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Vecchia Approximations of Gaussian-Process
Predictions

Matthias Katzfuss, Joseph Guinness, Wenlong Gong, and Daniel Zilber

Gaussian processes (GPs) are highly flexible function estimators used for geospatial
analysis, nonparametric regression, and machine learning, but they are computationally
infeasible for large datasets. Vecchia approximations of GPs have been used to enable
fast evaluation of the likelihood for parameter inference. Here, we study Vecchia approx-
imations of spatial predictions at observed and unobserved locations, including obtaining
joint predictive distributions at large sets of locations. We consider a general Vecchia
framework for GP predictions, which contains some novel and some existing special
cases. We study the accuracy and computational properties of these approaches theo-
retically and numerically, proving that our new methods exhibit linear computational
complexity in the total number of spatial locations. We show that certain choices within
the framework can have a strong effect on uncertainty quantification and computational
cost, which leads to specific recommendations on which methods are most suitable for
various settings. We also apply our methods to a satellite dataset of chlorophyll fluores-
cence, showing that the new methods are faster or more accurate than existing methods
and reduce unrealistic artifacts in prediction maps. Supplementary materials accompa-
nying this paper appear on-line.

Key Words: Computational complexity; Kriging; Large datasets; Sparsity; Spatial
statistics.

1. INTRODUCTION

Gaussian processes (GPs) are popularmodels for functions, time series, and spatial fields,
with many application areas such as geospatial analysis (e.g., Banerjee et al. 2004; Cressie
and Wikle 2011), nonparametric regression and machine learning (e.g., Rasmussen and
Williams 2006), the analysis of computer experiments (e.g., Kennedy and O’Hagan 2001),
and Bayesian optimization of expensive functions (Jones et al. 1998) and of the tuning
parameters in neural networks (e.g., Snoek et al. 2012). Here, we focus on spatial predic-
tion using GPs. GPs are flexible, interpretable, allow natural probabilistic quantification of
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uncertainty, and are thus well-suited for big-data applications in principle. However, direct
application of GPs incurs computational cost that is cubic in the data size, which is too
expensive for many modern datasets of interest.

To deal with this computational problem, numerous GP approximations or simplifying
assumptions have been proposed. These include imposing sparsity on covariance matrices
(Furrer et al. 2006; Kaufman et al. 2008; Du et al. 2009), sparsity on precision matrices
(Rue and Held 2005; Lindgren et al. 2011; Nychka et al. 2015), composite likelihoods (e.g.,
Curriero and Lele 1999; Stein et al. 2004; Eidsvik et al. 2014), and low-rank structure (e.g.,
Higdon 1998; Wikle and Cressie 1999; Quiñonero-Candela and Rasmussen 2005; Banerjee
et al. 2008; Cressie and Johannesson 2008; Katzfuss and Cressie 2011; Tzeng and Huang
2018). While low-rank approaches are poorly suited for capturing fine-scale dependence,
sparsity-based approaches can generally not guarantee linear scaling in the data or grid size,
especially in higher dimensions. Local GP approximations (e.g., Gramacy and Apley 2015)
are fast but do not scale well to joint predictions at many locations.

We focus on Vecchia approximations, which obtain a sparse Cholesky factor of the
precision matrix by removing conditioning variables in a factorization of the joint density
of the GP observations into a product of conditional distributions (Vecchia 1988). This
approach has become very popular for likelihood approximations for parameter inference
(e.g., Stein et al. 2004; Sun and Stein 2016; Guinness 2018). For the typical setting of GP
observations that include additive noise, Katzfuss and Guinness (2019) consider a general
Vecchia framework that applies the Vecchia approximation to a vector consisting of both
the latent GP realizations and the noisy data. This framework contains many other popular
GP approximations as special cases (e.g., Snelson and Ghahramani 2007; Finley et al. 2009;
Sang et al. 2011; Datta et al. 2016; Katzfuss 2017; Katzfuss and Gong 2019).

Several authors have also proposed the use of Vecchia approximations for the important
task of GP prediction, also referred to as kriging. The approach in Vecchia (1992) for one-
at-a-time Vecchia predictions has squared time complexity in the number of observations.
Datta et al. (2016) and Finley et al. (2019) proposed Bayesian inference and prediction
based on Vecchia-type approximations, which we will discuss and compare to in detail
in the present paper. Guinness (2018) considered prediction using conditional expectation
and uncertainty quantification using conditional simulations in a Vecchia approach based
solely on conditioning on observed variables. This is relatively computationally cheap, but
uncertainty measures contain random simulation error, and the observed conditioning might
not provide accurate approximations in the presence of noise (cf. Katzfuss and Guinness
2019). Vecchia approximations have also been employed as preconditioners in iterative
solvers that are used in prediction (Stroud et al. 2017), but this approach is feasible only
if prediction is desired at a small number of locations, or if additional approximations are
made (Guinness 2019). The multi-resolution approximation (Katzfuss 2017; Katzfuss and
Gong 2019) and related approaches relying on domain partitioning (e.g., Sang et al. 2011;
Zhang et al. 2019), shown in Katzfuss and Guinness (2019) to be special cases of Vecchia
approximations, also provide fast GP prediction, but they can lead to artifacts along partition
boundaries. We will discuss these connections and provide numerical comparisons.

Our article synthesizes and extends the literature on Vecchia approximations of spatial
GP predictions, in particular the use of the general Vecchia approximation (Katzfuss and
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Guinness 2019) for marginal and joint predictive distributions. Extension of the general
Vecchia framework to GP prediction was not considered in Katzfuss and Guinness (2019)
and requires consideration of complex issues, including how to order variables and choose
conditioning sets to achieve accurate joint predictions at observed and unobserved loca-
tions and how to guarantee fast computation of relevant summaries of the joint predictive
distribution. Here, we systematically study these issues with regard to the accuracy of the
approximations and their computational burden. We introduce novel approaches within the
framework, for which we can guarantee sparsity of the matrices necessary for inference,
resulting in linear memory and time complexity in the number of data points and predic-
tions for fixed conditioning-set size. Our framework enables systematic discussion, study,
and comparison of our new methods and existing approaches, based on which we make
specific recommendations about which methods are most suitable in various situations. Our
framework is agnostic with respect to the inferential framework, allowing both frequen-
tist and Bayesian inference on potential hyperparameters. We focus on the approximation
of predictive distributions conditional on hyperparameters, to avoid confounding with the
choice of hyperparameter priors or inference approaches.

Answering scientific questions sometimes requires quantifying the uncertainty of linear
combinations or other functions of multiple predictions. For example, climate scientists
are interested in global average temperature, hydrologists consider the total rainfall in a
catchment area, and carbon-cycle scientists want to infer CO2 surface fluxes from kriged
maps of atmospheric CO2 concentrations. Joint predictive distributions at a set of prediction
locations are required to quantify uncertainties of these spatial averages, totals, or other
follow-upor “downstream” analyses.Our article details how to compute prediction variances
for linear combinations of predictions under the general Vecchia approximation. We also
consider prediction of the latent process at observed locations, which is useful in spatial
smoothing and in a Vecchia–Laplace approximation of generalized GPs for non-Gaussian
spatial data (Zilber and Katzfuss 2019).

This article is organized as follows. Section 2 reviews GP prediction. In Sect. 3, we
introduce general Vecchia approximations of GP prediction. In Sect. 4, we discuss specific
methods and study their properties. Sections 5 and 6 provide numerical comparisons using
simulated and real data, respectively. We conclude in Sect. 7. Appendices A–E contain
details and proofs. A separate Supplementary Material document contains Sections S1–S4
with additional details, plots, comparisons, and a description of another Vecchia prediction
method. The proposed methods are implemented in the R package GPvecchia (Katzfuss
et al. 2020b). Code to reproduce our results is provided with this article.

