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A quantitative understanding of the dominant mechanisms that govern the generation
and decay of the counter-rotating vortex pair (CVP) produced by yawed wind turbines
is needed to fully realize the potential of yawing for wind farm power maximization and
regulation. Observations from large eddy simulations (LES) of yawed wind turbines in
the turbulent atmospheric boundary layer and concepts from the airplane trailing vortex
literature inform a model for the shed vorticity and circulation. The model is formed
through analytical integration of simplified forms of the vorticity transport equation.
Based on an eddy viscosity approach, it uses the boundary layer friction velocity as the
velocity scale and the width of the vorticity distribution itself as the length scale. As with
the widely used Jensen model for wake deficit evolution in wind farms, our analytical
expressions do not require costly numerical integration of differential equations. The
predicted downstream decay of maximum vorticity and total circulation agree well with
LES results. We also show that the vorticity length scale grows linearly with downstream
distance and find several power laws for the decay of maximum vorticity. These results
support the notion that the decay of the CVP is dominated by gradual cancellation of
the vorticity at the line of symmetry of the wake through cross-diffusion.
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1. Introduction

The spanwise component of a yawed wind turbine’s axial force induces a counter-
rotating vortex pair (CVP) that laterally deflects and deforms (Branlard & Gaunaa
2016; Bastankhah & Porté-Agel 2016; Howland et al. 2016) its wake downstream. This
phenomenon has the potential to increase or regulate wind farm power output (Howland
et al. 2019). Fully harnessing this potential requires a rigorous understanding of the
underlying fluid dynamics, as demonstrated by the use of lifting line theory (Shapiro et al.
2018) for wind turbine yaw control (Howland et al. 2019). Efficient engineering prediction
methods of the mechanisms governing the generation and decay of the induced vorticity
downstream of the yawed turbine in the atmospheric boundary layer (ABL) enable wind
farm design and operational decisions that take advantage of this knowledge.
The fate of strong streamwise vortices in the ABL, such as the yawed wind turbine

CVP, has been studied extensively. Aircraft wings at takeoff generate counter rotating
tip vortices that can stay near the runway and generate dangerous conditions for the next
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takeoff (Spalart 1998; Gerz et al. 2002). From a fundamental fluid dynamics viewpoint,
much effort has been invested in understanding the decay process of vortices in turbulent
flow (Tombach 1973; Devenport et al. 1996; van Jaarsveld et al. 2011; Takahashi et al.
2005). In the case of yawed wind turbines, the vast literature on aircraft trailing wake
vortices and the individual helicoidal vortices shed by individual turbine blades (Ivanell
et al. 2010; Sørensen 2011; Chamorro et al. 2013) is useful as a conceptual guide. However,
this literature is not directly relevant to the large-scale CVP shed by yawed wind turbines.
Their CVP vortex core is expected to scale with the turbine diameter, rather than
the chord length of each blade, and their circulation is significantly weaker than that
of aircraft trailing vortices since the overall sideways forces generated by the blades
sweeping the inclined turbine disk area is only a fraction of the total turbine axial force.
Furthermore, the airplane CVP is initially well approximated by circular vortices, while
the yawed wind turbine CVP is initially composed of two vortex sheets.
Recent work is just beginning to link the yawed wind turbine CVP to the airplane

trailing vortex literature: treating the yawed wind turbine as a porous lifting surface and
applying Prandtl’s lifting line theory, our recent theory predicts the initial magnitudes
of the transverse velocity and the circulation of the shed CVP (Shapiro et al. 2018).
From this insight, recent work has treated the initial streamwise-vorticity distribution as
point vortices (on a plane perpendicular to the flow) along the edge of the swept area
of the rotor (Mart́ınez-Tossas et al. 2019; Zong & Porté-Agel 2020; Mart́ınez-Tossas &
Branlard 2020) that diffuse under turbulent mixing, becoming a distribution of Lamb-
Oseen vortices (Saffman 1992). Their lateral diffusion rate is specified by an eddy viscosity
that is determined empirically (Zong & Porté-Agel 2020) or using a mixing length model
with the velocity scale specified by the wake velocity gradient and mixing length specified
by the size of the largest ABL eddies (Mart́ınez-Tossas et al. 2019). The downstream
evolution is then found by numerically integrating the resulting vortex system. This
numerical approach yields results that agree well with simulations and experiments, but
does not facilitate insight into fundamental vorticity decay mechanisms or reveal scaling
laws based on the turbine yaw angle or the ambient turbulence characteristics.
In this work, we study the generation and decay of the CVP generated from yawed

