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ABSTRACT. The study of complex networks has been one of the most active fields in science
in recent decades. Spectral properties of networks (or graphs that represent them) are of
fundamental importance. Researchers have been investigating these properties for many years,
and, based on numerical data, have raised a number of questions about the distribution of
the eigenvalues and eigenvectors.

In this paper, we give the solution to some of these questions. In particular, we determine
the limiting distribution of (the bulk of) the spectrum as the size of the network grows to
infinity and show that the leading eigenvectors are strongly localized.

We focus on the preferential attachment graph, which is the most popular mathematical
model for growing complex networks. Our analysis is, on the other hand, general and can be
applied to other models.

1. INTRODUCTION

The study of complex networks has been an extremely active field in recent years (e.g., [2], [3],
[4], [14], [18], [17], [22]). A fundamental goal of this study is to build and study mathematical
models of networks that occur in nature.

A popular model in the field is the (random) preferential attachment model. In this model,
the network grows continuously. At time ¢t = 1,2,3,..., a new vertex is born and attaches
itself randomly to existing vertices, with respect to a distribution which favors vertices with
higher degrees. This reflects the famous “rich get richer” phenomenon observed in real-life
situations. As pointed out by many researchers, this model of random graphs is significantly
different from the standard Erdés-Rényi model where all vertices play the same role. There
is vast literature on this model and we refer the reader to the survey [5] as a starting point;
see also [6, 1, 7, 19] and the references therein.

For any network (in fact for any data set which can be represented in matrix form), its
spectral information is of fundamental interest. Based on numerical experiments, researchers
have observed the following about the eigenvalues and eigenvectors of PA graphs:

Observation 1. The bulk of the spectrum has triangular shape. This is very different
from the classical semi-circle law by Wigner which holds for Erdés-Rényi graph (e.g., [1], [10],
[11], [20]). The edge eigenvalues seem to follow a power law. See Figure 1.
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F1GURE 1. In red: The spectral measure of a random PA graph with n = 6000,
m = 5 with a normalization factor of 1/4/np(1 — p) where p = 2m/n. In blue:
the semicircle distribution (1/27)y/4 — 22 for x € [—2,2].

Observation 2. The leading eigenvectors are localized, namely, there are a few coordinates
which capture a large amount of mass (e.g.,[1], [16], [11]).

Heuristics 3. The following heuristic has been mentioned in several papers [1, 11]: the
power law of the edge eigenvalues is due to the localization of the corresponding eigenvectors.

These observations became well-known about twenty years ago. Among others, they have
been discussed in Albert and Barabasi’s widely circulated survey, which has been cited close
to twenty thousand times; see Section 7 of [1]. However, there have been very few rigorous re-
sults. The most relevant paper is [12], which shows that for any fixed k, the first k eigenvalues
of the graph satisfy a power law. As far as we know, there have been no results concerning the
bulk (the triangle part) of the spectrum or the limit of the spectrum once the size of the graph
tends to infinity. Likewise, we could not find any rigorous result concerning eigenvectors or
any theoretical explanation of Heuristic 3. More is known about static models where the
number of vertices is fixed and the edges are drawn independently (but with different prob-
ablities). However, from the spectral point of view, these models seem to behave differently
from the PA model; see [8, 9] and the references there in.

In this paper, we report recent theoretical progress in the understanding of the bulk of the
spectrum and the localization of leading eigenvectors. In particular, we will be able to de-
termine the limiting spectral measure up to any precision. Next, we prove the localization
phenomenon in a precise form, determining the exact mass of the localized coordinate. Our
proofs also provide a satisfying explanation for Heuristics 3.

2. NEW RESULTS
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2.1. The model. Let us first give the precise description of a PA graph, following [6, 5]. The
key parameter here is a constant m, which is the number of links (edges) from a new vertex
to the existing ones. Intuitively, one wants to link the new vertex to any existing vertex
u (including itself) with probability proportional to the degree of u. The precise definition
requires some care, since the degrees change after each link has been made.

First start with m = 1. The graph G;; consists of 1 loop around vertex 1. Recursively
define G from G-y as follows. Add a new vertex t (so our vertex set at time t will be

[t] := {1,2,...,t}, and connect it to a random point X; € [t] chosen with the following
distribution
ey i1 <i<t
P[Xt = Z] = { 12t_1 1 ) =0
5—1 if 1=1

where d(u, G) is the degree of u. Note that this definition allows for loops.

Now we consider arbitrary m. We construct G,,; by partitioning the vertices G, into ¢
consecutive groups of size m and viewing each group as a vertex of G,,;. Technically speak-
ing, the vertices {(a —1)m+1,(a —1)m +2,...,am} of Gy get collapsed into vertex a of
Gy for a = 1,...,t. This is equivalent to adding m edges at each time step where those
edges are added one by one, counting the previous edges as well as the “half” contribution to
the degrees. We denote by G,,; the graph at time ¢. For more details about this model, see

[5]-
Notation.The asymptotic notation such as O, ©, 0 are used under the assumption that the
size of the graph tends to infinity. P denotes probability and E denotes expectation. For a d

dimensional vector v, v, 1 < j < d are its coordinates. On the other hand, v; denotes the
eigenvectors of the graph under consideration.

2.2. The moments of the adjacency matrix. As the size of the graph tends to infinity,
the most natural question is to find the limit of its spectrum. To be specific, at time n, the
adjacency matrix of the graph has n eigenvalues A\j(n),..., A\ (n). We generate the spectral
measure fi, on the real line by defining p,(I) = L|{i,\;(n) € I}| for any interval I. The
question is to find the limit of u,, (after a possible rescaling if necessary) as n tends to infinity.
This limit, if it exists, is refereed to as the limiting spectral measure.

A natural (and popular) method to determine the spectral measure is to compute its mo-
ments. Wigner famously used this method to prove his classical semi-circle law [21]. Our first
result provides the asymptotics of the moments in question.

Theorem 2.1. Let G, ,, be a PA random graph, and p, ., its spectral measure. Let Cj, denote
the k-th spectral moment of iy, .. Then

Co=1
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C -0 (logn)
n

Cy = (140(1))2m

)
Gy = 6 (1/vA)
Cy = (14 0(1))2m(m + 1) logn.

Furthermore, for k> 3
(1) Cor = O(n*/?71)
(2) CQkfl = @(nk/2*3/2).

Despite this asymptotic result, one cannot use the moment method as in Wigner’s case. The
sequence {Cy} simply does not determine a distribution. Since Cj is a constant (as m is a
constant), one does not need to do any rescaling. But without a rescaling, the higher moments
tend to infinity.

The reason behind this surprising fact is that the spectrum of G,,, consists of two sepa-
rate parts. The first part is formed by the edge eigenvalues and tends to follow a power law.
The bulk of the spectrum (the triangle shape part) follows a different law. The moments
are dominated by the edge eigenvalues (which are significantly larger than the rest) and thus
reveal no information about the distribution of the eigenvalues in the bulk.

2.3. Approximate measures. Clearly, one needs a new idea to carry out further studies (to
get information about the bulk of the spectrum, in particular). The idea we propose here is
to study approximations of the spectral measure, rather than the measure itself.

To this end, we define the distance between two probability measure 1 and 7 on the real
line as

dist(y1,n) = sup [u(1) = (1),
where I runs over the set of all intervals.
For any given precision ¢ > 0, we can define a sequence of (random) measures fic,, and
a deterministic measure i, o such that with probability one, dist(m.n,ftemn) < € and
Hemn — Hem.co- We define the approximation fi. ,, , as the spectral measure of G. , ,,, where

Gle,mn is the graph obtained by discarding the first en vertices of G, ,, (we will refer to G .,
as the truncated graph). We prove the following

Theorem 2.2. With probability one,

(3) dist(fmms fe;mm) < €.
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There is a deterministic measure fiemoo (uniquely defined by € and m) such that {ficmn}
converges weakly in probability to fic m . The moments of this limit can be computed explicitly
for any given e.

We designed the approximation scheme to avoid the troublesome large eigenvalues. The large
eigenvalues in the spectrum are determined by the largest degrees in the graph, which, natu-
rally, come from the vertices born earlier in the process. We eliminate exactly these vertices.

The estimate (3) is an immediate consequence of the interlacing law. The heart of the theorem
is the existence and uniqueness of the limiting measure and the computation of its moments,
which we now turn to.

2.4. The approximate limit and its moments. We can write down the approximate limit
{ltem.0o} through its moments. This distribution is symmetric around 0, so all odd moments
are zero. For each even number k, the kth moment is a constant C'(k, e, m), which depends
only on k, e and m. To give an explicit expression for this quantity, we need some preparation.