2. EXACT GAUSSIAN-PROCESS PREDICTION

The process of interest is denoted by {y(s) : s ∈ D}, or y(·), on a continuous (i.e.,
non-gridded) domain D ⊂ R

d , d ∈ N
+. We assume that y(·) ∼ GP(0, K ) is a Gaussian

process (GP) with mean zero and covariance function K : D × D → R, which is assumed
known up to some parameters. Let si ∈ D for i = 1, . . . , n and define the location vector
S = (s1, . . . , sn). For simplicity, we assume throughout that the locations in S are unique.
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Define yi = y(si ) and the vectors y = (y1, . . . , yn) and z = (z1, . . . , zn). The response
variables zi are noisy versions of latent yi : zi |y ∼ N (yi , τ 2i ) independently for all i . Thus,
the covariance matrix of y is K = K (S,S), and the covariance matrix of z is C = K + D,
where D is a diagonal matrix containing the noise or nugget variances, Di i = τ 2i . Define
the index vector o ⊂ (1, . . . , n) of length nO = |o| such that the subvector zo contains
all observed response variables (i.e., the data), and So represents the vector of observed
locations. (We use the vector and indexing notation described in Appendix A.) We also
define p = (1, . . . , n)\o to be an index vector of length nP = |p| = n − nO , such that Sp

is the vector of unobserved (prediction) locations (cf. Le and Zidek 2006). In summary, we
have:

Notation Terminology

o ⊂ (1, . . . , n) vector of indices of observed locations
p = (1, . . . , n)\o vector of indices of (unobserved) prediction locations
y, yo, yp vectors of latent variables
z, zo, zp vectors of response variables

Inference on unknown parameters θ in K and τ 2i can be carried out based on the multi-
variate normal likelihood, f (zo) = NnO (zo|0,Coo), or approximations thereof.

The goal for prediction is to obtain the posterior predictive distribution of y via

f (y|zo) = ∫
f (y|zo, θ) dF(θ |zo). (1)

The density f (y|zo, θ) is normal with mean μ(θ) = K•oC−1
oo zo and covariance matrix

�(θ) = K − K•oC−1
oo Ko•, (2)

where K and C implicitly depend on θ and • denotes the vector of all indices. When
using maximum-likelihood estimation, the posterior distribution F(θ |zo) of the param-
eters is effectively approximated by a point mass at θ = θ̂ in (1), and so f (y|zo) =
N (y|μ(θ̂),�(θ̂)). For Bayesian inference using MCMC, the parameter posterior in
(1) is approximated as discrete uniform on, say, θ (1), . . . , θ (L), and so f (y|zo) =
(1/L)

∑
l N (y|μ(θ (l)),�(θ (l))), which is often further approximated by samples from the

summands. Therefore, for both inferential paradigms, GP prediction requires obtaining
f (y|zo, θ) = N (y|μ(θ),�(θ)) for particular fixed values of θ . Here and in the following,
we will thus suppress dependence on θ and regard it as fixed, unless stated otherwise. Some-
times (e.g., for cross validation), interest might also be in predicting zp, but this is a trivial
extension of predicting yp, in that zp|zo ∼ N (μp,� pp + Dpp).

Point predictions at individual locations are functions of the marginal distributions yi |zo
only, but quantifying the uncertainty of linear combinations (e.g., spatial averages) and
generating posterior simulations require the joint posterior distribution of y given zo. While
GP prediction is mathematically straightforward, it can be computationally expensive. The
time complexity for obtaining the entirematrix� in (2) isO(n3O+nn2O+n2nO), and even just
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obtaining its diagonal elements (i.e., the prediction variances) requiresO(n3O + nn2O) time.
Thus, GP prediction is computationally infeasible for large nO or n, and approximations or
simplifying assumptions are necessary.

3. THE GENERAL VECCHIA FRAMEWORK FOR GP
PREDICTION

3.1. DEFINITION OF THE FRAMEWORK

The density of any random vector x can be factored exactly as f (x) = ∏
i f (xi |x1, . . . ,

xi−1). Thismotivates a general Vecchia approximation (Katzfuss andGuinness 2019) forGP
prediction, which applies Vecchia’s approximation (Vecchia 1988) to the vector x = zo∪y:

f̂ (x) = ∏n+nO
i=1 f (xi |xg(i)), (3)

where g(i) ⊂ (1, . . . , i − 1) is a conditioning index vector of size |g(i)|, often formed
based on variables with locations nearby in space to xi . If g(i) = (1, . . . , i − 1) for every
i , then the exact distribution is recovered: f̂ (x) = f (x). If |g(i)| is bounded by some small
integer m � n, the approximation can lead to enormous computational savings, because
only matrices of size m ×m need to be decomposed to evaluate (3). Recent results (Schäfer
et al. 2020) indicate that in some settings, the approximation error can be bounded with m
increasing only polylogarithmically in n. Because the general Vecchia approximation f̂ (x)
is a valid probability distribution (e.g., Datta et al., 2016, App. A; Katzfuss and Guinness,
2019, Prop. 1), it can be used for approximating the posterior predictive distribution f (y|zo)
by applying the rules of probability to f̂ (x) to obtain f̂ (y|zo). If predictions at additional
locations are desired later, the corresponding realizations of y(·) can be appended to the end
of x for consistency (see Sect. 4.3.4).

The accuracy of a general Vecchia approximation depends on the choice of the order-
ing of the variables in x and the specification of the conditioning index vectors g(i). The
computational efficiency of the approximation is governed by several factors, including the
sparsity of the precision matrix for y|zo and its Cholesky factor. For a given m, Katzfuss
and Guinness (2019) showed that there is often a trade-off in conditioning on latent versus
response variables, in that it can be more accurate but also more computationally expensive
to condition on yk rather than on zk . In Sect. 4, we study how ordering and condition-
ing choices affect both the quality of the approximation and its computational burden, for
the purpose of providing practical guidelines for using Vecchia’s approximation for spatial
prediction.

3.2. MATRIX REPRESENTATIONS

In this subsection, we introduce matrix notation and recapitulate existing results (e.g.,
Katzfuss and Guinness 2019). Let Q be the precision matrix for x under f̂ (x). The joint
distribution implied by the approximation in (3) is multivariate normal, f̂ (x) = N (0,Q−1).
Define chol(M) to return the (lower-triangular) Cholesky factor ofM, rev(M) to return the
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reverse row–column reordering of M and rchol(M) = rev(chol(rev(M))), which gives the
(upper-triangular) upper–lower decomposition forM. Our notation for the relevant matrices
is the following:

Notation Note

� = #(y, x) indices in x occupied by latent variables y (i.e., y = x�)
r = #(zo, x) indices in x occupied by response variables zo (i.e., zo = xr )
U = rchol(Q) upper-lower Cholesky decomposition of Q (i.e., Q = UU′)
W = Q�� = U�,•U′

�,• posterior precision matrix of y given zo
V = rchol(W) upper-lower Cholesky decomposition of W (i.e., W = VV′)

In practice, there is no need to construct the matrix Q; rather, we compute the nonzero
entries of U directly via the methods outlined in Appendix B. From the expressions in
Appendix B, it is easy to see that U is sparse with at most m off-diagonal nonzero entries
per column, and U can be computed in O(nm3) time.

3.3. GENERAL VECCHIA PREDICTIONS

The goal for GP prediction is to obtain the posterior predictive distribution of y given the
response zo, or desired summaries of this distribution.As explained inAppendixC, it suffices
to consider this distribution for certain values of the parameters θ , which we again suppress
for notational simplicity. General Vecchia prediction approximates the exact conditional
distribution f (y|zo) as implied by the joint distribution f̂ (x) in (3) with x = y ∪ zo:

f̂ (y|zo) = f̂ (x)
∫

f̂ (x)dy
=:Nn(μ,�).

Since W = Q�� is the submatrix corresponding to y of the full precision matrix Q of
x = y ∪ zo, it is a well-known property of precision matrices that � = W−1. While the
posterior precision matrix W is sparse, the covariance matrix � will generally be a dense
n × n matrix. Thus, it is infeasible to actually compute and store this entire matrix when n
is large. However, quantities of interest in the context of prediction can be computed using
the general Vecchia approximation as follows:

1. The posterior mean or kriging predictor μ = E(y|zo): It is straightforward to show
that μ = −(V′)−1V−1U�,•U′

r,•zo (Katzfuss and Guinness 2019, proof of Prop. 2).

2. The prediction variances diag(�) = (var(y1|zo), . . . , var(yn|zo)): Based on V, a
selected inversion algorithm, also referred to as the Takahashi recursions (Erisman
and Tinney 1975; Li et al. 2008; Lin et al. 2011), can be used to compute �i j for all
pairs i, j withWi j 	= 0. Thus, it also returns the prediction variances �i i .

3. The joint posterior distribution of linear combinations (e.g., spatial averages):
Hy|zo ∼ Nk

(
Hμ, (V−1H′)′(V−1H′)

)
, where H is k × n. As V−1H′ is generally
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Table 1. Summary of considered methods, with details on response-first ordering (RF) given in Sect. 4.1 and on
latent-first ordering (LF) in Sect. 4.2.

