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We study a kinetically constrained pair hopping model that arises within a Landau level in the
quantum Hall effect. At filling v = 1/3, the model exactly maps onto the so-called “PXP model”, a
constrained model for the Rydberg atom chain that is numerically known to exhibit ETH-violating
states in the middle of the spectrum or quantum many-body scars. Indeed, particular charge density
wave configurations exhibit the same revivals seen in the PXP model. We generalize the mapping
to fillings factors v = p/(2p + 1), and show that the model is equivalent to non-integrable spin-
chains within particular constrained Krylov Hilbert spaces. These lead to new examples of quantum
many-body scars which manifest as revivals and slow thermalization of particular charge density
wave states. Finally, we investigate the stability of the quantum scars under certain Hamiltonian
perturbations motivated by the fractional quantum Hall physics.

I. INTRODUCTION

The breakdown of thermalization in non-integrable iso-
lated quantum systems has been a subject of recent inter-
est. This is believed to be equivalent to the failure of the
Eigenstate Thermalization Hypothesis (ETH),'™* which
is expected to hold for generic non-integrable models. A
well-known instance of such a failure occurs in Many-
body Localization (MBL)?® which happens in the pres-
ence of disorder,”? quasiperiodicity,'®'? or strong elec-
tric fields.!314 The failure of the Eigenstate Thermaliza-
tion Hypothesis (ETH) in MBL systems can be explained
by the emergence of quasilocal integrability, also reflected
in the absence of level repulsion in the MBL phase. A dif-
ferent kind of breakdown of thermalization occurs when
some ETH violating eigenstates in the middle of the spec-
trum coexist with otherwise ETH satisfying eigenstates.
Such a scenario was rigorously shown for the first time in
the (non-integrable) spin-S Affleck-Kennedy-Tasaki-Lieb
(AKLT) model,*® where a quasiparticle tower of states in
the middle of the spectrum was obtained in Ref. [16] and
[17]. These states, which so far remain the only tower of
states to be analytically tractable without having a con-
servation law, were shown to have a sub-thermal (loga-
rithmic) scaling of entanglement entropy,'” thus violat-
ing the strong ETH prediction. For a set of analytically
tractable states of low entanglement stemming out of a
conservation law, see Refs. [18-21]. In addition, Ref. [22]
showed that ground states of certain models can be em-
bedded in the middle of the spectra of deformed models,
thus violating ETH. A similar construction was worked
out for topological models in Ref. [23]. These consti-
tute a violation of strong ETH,?*2% which states that all
eigenstates in the middle of the spectrum obey ETH.

Violations of strong ETH have also been found (in-
dependently and from a different perspective) numeri-
cally in certain systems with constrained Hilbert spaces.
Ref. [26] observed non-thermal oscillations after a quench
in cold atom experiments with Rydberg atoms, where

the Hamiltonian imposes a penalty on neighboring atoms
can both be excited,?”?® forming an effective low-energy
constrained Hilbert space. To explain the oscillations
from a Néel-like state, Refs. [29] and [30] studied the
so-called PXP model, a toy model for Rydberg atoms,3!
and reported the presence of strong-ETH violating eigen-
states that numerically are found to have a sub-thermal
(logarithmic) growth of entanglement entropy. This phe-
nomenon was called many-body scarring,?? analogous to
the well-known phenomenon of scarring due to unsta-
ble periodic orbits in phase space when a classical sys-
tem is quantized.?? The many-body analogue of classical
phase space was conjectured to be the Time-Dependent
Variation Principle (TDVP) manifold of states,®® a cor-
respondence that was illustrated using Matrix Product
States (MPS) for the PXP model.>* Subsequently, four
exact strong ETH violating states were analytically ob-
tained for the PXP model.?® However, several ques-
tions about quantum scars in constrained models remain
open, including their origin,'?20:36-40 the nature of the
scars,3>4142 and constructions of scars in fermionic sys-
tems. It is thus important to search for other constrained
systems that exhibit similar features.

A natural system to look for constrained dynamics is
the quantum Hall effect. It is well known that projec-
tion onto a Landau level imposes kinetic constraints on
the electrons. These constraints are particularly appar-
ent in the one-dimensional mapping of a Landau level
on a cylinder.*3 There momentum conservation in the
transverse direction leads to center of mass conservation
of hopping terms along the cylinder. While such models
generally involve long range hopping terms, longer range
terms are exponentially suppressed when the circumfer-
ence of the cylinder is small. Models that arise in these
so-called “thin-torus” limits of quantum Hall systems
have been extensively studied in the quantum Hall liter-
ature. Notable among these are the development of the
one-dimensional theory at half-filling,*3> 4> mapping on to
effective spin-chains for several filling factors,*® and ex-



act solutions at half-filling?*4%47 and one-third filling.8
However, most of the existing literature has focused only
on the ground state and not on excited states or dynam-
ical properties, with a few recent exceptions.*>*0 In this
work, we explore interesting features in the rest of the
Hilbert space in these models, and show the appearance
of constrained Hilbert spaces and quantum many-body
scars.

This paper is organized as follows. In Sec. II, we re-
view the one-dimensional mapping of a single Landau
level in a two-dimensional quantum Hall system, and we
discuss the thin-torus limit and introduce the truncated
“pair-hopping” model. In Sec. III, we show the emer-
gence of constrained Krylov subspaces at filling factors
v =p/(2p+1). There we discuss the mapping of a par-
ticular constrained subspace to the PXP model at filling
v = 1/3, and the effective spin-chains models that arise
at filling v = p/(2p + 1) in Sec. III. We also discuss the
properties of the constrained Hilbert spaces that arise out
of this models. In Sec. IV, we discuss various properties
of the constrained Hamiltonians such as symmetries and
zero-modes. In Sec. V, we discuss the Forward Scattering
Approximation for the models at filling v = p/(2p + 1)
and show the existence of many-body scars and slow ther-
malizing product states for v = 2/5 and v = 3/7. These
initial states are charge density waves in the quantum
Hall language. In Sec. VI, we briefly discuss the stability
of scars to electrostatic terms that arise in the quantum
Hall setup. There we numerically present some evidence
that these many-body scars survive for small strengths
of electrostatic terms. Finally we conclude with open
problems in Sec. VII. The appendices are reserved for
technical details on results presented in the main text.

II. ONE-DIMENSIONAL MAPPING OF A
LANDAU LEVEL

We briefly review the origin of 1D pair-hopping models
via a mapping of a single Landau level of a 2D quantum
Hall system on a cylinder/torus to a 1D chain.*3 45:51,52
For the sake of illustration, we consider electrons ei-
ther on an infinite cylinder for open boundary condi-
tions (OBC) or on a torus for periodic boundary con-
ditions (PBC) of length L, and circumference L, with
Ng = L,L,/(2n) flux quanta. We consider the Lan-
dau gauge A= Bxy, where B is the transverse magnetic
field and ¢ is the direction along the circumference of

the cylinder. Setting the magnetic length to \/% =1,

within a Landau level, we define the single-particle mag-
netic translation operators as*°3

. L, (0 . L, 9
o=\ oz 7)) W= (N, ay)
(1)

which obey the commutation relation®!
A 2T\ A s
tyty = exp (1]\7@) tyts. (2)

A complete orthornormal basis of single-particle orbitals
{t1,;(r)}, 1 < j < Ng in the I-th Landau level can be
constructed using eigenstates of fy. These eigenstates
satisfy

by () = exp (52 b ().t (1) = 00 1),
ool
@)

For example, these wavefunctions in the lowest Landau
level (I = 0) on a torus read*>52

vy ()= o 3 Je (inke (m+ ;)

exp <—§ (x + (m - Ni) Lm)Qﬂ . (4)

For spinless electrons within a Landau level, the electron-
electron interaction term can be written in the second-
quantized form?*®

Ngp—1
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where c;- and ¢; are the fermionic creation and annihila-
tion operators for the single-particle orbital ¢ ;(r), and

VA das = 3 [l ry P (07, (r0) 07, (72)
XV (r1 = 12) Yu 4y (r2) Y, (11)) - (6)

Since j1, jo, j3 and jy are the § momentum eigenvalues
(see Eq. (3)), for any interaction V that is translation
invariant in the y direction we obtain

J1+J2 = j3 + js mod Ng. (7)

Further using translation invariance in the & direction,
the Hamiltonian H; of Eq. (5) can be reparametrized
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A procedure for obtaining Vk(’l,)n

is outlined in App. A. We also refer readers to Ref. [54]
for a more general analysis. For example, consider the
short-range Haldane-Trugman-Kivelson potential,?®-26

given the potential V(r)

1% (7’1 — 7’2) X V25 (7"1 — 7‘2) . (10)
The matrix elements Vk(% for this potential in the lowest
Landau level follow (when L,, Ng — 00) (see Eq. (A14))
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Note that whenever m = 0, Cj ¢ of Eq. (8) reads

Ng—1 Ng—1
_ (U — o
Cro = Z CiCiCy kCith = Z Ttk (12)
Jj=0 Jj=0
where n; = c;-cj. Thus Ci is a pure electrostatic

term. In the thin-torus limit (L, — 0), the strength
of the terms C}, ., decreases exponentially with increas-
ing (k? + m?) (see Egs. (11) and (A14)). Thus, taking
into account the terms up to the largest non-electrostatic
term for a short-range potential in the lowest Landau
level (remembering k& > m + 1), we obtain an effective
Hamiltonian Hiyi,

Ng—1

Hyn = > (Vl(,%)ﬁjﬁjﬂ + %(,%)ﬁjﬁjw
=0
_’_‘/2(2) (C;C;+30j+26j+1 =+ hC)) . (13)

We refer to the term Cy; as the “pair-hopping term”.
Note that these Hamiltonians can be generalized to three-
body hopping terms, but we do not consider them in this
work.