For the next discussion, it will be convenient to think of the edges in the graph as directed,
with the direction going from the larger end to the smaller end. (e.g., if {1,3} is an edge,
then the direction goes from 3 to 1.) Let G be a graph on V(G), we denote the in-degree of
a vertex u by d;,(u, G), and the out degree by dyy(u, G). The set of vertices u € V(G) such
that dj,(u, G) > 0 is denoted by V~(G) (the in-vertices of ). Similarly, we define V(G) as
the out-vertices of G. Henceforth, when we write an edge as (7, j) we tacitly imply i < j.

Definition 2.3. Denote by K,,,, the multigraph on vertex set [n] where between any i # j
there are m?* parallel edges, and each vertex has m(m + 1)/2 loops.

An essential technicality with the PA model is the order in which the vertices appear.

Definition 2.4. Define an ordered graph ont vertices, to be a graph H on vertex set {vy, ..., v}
where we impose the ordering v; < v;11. Note that we do not make the vertex set the integers
since we want to emphasize this graph is not any specific subgraph of K, . A subgraph of
Ko ts said to be isomorphic to H if it is isomorphic in the classical sense and the mapping
preserves the ordering.

Definition 2.5. Let G be a multigraph. A walk of length k is a sequence: (vy,e1,vs,. .., €k, Vgr1)
where v; are vertices of G, e; are edges of G, and e; is incident to v; and viyy. If v = vy,

we call it a closed walk of length k. Let Wy(G) denote the set of all closed walks in G of length

k.

For a connected subgraph H of I, let M,(H) denote the number of elements of Wj,(K) which
yield H as a subgraph.

Definition 2.6. Let T, denote the set of ordered trees with at most k edges.
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Definition 2.7. Let D = (di,...d;) be a sequence of positive integers with ). d; = 2(t — 1).
Let € > 0 be a fized constant between zero and one. Define

1 1 ry ya 1 1
e ve & =1

For any given sequence D, it is simple to compute (D, ¢) using standard calculus. Finally,
for any graph H, set

(5) p(H,m) = H [ in (1) H (M) dg (.11 |

veV—(H) veV+(H)

where

m]" :=m(m+1)...(m+r—1)
ml, :==m(m—1)...(m—r+1)

are the upper and lower factorials. Now, we are ready to present our moment formula

C(2k,e,m) = %—5 Z o(T, m)Maop(T)(D(T), ¢)
TET
C(2k+1,e,m)=0.

We would like to emphasize that a sequence of constants may not correspond to the moments
of any measure. Moreover, even if they do correspond to a measure, they might not uniquely
define it. It was a non-trivial task to prove that the constants C(k,e,m) defined above
determine a unique measure.

2.5. Remarks. Our computation of the constants C'(k,e,m) provides a quantitative expla-
nation for the difference of the spectrum from Wigner’s semi-circle law. In the computation
with Erdés-Rényi graphs (which leads to the semi-circle law), the moments are essentially
the number of closed walks that can be performed on trees of a given size [21]. For the PA
graph, the story is more complicated. While the trees are still the family that we weight
for the moment computation, one needs to consider: (1) trees of different sizes (2) distinct
orderings on the trees (3) assignments of weights which depend on the trees’ degree sequences.

Numerically, one can compute the approximate limit very quickly. For a given small €, one
can compute the first few moments and then use the inverse Fourier transform to obtain a
distribution. The distribution matches the bulk (triangular) part of the distribution coming
from the real graph closely; see Figure 2.
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Histogram for eigenvalues of LA, ,,

FIGURE 2. In blue: A histogram of the eigenvalues of \/LEAGWM with € = 0.10,

m = 15 and n = 4000. In red: We computed C(k,0.10, 15) for k£ < 6, and using
the Inverse Fourier transform to obtain an approximation to the distribution.

Coordinates for v (m =5, n =1000000)

074 *®

0.6 4

05

0.4 4

0.3

0.2

01

0.0 4 w

0 200000 400000 600000 800000 1000000

FIGURE 3. Coordinates of v;: We can see ||v;]|oc & -= and all the other coor-

V2
dinates are small.
2.6. Localization of the leading eigenvectors. Our result concerning the eigenvectors is
a rigorous theoretical justification of Observation 2. For a vector v € R”, define

[V]|oe = max |v(f)].
JEM]

Theorem 2.8. Let G, be a PA random graph and K be a constant. With high probability",

1
[villoe = —= £ o(1)

V2
for all 1 < i < K. Moreover, all the coordinates which do not realize the infinity norm are

o(1).

!An event € is said to hold with high probability if P[] = 1 — o(1).
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We also obtained a new result regarding the power law of the edge eigenvalues. Let A;, 7 =
1,2,... be the degrees in decreasing order.

Theorem 2.9. Let G,,,, be a PA random graph and k = n*?>. Then fori=1,2,...,k, we
have, whp, that

)\i(Gm,n) = (1 + 0(1)) Ai(Gm,n)'

This extends the main result of [12] which yields the statement for £ = O(1). It is an inter-
esting open problem to find the threshold value for k.

Our analysis offers a more satisfying explanation of Heuristics 3 mentioned in the intro-
duction, which asserts that the power law of the leading eigenvalues is due to the localization
of the corresponding eigenvectors. In fact, both properties (the power law and the localiza-
tion) are consequences of the fact that the PA graph can be decomposed into a structural
part and a random part. The structural part is a union of stars, whose leading eigenvalues
satisfy a power law, and whose leading eigenvectors are localized. One can then prove that
the impact of the random part on these eigenvalues and eigenvectors is negligible. Thus, the
above properties still hold for the union of the two parts.

3. NOoTATION AND COMBINATORIAL TOOLS

Fix ¢ < j. To obtain an edge between these two points in G, 5, by the definition of the graph
process we must have had a point in [(j — 1)m + 1, jm| joining a point in [(i — 1)m + 1, im)|
in Gy, There are clearly m? possible pairs. A labeled edge (i, ) for us will be one specific
choice among the m? choices. A labeled graph will denote a collection of labeled edges. Since
the out degree in G ,,,, is exactly one, we only consider labeled graph with this property. The-
orem 5.1 will give us an exact formula for the probability of a labeled graph to appear in G, ,,.

Let H be an ordered graph, and denote by X, ,(H) the number of subgraphs of G,, ,, isomor-
phic to H. That is,

(6) an(H) = Z HPICGm,n'
ACK
H=H
Let V' be a subset of the vertices and G[V] be the subgraph of G spanned by V. We will
be interested in counting the number of copies of H is some fixed subset V. We extend the
definition of graph counts as follows

(7) X H, V)= Y Tgea, v
HCKm,n[V]
H=~H
Note that in particular, X, ,(H, [n]) = X,,.(H). Throughout this paper we will count graphs
which have bounded size.
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We are going to study the spectrum of a PA random graph. Since this is a multigraph,
its adjacency matrix is not necessarily a (0, 1) matrix.

Definition 3.1. Let G be a multigraph on vertex set [n]. Define the adjacency matriz of G
to be the matriz Ag, where for i # j, (Ag)i; is the number of edges between i and j, and for
i =17, (Ag)i is the number of loops at i.

We will be using the following well known identity
Lemma 3.2. Let G be a multigraph, and let Ag denote its adjacency matriz. Then
Tr(AG) = [Wi(G)-

Each walk in Wy (G) defines a connected subgraph of G, obtained by taking the union of the
edges which appear in the walk.

Hence, if G is a random graph which is always a subgraph of I, then for any W € Wy (K),
the event “W C G” denotes the event that the subgraph given by W appears as a subgraph
of GG. Hence, we can re-write the above as

WeWwg(K)

For a connected subgraph H of I, let M,,(H) denote the number of elements of Wy (K) which
yield H as a subgraph. Hence, if we denote by C(K) the set of connected subgraphs of I, we
can re-write the above as

Tr(A%) = Z M (H)lpca

HeC(K)

Note that C(K) is a set of labeled graphs, so in order to write it as graph counts, we need
to decompose it even further. Let F(K) denote the set of graphs which are isomorphic to
a member of C(K). Note that by our definition of isomorphism, we have that F(K) is a set
of ordered graphs. Furthermore, note that My(-) was defined for labeled graphs, but since
H; = H, implies My,(H;) = My(H;) then when we write My(H) for a H € F(K) we refer
to the obvious quantity. Hence, we arrive at the final form we will be using in this paper:

(8) Tr(Ag) = > My(H)X(H,G)

HeF(K)

where X (H, @) is the number of copies of H in G.