Method Related to References cnvrg. Linear Recommended

RF-full ✓ ✓ 2D, large nO , nP
RF-stand Standard Vecchia Guinness (2018) ✓ ✓ 2D, nP � nO
RF-ind NNGPR, local kriging Finley et al. (2019) ✗ ✓

LF-full NNGP with ref. set S Datta et al. (2016) ✓ ✗ 2D, small nO
LF-ind NNGPC Finley et al. (2019) ✗ ✗

LF-auto ✓ ✓ 1D

cnvrg.: convergence to exact joint distribution, f̂ (y|zo) → f (y|zo) as conditioning-set size m → n; linear:
computational complexity guaranteed to be linear in n for fixed m; NNGP: nearest neighbor Gaussian process;
NNGPR: NNGP-response; NNGPC: NNGP-collapsed.

dense, only a moderate k is computationally feasible. The variances of linear com-
binations can be computed faster, as diag(var(Hy|zo)) = ((V−1H′) ◦ (V−1H′))′1n ,
where ◦ denotes element-wise multiplication and 1n is an n-vector of ones.

4. Conditional simulation from the posterior predictive distribution N (μ,�): Draw
n i.i.d. samples ai ∼ N (0, 1) from the standard normal distribution, set a =
(a1, . . . , an)′ and y∗ = μ + (V′)−1a. Then, y∗ ∼ N (μ,�).

All of these tasks require computation of V = rchol(W) from U. The cost of this Cholesky
factorization depends on the number of nonzero entries per column in V. In general, it is
crucial for fast predictions for large n thatV is sufficiently sparse. Computational complexity
is discussed in Sect. 4.3.3 in more detail.

4. SPECIFIC METHODS AND THEIR PROPERTIES

We now consider two different ordering schemes, response-first and latent-first ordering,
within the general Vecchia framework for fast GP prediction, along with several special
cases. The methods are summarized in Table 1 and illustrated in Fig. 1. In Section S2, we
consider an additional approach based on a third ordering scheme, which is an extension of
the sparse general Vecchia likelihood approximation of Katzfuss and Guinness (2019), but
this approach is less suitable for GP prediction. The general Vecchia framework allows a
coherent, systematic discussion and comparison of the different methods, which has so far
been lacking in the literature on scalable GP predictions.

In our framework, the vector S is obtained based on an ordering of the unordered set of
locations {s1, . . . , sn}. For most of the methods below, we assume an observed-prediction
(OP) restriction, meaning that the observed locations are ordered first and prediction loca-
tions last; that is, o = (1, . . . , nO) and p = (nO + 1, . . . , n). Unless stated otherwise, we
recommend and use a maximum–minimum distance (maxmin) ordering (Guinness 2018;
Schäfer et al. 2017) constrained to order the prediction locations last. The latent and response
variables are then ordered according to how the locations are ordered, with yi and zi cor-
responding to si . After ordering y and z according to the locations, we must consider the
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RF-full z1 z2 z3 y1 y2 y3 y4 y5

RF-stand z1 z2 z3 y1 y2 y3 y4 y5

RF-ind z1 z2 z3 y1 y2 y3 y4 y5

LF-full y1 y2 y3 y4 y5 z1 z2 z3

LF-ind y1 y2 y3 y4 y5 z1 z2 z3

LF-auto y1 y2 y3 y4 y5 z1 z3 z5

Figure 1. Illustration of the methods in Table 1 as directed acyclic graphs (DAGs) for a toy example with n = 5,
nO = 3, nP = 2, and conditioning sets of size m = 2. Variable ordering is from left to right, and conditioning
indicated by arrows. Response variables zi with i ∈ o are in squares, with dashed arrows to and from response
variables. Latent variables yi are in circles; yi with i ∈ o are unshaded; yi with i ∈ p are in grey, as are arrows
between them.

separate issue of how to order y and zo within x. We study the impact that this choice has
on approximation accuracy and computational cost.

This section also studies the impact of how the conditioning sets are chosen. The Vecchia
approximation assumes that each variable xi only conditions on variables that are ordered
previously in x. Of those previously ordered variables, we recommend considering those
corresponding to the nearestm locations, potentially under additional restrictions. However,
if s j is one of the nearestm locations, and both y j and z j are ordered before xi , then we only
consider one of them, because of conditional independence of xi and z j given y j . Similarly,
if yi is ordered before zi , then zi will only condition on yi , because zi is conditionally
independent of all other variables in x given yi .
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4.1. RESPONSE-FIRST ORDERING

Response-first ordering means that x is ordered as x = (xr , x�) = (zo, y), allowing us to
rewrite (3) as

f̂ (x) =
(∏n

i=1 f (yi |yqy(i), zqz(i))
) (∏

i∈o f (zi |zg(i))
)
, (4)

where qy(i) and qz(i) are index sets implied by g( j) for yi = x j ; for example, if k ∈ g( j)
and xk = zl , then l ∈ qz(i). Under response-first ordering, V = U�� is simply a submatrix
of U. To see this, note that U can be written in block form as

U =
[
Urr Ur�

U�r U��

]

=
[
Urr Ur�

0 U��

]

, (5)

where U, and hence, U�� are upper-triangular. Therefore,W = U�,•U′
�,• = U��U′

��, and so
V = rchol(W) = U��. Thus, after constructing U, no additional computation is required to
obtain V, so predictions can be computed in linear time. It is important to use this result to
fill the entries of V directly, rather than formingW and factoring it. The latter approach can
lead to a large number of numerical nonzeros in V, which are symbolic nonzero entries in
V that are zero in theory but nonzero in practice due to numerical errors. These numerical
nonzeros are illustrated in Figure S1 and described in detail in Appendix D.

For the following threemethods, we consider response-first ordering under OP restriction
(see beginning of Sect. 4), meaning that y = (yo, yp), and so x = (zo, yo, yp).

Response-first ordering, full conditioning (RF-full) This scheme is labeled as “full”
because we allow every variable to condition on any variables ordered previously in x.
In (4), the conditioning vectors yqy(i) and zqz(i) are chosen as the m variables closest in
space to yi , among those that are previously ordered in x, conditioning on the latent y j
instead of the response z j whenever possible. Specifically, we set q(i) to consist of the
indices corresponding to the m nearest locations to si , including i for i ∈ o, and not includ-
ing i for i ∈ p. Then, for any j ∈ q(i), we let yi condition on y j if it is ordered previously
in x, and condition on z j otherwise. More precisely, we set qy(i) = { j ∈ q(i) : j < i} and
qz(i) = { j ∈ q(i) : j ≥ i}.

Response-first ordering, standard conditioning (RF-stand) This scheme is identical to
RF-full except that yp conditions only on yp and zo, not on yo. More precisely, we use
the same q(i) as in RF-full, but then set qy(i) = { j ∈ q(i) : j < i; j ∈ p} and
qz(i) = q(i)\qy(i). This approach is labeled as “standard” because the posterior mean
and conditional simulations of yp from this model are equivalent to those obtained in Guin-
ness (2018), which used the standard Vecchia approximation.

RF-stand is computationally useful if only predictions of yp (not of yo) are desired,
because yo can be removed from x without changing the predictions of yp. Specifically,
we then have U�o�p = 0 from (9). It can be shown that W = blockdiag(Woo,Wpp)

and V = blockdiag(Voo,Vpp) are both block diagonal with Vpp = U�p�p , and μp =
(U′

�p�p
)−1(U�o�p )

′zo. Thus, when only prediction at unobserved locations Sp is desired,
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the prediction tasks laid out in Sect. 3.3 can be carried out solely based on U•�p , which is
the submatrix formed by the last nP columns of U corresponding to yp. That is, the first
2nO columns of U corresponding to yo and zo would then not be required for prediction,
resulting in a prediction complexity that depends on nP , not on n = nO + nP (once the
q(i) have been determined). This computational simplification comes at the price of some
loss of accuracy relative to RF-full because of the restriction of the conditioning sets (see
Proposition 2 and Section S3).

Response-first ordering, independent conditioning (RF-ind)RF-ind also uses the ordering
(zo, yo, yp), but we enforce that latent variables condition only on zo, and so qy(i) = ∅ for
all i = 1, . . . , n in (4). Then, qz(i) consists of the indices corresponding to the m nearest
observed locations to si among So, including si if i ∈ o. RF-ind ignores any posterior
dependence between entries of y. More precisely, note that, from (9), U�� and henceW are
now diagonal, and so:

� = W−1 = diag({U2
�i �i

: i = 1, . . . , n})−1 = diag
({var(yi |zqz(i)) : i = 1, . . . , n}).