In this work, we focus on the study of the model
Eq. (13). These models preserve the center-of-mass po-
sition of the electrons in addition to their center-of-mass
momentum, a property that is not respected by one-
body electron hopping terms. Thus, we expect these
Hamiltonians to lead to novel dynamical phenomena.®”
In Secs. III-V, we set V1(,%) = VQ(%) =0, and VQ(g) =1, ie.
considering only the pair-hopping term. We will discuss
the effect of electrostatic terms in Sec. VI. We thus ob-
tain a one-dimensional chain with L = Ng sites with the
Hamiltonian that reads

Ly Ly

H= ZHJ = Z(C}C}+3Cj+26j+1 + hc) (14)

j=1 j=1

where j+m, m = 1,2, 3 are defined modulo L, and L, =
L (resp. Ly = L — 3) for PBC (resp. OBC). Note that
Hj is non-vanishing only on the following configurations
of sites j to j + 3:
J Jj+3 J Jj+3
H;0110)=1001)
J Jj+3 J j+3
H;|1001)=10110). (15)

The rules of Eq. (15) correspond to so-called “squeezing”
and “antisqueezing” processes in the Fractional Quantum
Hall physics.5®

III. EFFECTIVE SPIN-CHAINS AND
CONSTRAINED HILBERT SPACES

We now review the mapping of the Hamiltonian of
Eq. (14) on to spin-1 chain models, first discussed in
Ref. [46]. In this work, we restrict ourselves to filling
factors of the form v = p/(2p + 1) and system sizes of
the form L = (2p+1)N, N € N. We numerically observe
that the ground state of H is at half filling for even L,
and filling v = (L +1)/(2L) for odd L. Thus the sectors
we study are in the middle of the full spectrum of H.

A. Mapping onto spin-1 chains

Here we provide a summary of the mapping, which we
illustrate with the details in Secs. IIIB and IITC. A cru-
cial property of the pair-hopping Hamiltonian of Eq. (14)
that we rely on is the the existence of Krylov subspaces
that, crucially, are smaller than the full Hilbert space
and are closed under the action of the Hamiltonian H.

Given a state |R) and an operator O, a Krylov subspace
K (|R),O) is defined as

K(IR),0) = Span{|R) ,O|R) 0% |R),---}.  (16)

For the pair-hopping model at filling v = p/(2p + 1), we
focus on the Krylov subspace K(P), defined as

K@ = K (’R(”)>,H) : (17)

where ’R(p)> is the state

) -@|pmr]). o

where (01)? denotes the repetition of (01) p times. Each
of the N boxed units in Eq. (18) is referred to as a unit
cell (the system size L = (2p + 1)N). For example, for
p=1(=1/3) and p =2 (v = 2/5), the states |R(1)>
and ’R(2)> read

7)) - | [o10] [o10] --- [o10] ).

R = | [01010] [01010] --- [01010] ). (19)

An important property of the Krylov subspaces K®) is
that it is mot the full Hilbert space of the pair-hopping
system at that particular filling, a property discussed
in Refs. [43] and [46] and which will be illustrated in
Secs. IIIB and IIIC. Thus, to study the dynamics of
states in P under the Hamiltonian H, it is sufficient



to study the eigenstates of H(P), the restriction of H to
)

Since the Hamiltonian H is a four-site Hamiltonian, in
terms of unit cells, the %) is a two unit cell Hamiltonian

that has both intra- and inter- unit cell terms. That is,
it is of the form
N
WO =S H 4 Y H (20)
Jj=1 Jj=1

where ’Hﬁp ) and ’H;Z) .1 are one unit cell and two unit cell
terms respectively, and

N —1 if OBC
Nb:{N if PBC - 1)

We will obtain the explicit expressions for H§p ) and

H.E{)J)-‘rl for various p in Secs. IIIB and IIIC. As we will

show there, H®) can be mapped onto a spin-1 Hamilto-
nian with each unit cell (as defined in ’R(”)> in Eq. (18))
replaced by p spin-1’s.>® This mapping proceeds by ap-
propriately inserting (p — 1) fictitious 0’s (pseudozeroes)
into each unit cell, grouping the resulting 3p sites into p
blocks of 3, and identifying each block with one of the
following spin-1 configurations*6

o)y =101 0)
[+) =00 1)
=y =100). (22)

As we will see in Secs. III B and IIT C, these three spin-1
configurations are sufficient to obtain a faithful mapping.

In the rest of the paper, we denote configurations of
N unit cells as |§) = |o102---0n), where o, is the
configuration of spin-1’s in the j-th unit cell (i.e. o;
encodes the configuration of p spin-1’s). For example,
when N =2 p =3 (v = 3/7), consider the configura-

tion [¢) = ‘ [0011010]]0110010] > consisting of 14 or-

bitals. As we will explain in Sec. IIT C, this configuration
can be uniquely mapped onto the spin-1 configuration

|7y = ‘ >, which consists of N = 2 unit cells

and p = 3 spin-1’s in each unit cell. Then, we denote the
configuration of each unit cell by the three spin configu-
ration o1 = and o9 = . We denote the spin-1
operators acting on the n-th spin on the j-th unit cell as
S5, where a = z,y,z,+, —. Further, we define opera-
tors Tj , and U, that will be used frequently throughout
our analysis:

Sz S S. S%
Tjn = =225, Upn = =227 (23)
V2 V2
The properties of these operators are provided in App. B
(see Eq. (B1)). The only non-vanishing actions of the
operators T}, and Uj ,, are given by

ij |O> = |_> ) Uj,n |+> = |O> ) (24)

where [x), . with * = +, 0, — is the configuration of the
spin-1 on the n-th site in the j-th unit cell.

Further, given a configuration |&) = |o109---on), We
define the following quantities that we use later in the

paper.

p p
PUJ = 260j1a+7 MUJ = Zéajlv_
=1 =1
p
ng) E (p +1- l) 50jz,+
X80 = zz - (25)

where o; is the configuration of the /-th spin in the j-th
unit cell. P, (resp. M,,) is the number of +’s (resp.
—’s) in the j-th unit cell, Xy;) (resp. Xéjjw)) is the sum
of positions of +’s (resp. —’s) within the j-th unit cell

counted from right (resp. left). For example, if o; =
1234567

[o——Fo++], we have Py, =3, My, =2, X{ = 7, and

X =s.

B. Fillingv=1/3
1. Effective Hamiltonian

We now derive the effective Hamiltonian %) at fill-
ing v = 1/3, i.e. p = 1, that acts on the Krylov sub-
space K. Consider the pair-hopping Hamiltonian on
a system of size L = 3N. Using the spin-1 mapping of
Eq. (22), the state |R(1)> of Eq. (19) in the spin-1 lan-
guage with the same choice of unit cells reads

[R®) = [][e] - [e])- (26)

Using Eqgs. (14) and (15), acting on ’R(1)> with H once
results in a sum of configurations that have one pair of
| E]) on neighboring unit cells in a “vacuum” of

unit cells in the configuration | E] >, i.e. configurations
of the form

| [e]fo] - [o][#][=le] -+~ [e]) @D

Using Egs. (15) and (22
7—[;1 = 0 and that the actions of a single term H§1])+1 on
the spin-1 configurations read

), we immediately deduce that

J j+1 J J+l
H |- [o][o] ) = |- [H[=]-++)
j g+l j g+l
A | ] ) = |+ [o] [o] )
j g+l
Wl I [E) =0
j i+l
Wl ) =0
W j j+l -
H;ja| - [=][e]--) =0 (28)



Using Eq. (28), further actions of H() on the state of
Eq. (27) either (i) destroy the nearest neighbor con-
figuration [=], or (ii) create the nearest neighbor

state [—] from the configuration [o][o]. Thus, one
never obtains the nearest neighbor configurations ,
@, E] E], or E] E], and it is sufficient to con-
sider the rules of Eq. (28). Note that (i) and (ii) are
the only possible actions of H() on subsequent configu-
rations as well. In the language of the original orbitals,
these processes correspond to squeezing and antisqueez-
ing of close configurations respectively. Thus any state
|&) = |o1---on) in the Krylov subspace K(!) obeys the
following constraints:

(c1) The only allowed configuration of nearest neighbor
unit cells are

[(H[=blollof[o] [+ [=][oh[=][+}  (29)

This constraint can be compactly stated as P, =
My, V), 1<j<N-1

(¢2) With OBC, within the Krylov subspace, the left-
most (resp. rightmost) unit cell cannot have the

configuration [—] (resp. [+]), i.e. in the Krylov
subspace M,, = 0 (resp. P,, = 0). This follows
from Eq. (28) where + and — are created together
only on nearest neighboring unit cells with + in the

left unit cell and — in the right unit cell.