Consider the following example: Suppose we sampled the following graph Gao € G o:
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@ q

1 2
Gapo

Then,

Ay, = [? ﬂ and Tr(AQGm) =7

Now we carry out the computation as suggested by equation (8). The complete graph s 5 is
given by:

The only graphs H € F(K,2) which have X(H, G23) > 0 are the following:

Q 62@ OLO
1

e €1
v U1 (4] U2
H, Hy Hy
The closed walks of length two that may have formed each are:
e Hy: (vi,e1,v1,€1,01).
e Hy: (v1,e1,v1,e2,v1), and (vy, ez, v1, €1, 01).
o Hs: (v1, f1,v2, fi,01), and (va, fi,v1, f1, va).
Hence, My(H;) = 1, and Ms(Hy) = Ms(H3) = 2. Computing the graph counts we get:
X(Hl,GZQ) = 3, X(HQ,GQ}Q) = 1, X(Hg,GZQ) = 1 HGDCG,

> Mu(H)X(H,Gap) = 1(3) +2(1) + 2(1) = 7 = Tr(AZ, ).

HeF(Ka,2)

Definition 3.3. Let A,, be an n x n symmetric matriz. Denote by {\;}, the eigenvalues of
A,. We define the empirical spectral distribution (ESD) to be the following measure:

1 n
=— I.—..
(o) =23

Usually when it is required, we will denote the eigenvalues by \;(A4,), but if the matrix A,
is clear from the context, we will simply write A;. Moreover, it will always be assumed that
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the eigenvalues are labeled to be non-increasing, i.e., A\; > A;11. We are interested in studying
the measures when the matrices A, follow the preferential attachment rule. We extend the
definition of ESD to graphs.

Definition 3.4. Let G be a graph on n vertices, and let Ag denote its adjacency matriz. Then
the ESD of G which we denote by ng, is the ESD of the matrixz Ag.

Note that when the graph G is random, we will obtain a random measure. We are inter-
ested in studying the measures pg,,, when Gy, € Gy, . In particular, we are interested in
understanding their limiting behavior, which we formalize through the following notions.

Definition 3.5. Let {11,}°2, be a sequence of (deterministic) measures. We say that {u,}
converges weakly to a measure p, if for every bounded, continuous function f we have

/ Fdyy — / fdu.

B(f(u)] = [ fd.

In the case when f(z) = 2%, we refer to E[u*] as the k-th moment of the measure. If y is
determined by its moments, then convergence of the moments guarantees weak convergence:

We use the following convention:

k

Lemma 3.6. Let {p,} be a sequence of (deterministic) measures. If p is uniquely defined by
its moments, and for every k > 0 we have

/xkd,un — /xkdu

then {u,} converges weakly in probability to .
Proof. The proof is a standard exercise, see Appendix. O

In the case when p is the ESD of a graph, we refer to E[uf,] as the k-th spectral moment.
Using the notation above we have,

Elut] = [ odu
_ 1 k
S viG) &
1 k
=) ")
(9) = !V<1G)\ > M(H)X(H,G).
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Note that when {u,} are random measures, then E[f(u,)] are random variables, so we need
to specify the type of convergence one obtains in Definition 3.5. The first and most natural
definition deals with the behavior of a “typical” measure .

Definition 3.7. Let A, be a n X n random symmetric matriz, and let p,, denote its ESD. We
define the expected ESD, [i,, via duality as follows:

frm]fm]

Moreover, we say that {u,} converges in expectation to a fived measure p iff {fi,} converges
weakly to .

A stronger type of convergence is given by the following notion.

Definition 3.8. Let {u,} be a sequence of random measures. We say that {u,} converges
weakly in probability to a fized measure p if for any bounded continuous function f and e >0

we have
li_)m P H/fd,un—/fdu‘ > €:| =0.

Just as before, if we know that p is determined by its moments, then we can apply the moment
method:

Lemma 3.9. Let {u,} be a sequence of random measures, and let u be a fized measure which
1s uniquely defined by its moments. If

/xkd,un — /xkdu

in probability, then {u,} converges weakly in probability to .

Proof. This is a standard exercise, see Appendix.
O

As mentioned before, when we perform the moment computation for the truncated graph, we
will need to consider the degree sequence of trees. The following lemma gives the number of
trees with a given degree sequence (see Lemma 1 in [15]):

Lemma 3.10. If we have positive integers dy, . .., dy+1 such that Y d; = 2k, then the number
of trees T on k + 1 vertices with degree sequence equal to (dy,. .., dx1) is given by

k—1
di—1,...  dyp1—1)
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4. TOOLS FROM LINEAR ALGEBRA
In this section we present the linear algebra tools we will be using throughout the text.

Theorem 4.1 (Cauchy’s interlacing theorem). Let A be an nxn symmetric matriz, and let B
be an m xm (with m < n) principal submatriz (that is, B is obtained by deleting columns and
their corresponding rows). Suppose A has eigenvalues A, < ... < A\; and B has eigenvalues
B < ... < B1. Then,

Akt 2 Bm-ks1 = Anpt1
fork=1,...,m.
Theorem 4.2 (Weyl’s inequality). Let A, B be n X n symmetric matrices with ||B|| < d. Let
A=A+ B. Then:

[Ai(A) = Xi(AN)] <6

for alli. (Again we assume that the eigenvalues are ordered increasingly.)

Lemma 4.3. Let A be an n x n matriz with non-negative entries. Then for any positive {c;},
1=1,...,n,

1 n
(10) Al < &%ﬁ{az%%}'
J:

Proof. Let C be a diagonal matrix with entries {c1, co,...,¢,}. Both A and C7'AC have the
same eigenvalues. Since ¢; > 0 and A is non-negative, then C~'AC is also non-negative. For
a non-negative matrix, the largest eigenvalue is upper bounded by the max row sum, which
implies the result. O

Theorem 4.4 (Davis-Kahan, see Theorem 1 in [23]). Let A and B be symmetric n X n
matrices. Let A= B+C. Denote by v;(B),v;(A) the eigenvectors corresponding to \;(B) and
Ai(A). Then,

. el
A, A S S R A — B e (A) — MBI

5. TOOLS FROM PROBABILITY

In this section we state the probability bounds for graph counts that we will be using through-
out the paper. Since we obtain G, ,, by collapsing points in G} ,,, it is natural to first study
the probability of a labeled graph to appear in G ,,,,. Fortunately, this part was already done
in [5]:

Theorem 5.1 (Theorem 13 in [5]). Let Gy, be a random PA graph. Let S be a labeled graph
with out-degree of every vertex at most 1. Define Cs(t) to be the number of edges (i,7) in S



14 D. MONTEALEGRE AND V. VU

such that t <t and t < j. Then:

PS]= J[ dn(.S) II ﬁ 11 (”26;5_@)1)

i€V—(S) iEV+H(S) igV+(H)

Furthermore,

. 1 N2
1€V—(9) (3,7)€E(S) ieV(S)

We will be using only the second statement of the above theorem in this paper. Note that
in particular when S = (u,v), we obtain P[S] &~ 1/2y/uv. Hence, if S has more than one
edge, then the second factor is exactly what one would obtain if the edges appeared indepen-
dently. The third factor is a correction factor which tends to one. The first factor captures
the correlation among the edges in the preferential attachment model. For instance if we have
a < b < ¢, then we would obtain P[(a, b), (a, ¢)] = 2P[(a, b)|P[(a,c)] (since the in-degree of a
is two).

Given an ordered graph H, and a subset of vertices V', we could have multiple copies of
H in the vertex set V. For example:

Example 1. Let H be a triangle, then the total number of copies of H that can occur in a
given triplet of vertices {a,b,c} is m>(m — 1). To see this, note that to obtain a triangle in
G we must have points ay,as € [(a — 1)m + 1,am], by, by € [(b— 1)m + 1,bm| and c1, ¢y €
[(c—1)m+1,cem] such that during the construction of G1mn we joined points (a1, by), (az, c1)
and (b, c2). We have m?* choices to choose a1 and ay since they could be the same point, and
similarly for by, by, but since the out-degree in Gy s 1, then we must have ¢; # ¢y giving
m(m — 1) options.