Similarly, it is straightforward to show that μi = E(yi |zqz(i)). RF-ind is equivalent to
local kriging, in which each marginal predictive distribution is obtained by considering the
conditional distribution of yi given the neighboring observations from zo. This is implicitly
the same predictions as in the NNGP-response model in Finley et al. (2019), except that we
here predict yp instead of predicting zp as in the NNGPR. The latter can be easily achieved
by adding the noise or nugget variance to each prediction variance (see end of Sect. 2). RF-
ind can, in principle, be extremely fast in parallel computing environments because each
conditional mean and variance can be calculated completely in parallel.

4.2. LATENT-FIRST ORDERING

Latent-first orderingmeans thatx is ordered as x = (y, zo), resulting in the approximation

f̂ (x) =
(∏n

i=1 f (yi |yqy(i))
) (∏

i∈o f (zi |yi )
)
, (6)

where zi conditions only on yi because of conditional independence from all other variables
in the model.

Under latent-first ordering, V cannot be obtained directly as a submatrix of U as in
response-first ordering. However, under the OP restriction that y is ordered as y = (yo, yp),
U does contain some exploitable structure. Note that under this ordering, we have �o = o,
�p = p, and Upr = 0. Hence,

U =
⎡

⎢
⎣

Uoo Uop Uor

0 Upp 0
0 0 Urr

⎤

⎥
⎦ , W =

[
Woo UopU′

pp

UppU′
op UppU′

pp

]

, V =
[
Voo Uop

0 Upp

]

, (7)

where only the entries of Voo = rchol(Woo) must be computed from Woo = UooU′
oo +

UorU′
or , and the last nP columns of V corresponding to yp can simply be “copied” from
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U. This result can make latent-first orderings computationally competitive when there are
many more prediction locations than observation locations, for example when predictions
are required on a fine grid from a small number of observations.

Latent-first ordering, full conditioning (LF-full) We consider latent-first ordering under
OP restriction: x = (yo, yp, zo). As in RF-full, LF-full scheme is labeled as “full” because
we allow every variable to condition on any variables ordered previously in x. Specifically,
in (6), the latent conditioning vector yqy(i) simply consists of the m latent variables y j with
j < i whose locations are closest in space to si .

We have found that LF-full is usually the most accurate scheme in the examples we have
tried; however, it can also be the most computationally demanding. As shown in (7), only
parts of V can be recovered directly from U, and linear computational complexity cannot
be guaranteed in general; see Sect. 4.3.3 for more details.

LF-full can be viewed as a special version of the NNGP in Datta et al. (2016), in which
their reference set is chosen as S, the vector of observed and prediction locations.

Latent-first ordering, independent conditioning (LF-ind) This scheme is a special case
of LF-full with qy(i) ⊂ o, and hence, there is no conditioning on variables at prediction
locations: qy(i) ∩ p = ∅. This assumption of conditional independence of the entries of yp
given yo can lead to inaccurate approximations of the joint predictive distribution at a set
of locations (see, e.g., top row in Fig. 5). As with LF-full, linear computational complexity
cannot be guaranteed because the submatrix of V corresponding to yo cannot be obtained
directly fromU. LF-ind is implicitly the same approximation as used in theNNGP-collapsed
model in Finley et al. (2019).

Multi-resolution approximation (MRA)Predictions using theMRA(Katzfuss 2017;Katz-
fuss and Gong 2019) can be viewed as a version of LF-full, except that the qy(i) are based
on iterative domain partitioning (cf. Katzfuss and Guinness 2019, Sect. 3.7). In contrast to
the nearest-neighbor conditioning in LF-full, MRA conditioning ensures sparsity and linear
complexity, which can be shown using Katzfuss and Guinness (2019, Prop. 6). While RF-
full can be more accurate than MRA for a given m (Section S3), the special conditioning
structure of the MRA has many other benefits (Jurek and Katzfuss 2018). For example,V−1

has the same sparsity asV for theMRA, and soV−1H′ is generally sparse ifH is sparse. This
allows computing the posterior covariance matrix of a large number of linear combinations
Hy.

Latent-first and coordinate ordering, autoregressive conditioning (LF-auto) Finally, we
consider amethod that is based on a general ordering of the locations, without OP restriction.
We consider latent-first ordering, x = (y, zo), and the approximation in (6), where each
yi simply conditions on (yi−m, . . . , yi−1); more precisely, we set qy(i) = {max(1, i −
m), . . . , i − 1}. This amounts to a latent autoregressive process of order m. It is easy to
verify thatW is banded with bandwidth m, and so its Cholesky factor V can be obtained in
O(nm2) time.
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LF-auto is most appropriate when successive locations in S (and hence variables in x)
tend to be close in space, so that yqy(i) has strong correlation with yi . This is often the case
with coordinate-based ordering, especially in one-dimensional space. Therefore, we only
consider LF-auto based on left-to-right ordering in one-dimensional domains—see Fig. 2
for an illustration. GPs are often used to model functions in one dimension, for example in
astronomy (e.g., Wang et al. 2012; Kelly et al. 2014; Foreman-Mackey et al. 2017).

4.3. SUMMARY AND PROPERTIES

We now discuss some of the properties of the methods summarized in Table 1.

4.3.1. Zero Noise

In the case of zero noise or nugget (i.e., τi = 0 for all i = 1, . . . , n), we have yo = zo, and
so there is no real distinction between RF-full, RF-stand, and LF-full anymore. Similarly,
LF-ind and RF-ind then become equivalent.

4.3.2. Approximation Accuracy

Each of our methods produces a prediction f̂ (y|zo), which can be viewed as an approx-
imation of the exact GP prediction f (y|zo), or as a valid and exact conditional distribution
implied by the multivariate normal Vecchia density f̂ (x) in (3). We now discuss the Vecchia
approximation error from the former perspective, in terms of the (conditional) Kullback–
Leibler (KL) divergence to the exact distribution f . The KL divergence is the expected
difference in log-likelihood:

KL
(
f (x)‖ f̂ (x)

) = E
x log f (x) − E

x log f̂ (x) = ∫
f (x) log

(
f (x)/ f̂ (x)

)
dx.

Similarly, for generic random vectors z and y, we define the conditional KL (CKL) diver-
gence as

CKL
(
f (y|z)‖ f̂ (y|z)) = E

zKL
(
f (y|z)‖ f̂ (y|z))

=
∫

f (z)
∫

f (y|z) log (
f (y|z)/ f̂ (y|z))dydz,

which is the KL divergence for the conditional distribution of y given z, averaged over
possible realizations of z.

Proposition 1. Let x = (x(1), x(2)) be amultivariate normal random vector, with x(1) =
(x1, . . . , xn1) and x(2) = (xn1+1, . . . , xn1+n2). Further, let f̂1(x) and f̂2(x) be two Vecchia
approximations of the form (3), with conditioning vectors g1(i) and g2(i), respectively.

1. If g1(i) ⊂ g2(i) for all i = 1, . . . , n1 + n2, then KL
(
f (x)‖ f̂1(x)

) ≥
KL

(
f (x)‖ f̂2(x)

)
.

2. If g1(i) ⊂ g2(i) for all i = n1 + 1, . . . , n1 + n2, then CKL
(
f (x(2)|x(1))‖ f̂1(x(2)|

x(1))
) ≥ CKL

(
f (x(2)|x(1))‖ f̂2(x(2)|x(1))

)
.
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Using these properties, the following can be said about the approximation accuracy of the
general Vecchia prediction methods in Table 1:

Proposition 2. LetKLA
m(x) = KL( f (x)‖ f̂ (x)), where f̂ (x) is the approximate density

obtained using Vecchia approach A (e.g., A = RF-full) with conditioning vectors of size m,
and similarly for CKLA

m.

1.KLA
n−1(x) = CKLA

n−1(y|zo) = CKLA
n−1(yp|zo) = 0 for A ∈ {RF-full,RF-stand,

LF-full,LF-auto}
2. KLA

m+1(x) ≤ KLA
m(x), for all A in Table 1

3. CKLA
m+1(yp|yo, zo) ≤ CKLA

m(yp|yo, zo) for A ∈ {RF-full,RF-stand,RF-ind,
LF-full,LF-ind}
4. CKLA

m+1(y|zo) ≤ CKLA
m(y|zo) for A ∈ {RF-full,RF-stand,RF-ind}

5. CKLA
m+1(yp|zo) ≤ CKLA

m(yp|zo) for A ∈ {RF-stand,RF-ind}
6. KLRF-full

m (x) ≤ KLRF-stand
m (x) and CKLRF-full

m (y|zo) ≤ CKLRF-stand
m (y|zo)

7.For a GP with exponential covariance function in one dimension:KLLF-auto
1 (x) = 0

To summarize, the Vecchia approximations tend to become more accurate as the
conditioning-set size m increases. For all approaches in Table 1, this increase in accuracy is
in terms of the KL divergence for f (x), but for certain methods the same is also guaranteed
for distributions such as f (y|zo) or f (yp|zo) that are more relevant for prediction. Indeed,
we have f̂ (y|zo) = f (y|zo) in the limit of m = n − 1 for most methods. However, for
RF-ind and LF-ind, due to the assumption of conditional independence of the entries in
yp given zo and yo, this holds only marginally, in the sense that f̂ (yi |zo) = f (yi |zo) but
f̂ (y|zo) 	= f (y|zo). This is also shown numerically in Figs. 4 and 5, top row. RF-full can
be expected to result in more accurate approximations of f (y|zo) than RF-stand. LF-auto
is exact with m ≥ 1 for a GP with exponential covariance function in one dimension. More
generally, for a GP with Matérn covariance with smoothness ν, we obtain nearly exact
representations if m > ν (cf. Katzfuss and Guinness 2019, Fig. 2a).