wind turbines in the ABL. In order to advance engineering models for the shed vorticity,
particularly the total circulation of each vortex, analogous to the Jensen model (Jensen
1983) for the velocity deficit, we seek to derive analytical expressions that do not require
numerical integration (Meneveau 2019). Our model is motivated and validated by large
eddy simulation (LES) data, discussed in §2, and the trailing vortex literature. In §3,
we analytically derive the vorticity, transverse velocity, and circulation distribution
generated immediately downstream of a yawed actuator disk and compare the analytical
predictions to simulations. In §4, an eddy-viscosity assumption is applied to model the
turbulent diffusion during the downstream evolution of this initial vorticity distribution.
We propose appropriate velocity and length scales to be used to define an eddy-viscosity
that reproduces LES measurements. We derive analytical expressions for the maximum
vorticity and total circulation of each vortex and compare these to LES. Of particular
interest is to establish whether the decay of the CVP vortex strength can be explained
by a simple model of cross-diffusion between the two vortices, an insight that can be used
to further refine point vorticity models for wake deformation and curling.

2. Large eddy simulations of yawed wind turbines in the ABL

We study the decay of the vorticity shed from yawed wind turbines in the (neutrally-
stratified) ABL using LES of yawed actuator disks. LES is performed with the pseudo-
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Figure 1. Time-averaged streamwise vorticity distribution behind a yawed wind turbine with
γ “ 20˝ under turbulent ABL inflow. (a) Volume rendering of the vortex core with (b–d) contour
plots of the total streamwise vorticity. Vortex cores are outlined in black.

spectral/finite difference code LESGO, which has been used and validated in previous
work (Calaf et al. 2010; Stevens et al. 2018). The coordinate system x “ px, y, zq with the
unit vectors i, j, and k is defined such that x is the streamwise direction, y is the spanwise
direction, and z is the vertical direction. The origin is placed at the center of the disk
with radius R “ D{2 “ 50 m. The effective domain size is Lx “ 3.75 km, Ly “ 3 km, and
Lz “ 1 km, and we use 360 ˆ 288 ˆ 432 grid points. Turbulent inflow is generated using
a concurrent precursor domain (Stevens et al. 2018) with a friction velocity of u˚ “ 0.45
m/s. A shifted periodic boundary condition (Munters et al. 2016) with a 0.49Lz shift is
used to reduce streamwise streaks in the time-averaged velocity field. The wind turbine
with hub height zh “ 100 m is placed 500 m downstream of the domain inlet. Subgrid
stresses are modeled using the Lagrangian-averaged scale dependent model (Bou-Zeid
et al. 2005). Wall stresses are modeled using the equilibrium wall model (Moeng 1984)
with roughness length z0 “ 0.1 m.
The wind turbine is treated as a porous actuator disk that exerts an axial force T “

´ 1
2ρπR

2C 1
Tu

2
d, perpendicular to the disk, that depends on the local thrust coefficient C 1

T ,
disk-averaged velocity ud, disk radius R, and the density of air ρ. The total axial force T
is distributed uniformly across the disk, leading to a distributed force fpxq “ T Rpxqn,
using the normalized indicator function Rpxq, and points in the unit normal direction to
the disk n. The yaw angle γ is measured counter-clockwise from the positive x-axis toward
the positive y-axis such that the unit normal of the actuator disk is n “ cos γ i` sin γ j.
The normalized indicator function R “ G ˚ I is found by filtering (convolving) Ipxq “
π´1R´2δpxqHpR ´ rq (where δpxq is the Dirac delta function and Hpxq is the Heaviside
function) with a filtering function Gpxq. The latter is a three-dimensional Gaussian whose
width σR “ Δ{?

12 is equivalent to a top-hat filter (Pope 2000) with a filter size chosen

as Δ “ 1.5h, where h “ pΔx2`Δy2`Δz2q 1
2 is the root mean square of the grid spacings.