Another ingredient one needs to keep in mind when performing graph counts is that all the
m5(m — 1) triangles are not “weighted” the same. As we mentioned before, we see that when
a1 = as we obtain an extra factor of two on the probability. Thus, to perform a graph count
we need to keep in mind the number of ways the graph could have been obtained from the
uncollapsed graph Gy, and then assign it a weight according to the first factor in (11). As
an illustration on how the count should be carried out, consider the following:

Example: We want to compute the expected number of paths of length two in a random
Gm,n graph. There are a total of three non-isomorphic paths of length two (see Definition 2.4):

04\0 © o o m

U1 V2 (%] U1 V2 U3 U1 (% U3
H, H, Hj
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We will count each one separately. Recall the notation from equations (6) and (7). For Hy,
we have:

E[X.,(H1)] = Z E[X..(H1,{a,b,c})]

Let A =[(a—1)m+ 1,am], B=[(b—1)m+ 1,bm] and C = [(¢c — 1)m + 1,cm|. Then all
the possible contributions to X, ,(Hi, {a, b, c}) come from having an edge (ay, b;) from B to
A and an edge (ag,c1) from C to A (in the uncollapsed graph Gy ,,,). If a1 = ag, then by
Theorem 5.1, the probability of (aq,by), (a1, ¢;) is given by:

2 L e (O ( ! + i + 1))
. eX - _ -
4&1 vV bl C1 P ajq b1 C1

which can be rewritten as:
1 1
20— [14+0|( =
4m2av/be ( (a))

There are m choices for a;, by, and ¢;, so we obtain an extra factor of m? to arrive at:

2 (esol?)

If however a; and as are distinct, then we do not have a factor of 2, and now there are m(m—1)
ways to choose them from A, so this case yields a contribution of

(13) %&b—l) (1 =9 (1>)

Hence, by adding equations (12) and (13) we get:

(14) E[X.n(H1,{a,b,c})] = mi;n—\/%l) (1 +0 G))

Taking the sum over all 1 < a < b < ¢ <n gives:

m(m + 1)nlogn
2

Similarly we can compute the contributions of E[X,, ,(H2)] and E[X,, ,(H3)], but they both
turn out to be O(n). Hence the expected number of paths of length two is given by:

(15) E[Xnn(H1)] = (1 £0(1))

m+ 1)nlogn
5 .

(16) (1 £ o(1)) ™

From the above example we see the importance of Definition 2.4. Since different orderings give
completely different counts, it is natural to treat them separately. When we are concerned
about the magnitude of the count, and do not care about the leading constant, the following
theorem will give us a quick way to deal with such situations.
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Theorem 5.2. Let H be an ordered graph. Then:
(17) E[X,,.(H)] = O (nf<H>/2 log?(™) n)

where f(H) denotes the number of vertices of H with degree one, and g(H) denotes the number
of vertices of H of degree 2. Moreover, if the ordering is such that d(v;, H) > d(v;11, H) then
one can replace O(-) by O(-).

Proof. Let t denote the number of vertices of H. Then:
EX,.(H)]= > E[Xu.(H V)
VCn]| V=t

For V = {x; < ... <}, we have:

(18) E[X,,.(H, V)] = (H d%HVz)-

To see this, let S denote the set of labeled graphs in G ,,,, which collapse to a copy of H on
the vertex set V. Then:
E[X,,,(H, V)| => P[S C Gyl
Ses
By Theorem 5.1 equation (11) we see that for each fixed S we have:

P[SCGial=01) | ]]

(4.5)€E(S)

\/_

By taking sum over all possible S € S gives equation (18). Since m, and |E(H)| are constants
we obtain:

E[X..(H)] = Z E[Xpn(H {21, .., 24 })]

1<r1<...<x:<n

¢ 1
= ) @<H ‘xdm,m/z)
=1 %1

1<z1<...<x:<n

! 1
=0 (H ( > xdm,mm))
i=1 \1<z;<n i

— O(nf(H)/2 10gg(H))'
For the moreover part of the theorem, see the Appendix. O

As we will see later in the paper, we will sometimes be interested in counting ordered graphs
where the smallest vertex is large. That is, given an ordered graph H, and M = M(n) a
function which tends to infinity, then we can consider the copies of H which appear on [M,n].
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Note that in some cases, this quantity will be asymptotically equal to the graph count in the
whole graph. To perform these counts more accurately, we present Lemma 5.3:

Lemma 5.3. Let H be an ordered loopless graph on t vertices. Let V C [M,n] be a subset of
t vertices {x1 < ... < x;}. Then:

(19) E[X,.(H, V)| = (1 +0 (%)) ggﬁﬁn ’t x?(vil,m/z

=1

where we recall the definition of p:

o(H,m)={ [ [m)%ne IT Maewm

veV—(H) veV+(H)

Note that the above lemma takes care of a couple of trivial cases as well: If a graph H has
out-degree more than m, then we know it can never appear in our process, and the lower
factorials do indeed give zero if any out degree is more than m. Furthermore, it saves a lot of
work when computing graph counts: If we revisit the situation where H = {(vy, vs), (v1,v9)},
then note that p(H,m) = m?(m + 1), so we obtain equation (14) immediately.

Proof of lemma 5.3. Let S(H, V') be the set of graphs in G4 ,,, such that they form a copy of
H in the vertex set V' after being collapsed. We want to compute the probability S C G,
for S € S(H,V), by Theorem 5.1 this is given by :

Ps]= | T di,S) I —|ew|o| 3 st

1€V —(S) (4,7)EE(S) 2\/5 1€eV(S)
the last factor will be always (1 £ O(1/M)). The second factor we can write as:

1 ! 1 1
et (20 (3)

Thus,

E[Xpn(H, V)] = (1 +0 (%)) (zm)llE(H)l ilixf(”im 7 > II dnti,9)

SeS(H,V) \ieV—(S)

We focus only on the last factor. Let r be the number of edges of H, and denote these edges
by e; = {(a;j,b;)}. Let X, denote the subset of {ay,...,a,,by...,b.} which corresponds to
vertex z;, in particular note that |X;| = d(v;, H). We will further split each X, into two
types: In-type and out-type which will correspond to whether they were an in-vertex or an
out vertex, and call these sets I(X;) and O(X}) respectively. For example, if we consider H
to be the following ordered graph with the given labeling:
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€2 €4
(%1 €1 (%) €3 U3 € V4
H

Then

o X; ={ay, a2}, I(X1) = {a1,az} and O(X;) = 0.

® XQ = {bl,ag,a4}, I(XQ) = {ag,a4} and O(XQ) = {bg}

[ ] X3 = {bg, bg, a5}, I(Xg) = {(15}, and O(Xg) = {bg, bg}

® X4 = {b4, b5}, I(X4> = @, and O(X4) = {b4, b5}
Note that we can think of S € S(H,V) as maps ¢ such that for a point u € X; we have
o(u) € [(z; —1)m + 1,z;m]. Furthermore, given any mapping o, which takes o : X; —
[(z; — 1)m + 1, x;m| which satisfies |0(O(X}))| = dout(v;, H) (this is the condition that the
out vertices have degree one), then we can construct a graph.

For a map o, we can define a function w(o) which equals [[;cy - (g din(j, 5)! where S is
the graph corresponding to o. Let €2 be the set of all such mappings. Then, the factor we are

interested in equals
> (o)

o€
Note that every o is uniquely defined by its action on X;. Hence, we can break them up as
0 =01 %X...%x 0y Let (; be the set of all mappings o; from X, to [(z; — 1)m + 1, z;m] which
satisfies |0(O(X;))| = dout(vj, H). Given one o;, we can define

wioy)= [ loj" () nI(X))]!

uelIm(o;)

Note that
t
w(o) = [Jw(o;)
i=1

where o is the restriction of o to X;. Thus, we obtain:

Z H din(j,S)! = Z Hw(aj)

SGS(H,V) ]eV*(S) (0’1,...,0’t)691><...><ﬂt 7j=1
t
=11 >_ w(oy)
Jj=10;€80;

Fix j, and for the remainder of the proof write d; instead of d;,(v;, H). First of all note that
the only restriction on where to map O(Xj) is that they must map to distinct points. This
will gives us a factor of [m]a,,,(v,,z). To map I(X;) and weight the maps accordingly, we have:
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e If we choose the images to be d; distinct points, then we have [m]dj many maps with
o If we choose the images to be d; — 1 distinct points, then we have (dj; 1) [m]q,—1 many
maps with w(o;) = 2.

o If we choose the images to be 1 distinct point, then we have [m]; many maps with
w(aj) = d]'