4.3.3. Computational Complexity

As laid out in Sect. 3.3, the relevant quantities for prediction can be obtained by computing
U, calculating V from U, carrying out a selected inversion based on V, and performing
triangular solves in V. For all methods, the matrix U has only m off-diagonal nonzero
elements per column by construction, and it can be computed in O(nm3) time using (9).
The cost for each triangular solve in V is on the order of the number of nonzero entries in
V. The cost of computing V and the selected inversion is proportional to the sum of squares
of the number of nonzero entries per column in V.

For all response-first methods (i.e., RF-full, RF-stand, and RF-ind), we have shown
below (5) that V is simply a submatrix of U. For LF-auto and MRA, V = rchol(W) must
be explicitly computed, but these methods’ special conditioning structures ensure that there
is no fill-in. Hence, for these methods the number of off-diagonal nonzero entries in each
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Figure 3. Average number of nonzero entries per column (ANNZC) in V = rchol(W) with m = 15 neighbors
for increasing nO = nP on a unit square using maxmin ordering. a Obtained using “brute-force” Cholesky based
on reverse row-column ordering of W, resulting in a dense upper triangle of V with ANNZC = (nO + 1)/2 for
RF-full and LF-full. b Obtained using (5) or (7), with ANNZC < m for the RF methods, and some reduction in
nonzero entries using approximate-minimum-degree (AMD) ordering ofWoo for the LF methods.

column of V is guaranteed to be at most m. This implies that V and the selected inverse can
hence be computed in O(nm2) time, V−1H′ in O(nm�) time, and (V−1H′)′(V−1H′) can
be computed in O(n�2) time. (An additional approximation can be necessary for selected
inversion in the case of OP methods—see Appendix D.1 for details.) Thus, the complexity
of GP prediction using LF-auto, MRA, and all response-first methods is linear in n.

In contrast, LF-full and LF-ind result in more nonzero entries in W and hence more
potential for fill-in inV (see Figs. 3 and S1 for illustration). As a result, linear complexity is
not guaranteed for these two methods, even when using the block form in (7). For example,
for locations on a regular two-dimensional grid ordered according to their coordinates,
Katzfuss and Guinness (2019, Prop. 5) proved that the time required for computing Voo =
rchol(Woo) using reverse ordering grows quadratically with nO . As shown in Fig. 6, while
fill-reducing permutations can reduce computation times somewhat, inference might still
be slow or fail due to memory issues.

For the latent NNGP model underlying LF-ind and LF-full, Datta et al. (2016) proposed
a sequential Gibbs sampler that samples every element of y from its full-conditional dis-
tribution. As this approach can lead to non-convergence issues, Finley et al. (2019) instead
proposed to sample yo jointly and then to sample yp conditional on yo. This avoids numer-
ical nonzero entries similarly to our block-form V in (7), but it still requires the expensive
factorization of W, and it can result in additional sampling error.

4.3.4. Consistent Framework

Under OP ordering, the likelihood f̂ (zo) = ∫
f̂ (x)dy is unchanged when yp is removed

from x, and the Vecchia approximation is applied to the resulting vector xõ = x\yp:

f̂ (zo) = ∫ ∫
f̂ (xõ) f̂ (yp|xõ)dyp dyo = ∫

f̂ (xõ)
∫

f̂ (yp|xõ)dyp dyo = ∫
f̂ (xõ)dyo. (8)
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Thus, likelihood inference can first be carried out based on xõ (i.e., only based on yo and
zo) using (10) as described in Katzfuss and Guinness (2019). Then, yp can be appended
at the end of x when predictions are desired, without changing the distribution f̂ (zo). This
has the advantage that parameter inference and prediction can be carried out in a consistent
framework as described inAppendix C, and the prediction locations do not need to be known
when training the model. If U has already been calculated for xõ, it is also possible to reuse
this matrix and simply append to it the columns corresponding to yp. Similarly, if prediction
at additional locations is desired later, these can be ordered last and the existing matrices
can be augmented, ensuring that the distribution of existing variables is unchanged.

For the response-first methods, the likelihood reduces to the standard Vecchia (1988)
likelihood. However, if only predictions are desired, we can set g(i) = ∅ for i = 1, . . . , nO
without changing the approximation of f (y|zo), resulting in computational savings. To see
this, note that this choice only affects Urr , which does not appear in any of the quantities in
Sect. 3.3, because V = U�� and μ = −(Ur�U

−1
�� )′zo for response-first.

Strictly speaking, LF-auto does not obey the OP restriction and hence has the undesir-
able property that changing S (e.g., by adding prediction locations) might change the joint
distribution of other variables in x. However, as shown in Figs. 2 and 4, the LF-auto approx-
imation is so accurate in one dimension that, even for small m, there is little difference to
the exact GP, and so all joint distributions are almost identical to the exact ones.

5. SIMULATION STUDY

We carried out a numerical comparison of the methods in Table 1. This systematic
comparison was enabled by our R package GPvecchia, which implements all of the
methods as special cases of the general Vecchia framework.

We simulated datasets at locations S = So ∪Sp, consisting of randomly drawn locations
So from an independent uniform distribution on D, combined with an equidistant grid Sp

on D. We simulated y at S from the true distribution f (y) induced by a GP with Matérn
covariance function with variance 1 and smoothness parameter ν, and then, we sampled data
zo by adding independent Gaussian noise with constant variance τ 2 to yo. We call 1/τ 2 the
signal-to-noise ratio (SNR). Effective range is the distance at which the correlation is 0.05.

Our simulation study focuses on the approximation accuracy of summaries of f̂ (y|zo),
assuming that any potential hyperparameters θ are fixed and known. This results in more
precise statements regarding the distinctions between the different methods and avoids
confounding with issues that are not the focus of our study, such as choice of inference
algorithms, tuning parameters, or choice of prior distributions for θ .

We computed the KL divergence for the joint distributions f̂ (yp|zo) and f̂ (yo|zo), and
averaged over the results frommultiple simulations for each method. This approximates the
KL divergence for which the expectation is taken with respect to the joint distribution of the
observations zo (see Sect. 4.3.2) and the observation locations So. We also computed the
average marginal KL divergences for f̂ (yi |zo) for i ∈ p and for i ∈ o.

For ease of presentation, comparisons to the MRA and to an extension of sparse general
Vecchia (Katzfuss and Guinness 2019) are omitted here and shown in Section S3 instead.
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Figure 4. For a GP in one dimension, KL divergences as a function of conditioning-set sizem. Rows correspond
to average KL divergence for f̂ (yp |zo) (Joint Pred), f̂ (yo|zo) (Joint Obs), f̂ (yi |zo) for i ∈ p (Marginal Pred),

and f̂ (yi |zo) for i ∈ o (Marginal Obs), respectively. We used a modified log scale for the y-axes, with values
below 10−10 treated as zero and indicated by grey bars at the bottom.

5.1. NUMERICAL COMPARISON IN 1-D

First, we considered the unit interval, D = [0, 1], with nO = nP = 100, effective
range 0.15, and 40 repetitions of the simulation. All methods used coordinate (left-to-right)
ordering. To avoid numerical error when computing the KL divergence due to finite machine
precision, we constrained the locations in So to be at least 10−4 units apart. LF-auto is exact
for ν = 0.5 with any m ≥ 1. As shown in Fig. 4, the method was much more accurate at
the prediction locations than any of the other approaches for ν = 1.5. RF-ind and LF-ind,
which donot condition onprediction locations, could only achieve a certain level of accuracy,
with the joint KL divergence for the prediction locations leveling off as m increased. The
performance of RF-ind and LF-ind improved on the marginal measures.
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Figure 5. For a GP in two dimensions, KL divergences (on a log scale) as a function of conditioning-set size m.
Rows correspond to average KL divergence for f̂ (yp |zo) (Joint Pred), f̂ (yo|zo) (Joint Obs), f̂ (yi |zo) for i ∈ p

(Marginal Pred), and f̂ (yi |zo) for i ∈ o (Marginal Obs), respectively.