This is an example of a constrained Hilbert space. Thus,

using Eq. (28), 7—[§1)

i1 reads?®

Jj j+1

J J+1
HO = B[] ) [o][o] | +he.

Sz 8+ Sz, .S
J,1%4,1 J+1,1°541,1
= — + h.c. (30

Thus, using Eq. (23), we obtain the following expression
for the Hamiltonian (1)

Ny,

HO = —Z(UJTJT]-H,1 + h.c.). (31)

Jj=1

Note that although the subscript “--- ;1” in the spin op-
erators is redundant for this case because the unit cell
contains a single spin-1, we continue to use it in order to
smoothly transition to arbitrary values of p.

2. Mapping on to the PXP model

The constrained Hilbert space X(!) can be alternately
specified by moving to the dual lattice of the spin-1 lat-
tice, i.e. the sites {j+1} defined on the bonds {(j, j+1)}.
Thanks to the highly constrained Hilbert space, configu-
rations of N unit cells in ) can be written in terms of

spin-1/2 degrees of freedom on the dual lattice of N — 1
(resp. N) sites for OBC (resp. PBC) using the mapping

| E] >j,j+1 =1 >j+%
| E] >j,j+1 =14 >j+%
| E]@ >j,j+1 =14 >j+%
| @@ >j,j+1 =1 >j+% )
| [=][+] >j,j+1 =4 )1s (32)

where | >j,j+1’ * = +,0, — is the configuration of
the j-th and (5 + 1)-th unit cells on the spin-1 lattice and
|*>j+%7 x =1, | is the configuration of the site j—f—% on the
dual lattice. The subscripts are taken to be modulo N for
PBC. In other words, the nearest neighbor configuration
E] maps onto T whereas all other nearest neighbor
configurations in the Krylov subspace map onto |. While
the mapping appears to be many to one, we will shortly
show that it is in fact invertible for both PBC and OBC
as a result of the constraints of (1), For example, the
configuration

lv1) = | [e] [(H] =] [ [=][e]) (33)

maps on to the configurations |¢(PBC)> and |¢(OBC)> for
PBC and OBC respectively, where

PRy = IHHE ; ) (34)
o) = 1715, ()

Note that the mapping of Eq. (32) does not allow the dual
lattice configuration | 1 1) even though it includes all
possible nearest neighbor configurations allowed in ()
(Eq. (29)). Thus, the constraint (c1) on K1) defined in
Sec. ITIB1 translates to the constraint that no nearest
neighbor spins can be 1 in the dual lattice (a hallmark of
the PXP model??). The mapping from the dual lattice
back to the spin-1 lattice reads

|41 >j7%,j+% - ’ >j
[Ty — 2]

| Jzi >j7%,j+% — ’ @ >j’
(36)

where ’ >j7%’j+%, * =1, is the configuration of
the (j — 1/2)-th and (j 4+ 1/2)-th sites on the dual lattice
and |>|<)j, * = -+, 0, — is the configuration of the j-th unit
cell on the spin-1 lattice. The subscripts are taken to be
modulo N for PBC. Note that Eqgs. (32) and (36) ensure
that the mapping is one to one for PBC. For example,
the configuration |1/)(PBC)> of Eq. (34) maps onto |¢) of
Eq. (33) under Eq. (36).5°

With OBC, Eq. (36) can be applied to obtain the con-
figuration of the unit cells j, 2 < 7 < N — 2. The config-
urations of the leftmost (j = 1) and rightmost (j = N)



unit cells can then be uniquely obtained using the con-
straint (c2) defined in Sec. IIIB 1. For example, using the
rules of Eq. (36), the configuration |1/) (OBO)) of Eq. (35)

maps onto | [*][+][=][+][=][*] ), and the [] on the

leftmost and rightmost unit cells are [o], since that is
the only allowed configuration allowed by the constraints
(c1) and (c2). Thus [¢9BC) of Eq. (35) maps onto [t1)
of Eq. (33).

Since the Hamiltonian H() consists of two unit cell
terms, using the mapping of Eq. (32), the corresponding
Hamlltoman H@ in the dual lattice consists of three site

terms H 5 in the bulk and two site terms on the
2 Jt+3 3,0 +T35

boundarles H (d )1 g4l

actions of 7—[5 j) 41 in the bulk of the chain translate to

For example, the non-vanishing

M MEEE) = FE e E)

H<d>,3+27]+3w¢¢>—|¢u>
J
H“’+1IIE]E]I>*|IIEI>

i+3

= HY ]+3uu>—|m¢>
(37)

where * corresponds to any allowed configuration of the
unit cell, and subscripts are taken modulo N for PBC.

However with OBC, the actions of 7—[51]) 41 on the left and
right boundaries read (using the constraint (c2))

HY HEE) = | PIRIE)

N
HE\})—1,N’E>:’ [o])

N-2 N-1 N-% N-}
— B,y 1D = L)
" N—1 N N-1 N
Hi- 1N’.@@>_ E>

N-3 N-1 N-3 N-1
— H{y oy L) = 1),

The terms of the dual lattice Hamiltonian in Eqgs. (37)
and (38) are terms the PXP model, studied in several

contexts in the literature?9:61:62 i e,
N+3
> P10 Py if PBC
g =] =2
N-3

ZPL 107 Py +03775 +Pn_goy_1 if OBC

2

(39)
where o} is a Pauli matrix on site [, and P; is a projector
on site [ on to |}), i.e

(1-0f)

P 5

(40)

Thus, the pair-hopping Hamiltonian H restricted to the
Krylov subspace K1) is exactly the PXP Hamiltonian.
In Sec. V we will rely on this mapping and show the
existence of quantum many-body scars23? in the pair-
hopping Hamiltonian H. To easily generalize to other
filling factors, even when p = 1 we stick to the original
spin-1 degrees of freedom language instead of the spin-
1/2 degrees of freedom of the PXP model. The expression
of the Hilbert space dimension for OBC is derived in
App. C and the dimension of the Krylov subspace K1) is
shown to be Dg\}) = Fn+1, where F), is the n-th Fibonacci
number. Thus K is isomorphic to the Hilbert space of

the PXP model,?” and DE\}) thus scales as ¢, where the
quantum dimension o is the Golden ratio ¢ = HT‘@ (see

Eq. (C52)).

C. Fillingv=p/(2p+1)

We now move to the effective Hamiltonians at fill-
ing factors v = p/(2p + 1) of the original Hamilto-
nian H. Here we focus on the Krylov subspace K®) =
IC(|R(p)>,H) defined in Eq. (17), where |R(p)> is de-
fined in Eq. (18). To understand the structure of ()
we invoke an important property shown in Ref. [46] (see
Eq. (15) and Appendix B therein). First note that ’R(p)>
of Eq. (18) is of the form

’R(p)>‘...6(10)'1...> (41)

for some i, g, where i, 1 < i < L for PBC (or 1 <14 <
L —2 for OBC) denotes the position of the orbital, and g,
1 < ¢ < p denotes the number of times the pattern “10”
appears consecutively. As a consequence of the squeezing
property of Eq. (15), this pattern implies that*6

i+2q

> (Wleler ) > g for any [p) € KV (42)

k=i
This property constrains the allowed unit cell configura-
tions in K(P). For example, for v = 2/5 (p = 2), ’R(2)> is
defined in Eq. (19), and all the unit cells configurations

read | 01010| According to Eq. (42), any unit cell for



some 1) € K@) of the form should satisfy
ny +mns +ng > 1 (resp. n3g + ng + ns > 1), which is
obtained by choosing ¢ = 1 and ¢ in Eq. (42) to be the
first (resp. third) site within any unit cell of |R(2)> of
Eq. (18). From these inequalities, we deduce that the
unit cell configurations (resp. ) violate
Eq. 242)7 and are thus not allowed for any configuration
in X&), To summarize, we obtain eight allowed unit cell
configurations for p = 2:

[00110][01100][10100|[ 00101 |
[01010][ 10010[ 01001 ] | 10001 |

(43)

The unit cell configurations of Eq. (43) can be uniquely
mapped onto configurations of two spin-1’s by adding
one fictitious pseudozero in between any two consecutive
(although not necessarily adjacent) 1’s in Eq. (43):46

(44)
where 4+, — and o are spin-1 configurations defined in
Eq. (22) and [0] is the pseudozero. The addition of pseu-
dozeroes and mapping on to spin-1’s can be reversed by
deleting a 0 between the 1’s within a unit cell after invert-
ing the spin-1 mapping using Eq. (22). For example, the

configuration maps onto using Eq. (22),
which corresponds to since we know one of the
0’s between the 1’s is a pseudozero. Similarly, for general
p, z = p — 1 pseudozeroes are added between two con-
secutive 1’s so that the size of the configuration in each
unit cell is 3p, which can then be mapped on to a config-
uration of p spin-1’s using Eq. (22). Such a mapping is
one to one as a consequence of Egs. (41) and (42), and
we refer readers to Ref. [46] for a complete discussion of
this property.