Simulations are run for yaw angles of γ “ 15˝, 20˝, 25˝, and 30˝ with a local thrust
coefficient of C 1

T “ 1.33. Velocity fields are time-averaged for a time T where T u˚{Lz « 8
(all variables in this paper are time-averaged). A representative time-averaged streamwise
vorticity ωx field for γ “ 20˝ is shown in Figure 1. The vorticity contour plots and volume
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Figure 2. (a) Maximum vorticity magnitude and (b) circulation magnitude for top (blue and
negative) and bottom (red and positive) vortices with γ “ 15˝ (˝), 20˝ (˝), 25˝ (˛), and 30˝ (Ÿ).

rendering show the initial generation of arcs of vorticity above and below the turbine
line of symmetry. These arcs decay downstream, each tending to a more axisymmetric
distribution. The bottom vortex becomes flattened, presumably due to the action of the
ground. Furthermore, secondary vortex structures are generated at the ground.
Even with the significant time-averaging and shifted periodic boundary conditions of

the inflow, some background (noisy) vorticity is evident in the contour plots. To distin-
guish between the shed CVP and the background vorticity, we apply Otsu’s method (Otsu
1979) on the positive and negative vorticity at each cross-plane. Otsu’s method maximizes
the intercategory (or minimizes the intracategory) variance, and thus identifies the region
with the strongest coherent vorticity, which we define as the vortex core.
To determine the circulation of each vortex as function of x, we numerically integrate

the vorticity over the core area to obtain Γcorepxq. The core vorticity ratio αpxq “
ωOtsupxq{ωmaxpxq is defined as the ratio of the thresholding value on vorticity that
separates the core vortex region from the remaining vorticity ωOtsupxq to the maximum
vorticity magnitude ωmaxpxq. The total circulation of each vortex is then estimated as
Γ pxq “ Γcorepxq{p1 ´ αpxqq. This approach exactly recovers the total circulation of a
Lamb-Oseen vortex (Saffman 1992). The downstream evolution of maximum vorticity
magnitudes ωmaxpxq and circulations Γ pxq for each γ measured from LES and normalized
by the inlet velocity U8 and disk diameter D are shown in Figure 2. We see similar
decaying behaviour for all yaw angles with the bottom vortex initially having a greater
core circulation than the top vortex and decaying more quickly. Unlike the peak vorticity
that begins to decay immediately downstream of the turbine, the circulation stays nearly
constant up to x{D „ 3 and only then begins its decay downstream.
A number of vortex decay mechanisms have been discussed (van Jaarsveld et al. 2011),

such as viscous diffusion, strong external turbulence, cross-diffusion across the line of
symmetry, and Crow instability breakup. When turbulence levels and shed vorticity
strength are moderate, evidence from many of these earlier simulations points to the
cross-diffusion mechanism (Cantwell & Rott 1988; Ohring & Lugt 1993; van Dommelen
& Shankar 1995; Leweke et al. 2016) playing a dominant role. In the following sections,
we develop a model first to predict the generation and then the decay of the yawed wind
turbine CVP.

3. Generation of counter-rotating vortices from yawed actuator disks

We first model the generation of the vorticity at the rotor plane. By approximating the
elliptic projection of the transverse force of an actuator disk as a circle, the transverse
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force can be written as

fy “ ´1
2ρCTU

28 cos2 γ sin γ HpR ´ rqδpxq, (3.1)

where CT is the standard thrust coefficient and r is the radial distance along the disk.
We also use r written in terms of the transverse coordinates (i.e. r2 “ y2 ` z2), and θ is
the polar angle measured from the positive y-axis toward the positive z-axis, i.e., sin θ “
z{r. Taking the curl of the mean momentum equation, linearizing the advective term,
and neglecting turbulent and viscous stresses, the linearized mean streamwise vorticity
transport equation (also used in Mart́ınez-Tossas et al. (2017)) becomes

U8Bxωx “ ´ρ´1Bzfy. (3.2)

Writing the derivative of the transverse force in terms of the cylindrical coordinate system
using the chain rule, using (3.1) and integrating (3.2) yields the vorticity distribution

ωxpx, r, θq “ ´ 1
2CTU8 cos2 γ sin γ sin θ δpr ´ RqHpxq. (3.3)

Integration of the vorticity (3.3) just downstream of the disk over the top and bottom
half-planes yields the circulation of both the top and bottom shed vortices

