, and

ST) is ~15-30% that in June case, and the error difference among

Figure 5. Probability distribution of mean residual of the surface energy budget  the runs is significant. The mean SM error (Figures 4d and 4h)

for (a) June and (b) August MD cases considered in the study.

revealed significant differences from June to August cases. The
LDAS SM exhibited the least errors (0.01 to 0.03 m® m™) for all fore-
cast hours when compared with that of CNTL (>0.07 m® m™>) and FASDAS (~0.06 m® m™>) runs for June
cases. In the August case, the LDAS-SM errors are comparable to that of CNTL and FASDAS runs, indicating
the similar evolution of SM in all the experiments. This similarity could be because of deficit values in June
(onset month) and relatively high values in August month (an active month for monsoon season) (refer
Figures 1b-1d). Thus, when the land is relatively dry (less SM), the incorporation of realistic SM improves
the evolution of surface parameters significantly. In contrast, when the soil is wet (for, e.g., August cases),
then all the runs showed similar performance because of the high rainfall, and this leads to limited ability
for improvement. Overall results illustrate how the land state impacts the evolution of surface variables.

Following Chen et al. (1996), the performance of LSM depends on the surface energy balance representation.
The storage flux represented as the residual indicates the imbalance of the surface energy balance equation
and is not an atmospheric or computed variable. The residual analysis builds up the confidence in the repre-
sentativeness of the energy balance and has been assessed for all the experiments. Figure 5 shows the mean
PDF of the area-averaged Noah residual in the MD region for June and August cases. The LDAS has lesser
residual (0.75 W m ™) at high frequency (~20%) in the June cases (Figure 5a). Note that the FASDAS showed
two peaks of almost similar frequency at —0.9 and —1.6 W m™ 2. CNTL showed a broader frequency distribu-
tion between —2 and —0.5 W m ™2 at ~20% (Figure 5a). Contrastingly, for August cases, the residual PDFs of
all experiments are narrow and centered between —0.5 and —0.6 W m ™~ with a maximum frequency of ~30%.
However, the CNTL has a secondary peak at—1 W m~>, showing relatively broader PDF. Note that the PDFs
are much wider in case of June cases (i.e., drier month), while they are narrow for August (wet month) cases.
It could be related to the underlying as well as pre-MD antecedent SM conditions, as shown in Figures 1b-1d.
Considering the spatial evolution of residual among the experiments, the improved surface conditions in the
LDAS run lower the residuals in the central India and northwest part of India as compared to the other
experiments. The FASDAS exhibits less residual in the northeast parts of India as compared to CNTL and
LDAS (not shown). Overall analyses highlight that the LDAS simulated land-surface fields improve the net
radiation energy balance. It can be inferred that the components of surface energy budget are well partitioned
in the LDAS run and could be related to the realistic land surface conditions as energy partitioning over the
study domain is highly sensitive to surface conditions (Douglas et al., 2006; Pielke et al., 2011).

4.4. Moisture Budget Analysis

The moisture budget terms during MD life (~48 hr) are analyzed using the atmospheric water vapor budget
equation (Yoon & Huang, 2012).
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Figure 6. Model simulated average moisture budget terms (mm) such as storage term (DQ), moisture flux convergence
(MFC), precipitation (PCP), and evaporation (EV) of June cases for (a) 12-hr, (b) 24-hr, (c) 36-hr, and (d) 48-hr forecasts.
(e-h) The same as (a)~(d) but for August cases.

aa—lf—i—VQ EV — PCP. (6]

Here the atmospheric precipitable water obtained from vertical integral of specific humidity (W) given as

6W
_f ps3-dp and —— is the storage term denoted as DQ.

Vertically integrated water vapor flux @) is defined as 6 = %_fﬁ:vq.dp, and V.6 is the horizontal con-

vergence of vertically integrated water vapor flux, also known as moisture flux convergence (MFC). The
total surface evaporation and accumulated rainfall are denoted as EV and PCP. g is the acceleration due
to gravity, and ps and pt are pressure at the surface and top of the atmosphere, respectively.