In general, the contribution of adding over maps ¢ with exactly k points in the image is given
by:

d.: ‘(d]—l)

k=1

e
Indeed, First we permute the points. Then we partition them into k non-empty sets, and for
the first partition we have m ways to select its image, for the second partition we have m — 1
ways to select its image and so on. Lastly, we divide by k! to account for the double counting
given by the ways we can re-arrange the partition amongst themselves. The key point here
is that we do not further divide by the number of ways we can re-arrange the inside of these
partitions. This will make each mapping o; be counted a total of [,c7,(,) [0} Yu) N I(X;))!

many times (which is exactly the factor we wanted to weight it by). Hence,

dj d' d]—l)

Z ( ) d(’"f(UJ H)Z
0, €8
& d; — 1\ (m
= ' !
{m]daut(UJ"H)d]' kz:; (kj — ]_) <k>

d;j—1

di—1 m
- [m]dout(vij)dj! Z <d i 1 — k‘) (k + 1)
k=0 7

m+d; — 1
= [m]dout(vij)dj!( dj )
J

= [m] dout ('Uj 7H) [m] dj

= [m] dout (Uj yH) [m] di" (vj 7H)

That is,

S I G- Y wle)

SES(H,V) jeV—(9) J=lo;€Q;
t

— (’UWH)
- H dout 'UJ7H) ] At
J=1
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= p(H,m)
as defined in the theorem. This concludes the proof. O

Lastly, we will be using the following lemma:

Lemma 5.4 (Lemma 3 in [6]). Let Hy and Hy be labeled graphs (that is, some specific graphs
of Kmn), which are vertex disjoint. Then:

P[H, U Hy] < P[H,|P[H,].
That is, disjoint graphs are negatively correlated.

The above lemma is of course no surprise. When we condition on one of the graphs appear-
ing, this reduces the expected degree of the other one (since we know that some of the edges
“missed” connections), and thus they are negatively correlated.

Recall from above that we will be describing the approximate limit of the spectrum via its
moments. There are two natural issues with this strategy: Is there a distribution whose mo-
ments match the given constants C(k, e, m), and if so, is it unique?

The first question is known in the literature as the Hamburger moment problem: Given a
sequence {mg}r>0, we say that it is solvable if there is a positive Borel measure p on the
real line such that the moments of p are given by {my}. If the sequence is indeed solv-
able, the question of whether the measure is unique is known as M-determinacy (short for
moment-determinacy).

Theorem 5.5 (Hamburger Theorem). A sequence {my}r>o is solvable if and only if for an
arbitrary sequence {c;}j>o of complex numbers with finite support, one has:

(20) > s,y > 0,

r,s>0

Theorem 5.6 (Carleman’s condition). Let u be a measure on R such that all the moments
my = / fdp

/2
(21) lim sup QZ < 00

k—o00

are finite. If

then p is the only measure on R with {my} as its sequence of moments. That is, {my} is
M -determinate.
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6. SPECTRAL MOMENTS

In this section we find the spectral moments of a random PA graph. Note that in [20] they
conjectured that in order to carry out the moment computation for a random preferential
attachment graph, it suffices to consider the edges as if they appeared independently (see
their Conjecture 1). Although their model is slightly different than the one used here, we can
see that the conjecture does not hold since the preferential attachment rule by which we add
edges gives us the extra factor in equation (11).

Theorem 6.1. Let G, ,, be a PA random graph, and let ji,,,, denote its ESD. Let i, be the
expected ESD. Then the first spectral moments are:

Elfiy,,] =1
Bl - 6 (22"
Elir, | = (1+0(1))2m

)
E[fty.] = © (1/Vn)
E[nl 1= (1+0(1))2m(m +1)logn

m,

and for k > 3 we have:

(22) E[fi;,,] = ©(n*/*")
(23) Elfin,'] = ©(n"/?7%72),

Remark 6.2. Note that in particular we obtain the same first, second and third moments,
but the 4th-moment is different in [20]. The extra factor in equation (11) which they do not
use changes the leading coefficient from m? to m(m + 1).

Proof of Theorem 6.1. For short hand, we are going to write Mj, instead of E[i¥, ]. Using
equation (9) we have:

My==E| > Mi(H)Xy,.(H)

HeF(Km,n)

HeF(Km,n)
We mention a few words on moments M}, for k£ < 4 and then handle the remaining cases. We
have to treat them separately since they are corner cases.

e M, follows from the definition of a pdf.

e M comes from loops. By Theorem 5.2 the expected number of loops is O(logn).

e M, comes from edges and loops. The contribution from loops is again O(logn), and
the number of edges is mn. Since we can transverse any edge in two ways we get
My = (1+0(1))2m.
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e M3 will be dealt with in the general case below.

e M, the contributions come from: A collection of loops around a vertex (contribution
of ©(logn)), a collection of loops and an edge (contribution of ©(y/n) by using The-
orem 5.2 and placing the vertex with the loop before the leaf), an edge which gives
a contribution of ©(n). The only remaining contribution is from paths of length two
which we did in our graph count example. If H is a path of length two, then My(H)
equals 4. Hence,

M, = (14 o(1) (4 cmim +1) log”) .

2

For the general case we split the proof into the odd case and the even case.

Even moments: We aim to compute My,. By equation (9):

MQk = % Z M2k<H)E[Xm,n(H)]

HeF(Kmn)

By equation (5.2) we see that the contribution of an ordered graph H is O(nf()/2=11og9) p).
Since H comes from a closed walk of length 2k, we must have f(H) < k (to reach each leaf
we must walk their corresponding edge back and forth), with equality if and only if we have
a star on k edges. This yields the upper bound of O(nk/Q_l). Now note that this bound is
indeed achievable by Theorem 5.2 if we let H be the following ordered graph:

i b2 vs Uk+1

Odd moments: We want to compute My, 1. Just as above, note that for any H which
yields a closed walk of length 2k — 1 we must have f(H) < k — 1. To see this, note that any
closed walk must have a cycle, which uses at least one edge (in the case of a loop), and then
we can have at most k& — 1 vertices of degree one. Note that we can only have equality when
we have a start and a loop around the high degree vertex. This yields an upper bound of
O(n*=Y/2=1) 'In the case when H is the following ordered graph:

Y v2 U3 Ukt1

we obtain a matching lower bound, which implies the result. O
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As we pointed out during the introduction, in order to further study the spectrum of the
PA graph, we need to break our analysis into two: The bulk of the spectrum and the edge
eigenvalues.

7. SPECTRUM OF THE TRUNCATED GRAPHS AND PROOF OF THEOREM 2.2

In this section we will prove Theorem 2.2. As we will see in a later section, the largest
eigenvalues will arise from the stars with large degree (which correspond to vertices appearing
early in our graph). Hence, to exclude these large eigenvalues from our study, we will consider
the graph obtained by deleting the first vertices:

Definition 7.1. Let € > 0 be fized. An e-truncated PA random graph is a random graph
obtained by sampling G, , € Gyn, and then deleting the first en vertices to obtain G, .. We
will denote this space of random graphs by Ge . Note that these will be a graphs on n —en
vertices and we will refer to its vertices by its original label. That is, V(Gemn) = [en, n].

We want to study the limiting behavior of the random measures pg. ,,,, which henceforth we
will write as i, to shorten the notation. Note that the first part of Theorem 2.2 will be
given by Cauchy’s interlacing theorem (Theorem 4.1). Namely,

dist(fmns Hemm) < €.

For the second part of the theorem, we define i ¢ Vvia its moments, which will be the se-
quence given by the sequence {C(k,e, m)} which we define below.

Before we define the sequence, we present some notation we will be using:

Definition 7.2. Let T denote the set of ordered trees with at most k edges.

Definition 7.3. Let D = (di,...d;) be a sequence of positive integers with ), d; = 2(t — 1).
Let € > 0 be a fized constant between zero and one. Then deﬁne:

(24) w(D,E)ZW,}Ego% > H d/2

en<zy<..<zt<n i= 1T

Note the above limit agrees with the earlier definition of ¢(D,¢):

1 1
UDE) = G m Y Hd

en<zri<..<zt<n 1=1 ':C

t
1 r2 1 .
_ (2m) nlggo E (1o / / /m H del ...dxy substitute x; = ny;:

=W</:/€yt / Hd/2 Y- >(nl—>rgo(711ino—z(1‘z)/;>
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1 1 prye yo _t 1
= —=d
<2m>t1/5 / / Hy/ .

It is clear that the last formula is a constant depending on m, e, and D(T'). Recall the critical
constants C'(k, e, m), discussed in Section 2.4:

C(2k,e,m) = —— Z (T, m) Mo (T)(D(T'), €)
T€77c
C(2k+1,e,m)=0.