5.2. NUMERICAL COMPARISON IN 2-D

On the unit square, D = [0, 1]2, we used nO = nP = 4,900 and effective range
0.15, averaging over 20 repetitions. All methods used maxmin ordering. Figure 5 shows
the results of the simulations. LF-full is not computationally scalable (see Sect. 5.3) but
performed best in terms of accuracy, because it conditions only on latent variables (which
contain more information about the process of interest than the noisy response variables).
RF-full performed well on both joint and marginal accuracy measures. For approaches
using independent conditioning for the prediction locations (RF-ind and LF-ind), the joint
KL divergence at the prediction locations did not converge to zero, but these methods were
more competitive with the other methods on marginal measures, as expected.
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Figure 6. Time for computing U and V for nO = nP observed and prediction locations on a unit square, as
a function of nO . Time for computing U was similar for all methods. For RF methods, time for computing V
using (5) was negligible. For LF methods, V was computed using (7) and using the approximate-minimum-degree
fill-reducing permutation forWoo.

5.3. TIMING COMPARISON

We also carried out a timing study that examined the time for computing U and V on
a unit square. Figure 6 shows median computation times from five repetitions on a 4-core
machine (Intel Core i7-3770) with 3.4GHz and 16GB RAM. Consistent with our theoretical
results, the time for computing U increased roughly linearly with n and was similar for all
methods for given n and m. (The time was slightly longer for the RF methods for small m,
but this is solely due to an inefficiency in our RF code.) For the response-first methods, the
time for computing V was negligible relative to that for computing U. For LF-ind and LF-
full, the time for computing V using a fill-reducing permutation increased roughly between
O(n3/2O ) and O(n2O), and the computation failed for large nO due to memory limitations.
Computing Voo based on reverse ordering was even slower (see Figure S2).

5.4. COMPARISON FOR LARGE n

We further compared the scalable response-first methods for large nO = nP , with
smoothness ν = 0.5 and effective range 0.15 on a unit square. Two modifications to pre-
vious comparisons were necessary due to the large data size. First, we simulated the GP
values on a regular 1,000 × 1,000 grid, using a regular subgrid of size nP as Sp and sub-
sampling nO of the remaining grid points as So. Second, as it was impossible to compute
the exact KL divergence, we approximated it by subtracting log f̂ (y|zo) for each method
from log f̂ (y|zo) as approximated by a “very accurate” RF-full model with m = 60, all
averaged over ten simulated datasets. As shown in Fig. 7, RF-full was much more accurate
than the other methods in all settings.

5.5. HEATON COMPARISON

We compared the response-first methods, all with conditioning-set size m = 15, to the
methods considered in a recent review and comparison paper (Heaton et al. 2019). We
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Figure 7. Approximate KL divergences for the joint distribution f̂ (y|zo) in 2D with smoothness ν = 0.5. a Fixed
nO = nP = 90,000, varying m. b Fixed m = 15, increasing nO = nP from 30,000 to 250,000 under in-fill
(fixed-domain) asymptotics.

Table 2. Comparison using data from Heaton et al. (2019, Sec. 4.1), with lowest (i.e., best) scores in bold.

Method RMSE CRPS JLS Time (min)

m = 15 RF-full 0.82 0.43 368.5 0.47
RF-stand 0.83 0.43 368.5 0.45
RF-ind 0.87 0.45 784.7 0.41

Heaton NNGP (m=15) 0.88 0.46 1.99
MRA (m>500) 0.83 0.43 13.57
LatticeKrig 0.87 0.45 25.58
Partition 0.86 0.47 77.56
SPDE 0.86 0.59 138.34

First three rows: Our methods with conditioning-set size m = 15. Bottom five rows: Results for the five best
methods taken directly from (Heaton et al. 2019, Tab. 2). CRPS: continuous rank probability score. JLS: Joint log
score for test subsets.

used the data from Heaton et al. (2019, Sec. 4.1), which consist of nO = 105,569 training
data and nP = 44,431 test data simulated from a GP with exponential covariance. For
our methods, we estimated the mean as the sample average of the training data and then
estimated the process variance, noise variance, and range parameter (with true values 16.4,
0.05, and 4/3, respectively) by maximizing the likelihood approximated by sparse general
Vecchia (Katzfuss and Guinness 2019) on a randomly chosen training subset of size 10,000.

We compared to the results of the top five methods reported in Heaton et al. (Heaton
et al. (2019), Tab. 2), based on the RMSE, the continuous rank probability score (CRPS),
and the computation time. Timing results in Heaton et al. (2019) were obtained on the
Becker computing environment at Brigham Young University; the times for maximizing
the likelihood and computing predictions for our methods were obtained on a basic desktop
computer (Intel Core i5-3570 CPU @ 3.4GHz), ignoring some setup costs. Only marginal
predictions were considered in Heaton et al. (2019); for our methods, we also computed the
average log score for ten randomly selected subsets of size 500 of the test data. CRPS and
log score are proper scoring rules that evaluate the approximation error in the predictive
distribution (e.g., Gneiting and Katzfuss 2014) and simultaneously reward accurate point
prediction (i.e., posterior mean) and accurate uncertainty quantification.
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The results are shown in Table 2. RF-full and RF-stand had similar scores, because the
assumed noise level was negligible. Both approaches outperformed all other methods; only
MRA achieved comparable scores, but required much larger m and computation time. (A
separate,more thorough comparison toMRAcan be found in Section S3.) TheNNGP results
reported in Heaton et al. (2019) were obtained using a variant called NNGP-conjugate in
Finley et al. (2019), which can be viewed as a Bayesian version of RF-ind; indeed, the
marginal scores for the two methods were very similar. The joint log score for RF-ind was
much worse than for RF-full and RF-stand.

6. APPLICATION TO SATELLITE DATA

We applied the scalable response-first methods from Table 1 to Level-2 bias-corrected
solar-induced chlorophyll fluorescence (SIF) retrievals over land from the Orbiting Carbon
Observatory 2 (OCO-2) satellite (OCO-2 Science Team et al. 2015). SIF is an important
proxy for the amount of biomass produced from photosynthesis (Sun et al. 2017, 2018) and
can be used to monitor the productivity of crops (Guan et al. 2016). The OCO-2 satellite has
a sun-synchronous orbit with a period of 99 minutes and approximately repeats its spatial
coverage every 16 days. Many remote-sensing satellites follow a similar sun-synchronous
orbit, an orbital pattern that produces very dense observations along the trajectory of the
orbit but wide gaps in space or time between orbits. This pattern is very common, and it
presents a challenge for existing nearest neighbor-based prediction methods, because the
nearest neighbors to any point in space or time will almost always be a sequence of densely
packed points along one of the orbits. As we show below, this choice can be suboptimal and
produce unrealistic artifacts in predicted maps.

We analyzed chlorophyll fluorescence data collected between August 1 and August 31,
2018, over the contiguous USA. During this time period, there were a total of 245,236
observations, plotted in Fig. 8. There was little evidence of temporal change during the time
period, so we restricted our attention to a purely spatial model. We modeled the data with
the spatial Gaussian process

z(si ) = β0 + ∑p
j=1 β j X j (si ) + y(si ) + εi , s1, . . . , sn ∈ D,

where X j were Gaussian basis functions centered at knots chosen as the first p = 50
locations in a maxmin ordering of the data locations, which ensured that no two knots were
placed close to each other. The basis range was selected to be 637km (10% of Earth radius).
The basis functions were included to capture a large amount of unstructured long-range
variability that could not be explained by simple linear functions of latitude and longitude.
The parameters β0, . . . , βp were estimated using least squares.

The residual field (shown in Figure S4) was modeled as y(·) ∼ GP(0, K ), where K
was assumed to be an isotropic Matérn covariance function with three parameters: variance,
range, and smoothness. The noise terms εi were assumed to be independent and identically
distributed as N (0, τ 2). For covariance-parameter estimation on the residuals, we used
the sparse general Vecchia likelihood (Katzfuss and Guinness 2019) with maxmin ordering,
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Figure 8. Satellite data, together with Vecchia predictions using m = 30 neighbors.

increasingm up to 40, beyondwhich the estimates did not change significantly. The estimated
parameters were: variance = 0.1097, range = 100.8 km, smoothness = 0.0982, noise variance
τ̂ 2 = 0.1869.