Γtop “´Γbottom “
ż 8

0

ż π

0

ωxp0`, r, θq r dθ dr“´RCTU8 cos2 γ sin γ. (3.4)

The vortices are counter-rotating with a circulation magnitude Γ0 “ RCTU8 cos2 γ sin γ,
which is identical to the predictions from lifting line theory (Shapiro et al. 2018).
The vorticity predicted by (3.3), which is valid for an idealized actuator disk, is

now compared to numerical simulations of a yawed actuator disk under uniform inflow
from Shapiro et al. (2018). In numerical simulations using a filtered force, the effective
radius of the wind turbine isR˚ “ R`0.75h (Shapiro et al. 2018), where h “ pΔx2`Δy2`
Δz2q 1

2 is the grid size. When comparing analytical predictions to numerical simulations
we use this effective radius and circulation Γ0̊ “ R˚CTU8 cos2 γ sin γ. The vorticity
distribution can be approximated by first mapping (3.3) with an effective radius R˚ and
circulation Γ0̊ onto an arc shaped line, where ωxpχ, ζq “ ´Γ0̊ {p2R˚q sin pχ{R˚q δpζq,
χ “ θr, and ζ “ r´R˚. This vorticity is then filtered (convolved) with a two-dimensional
Gaussian G2 “ p2πσ2

Rq´1 expp´pχ2 ` ζ2q{2σ2
Rq whose width σR is equal to the filtering

kernel used to filter the axial force to obtain

ωxpθ, rq “ ´ Γ0̊

2R˚
sinpθr{R˚q
σR

?
2π

exp

ˆ
´pr ´ R˚q2

2σ2
R

˙
exp

ˆ
´ σ2

R
2R2˚

˙
. (3.5)

As can be seen in Figure 3 for the case with C 1
T “ 0.8 and γ “ 20˝, the vorticity

distribution predicted by (3.5), Figure 3(a), reproduces the numerical results, Figure 3(d),
with the simulation performed for the same parameters. For comparison to simulations,
the thrust coefficient is calculated based on the local one used for the simulations
according to CT “ 16C 1

T {p4 ` C 1
T cos2 γq2 (Shapiro et al. 2018).

To validate the vorticity generation model, we also compare induced velocities by
applying the Biot-Savart law in the near turbine region:

vpxq “ ´ 1

4π

ż
ωxpx1qpz ´ z1q

|x ´ x1|3 d3x1 wpxq “ 1

4π

ż
ωxpx1qpy ´ y1q

|x ´ x1|3 d3x1. (3.6)

Integrating in the radial direction we obtain

vpxq“ 1

8π

Γ0

R

ż 8

0

ż 2π

0

R sin θ1pr sin θ ´ R sin θ1q dθ1 dx1

rpx ´ x1q2 ` pr cos θ ´ R cos θ1q2 ` pr sin θ ´ R sin θ1q2s 3
2

, (3.7)
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Figure 3. Near rotor (a,d) streamwise vorticity, (b,e) spanwise velocity, and (c,f) vertical
velocity distributions from a yawed actuator disk with C 1

T “ 0.8 and γ “ 20˝, with laminar
inflow. Top panels show values measured at x “ R and bottom panels show theory. A circle
with radius R˚ is shown in black in all panels.

and integration in the streamwise direction (Gradshteyn & Ryzhik 1980, #2.271.5) yields

vpxq “ 1

8π

Γ0

R

ż 2π

0

R sin θ1pr sin θ ´ R sin θ1q
„
1

a
` 1

a

x

pa ` x2q1{2

j
dθ1, (3.8)

where a “ pr cos θ ´ R cos θ1q2 ` pr sin θ ´ R sin θ1q2. We are primarily interested in v
at x ąą R or x ąą a, leading to v “ ´Γ0{4R and w “ 0 for r ď R, and v “
´Γ0{p4RqpR{rq2 cosp2θq and w “ ´Γ0{p4RqpR{rq2 sinp2θq for r ą R. The w component
has been found by using the continuity equation. Inside the radius of the actuator disk,
the v velocity component (Γ0{4R) is identical to the constant prediction from lifting line
theory (Shapiro et al. 2018), and the w component vanishes. Outside the radius of the
actuator disk, the velocity components depend on the polar angle and decrease with the
squared radial distance.
The predictions for v and w are compared to simulations for C 1