Apriori, the above might be a sequence of constants that do not correspond to the moments
of any measure. Moreover, if they do correspond to a measure, they might not uniquely define
it. However, this is not the case as shown by the following lemma:

Lemma 7.4. Let {C(k,e,m)}32, be defined as above. Then:

(1) The sequence {C(k,e,m)}r>0 is solvable.
(2) The sequence is also M -determinate.

Proof of Lemma 7.4. We postpone the proof of part 1. For part 2, note that Carleman’s
condition requires for the moments to not “grow too fast”. Write Cy, = C(2k,e,m) for

shorthand. We will show:
1/2k

lim sup —=*— 2k <C

k— o0
for some constant C. We will assume that 7 is the set of labeled trees with exactly k edges
(as opposed to the set of trees with at most k edges, to see why this is enough see Appendix).
To bound (D(T),¢) let D(T) = (dy,...,dk+1). Then:

1 1 k+1

GDT).e) =g lim — 7 [[45 d/z

en<z1<..<xpy1<n i= 1L

k+1 n
< g Jm HZ i
Note that
" onl—di/2 ifd, =1
(25) Z g < < log(1/e)n'~%/2 if d; =2
r=en opl—di/2o=di/2 ifd, >3
Thus,

k+1
w(D(T),g) < i lim l (QIL\/(;/E)> k=%, di/2
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1 (2log(1/2)\" oy I
SEANG

| _ 2_1k (2105[(2/50’““

Hence, ¢)(D(T), <) < C* for an appropiate constant C. Hence, we focus on bounding;

S (T, m) M (T)

TeT),

n—00 n

In the Appendix, we show the following combinatorial identity:
(26) Ma(T) = (2k) [] (d(v,T) - 1)!
veV(T)
Also note that
o(T,m) < [ ™™ < (m+1)* [ @d@,T)-1)
veV(T) veV(T)

Hence, we can bound the terms by functions that only depend on the degree sequence of T
Let D denote the set of degree sequences of trees on k + 1 vertices. Then,

Z (T, m) Mo (T) < 2k(m + 1)* Z {T €Ty : D(T') = D} (H (d; — 1)!>

TeTy DeD d;€D

By Lemma 3.10,

k—1
T :D(T) =D} =
]{ € Tr ( ) }’ <d1_17d2—1,...,dk+1—1)

Thus,
> Mop(T)p(T,m) < 2k(m +1) NI || (G
TeTy DeD d;eD
2k<m+1>'f<<k—1>'>22( - ;
< 2k(m 4+ 1)*((k — D)NH?|D|
= 2k(m + 1)**((k 1)!)2(;:“0
< 2k(2(m + 1))**((k — 1)!)?
= 2k(m + 1)*((k — 1)!)?
(27) < 2K(2k(m + 1))%*.

Hence, we can bound the desired limit by \/5 (m + 1) which proves the lemma.



26 D. MONTEALEGRE AND V. VU

O

Theorem 7.5. Let 0 < ¢ < 1 be fizred. Let Ge .y be the e-truncation of a random PA-graph.
Let {C(k,e,m)} be the sequence of constants as defined above. Then for any fized k we have:
E [, — C(k,e,m).

Proof. We need to compute
E[Tr(Ag. . .)]
From equation (9), we see that this is equivalent to
1
k _
(28) E[Tr(Af, )] = — Y M(H)E[X(H,Gepmp)]
He}—(Km,nfen)

Let H € F(K,n—cn) be a graph on t vertices. Let V = {x1 < ... < 2} be a subset of [en, n].
Then by equation (19) we have:

E[X(H,V)] = (1i0 (%)) {;ﬁﬁ% ,t xg@iﬂ)/z

1=1

Hence,

t 1 t n 1
B[X(H.Gepnn)] = © ( > I W) =0 (H 2 —xdm,m/a)

en<ri<..<zi<n i=1 %19 1=1 z=en

Using the same bounds as in equation (25), we obtain:
E[X(H,Gepmn)] =0 (nt*Zi d(vi,H)/2) -0 (nt7|E(H)\)

Since H is a connected graph on ¢ vertices we have t — |E(H)| < 1, with equality if and only
if H is isomorphic to a tree. Hence, in equation (28) if we consider the sum over graphs which
are not isomorphic to trees we will get a contribution of O(1/n). In particular, note that all
the odd moments vanish (since they must contain a cycle). Note that if H is an ordered tree
on t + 1 vertices then we have:

t+1

1 1 ©(H,m) 1
—E[X(H,G.mn) = —(1£0(1 -
“E[X( =g 3 Fouy
— o(H,m)y(D(H),e)
So to compute the even moments, we obtain:
1 1
E[Tr(AZ )] =o(1) + - > Mo (H)=E[X (H, G )]
€ fen
1
S 3 Ma(H)p(H,m)u(D(H), )
HeTy,
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as desired. 0

Now that we have shown that our sequence of constants correspond to the limiting moments of
the expected ESD, then we have that Hamburguer’s criterion must be satisfied: The sequence
{lte.mn}o2, satisfies equation (20). In particular, it follows that their limit, C'(k, e, m), also
satisfies (20). Since we already showed that the sequence is M-determinate, we have:

Corollary 7.6. There exists a unique probability measure with moments equal to {C(k,e,m)}x>0.

We denote this measure by i .. Hence, to finish the proof of Theorem 2.2, we need to
show that {ftmn} converge weakly in probability to picm . We do this by showing that the
random measures are concentrated around the expected measure.

Lemma 7.7. Let G. ., be an e-truncated PA random graph, and denote its ESD by ficmn-
Then for any fixed k,d > 0

lim P [|E[it,,] Bl )| > 8] = 0

n—oo

Proof. We compute the second moment as follows:

B [(Blut,,.] ~ B[, )7) = B | (Blk,,)°| - (B,

- (v )] - ()

_ m Ell S M| |- 3 MEEL]
HEC(Gz m.n) HEC(Geymn)
ST Y MM (Bl L) ~ Bl Ells,)

H17H2€c(G8,1rL,n)
If H, and H, are vertex disjoint, then by Lemma 5.4 we have
E[]IHl]IHz] - E[HHl]E[]IHz] <0

It H, and H, are not vertex disjoint, then Iz, [, corresponds to the indicator random variable
that a connected labeled graph appears. As we saw in the above proof, connected graphs give
a contribution of O(n). Thus,

> My(H)My(Hy) (E[lg,1n,) — Ellg, JE[ly,)])

HiNH2#0

< Y My(H)My(Ho)E[Ly, Iy,
HiNH#0
= O(n).
We thus obtain
E [(E[uf,, ] — E[E,,.))*] = O(n™)
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which implies the lemma via Chebyshev’s inequality. 0
We finish off the proof of Theorem 2.2:

Proof. By Lemma 3.9, it is enough to show that the k-th moments of {s. .} converge in
probability to the k-th moments of i ;;,00. By Theorem 7.5:

‘E[/_j’]&imm - C(k757m)‘ —0
deterministically. By Lemma 7.7:

[ElL ] = ElAL,, 0]l = 0
in probability. We get,

B[ 0] = Clk,e,m)| =0
in probability as desired.

8. EDGE EIGENVALUES

In this section we prove Theorem 2.9. As we saw in previous sections, the main contribution
towards the even moments come from stars where the high degree appears first. It turns out,
that these stars will also dictate the behavior of the largest eigenvalues.

In order to show Theorem 2.9, we will need control on the degrees, in particular we need
to show they do not deviate too much from their mean. One could prove these results using
the tools developed above, but fortunately some of the bounds needed were already done in
[12], so rather than reprove them we will simply state them.

For a graph G, we will write |G| for the operator norm of the adjacency matrix. Note
that this quantity is always equal to A\;(G) by the Perron-Frobenius Theorem.

Theorem 8.1 (Theorem 1.1 in [12]). Let t — co. Then whp we have Ai(Gp) < Vtlogt.
Theorem 8.2 (Theorem 1.2 in [12]). Let t — co. Then whp we have |Gy, || < tY/*\/Togt.

Theorem 8.3 (Claim 2.6 in [12]). Let § > 0 be fized. Then for any s := s(n) such that
s — 00 as n — 0o we have that for all v € [s,n] and r € [s,v] we have d(r,G,,,) < n°~/v/r
with probability at least 1 — O(s~C) for any arbitrary constant C.