Using the estimated covariance function and noise variance, we computed predictions
for the scalable methods RF-full, RF-stand, and RF-ind (local kriging) at a grid of size
nP = 24,407 over the contiguous USA. Figure 8 shows predictions (i.e., posterior means
of β0 + ∑p

j=1 β j X j (s) + y(s)) for m = 30 neighbors. Because the observations cover the
study region quite well, the predictions using the various methods look similar, as might
also be expected from the second row of Fig. 5. Upon closer inspection, however, the RF-
ind predictions appear noisier and exhibit a “streaky” behavior. Figure 9 shows predictions
at a higher resolution of nP = 18,576 locations over the state of Texas. We can see that
the RF-ind estimates are noisier and have more pronounced discontinuities parallel and
perpendicular to the swaths of data. We conjecture that because the data locations are so
dense along each swath, forRF-ind, twonearbyprediction locations can condition on entirely
different sets of observations if the two locations are nearly equidistant from two different
swaths. Section S4 contains additional plots showing prediction uncertainties (i.e., posterior
standard deviations) for m = 30 and predictions with m = 60. For m = 60, all predicted
maps appeared smoother, but the Texas maps still had clearly visible streaks for RF-ind.

We also compared the prediction accuracy of RF-full, RF-stand, and RF-ind in two cross-
validation experiments. First, we selected ten separate prediction sets, each consisting of
4000 randomly sampled data locations, to evaluate short-range prediction. Second, we held
out 10 of the 67 swaths, one at a time, to evaluate long-range prediction. The average held-
out swath size was 3493 locations. For each of the two cross-validation experiments, we
computed the root mean squared error (RMSE) and the total log score, obtained by summing
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Figure 9. Satellite data, together with Vecchia predictions over Texas using m = 30 neighbors.

the negative log predictive densities for each held-out test set. The log scores are reported
relative to the lowest achieved log score.

The resulting prediction scores are shown in Fig. 10. For all settings, RF-full performed
best. RF-ind (i.e., local kriging) was not competitive in terms of long-range predictions on
the swath test sets. For the random test sets, RF-stand and local kriging performed similarly,
with both methods roughly requiring m = 20 to achieve the same accuracy as RF-full with
m = 10. These differences can be substantial in terms of computation times, which scale
cubically in m. While the absolute differences in the RMSE values were not large, this was
at least partially due to all comparisons being carried out relative to the (very noisy) test
data zp, as the true fluorescence values yp are unknown. The “convergence” of RF-full,
with similar values for m = 20 as for m = 40, indicates that even the exact GP without
any approximation likely would not achieve significantly lower RMSE. Differences in the
log scores were more pronounced, indicating that our new RF-full method can substantially
outperform local kriging in terms of uncertainty quantification.

7. CONCLUSIONS

Vecchia approximation of Gaussian processes (GPs) is a powerful computational tool for
fast analysis of large spatial datasets. While Vecchia approximations have been very popular
for likelihood approximations, their use for the very important task of GP prediction or
kriging had not been fully examined.Here, we proposed a general Vecchia framework forGP
predictions, which includes as special cases some existing and several novel computational
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approaches.We studied the accuracy and computational properties of the predictionmethods
both theoretically and numerically. In the case of unknown hyperparameters, all methods
can be extended straightforwardly as described in Appendix C.

Based on our results, we make the following recommendations, which are also sum-
marized briefly in Table 1. On a one-dimensional domain, LF-auto clearly had the best
performance in all of the settings we considered. The autoregressive structure in LF-auto
also affords linear computational scaling, and so we recommend LF-auto without any quali-
fications when the domain is one-dimensional. In two dimensions, we generally recommend
RF-full, as it scales linearly and performed well on all accuracy measures. RF-stand is less
accurate for noisy data, but has some computational advantages when the number of pre-
diction locations is much smaller than the number of observations. LF-full can be very
accurate, but it does not scale linearly in the data size. Local kriging (RF-ind) is fast and
can provide accurate marginal predictive distributions, but it ignores dependence in the joint
predictive distributions. LF-ind does not scale linearly and its joint predictive distributions
at unobserved locations were often less accurate than those from RF-full. These inferential
limitations are evident in Fig. 2 and in the top rows of Figs. 4 and 5.

The methods and algorithms proposed here are implemented in the R package
GPvecchia (Katzfuss et al. 2020b), with default settings reflecting the recommenda-
tions in the previous paragraph. In principle, our methods and code are applicable in more
than two dimensions, but a thorough investigation of their properties in this context is war-
ranted. For example, a follow-up paper (Katzfuss et al. 2020a) shows that Vecchia-based
approximations, using our observed-prediction ordering and appropriate extensions, can be
highly accurate for computer-model emulation in higher dimensions. A further follow-up
paper (Zilber and Katzfuss 2019) extends our methods to Vecchia–Laplace approximations
of generalized GPs for non-Gaussian spatial data.
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A. VECTOR AND INDEXING NOTATION

As an example, define y = (y1, y2, y3, y4, y5) as a vector of vectors. Vectors of indices
are used for defining subvectors. For example, if o = (4, 1, 2) is a vector of indices, then
yo = (y4, y1, y2). Unions of vectors are vectors and are defined when the two vectors
have the same type and when the ordering is specified. For example, if z = (z1, z2), then
yo ∪ z = (y4, y1, z1, y2, z2) defines the union of yo and z. Intersection is defined similarly
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and uses the ∩ notation. The ordering of the elements of the union or intersection can be
defined alternatively via an index function # taking in an element and a vector and returning
the index occupied by the element in the vector. Continuing the example above, #(y4, y) = 4,
whereas #(y4, yo ∪ z) = 1. A full description of the vector and indexing notation can be
found in Katzfuss and Guinness (2019, App. A).

B. COMPUTING U

We recapitulate here the formulas for computing U from Katzfuss and Guinness (2019).
Let g(i) denote the vector of indices of the elements in x on which xi conditions. Also define
C(xi , x j ) as the covariance between xi and x j implied by the true model in Sect. 2; that is,
C(yi , y j ) = C(zi , y j ) = K (si , s j ) and C(zi , z j ) = K (si , s j ) + 1i= jτ

2
i . Then, the ( j, i)th

element of U can be calculated as

U j i =

⎧
⎪⎪⎨

⎪⎪⎩

d−1/2
i , i = j,

−b( j)
i d−1/2

i , j ∈ g(i),

0, otherwise,

(9)

where b′
i = C(xi , xg(i))C(xg(i), xg(i))−1, di = C(xi , xi ) − b′

iC(xg(i), xi ), and b
( j)
i denotes

the kth element ofbi if j is the kth element in g(i) (i.e.,b( j)
i is the element ofbi corresponding

to x j ).

C. PREDICTIONWITH UNKNOWN PARAMETERS

In practice, most GP models depend on an unknown parameter vector θ , which we will
make explicit here. Likelihood approximation for parameter inference is discussed in detail
in Katzfuss and Guinness (2019), but we will review it briefly here. Integration of f̂ (x|θ)

in (3) with respect to y results in the following Vecchia likelihood (Katzfuss and Guinness
2019, Prop. 2):

− 2 log f̂ (zo|θ) = −2
∑

i

logUi i + 2
∑

i

logVi i + z̃′z̃

−(V−1U�,•z̃)′(V−1U�,•z̃) + n log(2π), (10)

whereU andV implicitly dependon θ , and z̃ = U′
r,•zo. The computational cost for evaluating

this Vecchia likelihood is often low, and Katzfuss and Guinness (2019) provide conditions
on the g(i) under which the cost is guaranteed to be linear in n.

This allows for various forms of likelihood-based parameter inference. In a frequentist
setting, we can compute θ̂ = arg maxθ log f̂ (zo|θ) and then compute summaries of the
posterior predictive distribution f̂ (y|zo) = Nn(μ(θ̂),�(θ̂)) as described in Sect. 3.3. This
often has low computational cost but ignores uncertainty in θ̂ . An example is given in Sect. 6.

In a Bayesian setting, given a prior distribution f (θ), a Metropolis–Hastings sampler can
be used for parameters whose posterior or full-conditional distribution are not available in



Vecchia Approximations of Gaussian- Process Predictions

closed form. At the (l + 1)th step of the algorithm, one would propose a new value θ (P) ∼
q(θ |θ (l)) and accept it with probability min(1, h(θ (P), θ (l))/h(θ (l), θ (P))), where h(θ, θ̃) =
f (θ) f̂ (zo|θ)q(θ̃ |θ). After burn-in and thinning, this results in a sample, say, θ (1), . . . , θ (L),
leading to aGaussian-mixture prediction: f̂ (y|zo) = (1/L)

∑L
l=1Nn(μ(θ (l)),�(θ (l))). See

Katzfuss and Guinness (2019, App. E) for an example for the use of RF-full in this setting.
For more complicated Bayesian hierarchical models, inference can be carried out using a
Gibbs sampler in which y is sampled from its full-conditional distribution as described in
item 4. in Sect. 3.3.