Moisture budget terms are computed over a 4° X 4° domain where the center of the domain represents MD
center at 6-hourly time series of DQ, MFC, EV, and PCP in mm day_l. Figure 6 shows the mean moisture
budget terms (mm day ") from the three different experiments for the June (left column) and August (right
column) cases for different forecast lengths. The variations in moisture budget terms between CNTL, LDAS,
and FASDAS are different, and the PCP shows the maximum variability followed by MFC. The EV appears
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Figure 7. Time-height evolution of diabatic heating (K/s) from (a) CNTL, (b) LDAS, and (c) FASDAS runs for 2007062100 case along with model predicted
rainfall (black line with open circle) and TRMM rainfall (solid red line). (d—f and g-i) The same as (a) and (b) but for 2008080500 and 2008082000 cases,

respectively.

to have less contribution to the moisture fields in terms of both magnitude and variability. Overall, MFC has
the largest contributing influence in the supply of moisture into the systems. It is noted that the PCP change
grows in FASDAS (unlike LDAS) as forecast length increases (Figures 6a—6d) in June cases, while similar
PCP changes are seen for all the August cases (Figures 6e-6h).

The domain averaged MFC magnitude is less (~2 mm) in LDAS run as compared to the CNTL (~3 mm) and
FASDAS (>2 mm) for the Day 1 forecast of June cases, which then increases in subsequent simulation up to
48 hr. The patterns of PCP variability are similar to the MFC, while the EV term decreases for the same per-
iod. The local storage term (DQ) also increases with forecast length; however, the same in FASDAS exhibited
a decrease with time. In the case of August, the contribution of MFC isless as compared to thatin June cases.
It may be due to the local effect and explained further using the land-surface feedback process.

4.5. Diabatic Heating and Rainfall Evolution

The time-height cross section of diabatic heating (K/s) averaged over a 4° X 4° box around the MD position
for all the forecast hours is showed in Figure 7 along with TRMM and model rain rate. There is abundant
diabatic heating in the midlevels of CNTL simulation from 18 UTC 21 June 2007 (Figure 7a), which likely
contributed to the excess Day 2 onward. In case of LDAS run (Figure 7b), the higher diabatic heating is more
in the middle to upper levels for 12 hr on 22 June 2007 (Day 2), which leads to the increased rain rate and
subsequent decrease in the Day 3 (23 June 2007), and in agreement with the observed evolution of rainfall.
The FASDAS run could improve the rainfall simulation when compared to CNTL-simulated rainfall
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Figure 8. The 24-hr accumulated rainfall (cm) from (a) IMD, (b) CNTL, (c) LDAS, and (d) FASDAS experiments for
2007062800 case. (e-h, i-1, and m-p) The same as (a)-(d) but for 2013061400, 2007080500, and 2008080900 cases,
respectively.

(Figure 7c). In the case of the August case (5-7 August 2007), the simulated rain rate evolution in all the
experiments is more or less the same. The evolution of diabatic heating is also similar in these runs. The
heterogeneity is represented in the land surface conditions (wet and dry/cold and warm) from the direct
initialization of LDAS fields, thus to improve the rainfall simulation (Xinmin et al., 2000). As discussed,
the June period is relatively dry and warm. The SM/ST initialization improved the MD simulation as well
as associated rain rate. While in August month, the land surface is nearly saturated due to active
monsoon conditions; therefore, the initialization of SM/ST does not show a substantial impact on MD cases.
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Table 4
Mean CRA Horizontal Shifts (dx, dy, and d8) From Three Experiments for June
and August Cases.

June August
CRA -
shifts CNTL FASDAS LDAS CNTL FASDAS LDAS
dx 1° 0.8° —0.5° 1.125° 1.125° 1°
dy —0.2° —0.06° 0.06° —0.37°, 0.55° —0.3°
dé 2.25° 2.5° 0.25° 5.5° 3° 5.5°

Note. “+” sign indicates right/forward/clockwise shift, and “-“ sign indicates
left /backward/anticlockwise shift in the rainfall threshold.