Remark 8.4. The above theorem is stated slightly differently in [12]. To obtain the form
stated above, change € (as in their proof) to be an integer satisfying 2 — ¢ < —C', and then
keep track of the error probability.
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Lastly, we will be using a result from [19] which gives us explicit rates of convergence from the
degrees to their limiting distribution. To describe this limiting distribution, we first define

(o) = T(oy L e ()0 (- 14)

where I'(s) denotes the gamma function, and U(a, b, z) denotes the confluent hypergeometric
function of the second kind. For more information about the above distribution and its
properties, see [19] and references therein. Denote by dg (u1, p12) to be the Kolmogorov distance
between two probability measures defined as:

drc(pi1, po) = SUE |1 (=00, @], —pia(—00, ]|
zE

Theorem 8.5 (Theorem 1.1 in [19]). Let by,; = /E[d(i,G1 n)?]. For 1 <i < N and some
constants ¢, C > 0 independent of N, we have:

C d(l,Gl N) ) O
— < — Ry < —
VN K ( by 1/2 vN

In particular, the only property we will need from &;_; /5(z) is that they are uniformly bounded:
For all positive integers i, we have x;_;/5(x) < 2 for all € [0,00). We present our final tool,

Theorem 8.6. Let w(n) — co. Then, for alli € [1, k] we have
Ed(i, Gy )

w(n)

(i, Gn) € [ ,w(n)Ed(i, Gm,n)}

with probability at least 1 — O(k/w(n) + k/\/n).
Proof. A calculation in the Appendix shows

n

(29) E[d(i,G1,)] =© < —,)

]

(30) byi— © ( g) |

Note that d(i, G,) = Z?Z(i_l)mﬂ d(j, Gy ), S0 we obtain Ed(i, G ) = O(y/n/i). Let C
be an absolute constant such that for any ¢ € [n] and any j € [(: — 1)m + 1,9m] we have:
Ed('L,Gmm) < C~'
bmn,j -

For any fixed function w(n), we have:

PG < 2000 < S (.G < B D)

w(n) j=(i—1)m+1 B w(n)
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- Y d@éGLmn) - E;du,am,nq

j=(i—-1)m+1 - mn,j mn,jW (1)
- —d<j7 Gl mn) é

< P > <

o Z bmnj o C(J(TL)
j=@-)m+1 L ’

S Z —F +/ :‘fjfl/g(:lj)d:[j
j=(—1)m+1 " mn 0

1 1
—0—
(ﬁ " w<n>)

Hence, with probability at least 1 — O (\% + %) we have that for all ¢ < k:

Ed(i,Gn)

w(n)

d(i, Gpmn) >

For the upper bound one can just apply Markov’s to obtain:

P [d(i, Gyrn) > w(n)Ed(i, Gyn)] < ﬁ

Taking a union bound gives the desired result. U

8.1. Proof of Theorem 2.9. The proof will be similar in nature to the one done in [§].
We are going to split the graph into multiple subgraphs, and we are going to show that the
eigenvalues can be deduced from a very well structured subgraph, and the rest can be viewed
as “noise”. For ease of notation, we will simply write G for G, ,. Throughout the proof, we
will have the following notation

§=1/10000 k=n"®  p=n¥?  s=pn'"T  {=pt>

Let S =[1,s] and T = [t,n]. Consider the following subgraphs of G defined as follows:

° G1 =G [1, t].

o Gy =Gls,nl.

e GG(5,T) is the bipartite graph spanned by the vertex partition [1, s| and [t, n].

e (53 is the subgraph of G(S,T) spanned by the vertices in 7' which have more than
one neighbor in S. If we have a vertex v € T which connects to a u € S through
two distinct edges, we consider ¢ having two neighbors in .S, so G3 will contain all the
parallel edges of G(S,T).

e (G, is the complement of G5 in G(S5,T).

The advantage of the decomposition above is that we obtain G4 which is very well structured:
It is a union of s disjoint stars, where we have one star for every u € S. Hence, for ¢ < k we
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will have:
Mi(Ga) = VA(Gy).

We will show that the eigenvalues for G can be deduced from the eigenvalues of G4. This
consists of two parts:

(1) The subgraphs G, Gy and G5 have negligible norm.
(2) For a vertex u € S, the degree in G4 is close to the degree in G. That is, d(u, G4) ~
d(u, G).

Thus, we define the “loss” of a vertex u € S as:

L(u) = d(u, Gy) + d(u, G3).
Note that we obtain the following relation:

d(u,G) = d(u,Gy) + L(u).

Once we have shown that the norms of Gy, G5, G5 are negligible, we can apply Weyl’s inequal-
ity: how the required bounds through the following five steps:

Step 1: Whp we have that for all ¢ < k: d(i, G) > E[d(i, G)]/b.
Step 2: Whp we have ||G4]| < t'/*1ogt.
Step 3: Whp we have [|Ga|| = O(n’(n/s)'/*).
Step 4: Whp we have that for all u € S: L(u) < s°log>n + t'/%log t.
Step 5: Whp we have ||Gs|| < s'°log®n.
Assuming Steps 1 - 5, the proof of Theorem 2.9 follows readily:

Proof of Theorem 2.9. Recall that

n

i) = (/%)

]

which implies by Step 1 that whp we have:

C In_C In
. > = > — 4=
AilG) 2 b\/;_ b\/;

for some appropriate constant C. Note that by Step 4 and the above lower bound, we have
that whp for all ¢ < k:

Ai(Gy) > Ay(G) — max L(u)

(31) > A(G) — (s"°log?n + t/%1logt)
— (1- 0(1)A(G).
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As A;(G) > Aj(Gy), we have A;(G4) = (1 —0(1))A;(G). Since G4 is a union of disjoint stars,
we have that \;(G4) = v/A;(G4), which means:
M(Gs) = (1 o(1)V/A(G).
By using our lower bound on A;(G) and the fact that ¢ < k, we have:

/A
Ai(Gy) = (1 —0(1)VA(G) > (1 —o(1)\/Ar(G) > % (W) — 43/200

By Weyl’s inequality we have:
[Ai(Ga) = X(G)| < (|Gl + [|Gall + (|Gl
which using Steps 2, 3 and 5, we have that whp:
G|+ [IGoll + 1G]l < t/*Togt + O(n’(n/s)'*) + ' log? n
_ O<n5n6/28)

(32) =0 ((% %) 1/2)

= 0(Ak(Gy)).
Thus,
[Xi(Ga) = Mi(G)| = o(Ai(Ga))
Combining all of the above, we obtain that whp for all ¢ < k:
Ai(G) = (1 £ 0(1))Ai(Ga)
= (1 £0(1))VAi(Gy)
= (1+0(1))VAI(G)
just as desired. (|

We now prove each one of the required Steps.
Step 1: Follows from Theorem 8.6 by letting w(n) = b.
Step 2: Follows from Theorem 8.2.

Step 3: We will be using equation (10). Our matrix A will be the adjacency matrix for
G5, where for ease of notation the rows and columns are labeled [s,n]. Let r = y/ns, ¢; = ’le—//f

for ¢ € [s,7], and ¢; = 1 for i € (r,n|. Define,

n
1
Ri = — E Cjaij-
&

j=s
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It suffices to show that for all i € [s,n] we have R; = O(n’(n/s)'/*) with probability 1—o(n™1),
so the result would follow from taking a union bound. Let C be a large enough constant such
that s7¢ = o(n~!). Then, using Theorem 8.3 we have:

Case i € [s,r] : We have

R, = (Z cja;5 + Z CjQi; + Z C]am>

Jj=i+1 j=r+1

d(z’, Gm n)

mc,

+d( mr) +

< I \/jr + = \/7
=0 ((E)M”‘s)

occurs with probability 1 — O(s7%) =1 —o(n™1).

Case i € (r,n] : In this case one has:

R; = Zc]aw + Z ;i

Jj=i+1
<mcs—i—dz (i, Gn)

i
O<(5)1/4”)

occurs with probability 1 — O(r=¢) = 1 — o(n™'). Hence, whp we have R; = O(n°(n/s)'/*)
for all i € [s,n]. Thus, whp we have:

Tex| :o((%)”%é).

Step 4: For u € S, we have:

(33) d(u,G1) < A(Gy) < Vitlogt
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whp by Theorem 8.1. Let H; be the following ordered graph {(vy, v3), (v2,v3)}, and let Hy =
{(v1,v2), (v1,v2)}. Then,
d(u,Gs) < > Xua(Hi, {u,22,25}) +2 ) X o(Ha, {u, 72}).
x2€S,x3€T zo€T
By computing the above graph counts (see Appendix) we obtain:
(34) Eld(u, Gy)] = O(v/3log )
Hence, for an appropriate constant C' (independent of n), we have:
P[d(u, G3) > s log® n] < P[d(u, G3) > CslognE[d(u, Gs)]|

< —1 .