T “ 0.8 and γ “ 20˝
measured at x “ R in Figure 3(b-c,e-f). To compare the theoretically predicted velocity
components to simulation results, the velocity must be sampled before the self-induction
of the vorticity is considerable. However, directly downstream of the actuator disk, the
actuator disk streamtube is still expanding from the non-negligible streamwise pressure
gradient induced by the streamwise component of the axial force. To counteract this
effect in the simulation measurements, we have removed the expansion expected from a
decelerating streamtube by plotting v ` ur cos θ and w ` ur sin θ, where ur is the radial
velocity. It is obtained by measuring the streamwise velocity gradient at the center of
the actuator disk streamtube (assuming that Bxu “ BxupR, 0, 0q for r ď R˚ and Bxu “ 0
for r ą R˚) and radially integrating the continuity equation, i.e. ur “ pr{2qBxupR, 0, 0q
for r ď R˚ and ur “ pR2˚{2rqBxupR, 0, 0q for r ą R˚. With this correction included, the
velocity components agree well with simulations, thus further supporting the predicted
generated vorticity distribution described in (3.3).
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4. Turbulent decay of counter-rotating vortices in the ABL

We now consider the decay of the CVP due to the surrounding turbulence in the ABL
and test the implications of the cross-diffusion hypothesis (Cantwell & Rott 1988; Ohring
& Lugt 1993; van Dommelen & Shankar 1995). In our simplified model, the self-induced
deformation of the shed vorticity sheet is neglected, the ABL shear is also neglected, and
only turbulent diffusion is considered. The boundary layer assumptions are applied to
the streamwise vorticity equation downstream of the turbine (Saffman 1992; Pope 2000),
and (3.2) is replaced by an advection-diffusion equation with eddy viscosity νT pxq:

U8Bxωx “ νT pxq `B2
yωx ` B2

zωx

˘
. (4.1)

First, note that a point vortex ωxpx0, y, zq “ Γpδpy ´ y0qδpz ´ z0q with circulation Γp

located at px0, y0, z0q that evolves under (4.1) diffuses downstream (Saffman 1992) as

ωxpx, y, zq “ Γp

4πη2pxq exp
ˆ

´py ´ y0q2 ` pz ´ z0q2
4η2pxq

˙
, (4.2)

where the viscous length scale ηpxq results from the integral of the eddy viscosity

η2pxq “ U´18
şx
x0

νT px1q dx1. (4.3)

The virtual origin x0 is introduced to account for the finite thickness of the initial vorticity
distribution, which depends on the grid size in simulations or potentially the chord size
of a physical turbine. The solution in (4.2) is equivalent to filtering the initial condition
with a two-dimensional Gaussian kernel with a width of

?
2 ηpxq, since the underlying

governing equation (4.1) is linear. This result is then applied to the initial vorticity
distribution (3.3) generated by the yawed turbine by placing point vortices around the
circle with radius R at locations px0, R cos θ,R sin θq with differential circulation dΓp “
´Γ0 sin θ{2 dθ. Integrating around the circle leads to the vorticity field

ωxpx, y, zq “ ´
ż 2π

0

Γ0 sin θ

8πη2pxq exp
ˆ

´py ´ R cos θq2 ` pz ´ R sin θq2
4η2pxq

˙
dθ. (4.4)

While (4.4) cannot be integrated directly for all y and z, the integral of (4.4) coincident
with the peak vorticity magnitude at y “ 0 and z “ ˘R can be integrated as

ωmaxpxq “ Γ0

R2

R2

4η2pxq exp
ˆ

´ R2

2η2pxq
˙
I1

ˆ
R2

2η2pxq
˙
, (4.5)

where In is the modified Bessel function of the first kind with order n.
The total circulation in the vortex system generated by a yawed actuator disk vanishes

in all streamwise planes, i.e. Γtotalpxq “ ş8
´8

ş8
´8 ωxpx, y, zq dy dz “ 0, because the vortic-

ity across the y-axis is equal and opposite. Here, we have neglected the image vorticity due
to the ground interaction. Integrating each vortex Γ pxq “ | ş8