Twenty-four-hour accumulated spatial rainfall (valid for Day 1)
obtained from CNTL, FASDAS, and LDAS run along with IMD rain-
fall for cases of June and August is presented in Figure 8. IMD ana-
lyses show two cells of maximum rainfall (20-24 and ~30 cm) that
occurred on the 28-30 June 2007 case (Figure 8a). The three experi-
ments overestimated the rainfall with similar spatial orientation;
however, LDAS shows two heavy rainfall cells, unlike FASDAS. In
the case of 14-17 June 2013 case (Figures 8e-8h), the rainfall distribu-
tion is more or less similar in all three cases; the rainfall amount is
improved in LDAS and FASDAS runs as compared to CNTL run. In
the case of 5-7 August 2007, the coastal rainfall (around 20°N)
observed in the IMD rainfall analysis is 20-28 cm (Figure 8i). The

CNTL run simulated scattered rainfall between ~4 and 8 cm over the same region (Figure 8j) while the
LDAS run, on the other hand, computed the rainfall distribution and magnitude (~32 cm) well
(Figure 8k). The FASDAS run could also show good rainfall simulation, but it is displaced southward
(Figure 81). In the case of 9-11 August 2008, the observed rainfall at 19-20°N latitudes is well reproduced
in the LDAS run with slight overestimation in spatial coverage (Figure 80). The FASDAS-simulated rainfall
is distributed over a broader region with notable overestimation (Figure 8p).

4.6. Estimation of Rainfall Errors Using Contiguous Rain Area Method

Traditional statistical metrics (such as simple bias, root mean square error, RMSE) provide skill assessment

of the high-resolution models for quantitative rainfall prediction. However, they do not provide direct

insights into the source of errors. As an alternative, the contiguous rain area (CRA; following Ebert &
McBride, 2000; Ebert & Gallus, 2009; Gilleland et al., 2010; Osuri et al., 2017) have been developed for the
spatial verification (i.e., location, extent, intensity, and pattern) for the user-specified rainfall threshold (also
known as CRA threshold). This method has been applied for rainfall over the IMR region (Kumar Das et al.,
2014; Sharma et al., 2019). In the CRA method, the actual rainfall threshold is shifted in the x direction (left
or right), y direction (forward or backward), and azimuthal direction (clockwise or anticlockwise) to achieve
the best match (maximum correlation and minimum mean square difference, MSD) with the observation.
This horizontal shift (in x and y direction) provides displacement errors (dx and dy, respectively), while

the shift in azimuthal direction provides the rotational error (d8). Similarly, the pattern error indicates the

error in the distribution of rainfall, and volume error indicates the error in the amount of rain. More details
on the formulation of each error can be seen in Osuri et al. (2017) and Ebert and Gallus (2009). The CRA
verification of 24-hr accumulated model rainfall is carried out against IMD rainfall analyses.

Table 4 provides the mean horizontal and rotational shifts obtained from the CRA. For June cases, the LDAS
exhibited a minimum mean dx shift of —0.5° as compared to CNTL (—1°) and FASDAS (0.8°). A similar pat-
tern in mean dy shift is also noted (—0.2°, —0.06°, and 0.06°). The CNTL and FASDAS show a similar clock-
wise shift of 2.25° and 2.5°, while the LDAS has a minimum clockwise shift of 0.25°. In the case of the August
cases, the CRA exhibited similar horizontal shifts among the experiments. The mean dx shifts in CNTL and
FASDAS are the same (1.125°), while the LDAS has a 1° shift. The mean dy shifts in LDAS, CNTL, and
FASDAS are, respectively, —0.3°, 0.37°, and 0.55°. The FASDAS showed a minimum rotational shift (3°)
as compared to CNTL (5.5°) and FASDAS (5.5°) in the August cases.

Figure 9 provides mean displacement, pattern, volume, and rotational errors for different CRA thresholds
from the three experiments for all the cases. The sum of all these error components is 100%. Following
IMD classification, the categorical rainfall, such as moderate (<64.4 mm day '), heavy (>64.5 to
<115.5 mm day ), and very heavy (>115.6 to 204.4 mm day ') are selected as CRA thresholds. Mean sta-
tistics with 95% confidence intervals indicate that pattern error is the largest (40-50%) up to heavy rainfall
(115.5 mm day™'); however, the volume error contributes the maximum (40-50%) at very heavy rainfall
category (204.4 mm day ") to the total error of June cases (Figures 9a-9c). The displacement error contri-
butes more or less 20-30% to the total error. Among all, the rotational error of rainfall in the azimuthal direc-
tion is minimum (~5%) for June cases (Figures 9a-9c). In the case of August cases, the displacement and
pattern errors contribute more or less similar (40-50% each) for different CRA thresholds in all the experi-
ments (Figures 9d-9f). The volume and rotational errors are significantly less in all experiments for
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Figure 9. Rainfall error decomposition into mean displacement (D), volume (V), pattern (P), and rotational (R) errors using CRA method for different categorical
rainfall (a) moderate rains (<64.4 mm day_l}, (b) heavy rains (>64.5 to <115.5 mm day_:l ), and (c) very heavy rains (>115.6 to 204.4 mm day_l} for June cases.
(d—f) The same as (a)-(c) but for the mean of August cases.