The action of the Hamiltonian H in Eq. (14) can be
written in terms of spin-1 variables using the mapping
of Eq. (22). Here we show this action separately when
the term H; in Eq. (14) acts between neighboring unit
cells, and when it acts within a unit cell. When H; acts
between neighboring unit cells,

| Ea)or ] ) - | o =)
| 00 ) | )0 ]

Using the spin-1 mapping of Eq. (22), and noting that
configurations within a unit cell do not have adjacent 1’s
(“117) after the addition of pseudozeroes (hence

and in Eq. (45) respectively read and

010--- | or ‘ e [0]10‘ and ‘01[0] e ‘ after the addition

of pseudozeroes), the action of the effective Hamiltonian
reads

Jj J+1

H§§+1|Wlo—l>—\¥—H—¥>
5”}+1H—H—¥>—Hﬁl—l> (46)

where j is the unit cell index. Similarly, when H; acts
within a unit cell,

J Jj+3 J Jj+3

HjH...01[0}10...‘>:H... 10[0]01 ‘>
j j+3 j j+3
HA‘~~10M01~~‘>:H ¢01m10~~\>

(47)

Using Egs. (47) and (22), relying once again on the ab-
sence of adjacent 1’s (“11”) after the addition of pseu-
dozeroes, the action in the spin-1 language thus reads

(1) et ] )= 5o ] )
(), T = |0 o ),
@#UMH!-ZT?W>=\Wi?1\)
(1) o] )= |0 s ), (49

where j is the unit cell index. The effective Hamiltonian
within £®) can thus be written as*®

N [p—
HP) = 3 [Z (T Tjnt1 + U]TmUj’nH + h.c.)

j=1ln=1
— (U;’ij.HJ + h.c.)}

where T, and U;, are spin-1 operators defined in
Eq. (23), and their actions are shown in App. B. Note
that Eq. (49) reduces to Eq. (31) when p = 1.

We now describe the Krylov subspace K®). After
adding (p — 1) pseudozeroes in between two 1’s within
a unit cell (and not between 1’s in different unit cells),
|R(p)> of Eq. (18) reads

r) - @ | [o7om) ),

where (01[0])?~! indicates that (01[0]) is repeated p — 1
times. Thus, using Eq. (22), in terms of spin-1 variables
|R®) of Eq. (50) reads

(49)

(50)

’R(p)>:‘|0...0[...|0...0[>, (51)
As a consequence of the Eqs. (46), (48) and (51), any
configuration of N unit cells |7) = |o109---on) in @)

has the following constraints:



(cl) Py, = M,, ., where P,, (resp. M, ) is the num-
ber of + (resp. —) in the j-th (resp. (j + 1)-th
unit cell): This follows from Eq. (46), where start-
ing from |R(p)> of Eq. (51), + and — are created

together on neighboring unit cells.

(c2) Within each unit cell — appears to the left of +:
This follows from Eq. (46) because starting from
|R(p)>, + and — are always created to the left and
right of the unit cells respectively, and they cannot
cross each other due to Eq. (48). That is, there is
no term of the Hamiltonian that allows the process
+— <> —+ within a unit cell.

(¢3) With OBC, the leftmost (resp. rightmost) unit
cell o1 (resp. opn) cannot have a — (resp. +),
ie. My =0 (resp. P,, = 0): This follows from
Eq. (46), where starting + and — are created to-
gether on neighboring unit cells with + in the left
unit cell and — in the right unit cell, and thus the
leftmost (resp. rightmost) unit cell cannot have a
— (resp. +).

The expression for the Hilbert space dimension D®) of
K@ is obtained for OBC in App. C. For general p and
large N, D) grows with N as D®) ~ (A(®")N where the
quantum dimension AP) is given by (see Eq. (C55))

AP op=ty, (52)

where ¢ is the Golden ratio.

IV. PROPERTIES OF THE EFFECTIVE
HAMILTONIANS

We now review some important properties of the
Hamiltonians H® of Eq. (49).

A. Symmetries and Non-integrability

We first discuss the symmetries of the Hamiltonian
H®) . Consider the transformation of the Hamiltonian
H®) under spin flips of spin-1’s in the chain, given by
the unitary operator

N p
P= HHexp (iwS5,,).- (53)

j=ln=1
Since PS5, Pf = ST, and PS7, Pt = -7 | the opera-
tors T} ,, and Uj,, of Eq. (23) transform as

PL. P =-Ul, PU.P'=-T],. (54

Thus, under spin-flips the Hamiltonian H® transforms
to

N [p—1 t
PHPPT = 37 [Z (Uj’”ijn—‘rl + Tjn T + h.c.)

j=1ln=1

— (TipUL1 + hc)] (55)

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5
AE

FIG. 1. Level statistics of the eigenstates of the Hamiltonian
H® . The black line shows the expected GOE curve for non-
integrable models. The standard parameter (r) ~ 0.5284,
close to the GOE value of (r) =~ 0.5295.5® (Inset) Density of
states for the eigenstates of the Hamiltonian H?). The peak
at £ = 0 indicates the presence of a large number of zero-
modes in an otherwise non-integrable model with a Gaussian
density of states. Data is shown for a system with p = 2
and N = 12 in the quantum number sector (k, X) = (0, +1),
where X is the quantum number corresponding to the sym-
metry ZP (see Sec. IV A).

Further, we consider inversion symmetry Z, which trans-
forms operators T}, and Uj, as

ITjnZ" = Tn41-jp+1-n, ZUjnI' = UNt1-jpri-n-
(56)
Acting 7 and Z' on the left and right of Eq. (55), after
rearranging the sum we obtain

N [p—1
TPHE®PITH = 3 [Z (T;,nTj,n-H + U]J.r’nUm_i_1 + h.c.)

j=11ln=1

- (U}ijHJ + hcﬂ
— ) (57)

Thus, the Hamiltonian #®) has a Z symmetry gener-
ated by the unitary ZP. We denote its quantum num-
bers by X = £1. The ZP symmetry of the Hamiltoni-
ans HP) is the same as inversion symmetry of the pair-
hopping Hamiltonian H. In the original language, this
symmetry is the inversion symmetry of the pair hopping
Hamiltonian H of Eq. (14). We illustrate this with a
simple example with N = 2 and p = 2. Under the op-

erator ZP, the configuration ‘ > transforms to
o] > Using the mapping of Eq. (44), in the orig-
inal language these states read ’ |010[0]01 || 01[0]100 | >
(resp. | )) and | [001[0]10][10[0]010] )
(resp. ’ >) with (resp. without) the
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FIG. 2. (Color online) The graph G®@ for N = 2 with PBC. Each node (ellipsoid) corresponds to a many-body basis state of
the Krylov subspace K. A link is drawn between two nodes if there exists a non-zero matrix element in the Hamiltonian
that couples the corresponding many-body states. Nearest neighbor nodes have charges Q® that differ by 1. The red and blue
nodes represent the ones with C$ = +1 and C{? = —1 respectively (see Eqs. (64) and (61)).

pseudozeroes, which are related by the action of inver-
sion.

With PBC, H® is also trivially invariant under a
translation by one unit cell. Thus it can be block-
diagonalized into N blocks labelled by momenta {k =
27j/N},0 < j < N — 1. However, the translation oper-
ator 7 and Z (hence ZP) do not commute unless k = 0
ork=m.

The Hamiltonians #®) are non-integrable. The char-
acteristic property of non-integrable models is the ap-
pearance of Wigner-Dyson energy level statistics within
a given quantum number sector. When p = 1, H() can
be exactly mapped on to the PXP model as discussed in
Sec. III B, and the Wigner-Dyson level statistics of the
PXP model was observed in Ref. [29]. We find similar
level statistics for all the quantum number sectors of the
Hamiltonian H®) for p < 3 up to the system sizes we are
able to study numerically. In Fig. 1, we show the level
statistics in the (k, X) = (0,41) sector of the Hamilto-
nian H? for a system with N = 12 unit cells, where X is
the quantum number corresponding to the ZP symmetry.

B. Charge Operators

To unravel the properties relevant for many-body
scars, we map H®) onto a single particle hopping on
a graph G where each node of the graph represents
a product configuration |7) € K®). This idea was em-
ployed to study the PXP model in Refs. [29] and [30].
The links of the graph indicate the non-vanishing matrix
elements of the Hamiltonian between the corresponding
node configurations. For example, the graph G2 for
N = 2 with PBC is shown in Fig. 2. To better under-
stand the structure of the graph G it is useful to define
a charge Qép ) associated with each node (each configura-
tion |&).