0

ş8
´8 ωxpx, y, zq dy dz| “

| ş0
´8

ş8
´8 ωxpx, y, zq dy dz| yields a normalized circulation

Γ pxq
Γ0

“
?
π

4

R

ηpxq exp
ˆ

´ R2

8η2pxq
˙ „

I0

ˆ
R2

8η2pxq
˙

` I1

ˆ
R2

8η2pxq
˙j

, (4.6)

whose magnitude monotonically decreases for η ě 0. This decrease in circulation is caused
purely by the cancellation of vorticity along the y-axis as vorticity diffuses downstream.
The problem of properly specifying the eddy viscosity is approached using a mixing

length model νT pxq “ υ�, where υ is a velocity scale and � is the mixing length (Pope
2000). The appropriate velocity and length scales are specified using reasoning analogous
to that described in Shapiro et al. (2019) for wind turbine wakes. For a free wake, the
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mixing length scales with the wake width and the scale of the velocity fluctuations is
proportional to the velocity deficit (Pope 2000). In the ABL, however, turbulent mixing
of the wake is dominated by the boundary layer induced turbulence, whose fluctuations
are proportional to the friction velocity. Therefore, the appropriate velocity scale is the
friction velocity, i.e. υ „ u˚, and the appropriate length scale is the wake size (Shapiro
et al. 2019). For a vortex in the ABL, the reasoning remains the same and the eddy
viscosity is νT “ u˚�, where � is the size of the vortex.
In order to specify the size of the vortex, we turn to similarity scaling for wakes in the

ABL (Shapiro et al. 2019), where the wake grows linearly with downstream distance, i.e.
� „ x. Equivalently, the Jensen wake model (Jensen 1983) assumes that the diameter of
a top-hat wake is Dw “ D ` 2kx, where k is the wake expansion rate commonly taken
as k “ u˚{U8. Applying the log law to the inlet velocity U8 “ pu˚{κq lnpzh{z0q, where
κ “ 0.4 is the von Kármán constant, results in an expansion rate that depends on the
hub height and roughness height k “ κ{ lnpzh{z0q. We assume that the vorticity grows
at the same rate 2kx, but initially starts with thickness much smaller than D. In order
to write � in terms of the Jensen model top-hat length scale, we note that a point vortex
filtered with a box filter with a scale β has the same second moment (Pope 2000) as a
viscously diffused point vortex with length scale β{?

24. Therefore, we write the mixing
length as � “ 2kpx ´ x0q{?

24. Thus the resulting eddy viscosity and squared viscous
length scale are respectively modeled according to

νT pxq “ u˚2kpx ´ x0q{?
24 and, from (4.3): η2pxq “ k2px ´ x0q2{?

24. (4.7)

The maximum vorticity, circulation, and vortex growth rate are now compared to data
from simulations in Figure 4. In the model, the virtual origin x0 is chosen by noting the
equivalence between the effect of viscous diffusion with a length scale η to Gaussian
filtering with a length scale

?
2 η. Considering the filtered axial force with length scale

σR “ Δ{?
12, we conclude that the virtual origin is x0 “ ´24´1{4Δ{k. A similar effect

is expected for either a physical wind turbine or a drag disk, where the thickness of
the initial vorticity distribution will scale with the chord of the blades or thickness of
the disk. In Figures 4 we compare the model predictions with the arithmetic average
of LES measured peak vorticity and circulation magnitudes from the top and bottom
vortices, since the simulation data showed some differences between the top and bottom
vortices and these differences are not included by the current theory. Results shown in
Figure 4 (c,d) also show that the normalizations by R˚ and Γ0̊ suggested by the theory
for maximum streamwise vorticity (4.5) and circulation (4.6) (with effective parameters
in LES R˚ and Γ0̊ determined as explained in §3) yield good collapse of the LES data
and with the theory.
In order to validate the growth rate of the mixing length, we calculate the vortex radius

from simulations, which is defined as the location of the maximum spanwise velocity above
the rotor r1pxq ` R “ argmax vpx, 0, zq. For a Lamb-Oseen vortex, which is expected
beyond x{D ą 5, the vortex radius is (Saffman 1992)

r1 “ 2.24η “ 2.24 p24q´ 1
4 kpx ´ x0q « kpx ´ x0q, with k “ u˚{U8. (4.8)