different thresholds in August cases (Figures 9d-9f). Intercomparison of experiments, the displacement
and pattern errors are relatively less in the LDAS run as compared to that of CNTL and FASDAS runs.
However, the volume error is more in the LDAS compared to the others. It can be concluded that the
LDAS improved the rainfall simulation in terms of location (less displacement error) and distribution
(less pattern error), however, with higher error in the rainfall amount (volume error) as compared to
other experiments. Moreover, the range of 95% confidence intervals is relatively less in the LDAS run
for most of the error components in June cases, indicating less spread in error. However, the confidence
interval is less for lower rainfall thresholds and negligible for higher rainfall thresholds. The average
RMSE of moderate rainfall threshold for June cases is 26, 35, and 32 mm day ™' from LDAS, CNTL, and
FASDAS, respectively. While for August cases, the RMSE is 62, 78, and 76 mm day™ ' for LDAS, CNTL,
and FASDAS, respectively.

Figure 10 shows different skill metrics of three experiments for the above-mentioned categorical rainfall
thresholds corresponding to the June cases and August cases. The plus sign and circle symbols indicate
the skill metrics before and after the CRA analysis. The accuracy of Day 1 rainfall from three experiments
varies between 0.1 and 0.3 in the actual simulation (or before CRA); however, it increases to more than
0.3 after the CRA correction (Figure 10a). The Day 2 rainfall accuracy is higher than that of Day 1 in June
cases. The LDAS run shows higher accuracy for Days 1 and 2 rainfall as compared to the other two experi-
ments (Figure 10a). The bias score helps assess the overestimation or underestimation of model rainfall. The
model overestimates the moderate rainfall (black symbols) while underestimates the heavy and very heavy
rainfalls (blue and red color) in the actual, as well as for CRA corrected analysis in June cases. Considering
the bias for August rainfall cases, the moderate and heavy rainfall is underestimated, and very heavy rain is
more reliable with marginal bias (close to 1; Figure 10b). The false alarm ratio (FAR) is more than 40% in all
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Figure 10. Mean skill scores of Days 1 and 2 model rainfall for June cases (a) accuracy, (b) BIAS (c), false alarm ratio (FAR), and (d) ETS from CNTL, FASDAS,
and LDAS before the CRA (plus symbol) and after the CRA (circle symbol). (c and d) The same as (a) and (b) but for August cases. CRA thresholds considered are
moderate, heavy, and very heavy rainfall categories. C-D1 and C-D2 indicate CNTL-dayl and CNTL-day2 simulations. Similarly, F-D1 and F-D2 indicate
FASDAS-dayl and FASDAS-day2 simulations. L-D1 and L-D2 indicate LDAS-dayl and LDAS-day2 simulations.

the three experiments of actual rainfall; however, it reduced to 10-25% after the CRA correction in Days 1
and 2 rainfall simulation. The FAR is less in LDAS run for Days 1 and 2 rainfall as compared to the
others (Figure 10c). In the actual simulation, the mean equitable threat score (ETS) lies below 0.1 for
Day 1 and 0.2 for Day 2 for all the experiments. After correcting the MD rainfall to CRA displacement
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errors (after CRA), the mean ETS for Day 1 rain from all the runs consistently increase to 0.2-0.3 for mod-
erate, heavy, and very heavy rainfall categories and increases to 0.2-0.4 for Day 2 rainfall for June cases
(Figure 10d). This ETS shows a definite improvement in higher rainfall thresholds (heavy to very heavy rain)
for Days 1 and 2 from the LDAS run in June cases with higher ETS than the other runs (Figure 10d).