~ Cslogn
By taking a union bound over all u € S, we obtain that with high probability:

d(u,G3) < s log®n.
Combining with equation (33) we obtain:
L(u) < s*?log?n + Vtlogt.

Step 5: We will use the fact that the norm of a graph is always bounded by the maximum
degree. Recall, G5 is a bipartite graph where for every v € T' we have that d(v, G3) < m (by
definition of our model), and for u € S we have d(u, G3) < s**log? n (by above). Hence, whp:

1G3|| < s log® n.

This concludes the proof of Theorem 2.9. Now we proceed to study the largest eigenvectors.

9. LOCALIZATION OF EIGENVECTORS

In this section, we prove Theorem 2.8. The strategy is as follows: We will use the decomposi-
tion and all the notation we used in the previous section (e.g., k,t,G1,Ga,...). Let G, be
a random PA graph, and let A,, denote its adjacency matrix. Let B, denote the adjacency
matrix of Gy, and let C,, := A, — B,,. From the Davis-Kahan Theorem (Theorem 4.4), we
see that the two quantities one needs to control when studying eigenvectors of perturbations
are the eigenvalue gap and the size of the noise. We present the following bounds on the two
quantities:

Lemma 9.1. Let C, be defined as above. Then whp:
IColl = O(n*72%).
Proof. C,, corresponds to the adjacency matrix of the complement of G4 in G,,,,. As we saw

in the proof of Theorem 2.9, we see that this complement is contained in G; UG, UG3. Hence,
by equation (32) we obtain whp

1Call < IGull + (1G]l + (1G5l
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= O(n3/20),
O]

Recall that the eigenvalues of B, arise from the (square root of) max degrees. Hence, to
control the eigenvalue gap, we need to control the maximum degree gap. We use the following
theorem:

Theorem 9.2 (Theorem 1 in [12]). Let K be some fized constant. We have whp:

v < A(G) < AL(G) - Vi

logn — logn

vn < A(G).

logn —
We can now show a lower bound on the eigenvalue gap:

Lemma 9.3. Using the notation from above, for i < K we have whp:

nl/4

Ai(Br) = Xix1(Br) > —
log” n

For a proof of the above lemma, see Appendix. With these two bounds, we can present the
proof.

Proof of Theorem 2.8. Since B,, is the union of disjoint stars we have that for i < K whp:
1

Willoo = —F=
[[wi | 7
and all coordinates which do not realize the infinity norm are equal to 1/1/2A;(G4) = o(1).
Hence, if we show:
[[vi — will2 = o(1)

then the proof would follow. First of all note that for two unit vectors v and v, whose angle
6 is in [0, 7/2] we have:

|u —v||3 < 2sin?(8).

Hence, it suffices to show that the (sine of the) angle between w; and v; is o(1). By Lemmas
9.1 and 9.3:

ICull = O(n*/*)

nl/4

)‘l(Bn) - )‘lJrl(Bn) > 3
log”n

occur whp for all 7 < K. Hence,

[Aic1(An) = Ni(Br)| = [Nic1(An) = i (Br) + Aica(Ba) — Ai(By)]



36 D. MONTEALEGRE AND V. VU

nl/4
>

~ 2log’n’
Similarly, we can bound |\;(B,) — Ai+1(A4,)| from below by the same quantity. Thus, by

Theorem 4.4:
. log®n
Sin A(Ui,wi) =0 (W)

which implies the desired result.
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10. APPENDIX

Proof of lemma 3.6: Note that we have that the sequence {u,} is tight. Hence, by
Prokhorov’s theorem there exists a subsequence {,unj }j‘;l such that it converges weakly to
a measure, call it ji. Note that the moments of i are equal to the moments of u, but since
they uniquely determine the measure, we have i = pu. By Prokhorov’s theorem, since every
weakly convergent subsequence has the same limit x4, then the sequence {u,, } converges weakly
to p.

Proof of lemma 3.9: Fix f to be a bounded continuous function. Let X,, = [ fdu,
and X = [ fdu. We want to show that X,, converges in probability to X. This is equivalent
to showing that for any subsequence {n,,} one can find a further subsequence {n,,, } such that
Xnm]. converges almost surely to X.

Given {n,,}, we extract a subsequence {n,, } such that [ xkd,unmj converges almost surely to

f xFdy for all k: This can be done by first choosing a subsequence in which the first moments
converges a.s., then pick a subsequence where the second moment converges a.s., and continue
inductively. Since p is uniquely determined by its moments, we have that fin,,, converges
weakly to p with probability equal to one. This implies that Xnmj converges almost surely to
X, just as desired.

Moreover part of Theorem 5.2: We wish to lower bound:
t
1
> oM )
1<z <...<z<n i=1 T

where we have d(v;, H) > d(v;41, H). Let I and Iy be such that: d(v;, H) > 3 for i € [1, [3],
d(vi, H) =2 fori € [I; + 1, 5] and d(v;, H) = 1 for i € [Is + 1,t]. Then,

Tl : 1
> @<HW>Z 2. 9(1_[ W)

1<zi<...<xt<n nh+1<zp 41<..<zt<n i=I1+1 %1
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Is t

>0 > I > I

11+1§1‘[1+1<...<$12§\/ﬁi:11+1 ! \/ﬁ§x12+1<...<xt§ni:b+1
— @(nf(H)/2 log?UD) n).
Proof of equations (29) and (30): We have

Eld(i,G1)] =1+ Z (4,7) € Gi,]

J=i+1

_1+@<;;1\/_>

()

Moreover,

b2, = E[d(i,G1,)?

7’L7,

n 2
E (1+ 5 n@,ﬂ%)

j=i+1

=14+E [3d(i,Gi,)+2 > ]I(i,j)eamﬂ(i,j/)eglyn]

i+1<j<j’'<n

—1te (\ﬁ) £23 Plg) ) € G

i+1<j<j’'<n

! i+1<jz<j’§n wig'
n
=0(3)

Taking a square root yields equation (30).

Proof of equation (34): Let V = {z1,22,23}. Then from equation (19) we obtain the
following upper bound:

E[X,.(H, V)] = O (ﬁ)

Hence,

Z an H1 {U 552,303} < Z )
xo€S, 3T Vv UL2L3

zo€S,x3€T
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= O(y/slogn)
Similarly for Hs, if V = {21, 25} then:

E[X,,.(H2, V)] =0 ( ! ) .

T1T2

Hence,

™ Xy (Ha, {u,2}) = O (Z u%)

xo€T xo€T

= O(logn)
which imply equation (34).

Proof of Lemma 9.3: First of all note that A\;(B,) = /A;(G4) for i < k whp. More-

over, we also have:

(1 =0 (n"*logn)) Ay(G) < Ai(Gy) < Ay(G)

Thus,
Ai1(Gy) < Ai1(G)
Ai(Gy) — AyG) —n'3/50logn
B 1 Ai1(Gy)
- n13/50 Jog n ]
1- s Al
1 1
=11 - 1—
(1+0 (mmen) ) (-0 ()
-(1-0(572))
log”n
Hence,

N(Bo) = A1 (By) = VA(Ga) — /A1 (Ga)

- Ai1(Gy)
= VAi(Gy) (1— m)

v (1= 10 (g
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Proof of equation (26): Let 7" be a tree. We wish to count the number of closed walks in
T which use each edge exactly twice (back and forth in the walk). Note that we can rewrite
equation (26) as:

> d(w, T) ] (d(w,T) - 1)!

veT WV
We claim that the number of closed walks in T" which use each edge exactly twice, starting
and ending at v is given by:

d(v,T)! ] (d(w, T) - 1)!
wHv

which follows easily from induction.

Reduction of 7; on the proof of Lemma 7.4: We want to show that it is enough to
consider the case when 7y, is the set of trees with exactly k edges. If T is a tree on k many
edges, where k < k, then: )

Mo o(T) < (A(T)(2k)) My (T)
to see this, note that given a closed walk of length 212‘, then we can choose a point during the
walk to add an extra step. The number of places where the extra step goes is 2]2:, and at each
vertex we have at most A(7") many choices on which vertex to visit from there. Hence,

Mar(T) < (2kA(T)) My (T).

Note that calculation (27) can be carried the same with k replaced by k. Hence, when we
sum over the trees with exactly £ many edges we get an upper bound of:

(2kA(T))FF2k (2% (m + 1))2F < (2k2)FF2k(2k(m + 1))
< Ck:ka
Hence, by summing over all k& < k we get an extra factor of k to obtain:
Ok 2R+
which satisfies the required limit needed in equation (21).
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