We start with p = 1 as an example. Here, we define a
charge Q((;) as

Ny
QS) — Z(_l)j (}30]—1—2]\4(,J+I> (58)

Jj=1

Note that P,, = M,,,, according to the constraint (cl)
in Sec. III B 1. From Eq. (28), we deduce that the action
of each term in the Hamiltonian changes the number of

+ spins in the j-th unit cell and the number of — spins in
the (j 4+ 1)-th unit cell by 1. That is, for product states
|&) and |7), the following holds for a single value of j*,
1 <j* < Ny (since p=1, Py, , My, € {0,1} V 0y):

(1

HY & =17 = P =1-P, . M., =1-M,..,.

(59)
As shown in App. E using Egs. (58) and (59), the Hamil-
tonian H() can be split into two parts as

HO =1 4y, (60)

where all the basis states |7) that appear in ngl) |5) (resp.
AR |5)) satisfy Q(;) = QS) +1 (resp. QS) = Q((;l) —1).
Thus, H") can be written as a sum of charge-raising
and charge-lowering operators Hsrl) and HY respectively.
This splitting will be useful when we discuss quantum
many-body scars in Sec. V.

All of the structure of H(!) described in the previous
paragraph generalizes to any p. We now define charges
Q((;p ) as

Ny
(P, + M,
oY) = 3 (i (Pt — (w0 + x40 )
Jj=1
(61)
(P) (M)

where P, ., M,,, X5,’, and X5, ’ are defined in Eq. (25).
Note that P,, = M,,,, according to the constraint (cl)

in Sec. IIIC. For example, when p = 3 and N = 2

consider the configuration ‘ > with PBC.
Here, 01 = and g9 = . Using Eq. (25),

we obtain P,, =2, M, =0, X((Tllj) = 3, X((Tle) = 0, and
Py, =0, My, =2, Xéf) =0, Xééw) = 4. Thus the charge
of this configuration is QS,‘” = 5. Note that when p =1,
X((,f) = P,, and Xt(,i.w) = M,,, and thus Eq. (61) reduces
to Eq. (58). When the charge is defined as in Eq. (61),
as shown in App. E we can in fact write the Hamiltonian
H®) a5

HO =HP + Hy ), (62)
where for product configurations |&) and |7),

HP|E) =7+ = QP = QP 11, (63)



C. Zero-modes

The PXP model is known to exhibit exponentially
many zero energy eigenstates (i.e. E = 0) at the cen-
ter of its spectrum.?:3%:64 We show that the Hamiltoni-
ans H(?) share the same feature. For example, the inset
of Fig. 1 shows the density of states of the Hamiltonian
H @) which clearly exhibits a sharp peak at E = 0. Their
origin can be traced to the structure of the graphs G
introduced in the previous section. From Egs. (62) and
(63), adjacent nodes of the graph G, corresponding to
product configurations |&) and |7), have charges that dif-
fer by 1. Thus, we define a Zs index for each node of the
Gg® as

e = (—1)e7, (64)

such that neighboring nodes have different indices. Hence
the graph G is bipartite. We henceforth refer to the
sublattices with C®) = +1 and C» = —1 as even and
odd sublattices respectively.

Single-particle zero energy eigenstates of fermions hop-
ping on a bipartite lattice have been known for long.%® If
the number of nodes on the even and odd sublattices are
N, and N, respectively, a lower-bound for the number of
zero-energy eigenstates Z for any hopping Hamiltonian
on a bipartite graph G® is given by%:66

Z > |N.— N,|. (65)

However, for the Hamiltonians H(?), applying the bound
of Eq. (65) on G(P) alone does not provide the best lower
bound on the number of zero modes, even in the case of
the PXP model.30:64

The symmetry ZP of Eq. (57) can be used to con-
struct graphs Q(f) and Q(f ) for the quantum number sec-
tors X = +1 and X = —1. The nodes of these graphs
gﬁ_p) and Q(_p ) are no longer product states, but they are
respectively {|d )} and {|G_)}, symmetric and antisym-
metric superpositions of |&) and ZP |&). That is,

- 5) +ZP|3) o) = 7) — IP|7)
+ N ’ - \@ ’

where N' = /2 if |7) # IP|7), and N' = 2 when
|6) = ZP|5) (i.e. when |0Z) = 0). Since the Hamil-
tonian H®) is TP-symmetric, if the nodes corresponding
to |#) and |7) are connected in graph G®), the nodes cor-
responding to |F4) and |7) are connected in the graph

| —

(66)

gjf’). Similarly, the nodes corresponding to |5_) and |7_)

are connected in G unless either of them vanish, which
happens when |¢) = ZP|J).

In App. D we discuss the transformation of the Qgp )
under the symmetry ZP and in Eq. (D4) we show that
the Zs index of Eq. (64) is invariant under the ZP sym-
metry. Thus, the configuration ZP |&) has the same Zs

index Cép ) as the configuration |&). Thus the Zs indices
for the symmetric (resp. antisymmetric) superposition
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|74) (resp. |G_)) of Eq. (66) on graph g(j’) (resp. %))
can be defined to be C((?p). Eq. (65) can then be applied

separately to QSf) and g(j’ ) and then summed over both
sectors to obtain a stronger lower-bound on the total
number of zero modes:

Z> Y, IN&—Ngl, (67)
ce{+,—}
where Nt (resp. N, ) and N (resp. N, ) are the num-
ber of nodes of the graph erp) (resp. Q(f’)) on the even
and odd sublattices respectively.

To obtain a computable lower-bound on the zero-
modes, we use an important observation. The structure
of gﬁ_p) and Q(_p ) are identical except for symmetric prod-
uct states that satisfy

5) = IP|5). (68)

Indeed, such product states always form the nodes of

Q_(f) whereas they do not appear in g(_p ). If we denote the
number of symmetric product states (satisfying Eq. (68))

on the even (resp. odd) sublattices of Q_(f) as NP (resp.
NP), the bound of Eq. (67) can be written as

Z > |NS = NJ|+ N =N, |
= [Ne + NZ = Ng = Ng|+ [N, = N, |
> |N¢ = Ng|. (69)

Thus, to obtain a lower-bound on the number of zero-
modes, it is sufficient to study the product states that
satisfy Eq. (68) (i.e. symmetric product states). Such
states can be uniquely determined by the configuration of
half of the chain, and as we show in App. F, we expect the

number of zero modes of H®) to scale as DE\I;), where

Dg\’,)) is the Hilbert space dimension of K(®. While we
believe a detailed counting of zero modes in X® can be
done using the machinery introduced in App. C or using
the methods of Ref. [64], do not pursue this calculation
in this work.

V. QUANTUM MANY-BODY SCARS

We now discuss the fate of quantum many-body scars
in the Hamiltonians H?). We first discuss the case of
H® | which maps on to the PXP model. In the PXP
model, the anomalous dynamics of the Néel state was
studied,?*:3% which reads (for PBC and even system size)

28 =11 by 1), (70)

In particular, the entanglement growth of the ’ZQPXP>
state for the PXP model shows oscillations about a sub-
thermal value in spite of the Wigner-Dyson level statis-
tics and thus the non-integrability of the PXP model.?"
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FIG. 3. (Color online) Time evolution of (a) entanglement entropies, and (b) fidelities of the ’Zé2)> and ‘R(2)> states (with
k = 0) under the Hamiltonian H®. Data is shown for PBC in the quantum number sector (k, X) = (0,41) for N = 16 (insets
display the same quantities for N = 14). (c) The fidelity for the evolution of )Zé2)> state (with k = 0) for N = 20. The inset

shows the fidelity for p = 3 of the ‘Z§3>> state (with k& = 0) for N = 12 (for clarity, we have used a log scale for the fidelity).

While the entanglement entropies are not accessible, we observe that this larger size still exhibits clear revivals.

This anomalous behavior was explained by the existence
of eigenstates in the PXP Hamiltonian that have a sub-
thermal entanglement entropy and a anomalously large

ZgPXP)

overlap with the ’ > state for any finite system size.

Such states were then approximated using the so-called
Forward Scattering Approximation (FSA),2® which we
elaborate below for the Hamiltonians H(®).

Before we move on to general p, we translate the scar
physics of the PXP model in terms of the Hamiltonian
H® and the Krylov subspace K1), allowing a direct gen-
eralization to arbitrary p. Using the mapping of Eq. (36),

we map the ‘ZEPXP)> state of Eq. (70) on to the ’Zé1)>

state of the constrained Hilbert space K(!) defined in
Eq. (17), which thus reads (for PBC and even N)

Z) =1 3EE - EEED) @

In the orbital occupation basis of H, using the mapping
of Eq. (22), they are density-wave configurations of the
form

‘Zél)>:’\001H100H001\ -+ [100] [o01][100] ).
(72)

which is the “maximally squeezed state”®%7 at v = 1/3
in the quantum Hall language, i.e. the configuration
that cannot be “squeezed” further but it can be “an-
tisqueezed” (see Eq. (15)). (Note that in the quantum
Hall case, the presence of longer range squeezing terms
leads to a different maximally squeezed configuration).