Considering the August cases (Figures 10e and 10f), the mean accuracy is higher for Day 1 actual rainfall
(0.25-0.5) for different thresholds (Figure 10e) as compared to June cases (Figure 10a). After the CRA, the
accuracy increases up to 0.8 in the CNTL and FASDAS, while up to 0.9 in the LDAS run for Days 1 and 2
rainfall (Figure 10e). The rainfall bias in August cases is closer to 1, indicating a marginal lower bias for
all rainfall thresholds before and after CRA (Figure 10f). The actual Day 2 simulation underestimates the
rainfall noticeably for moderate and heavy rain. However, the very heavy rain is overestimated in CNTL
and FASDAS (BIAS > 1), while the LDAS is close to 1 (negligible bias) before and after the CRA
(Figure 10f). The FAR for Day 1 actual rainfall (before CRA) is about 50%, which is reduced to 25%, and
the LDAS run is better with the lowest FAR after the CRA. There is a notable difference in FAR from
Day 1 rainfall to Day 2 rainfall in August cases. The FAR is more than 70% in all the experiments before
CRA. After the CRA, the FAR for moderate to heavy rainfall has decreased to 40-45% in all experiments,
with LDAS as the lowest one (~30%). As seen in June cases, the ETS of Day 1 rainfall of August cases before
CRA is close to 0.1. After the CRA, the mean ETS has increased to more than 0.3 for the Day 1 simulation
(Figure 10h).

Comparing the cases, the LDAS is again more skillful for moderate to heavy rainfall, and the FASDAS run
shows a higher skill for very heavy rain. Considering the Day 2 rainfall simulation, the LDAS is consistently
better for moderate rainfall after the CRA. However, the very heavy rain prediction is highly skillful for both
before the CRA (ETS ~ 0.25) and after the CRA (ETS ~ 0.4) for the Day 2 simulation. Comparing June and
Augustrainfall cases, the model bias is more for the wet August cases than the relatively dry June cases, par-
ticularly for the Day 2 rainfall simulation. The model, as compared to the June cases, does not reliably simu-
late the very heavy rainfall category in August cases. Moreover, the CRA horizontal shifts (in terms of dx, dy,
and d6) are also higher in August cases as compared to June cases.

4.7. Surface-Precipitation Feedback

SM and atmosphere are highly coupled. There are at least two possible mechanisms for the soil-precipitation
feedback (Schiir et al., 1999). The rainfall over wet soils is associated predominantly with evapotranspiration
(local effect). Second, the rainfall intensification is contributed by the atmospheric moisture transport (regio-
nal effect). The antecedent land state also regulates the efficiency of the precipitation processes. Here we
compare the CNTL with LDAS and FASDAS, which are initialized with modified soil conditions.

The analysis of surface-precipitation feedback after the inclusion of updated land surface conditions
(LDAS) and FASDAS is expected to provide additional insight into understanding the role of the land sur-
face in modifying the precipitation. The approach here is to examine the role of the various effects that
contribute to the surface-precipitation feedback mechanism (Schir et al., 1999). The precipitation changes
between the experiments LDAS and CNTL (LDAS-CNTL), and FASDAS-CNTL is termed as AP and can
be expressed as

ET+IN AET AIN AET + Al
AP:P’—P:\ALV—F_)'-F ‘\r_v_«+‘~r_v_«+u,

Term A Term B Term C Term D

)

where y is the precipitation efficiency that is defined as the quantity of moisture that precipitates out from

the moisture that enters the domain and given by y = ﬁ, where ET is evaporation, and IN is

moisture influx.

Term A in Equation 2 is the efficiency effect (EE), which stands for the precipitation change due to the
changes in y in the LDAS or FASDAS runs as compared to the default CNTL run. Term B is a surface effect
(SE) and represents the variation in evaporation. The Term C denotes the remote effect (RE) describing the
impact of altered moisture influx on precipitation. Term D is the residual term.
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Figure 11. Changes in precipitation for (a) LDAS-CNTL and (b) FASDAS-CNTL in mm 6 hr " from all the cases. Each of the bars conveys to each term of the
equation computed over the swath along the track. (c and d) The same as (a) and (b) but for the 0- to 24-hr and 24- to 48-hr average. (e and f) The same as (a) and
(b) but based on June and August cases.