As shown in the inset to Figure 4(a), the growth rate of the measured vortex radius is
linear with x and agrees with the theory.
Consideration of the transformation of the vorticity from a diffused line around the

edge of the disk to a diffused point vortex as well as the viscous length scale ηpxq
reveals power law scalings for the maximum vorticity. Initially, the vorticity is confined
to a line around the edge of the disk. Considering this limiting case with z being the
coordinate normal to the line, Btωx “ νptqB2

zωx with ωxpx, 0q “ Γpδpzq, yields the solution
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Figure 4. Maximum vorticity and circulation magnitude normalized by (a–b) rotor diameter
D and inlet velocity U8 and (c–d) theoretical circulation Γ˚

0 and effective radius R˚. (e; inset
to (a)) Vortex radius showing linear growth. Symbols show simulation results (the arithmetic
average of the magnitudes corresponding to top and bottom vortices) and lines show theory,
i.e. (4.5) for (a,c), (4.6) for (b,d), and (4.8) for (e), the inset in (a).

ωx “ Γp{pηptq?
4πq expp´z2{p4η2ptqq, with maximum circulation scaling inversely with

the viscous length scale ωmax „ η´1. In the far field, the vorticity behaves like a
point vortex, as derived earlier, with the expected scaling of ωmaxpxq „ η´2. With the
virtual origin from the simulations x0 « ´2D, the squared viscous length scales like
η2pxq „ x2 ` 4xD ` 4D2. Therefore, for moderate x{D « 2, where the 4xD term is
the same order as the 4D2 term and dominates the x2 term, the squared viscous length
scale initially scales like η2pxq „ x. For large x{D, the squared viscous length scales like
η2pxq „ x2. Combined with the scaling of line and point vortices, this yields the following
power laws for the maximum vorticity: ωmax „ x´1{2 for moderate x{D and ωmax „ x´2

for large x{D. These scaling laws agree well with simulations and theory, as shown in
Figure 4(c).

5. Discussion and Conclusions

Using concepts drawn from the airplane trailing vortex literature (Cantwell & Rott
1988; Ohring & Lugt 1993; van Dommelen & Shankar 1995; Spalart 1998), we study
the decay of the vortices generated by yawing of wind turbines. The theory presented in
§3 and §4 considers the effect of linear advection and turbulent diffusion on the decay
of the vorticity and circulation shed from yawed turbines. The analysis is based on
a streamwise-varying eddy viscosity that depends on the growth rate of the vorticity
length scale and the boundary layer friction velocity. The analysis enables us to obtain
analytical expressions for the maximum vorticity and shed circulation from each of the
CVP that agree well with actuator disk simulations of yawed wind turbines in the ABL.
Results refine the emerging understanding of the decay of the vorticity shed from yawed
turbines. As in Shapiro et al. (2019), we find that careful consideration of the appropriate
mixing length and velocity scale for the eddy viscosity of wind turbines in the ABL yields
an eddy viscosity that increases linearly with downstream distance and a mixing length
that grows at a rate k “ u˚{U8. While thermal stability is not directly considered in
the model so far, the effects of thermal stratification could be incorporated using, e.g.,
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Monin-Obukhov similarity theory to introduce a stability correction factor in estimating
the vortex expansion rate k.
The results provide a theoretical framework for engineering models of the shed vorticity

consisting of closed-form analytical expressions, i.e. (4.5), (4.6) and (4.8). These do
not require numerical integration of differential equations to evaluate the model, hence
facilitating eventual use in engineering models for wind farm design and control. The
expressions for total circulation of the vortices is particularly useful for models that
consider the yawed turbine CVP as a pair of Lamb-Oseen vortices. The scaling also
agrees well with the empirical observation of Zong & Porté-Agel (2020) in the near field
of the wake.
Turbulent mixing appears to be the dominant process that governs the decay of the

shed vorticity. The yawed turbine generates equal and opposite circulation bound to the
rotor disk that is shed downstream, resulting in vanishing total circulation. For a single
vortex the circulation would remain constant even as the vorticity diffuses downstream.
However, since the opposing negative vorticity similarly diffuses, the cancellation of the
diffused vorticity along the centerline of the wake results in the apparent “dissipation”
of circulation for the entire system. The cross-diffusion hypothesis, however, does not
fully explain the apparent differences between the top and bottom vortices in the CVP.
Ground effects, vertical shear, and the vertical structure of turbulence in the ABL clearly
play a role in creating some differences in the evolution of the top and bottom vortices
that more refined models should also aim to reproduce.
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