As shown in App. G (see Egs. (G5) and (G8)) the ’Z§I)>
state of Eq. (71) is the state in K1), with the lowest
charge Q(Zl) = —N/2. Since the PXP Hamiltonian maps

2
on to H(Y, the anomalous dynamics of the ’Zépxp)> state

of Eq. (70) for the PXP model thus maps on to the dy-
namics of the ‘Zél)> state of Eq. (71) for the Hamiltonian
HM in Eq. (31). Thus, generalizing to p > 1, we con-
jecture that the Hamiltonian #(?) shows anomalous dy-
namics for the lowest charge states in K(?), which are the

‘Zép )> states that read (see App. G 2 for their derivation)

‘ng>>: ‘ [+t [= ] !+"'+H—'“—\>-
(73)
When written in the orbital basis without the pseudoze-
roes ([0]’s), these are density wave configurations are the
“maximally squeezed states” at v = p/(2p+1), and they

read
)

‘\00101---01\]10--10100\ \00101---01\\10---10100\>

We now demonstrate the FSA for #®). Note that we
directly work with general p, and this analysis reduces
to that of the PXP model in Refs. [29] and [30] by set-
ting p = 1 and using the mapping of Eq. (32). We first

construct the Krylov subspace ICS],D) defined as

K0 =k (|28 1), (75)

where ”Hgf) is the charge-raising part of the Hamilto-
nian, shown in Eq. (62) and illustrated in App. E, and

) |Z2) = 0. The basis vectors of ICEf) are

) = ! (’Hf))j z9), =,

/Cgp)

is a normalization factor. The ‘Fj(p )>’s are

(76)

where cg-p )

all guaranteed to be orthogonal since they have different

(74)
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FIG. 4. (a) Overlap of the ‘Z(Qz) (k= O)> state with the eigenstates |¢)(E)) of the Hamiltonian. The vertical lines represent

the energies of the scars as predicted by the FSA (i.e. eigenvalues of H%QS?A, see Eq. (79)) (b) Entanglement entropy of the
eigenstates of H® for N = 12 and (inset shows the same quantity for N = 8). Note the strong hybridization of most of the
outlier eigenstates (scars) with the rest of the spectrum with increasing system size. Note that the low entanglement state at
E = 0 is perhaps a consequence of the fact that there are exponentially many states with £ = 0 (see Sec. IV C). Data shown

for PBC in the quantum number sector (k, X) = (0,+1).

charges. Indeed,

Fj(p)> has a charge Q) = —Np?/2+
because ’Hf) is a charge raising operator. Furthermore,
as discussed in App. G (see Egs. (G5) and (G8)), the
highest charge configuration in K is the configuration
of Eq. (73) translated by one unit cell, and it has a charge
QW) = Np?/2 (resp. QW) = Np?/2 — p) for PBC (resp.
OBC), and thus ICS?) is a Hilbert space of dimension
DSf) = (Np? + 1) (resp. DSf) =Np?+1-p).

The FSA is an approximation that ICSf) is closed under

the action of the total Hamiltonian H®. Since H(®) is
of the form of Eq. (62) (i.e. a sum of charge raising and
lowering operators), using Eq. (76) we obtain

2 (P)

FY) = 880 E) + 1Y

Fj(p>> ()

where 5](-17 ) = \/cg-p ) / c(-’i) 1, Where ¢(P) is the normalization

factor defined in Eq. (76). The crucial approximation of
the FSA is thus

HEP)

N\ ~ 5P
Ej >N5j

F). (78)

While the approximation of Eq. (78) is only justified be-
cause of matching the charge Q). we will show that
this assumption leads to accurate predictions of the en-
ergies of the quantum scars in this model. Thus, using
Egs. (77) and (78), the Hamiltonian H () restricted to

ICT) isa (Dgf) — 1)-dimensional tridiagonal matrix in the

FSA approximation that reads

o0 8P o ... . 0
mp) 0 Bép) 0 :
0 gy
Higa=| . - . |
0 1(::2")—1
0 0 653?”)—1 0

Indeed, the eigenstates of FSA Hamiltonian are known
to reproduce the energies of the scarred eigenstates of the
PXP model to a good approximation.2?3° These results
are equivalent to those for the Hamiltonian H®). We
thus expect that the eigenstates of H;pS)A to be close to
the quantum scars of H®).

We numerically test these aspects for p = 2. We first
define the momentum &k = 0 eigenstates constructed from

the state ‘Z§2)> as

‘Z?) e O)> _ ‘Z§2)> J\F/;)Z<22>>7

where 7 is the translation operator by one unit cell.
Note that 72|z28") = |28)
the bipartite entanglement entropy S of the states
e iHIT ‘Zéz) (k= 0)> and e~ H*T !R(2)> states with

the bipartition being one half of the system containing

(80)

In Fig. 3a, we plot
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(Color online) (a) Fidelity of the |Z2 (k = 0)) state with (Vi,0,V2,0) = (0.08,0.04).
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(b) Late time fidelity of the

|Z2 (k = 0)) state upon the addition of electrostatic terms. Clearly the line Vi o = 2V5 o has stronger revivals than other points
in parameter space. Data shown for PBC and N = 16 in the quantum number sector (k, X) = (0, +1).

N/2 consecutive unit cells. Note that while |R(2)> ther-
ZéZ) (k= 0)> undergoes
small oscillations before saturating close to the expected
thermal value. Further, the EE growth of )Zg) (k= O)>

is subballistic, contrary to the ballistic (linear in T)
growth observed for ’R(2)>, a characteristic of typical
initial states for nonintegrable models.® Furthermore,

as shown in Fig. 3b, the fidelity of ’Zéz) (k= O)> state,

defined as | <Z§2) (k= 0)’ e HT ‘ZéQ) (k= 0)> |2, shows
several strong revivals before oscillating and decaying at
long times. As shown in Fig. 3c, the revivals survive up
to the largest system size (N = 20 unit cells) accessible
via exact diagonalization. In Fig. 4a, we plot the over-
lap of the eigenstates with the ‘Zém (k= 0)> state, which

clearly show the existence of a “tower” of states approx-
imately equally spaced in energy that have a high over-

malizes quickly, the EE for the

lap. Moreover, we compute 7—[%25) A humerically and show
that the FSA (see Eqgs. (78) and (79)) accurately predicts
the energies of these “scarred states”, providing evidence
that the Krylov subspace K is indeed approximately
closed under H®). However, the low EE “scarred states”
in the spectrum of H?) appear to strongly hybridize with
the rest of the spectrum with increasing N, as shown in
Fig. 4b. While the hybridization can be attributed to the
fact that ICS_Q) is only approzimately closed under H (),
we do not understand why the hybridization is weaker
in the PXP (p = 1) model, although it takes place there
t002939 and is likely to show a similar EE spectrum as
Fig. 4b for larger system sizes.

VI. STABILITY OF SCARS

We now study the effect of perturbations of the scars
obtained in Sec. V. The full quantum Hall spectrum ex-
hibits level repulsion,*® and presumably does not exhibit
scars. It is thus instructive to study how perturbations
inspired from the quantum Hall setup affect the scars
obtained in Sec. V. In this work, we restrict ourselves
to center-of-mass preserving electrostatic perturbations
that occur in a Landau level (see Eq. (8)). We consider
the Hamiltonian

H' = H +6H, (81)
where H is the pair-hopping Hamiltonian of Eq. (14) and
0H is a perturbation. We consider the effect of electro-
static terms in Eq. (13). The perturbation thus reads

Ly

0H = Z(Vmﬁiﬁiﬂ + Va,0fifita).
j=1

(82)

Since this is a diagonal perturbation, the Krylov sub-
spaces K@) are still closed under the action of the per-
turbed Hamiltonian. For convenience we define the op-
erators
+ gt S f
ijn = Uj’nt7n7 Zj,n = T T

n=Tgmo

_t o f
Z3n =TjnTin = Usnl;

J,m?

(83)

ie, Z¢ = |a) (o for a = +,0,— (see Eq. (H4)). When
p =1, using Eq. (22), we obtain the expression of §H of
Eq. (82) within the constrained subspace K1) as

Ny
57‘[(1) = VLOZZLZ.’