The surface-precipitation feedback (calculated as mm per 6 hr) is computed over an area of 200 km around
the MD and is presented in Figure 11. Each term in Equation 2 is computed from the LDAS and FASDAS
experiments against the base run, CNTL. Figures 11a and 11b show the mean of each term corresponding
to LDAS and FASDAS, respectively, at different forecast lengths. The precipitation amount is mainly due
to precipitation efficiency (y) and SE in both the runs. The magnitude of RE is orders of magnitude smaller
in terms of moisture influx (IN) in contributing precipitation.

In Figures 11c and 11d, the feedback terms have been analyzed for the forecast lengths of 24 and 48 hr. The
contribution of ET toward precipitation is around 60% of the simulated changes as awhole. From Figure 11c,
the LDAS-CNTL suggests that the SE is more dominant in contributing the precipitation. The negative sign
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Figure 12. Model simulated tracks from CNTL, LDAS, and FASDAS along with IMD best estimates for monsoon depression cases (a) 2007062100, (b) 2007062800,

(c) 2007080500, (d) 2008061600, (e) 2011061600, and (f) 2013082000. The line in the graph shows the % of improvement over CNTL from LDAS (solid line) and
FASDAS (dashed line).

signifies the positive contribution of latent heat in the boundary layer toward precipitation due to
evapotranspiration. In the case of FASDAS-CNTL, the EE is the more dominant term in contributing to
the precipitation rate. It is due to higher SM generated by FASDAS (refer Figure 3) that reduced the
Bowen's ratio with increased latent heat flux into the boundary layer. The net effect is a shallower
boundary layer, thus increasing moist static energy per unit mass and an enhanced rate of moist
convection in the atmosphere. Similar results can be noted in Figures 11e and 10f (monthwise analysis).
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Interestingly, the effect/sensitivity of each term is more for the relatively dry June as compared to relatively
wet August cases in case of LDAS run (Figure 11e), unlike FASDAS (Figure 11f). The contribution of eva-
poration change (SE term) is more in June as compared to that in August and could be the fact that the
SM is evaporated more in June due to its drier and hotter land surface conditions. This is opposite for
August cases, and hence, the SE term is weaker (Figure 11e). It could be the reason for the relatively higher
impact of land surface conditions for June cases, as stated in the previous sections.

4.8. Track and Intensity

Model-simulated tracks of the MD cases are shown in Figure 12 from the CNTL, FASDAS, and LDAS experi-
ments along with the best-estimated track. The overall track prediction by LDAS is reasonably good when
compared with CNTL. The initial position for both the experiments shows similarity and is 57 km away from
the observed location. The inland movement of the MDs is different among the experiments with underlying
land surface conditions. The realistic representation of heterogeneity in land surface values (SM and ST) in
the LDAS experiment in June likely caused notable improvement in track simulation, followed by FASDAS.
The CNTL run shows the MD track has significantly deviated from observation, resulted in higher position
errors. Considering August cases, consistent with the discussion presented earlier, all the runs show rela-
tively similar performance. The track errors from the CNTL run are approximately 153, 159, 227, 352, 114,
and 132 km for the 12- to 72-hr forecast in 12-hr intervals, while the same errors in the LDAS run are about
111,113,141, 110, 115, and 64 km. For the same forecast intervals, the FASDAS exhibited track errors of 149,
171,190, 151, 71, and 206 km (Figure 12g). The gain in skill over from LDAS over CNTL is 32%, 76%, and 57%
for 24, 48, and 72 hr, respectively. The FASDAS is better up to 48-hr forecast with improvement, but the
longer forecast showed some deterioration with a high negative skill (Figure 12g). The CNTL-simulated
MDs tracks toward higher latitudes due to the overestimation of SM content in the northern parts of
India (including northeast and northwest parts; Figure 3). The track bias has been reduced in the LDAS
run with the movement closer to the observed track.