D. NUMERICAL NONZEROS IN V

For simplicity, we focus here on RF-full, although numerical nonzeros can similarly
occur for RF-stand, LF-full, and LF-ind (see Figure S1). For RF-full, the upper triangle of
W is at least as dense as the upper triangle of V. Specifically, for j < i , V j i = U� j �i = 0
unless j ∈ qy(i). From Katzfuss and Guinness (Katzfuss and Guinness (2019), Prop. 3.2),
we have thatW j i = 0 unless j ∈ qy(i) or ∃k > i such that i, j ∈ qy(k). Thus, for any pair
j < i such that j /∈ qy(i) but i, j ∈ qy(k) for some k > i , we generally have V j i = 0 and
W j i 	= 0.

From the standard Cholesky algorithm, we can derive that the algorithm for V =
rchol(W) computes V j i as

V j i = (W j i − ∑n
k=i+1 VikV jk)/Vi i .

Thus, for any pair j < i such that V j i = 0 but W j i 	= 0, we know that W j i =
∑n

k=i+1 VikV jk theoretically, but due to potential numerical error it is not guaranteed that
this equation holds exactly. A numerical nonzero is introduced in V whenever a rounding
error occurs in

∑n
k=i+1 VikV jk , which relies on (potentially many) previous calculations

in the Cholesky algorithm. Such numerical nonzeros are avoided by extracting V = U�� as
a submatrix of U (as proposed in Sect. 4.1), instead of explicitly carrying out the Cholesky
factorization V = rchol(W).

D.1. IMPLICATIONS FOR SELECTED INVERSE

When V is computed by copying a submatrix from U to avoid numerical nonzeros, the
selected inverse of thisV is not guaranteed to return the exact posterior variances of y, unless
V is “padded” with zeros, which results in additional costs. This is because the selected
inverse operates on the symbolic nonzero elements; that is, it operates on all elements that
have to be computed in the Cholesky, even if they cancel to zero numerically (which is the
case for many entries in our case). Denoting by S the selected inverse of W based on V, a
close look at the Takahashi recursions reveals that for all j, k with j, k ∈ qy(i), we need
S j i and Sk j . The latter element is only calculated if j ∈ qy(k). However, if j /∈ qy(k),
Sk j = cov(y j , yk |z) will typically be very small (if m is reasonably large), because their
corresponding locations will likely be far away from each other and data can be observed in
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between. In our experiments, the additional approximation error introduced by the selected
inverse was negligible relative to the error introduced by the Vecchia approximation itself.
Whenm becomes large enough for the Vecchia approximation to be accurate, the additional
approximation error introduced by SelInv goes to zero as well.

If the exact variances implied by the Vecchia approximation f̂ (y|zo) are desired, they can
be computed as diag(var(yp|zo)) = ((V−1I•p) ◦ (V−1I•p))′1n . For RF-full and RF-stand,
this requires O(nmnP ) time, as described in Sect. 4.3.3, and so the overall computational
complexity would not be increased if nP = O(m2).

E. PROOFS

In this section, we provide proofs for the propositions stated throughout the article.

Proof of Proposition 1. Part 1 of this proposition is equivalent to Thm. 1 in Guinness
(2018). We prove the statement here again in a different way, which can be easily extended
to prove Part 2.

First, consider a generic Vecchia approximation of a vector x of length n: f̂ (x) =
∏n

i=1 f (xi |xg(i)) = ∏n
i=1N (xi |μi |g(i), σ 2

i |g(i)). Then,

(−2)Ex log f̂ (x) = ∑n
i=1 log var(xi |xg(i)) + ∑n

i=1 E
x w2

i + n log(2π),

wherewi = (xi−μi |g(i))/σi |g(i).WehaveE(wi ) = 0, becauseE(μi |g(i)) = EE(xi |xg(i)) =
E(xi ). We also have var(wi ) = 1, because

var(xi − μi |g(i)) = varE
(
xi − E(xi |xg(i))|xg(i)

) + var
(
xi − E(xi |xg(i))|xg(i)

)

= 0 + σ 2
i |g(i).

Hence, wi ∼ N (0, 1), and so Ex w2
i = 1 and

(−2)Ex log f̂ (x) = ∑n
i=1 log var(xi |xg(i)) + n + n log(2π).

Because the exact density f (x) is a special case of Vecchia with g(i) = (1, . . . , i − 1), we
have

KL
(
f (x)‖ f̂ (x)

) = E
x log f (x) − E

x log f̂ (x) = 1
2

∑n
i=1 log

var(xi |xg(i))
var(xi |x1:i−1)

. (11)

For g1(i) ⊂ g2(i), we can write, say, g2(i) = g1(i) ∪ c(i). Using the law of total variance,

var(xi |xg1(i)) = var(xi |xg1(i), xc(i)) + var(E(xi |xg1(i), xc(i))|xc(i)) ≥ var(xi |xg2(i)).
(12)

Now, Part 1 follows by combining (11) and (12) with the assumption that g1(i) ⊂ g2(i) for
all i .
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For Part 2, we consider x = (x(1), x(2)) with x(1) = (x1, . . . , xn1) and x(2) =
(xn1+1, . . . , xn1+n2). Then,

CKL
(
f (x(2)|x(1))‖ f̂ (x(2)|x(1))

)

=
∫

f (x(1))

∫
f (x(2)|x(1)) log

(
f (x(2)|x(1))/ f̂ (x(2)|x(1))

)
dx(2)dx(1)

= E
x log f (x(2)|x(1)) − E

x log f̂ (x(2)|x(1))

= 1

2

n1+n2∑

i=n1+1

log
var(xi |xg(i))
var(xi |x1:i−1)

,

where the last equality can be shown almost identically to (11) above, noting that
f̂ (x(2)|x(1)) = f̂ (x)/ f̂ (x(1)) = ∏n1+n2

i=n1+1 f (xi |xg(i)). Part 2 follows by combining this
result and (12) with the assumption that g1(i) ⊂ g2(i) for all i = n1 + 1, . . . , n1 + n2. ��

Proof of Proposition 2. For all parts of this proposition, note that all variables in the
model are conditionally independent of z j given y j , and so conditioning on y j is equivalent
to conditioning on y j and z j . For Part 1, we can thus verify easily that g(i) is equivalent
to (1, . . . , i − 1), for all i and all methods under consideration, and so Part 1 follows
from (11). Using Proposition 1, the proof for all other parts simply consists of show-
ing that certain conditioning vectors contain certain other conditioning vectors (similar
to Katzfuss and Guinness 2019, Prop. 4). For example, for Part 3, all response-first meth-
ods are based on the ordering x = (zo, yo, yp) with nearest neighbor conditioning (under
some restrictions for RF-stand and RF-ind), and so it is easy to see that gm(i) ⊂ gm+1(i)
for all i ∈ �p = (n + 1, . . . , n + nP ). LF-full and LF-ind can equivalently be defined
based on the ordering (yo, zo, yp), in which case we also have gm(i) ⊂ gm+1(i) for all
i ∈ �p = (n + 1, . . . , n + nP ). For Part 5, note that in RF-stand and RF-ind, yp does not
condition on yo. Hence, the distribution f̂ (yp|zo) is equivalent to the distribution obtained
under a simplifiedVecchia approximation based on x = (zo, yp) (i.e., with yo removed com-
pletely). It is straightforward to show that Part 5 holds for this simplified approximation. For
Part 6, note that g(i) is the same for RF-full and RF-stand for all i = 1, . . . , n. For i ∈ p,
letting a(i) = qRF-fully (i)∩o, we have xgRF-full(i) = (yqRF-standy

, ya(i)) = (yqRF-standy
, ya(i), za(i))

and xgRF-stand(i) = (yqRF-standy
, za(i)), and so gRF-stand(i) ⊂ gRF-full(i) for all i ∈ p. For Part 7,

note that a GP with exponential covariance in 1-D is a Markov process, and so in (6) with
qy(i) = i − 1 and left-to-right ordering, we have f (yi |yqy(i)) = f (yi |y1, . . . , yi−1) and
hence f̂ (x) = f (x). ��
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