J+1,1° (84)

j=1



Using the mapping of Eq. (32), the operator of Eq. (84)
maps on to the perturbation Vi o (1 + 0%)/2. The effect
J

of this perturbation on the scars of the PXP model were
briefly studied in Ref. [30], where numerical evidence sug-
gested that the scars are stable upon the addition of small
Vio <L

For general p, the electrostatic terms within the con-
strained subspace can be written in terms of Z¢,’s (see
Eq. (H14)). To diagnose revivals in the presence of elec-
trostatic terms we use a measure Ty, (w), defined as
the minimum time after which the fidelity is always less
than w, as depicted in Fig. 5a. We plot Ty, (w = 0.1)
for several values of Vi o and V3o in Fig. 5b and observe
that revivals are stable for small strengths of electrostatic
terms particularly when Vo = 2V5 .

In contrast to electrostatic terms, certain longer
range pair-hopping terms generically do not preserve
the Krylov subspaces K®) | invalidating the study of the
Hamiltonian H®). For example, consider p = 1. The ac-
tion of terms of Cs ;1 of Eq. (8) C}+1C;+3Cj+4Cj and Cs 9

of Eq. (8) c}c}+5cj+3cj+2 for example read

C;+16;+3Cj+4cj | [=1[e]) = [[o][=])
C;C;+scj+3cj+2 | =) ==, 89)

configurations that are not allowed in (). We defer the
detailed study of the interplay of Krylov subspaces in-
troduced by various long-range hopping terms for future
work. Based on numerical observations for p < 3 and the
similar structure of the problem for higher values of p, we
make the following conjecture: signatures of scars are
stable to small perturbations of the pair-hopping Hamil-
tonian that preserve the Krylov subspaces K.

VII. CONCLUSIONS

We have studied a particular pair-hopping Hamilto-
nian, a one dimensional model that arises within a Lan-
dau level in the thin-torus limit of the Quantum Hall
effect. At filling v = 1/3, the pair-hopping Hamiltonian
restricted to a particular constrained Krylov subspace
space exactly maps onto the PXP model,?? which shows
the existence of quantum many-body scars??:3%34 and ex-
act strong ETH-violating eigenstates.?® We showed that
the phenomenology generalizes to filling factors v = 2/5
and v = 3/7, where “maximally squeezed” charge den-
sity wave configurations showed revivals and subballistic
growth of entanglement entropy in spite of strong hy-
bridization of the scarred eigenstates, contrary to the
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typical behavior in nonintegrable models. Due to the
similar structure of the problem at all filling factors
v = p/(2p + 1), we expect similar phenomena to oc-
cur for some higher values of p, although that is hard
to demonstrate numerically for p > 4. Furthermore,
we numerically explored the stability of the revivals un-
der electrostatic terms that appear in the quantum Hall
Hamiltonian. We emphasize that in this work we have
only studied one particular Krylov subspace at each of
the filling factors. Indeed, this model exhibits exponen-
tially many other Krylov subspaces similar to the models
studied in Refs. [19] and [20], which we study in detail in
Ref. [69].

It is likely that similar phenomena occur with longer
range pair-hopping terms that arise in the quantum Hall
setting (see Eq. (8)) and also multi-body hopping terms
that arise in the case of non-abelian quantum Hall states.
It would be interesting to understand the generic struc-
ture of such constrained Hilbert spaces at arbitrary filling
factors, whether or not they exhibit quantum scars, and
if there is any connection to quantum Hall physics. On
the mathematical side, it would be interesting to bet-
ter understand constrained Hilbert spaces K and the
Hamiltonians #(®). For example, the Hilbert space of
the PXP model (and consequently K)) can be related
to the configuration space of the Baxter Hard Square
Model, which gives rise to Bethe Ansatz integrable mod-
els that resemble the PXP model.5? Moreover, the same
Hilbert space K1) arises in chains of Fibonacci anyons.
An interesting question is to explore any of these con-
nections naturally generalize to the Hilbert spaces K(®).
On the physical side, an important challenge is to iden-
tify physical interactions and regimes that naturally lead
to the dominance of pair-hopping terms in the quantum
Hall Hamiltonian. This could provide a new route to the
experimental realization of quantum scars.
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Appendix A: Obtaining Vk(i)n for general potentials

In this appendix, we outline a general procedure for obtaining Vk(

0

, M

for general potentials in the /-th Landau level on

the cylinder geometry. Note that similar calculations have been performed in the literature, for example in Refs. [54]
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and [70]. We start with the Fourier representation of the potential
r) = ZV (q)e'. (A1)
q

If {¢1,o (r)} are the single-particle orbitals in the [-th Landau level, we obtain VJ(1 )J2 Js.js using Eq. (6):

Vit sasdenis = % / d*ry s 97, (1) ¥y, (ra) V(= ) s (r2) (1)

- ;Z / / Pry Pry 97, (1) Ui (1) V (@) 70 () g, ()

= 72‘/ J1 J4 (a) J(i),Js (—a), (A2)
where we have defined

@)= [ i ()@ ), (43)
Using Eq. (9), the expression for V( _ can then be written as
kym = 2ZV( ) [ j4m.g (@) IJ(‘Qk,jﬂchm (—q) - I;Qm,j+k+m( )Iﬁm( q)
+I(2k gkm (D) L 5 (@) = Iﬁk,j (9) Iﬁm,ﬁmm (-9)

=13V (a) ), (a). (A4)

We now compute J, ,Elzn (g), which is independent of the potential V' (g). As in the main text, we work in the Landau

gauge where A= Byz. On the cylinder geometry, the single-particle wavefunctions read

o 212 ) 2 oriay

x4+ — v/ e Ty | (A5)

o 0) = e (a+ )

where H;(x) is the I-th Hermite polynomial in . Using Egs. (A5) and (A3), we obtain the expression for Ig’)ﬁ (q) as

o0 2
70 (q) = 1 / < 27Ta> 273 ,%(IJrsz) 7% ot 2;3 2 iger 2mila=By 0
I, =c—7=— de Hi(z+— | H|z+— )¢ v y dye v
B 2vply/mLy, J o L, L,

1 o 2 2m 1 (pg2ze)’ 1 (g 2n8 iQeT
:W/ dle(“?)“(””L ) 2(“”*%5%@)

y Ly sdy

1 h 21 (B —a)\ —2- %<x+2ﬂ(ﬁ a)) tige (z,zﬂ)

_W/_Dodl'Hl(x)Hl (J?"‘Ly e Ly 627r(/3 o) a
1 o ,i,M+1qI Ifm

Zw/ﬂodx H(x)H (x+qy)e 2 ( )5%%&) .

1 > —x? iz (qe+ig, )—ﬁ—i
= — de Hy(x) Hy (x + q,) e 2 Ly Gan(—a)
QPplf/ Y s

5 f‘w/wd Hy (2) Hy (z + ) e (5 F)
27r(,H (x) 6 v T ) (T 1 \X qqy )€
2pp'xf o Y

1 _lal? _mi(atBax [ _ .
2pp'f52ﬂ(ﬁ o, 4 , g / dz H, <x+ZQmﬂ;ZQy> H, <I+iqx 2ﬂ]y> efxz
— 00

_ﬁ_”%(a*’ﬁ) T 2
= 5211'([’37(1) e 44 Ly ! Ll <q|) s (AG)

Ly 'dy 2
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where we have used the identity”!
1 dz H (z +ia) Hy (x + ib) e =L b AT
SN A x Hy(z +ia) Hy (z+ib)e = L; (2ab), (A7)

where L;(z) is the I-th Laguerre polynomial in z. Before computing Jlgln)l (q), for convenience we compute

_la? 2\\? 2ri(B-a)as
& s (70 =3 <L1<|q2| )) bzl T (A8)

a,o+y ( ) I(l)

l
£V, (q)

Using Egs. (A4) and (AS8), J(l (g) can then be written as
! ! ! 1 !
Jlg'rzz( ) K](sz Jj+k+m, m( ) KJ(sz 7, k( ) + K(ik ,J,ym ( ) K](JZk jt+k+m,—k (q)

la|? |q|2 2mikqy _ 2mimgqg _ 2mikqy 2mimagy
=€ 2 Ll _— 57 27m e Ly — 527rk' e Ly —+ (527rm e Ly — 67 27k e Lv
2 Ly sqy Ty yQy Ly sQy Ly »qy

(A9)

) in terms of W . which is defined

k,m>

V(l) can then be computed using Eq. (A4). In fact, it is convenient to write V(
as

|q|2 2 2 2mikqy
nglZn = ZV(q)e_qT (Ll <q2|>> 6227;"7%16 Ly 5 Vk,m = Wk,fm - me,k + Wfk,m - Wm,fk- (Alo)
q

W,glzn can be simplified to

2
(l lql” 2mikqy 2mb g + 47: & qiﬂﬁib? 2miagy
W ZV Gz, qy)e (Ll ( 5 )) 522@ e Ly / dg, V (qw, ) L f e T2 e Ly
00 24 B2 2 22182 ., 2,52 [ 24 B2 2 iA)2
= / dr (a* + B) <Ll (x : )) R P / dz V (z,B) (Ll (”“" * )) G
oo 2 oo 2
(A11)
where in the last line we have changed the integration variable, and we have defined A = 2“’“ , B= 2;”:”
We now illustrate an example using the short-range Haldane-Trugman-Kivelson potentlal755 56
V(r) = V3@ () = = lafe T = Vi) =~ (@ + ) (A12)
q
We compute W( Zn using Eq. (A11), which reduces to
0 %l 5 22+ B2\\® _(oia?
Wim =—¢ dx (2% + B?) (L (2>> e 2z . (A13)