5. Conclusions

The impact of SM/ST initialization and land surface conditions on inland moving depressions over the IMR
is studied. The land surface conditions are updated by initializing the ARW model with off-line SM/ST fields
using LDAS (direct method) and by flux-adjusting surface data assimilation (indirect methods). A 3-year-
long verification of SM (at 51 stations) and ST (at 12 stations) demonstrated that the SM/ST products
obtained from LDAS over the IMR have a reasonable agreement and are a value addition to the
satellite-derived SM for spatial characteristics. Eight MD cases are studied, and the following broad conclu-
sions are drawn.

The land surface is relatively drier 15 to 10 days prior to MD formation in June than that of the August MD
cases. That is, the SM is relatively high in August due to active rains. These SM anomalies show positive feed-
backs and impact the ST in the domain. The direct and indirect initializations exhibited a considerable dif-
ference in the initial SM field over India as compared to the CNTL analysis. The representation of initial SM
in the model through indirect initialization (FASDAS) is almost similar or comparable with that of CNTL
analysis. The bias in the CNTL SM is corrected in the direct initialization of SM relative to the indirect
method, reducing the overestimation in the northeastern parts of India and central India. Moreover, the
LDAS is more realistic in replicating the initial SM heterogeneity over India and is close to the observation.

In the case of the LDAS experiment, the diabatic heating is well represented in agreement with the observed
rainfall, unlike the CNTL run. The FASDAS run also showed a realistic evolution of rains. The local term
and moisture convergence terms contribute more to the moisture budget, and the direct initialization of
SM/ST exhibited more impact on these terms than the FASDAS and CNTL.

Overall, mean CRA errors indicate that the pattern errors contribute more to the total rainfall error.
However, the contribution from displacement and volume errors vary with rainfall threshold in June and
August cases. The rotational error is the least contributor to the total rainfall error in these months.
Comparing model performance in June and August months, the model is more skillful in simulating rainfall
associated with June MD cases (high ETS) as compared to that of August cases (less ETS), particularly for the
Day 2 rainfall simulation. After correcting the actual rainfall using CRA shifts, the ETS of Day 2 rainfall in
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June cases has increased significantly from 0.17 to 0.37. In the case of August cases, the ETS is almost similar,
showing no noticeable change in rainfall simulation after the CRA correction. Comparison of individual
experiments, the LDAS is again consistently better than others for all rainfall categories. The direct initializa-
tion of SM/ST fields through LDAS could improve the location (less displacement error) and distribution (less
pattern error) of rainfall; however, the rainfall amount (volume error) is higher as compared to other experi-
ments. The CRA shift in the LDAS run is found to be less when compared to CNTL and FASDAS. It indicates
the improved skill in reproducing the physical processes through direct initialization of high-resolution land
conditions to improving rainfall distribution and location over the Indian monsoon domain.

Analyzing the surface-precipitation feedback for the MD cases, it is observed that LDAS exerts more SE than
FASDAS for land coupling and is likely due to the direct initialization of surface fields. The enhanced eva-
poration in the LDAS due to the realistic representation of SM and ST resulted in better precipitation effi-
ciency. Although FASDAS aided higher evaporation rates, the weaker SE led to unrealistic precipitation
changes over the land.

Direct and indirect initialization of the surface fields improved the overall simulation of MDs in terms of
both track and rainfall when compared with CNTL. The high-resolution, realistic LDAS land surface initial
conditions aid the evolution of accurate surface variables with fewer errors. The mean track forecast errors
are about ~350 km for the 3-day forecast of CNTL run. The LDAS-based SM/ST initialization improved track
forecast limiting errors to 113 km for the same forecast lengths yielding an improvement of ~60% over CNTL
run. On the other hand, the FASDAS run shows track errors up to ~200 km (improvement of 40-50%).

There are still some discrepancies in the simulation of surface fields and associated rainfall amount and dis-
tribution. The discrepancies can be potentially decreased by incorporating regional forcing fields to drive the
LDAS and “tuning” the surface-atmospheric coupling strength (Zheng et al., 2015). The FASDAS correction
terms could be recalibrated for the advection effects for large-scale events such as MDs and tropical cyclones
and will be a part of a future study.

Data Availability Statement

The data associated with this work will be accessible through online, collaborative data-sharing platform of
Purdue University Research Repository (https://purr.purdue.edu/publications/3536/1, doi: 10.4231/5XRA-
JZ80) to support data citation, quality, and reuse by the scientific community.
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