We have not been able to obtain a useful closed form expression for W,glzn of Eq. (A13) for general . Here we list

Vk(l}n for the lowest two Landau levels:

27r2(k2+m2)
2 —_ 7
VO =162 (k —m)(k +m)e
_ 7r2(k2+m2)
Vi =22 (k= m)(k +m) (15— 28 (8 + m?) + 298° (12 = m2)") e T (A14)
Appendix B: Properties of operators T' and U the main text. The action of T and U on spin-1 basis

Here we list the properties of single spin operators T
and U defined in Eq. (23) that are used extensively in



states read
Tl+)=0,Tlo)=—|-), T|-)=0,
T'|+) =0, T"|o) =0, TT|=) = — o)
Ul+)=lo), Ulo)=0,U|-)=0
Utl+) =0, Utlo) = |+), UT|-)=0.  (BI)

From Eq. (B1), we deduce the following properties
T'T|+) =0, T'T |o) = |0}, T'T|-) =0,
TT'+) =0, TT"|o) =0, TT"|-) = |-),
UU|+)=|+), UU o) =0, U'U|-) =0,
UUT|+) =0, UUT |o) = |0}, UUT|-) =0. (B2)

Appendix C: Constrained Hilbert Space Dimension

In this appendix, we derive the Hilbert space dimen-
sion DE\I;) for the Hilbert spaces K(?), and we show that
—for large N— Dg\f) scales as

D ~ (A@))N. (C1)

We refer to A?) as the quantum dimension of the con-
strained Hilbert space K(®). For the sake of simplicity, we
restrict ourselves to OBC throughout this section. In the
following subsections, we show the steps to count Dg\’;)
and A\ for general p. Explicit examples of the counting
can be found in App. C4.

1. Preliminaries

Before deriving D), we present an outline of the pro-
cedure we use to count the Hilbert space dimension,
and introduce the notations and concepts we will require
throughout this appendix. As an illustrative example,
we use N = 3 (three unit cells), and p = 2 (two spin-1’s
per unit cell). According to constraints (c1), (¢2), and
(c3) discussed in Sec. III C, the Hilbert space is spanned
by several configurations, for example

() [oo][o0][o0], (i) [+ o][o —][o0]
(i) o o] [+ +][= =] (v) [o +][= +][= o] (C2)
We refer to the configurations allowed in the Hilbert

space as wvalid configurations. Thus, the Hilbert space
dimension is defined as

DE\’;): Number of valid configurations of N unit cells.

To define a valid configuration, we introduce the follow-
ing notation. Configurations of N unit cells are repre-
sented by |&) = |o102 - on), where o is the configura-
tion of the j-th unit cell (i.e. a configuration of p spin-1’s
obtained after adding (p — 1) pseudozeroes as illustrated
in Sec. ITTC). We define the following quantities associ-
ated with the unit cell configuration o;:
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P, ,;: Number of +’s in o
M, ;: Number of —’s in o;

Using this language, a valid configuration is defined as
follows:

Definition C.1. A walid configuration of N unit cells
is a configuration |#) that is in K£® with OBC, i.e. it
satisfies the following properties (c1), (c2), and (¢3) listed
in Sec. IIIC:

(c1) Py, = M,,,, ¥j, 1<j<N-1

(c2) In any unit cell o;, the — always appear to the left
of a +.

(¢3) P,y =0, M,, = 0. This constraint only appears
for OBC, as explained in Sec. III C.

For example, when p = 2, consider the configura-
tions such as MoJerfD, ‘oJrHJr fHof‘>, and

’ > The first configuration violates (cl),

the second violates (c2), and the third violates (c3).
Thus, these configurations are not valid configurations.
On the other hand, configurations of Eq. (C2) are valid

since they satisfy all three constraints. We henceforth
(p)
N

suppress the index p in the Hilbert space dimension D
since we will always be working with a fixed p.

Each of the valid configurations can be thought to be
composed of connected configurations of n < N unit cells,
which are valid configurations of n unit cells that can-
not be divided into valid configurations of m < n unit
cells. For example, consider the configurations (i)-(iv) in
Eq. (C2). They are composed of the following connected
configurations

(0): |[oo]),|[o0o]),|[00])
(i) [[+o][o—1).|[00])
(iii) : HWM ++ - >

(iv):’\o+H—+H—o\>. (C3)

None of the configurations in Eq. (C3) can be further di-
vided into valid configurations. Since each valid config-
uration is composed of several connected configurations,
we can count the number of valid configurations by count-
ing the number of connected configurations and placing
them adjacent to each other.

We thus focus on counting the number of connected
configurations of N unit cells. Formally, connected con-
figurations are defined as follows:

Definition C.2. A connected configuration of N unit
cells is a valid configuration of N unit cells for which
no subconfiguration of n < N consecutive unit cells is a
valid configuration. That is, in addition to being a valid
configuration, a connected configuration |&") satisfies the
following properties:



(d1) P,, > 1, M,, > 1. That is, the first or the last unit
cell should not have the configuration
If either of these conditions are violated, the sub—
configuration consisting of the first unit cell or the
subconfiguration consisting of last unit cell forms a
valid configuration.

(d2) Py, > 1and My, > 1 V5,2 < j < N — 1. If this
condition is violated, i.e. Py, =0 (resp. M,; =0)
for some j, 2 < 5 < N — 1, then the configuration
loy---0j_1) (resp. |oj41---0on)) is a valid config-
uration.

For example, when p = 2 and N = 3, the configura-
tion (iv) of Eq. (C2) ‘ ‘0 + H -+ ‘ ‘ — 0‘ > is connected

because all of its subconfigurations violate the con-
straint (c3). However, the configuration (ii) of Eq. (C2)

‘ > is not connected, because the sub-

configuration | ) of the latter is a valid configuration
(see Eq. (C3)). Further, we define the quantity

Cy: Number of valid connected configurations of
N unit cells

2. Counting Cy

We now focus on counting Cp. In order to count the
number of connected configuration via recursion relation,
we first establish a mapping between each connected con-
figuration |7[N —1]) of (N — 1) unit cells and a set of
connected configurations {|7[N])} of N unit cells:

1) = {I7[VN])}-

We choose the mapping such that two different config-
urations |7[N — 1]) and |G[N — 1]) of (N — 1) unit cells
respectively map onto sets {7[N]} and {¢[N]} without
any common elements. Then the number of connected
configurations of N unit cells is the sum of the cardi-
nalities of all sets {|7[N])} generated by all connected
configurations |7[N — 1]) of (N — 1) unit cells.

We now illustrate one such mapping Consider a con-
figuration |T[N — 1]) = |7e73 -+ - Tn) of (N — 1) unit cells.
Since |T]N —1]) is a connected conﬁguratlon, according

o (¢3) and (d1), Py, > 1 and M., = 0. One way of con-
structing the mapping of Eq. (C4) is to consider the set
{|7[N])}, where |7[IN]) is a connected configuration of the
form |7[N]) = |1 7273 - - TN ), Where 73,74, - - Tn are the
unit cell configurations of |7[N — 1]), and 75 has the same
position of the +’s as 72, and 7y is any configuration such
that |7[N]) is a valid connected configuration (in partic-
ular, P;, > 1 according to (d1)). Note that in order
for |7[N]) to be connected, the unit cell configuration 7
of |7[N — 1]) necessarily has to be modified to some 7o,
since M., = 0 (using the constraint (¢3) for |[7[N — 1]))
and Mz, > 1 (using the constraint (d2) for |7[N])). For
two distinct configurations |7[N — 1)) = |73 -+ - 7 ) and

IT[N — (C4)
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|G[N —1]) = |og0o3---on), which differ by the configu-
ration of at least one unit cell, the mapping generates
sets {|7[N])} and {|&[V])} with no elements in common.
This is trivial if o; # 7; for any j > 3. If 0o # 7o, which
consist of only +’s and 0’s (as a consequence of (¢3)), o
and 7o differ by the position of the +’s. Since by con-
struction o and 7, have the same positions of the +’s
as o9 and 7y respectively, o9 # Ty if 09 # 75. Thus the
sets {|7[N])} and {|F[IN])} do not have any elements in
common if the configurations |7[N — 1]) and |o[N — 1])
differ by at least one unit cell. For example, consider the
following configurations |7[N — 1]) with N — 1 = 2 unit
cells and p = 3 spin-1’s per unit cell:

1 “OO—FHO—O‘>

()
(i) |[o+o]fo0—])
(i)
(

i) : [+ +o]fo—-])

w): [ ] =—])- (C5)

The configurations {|7[N])} of N = 3 unit cells that can
be constructed from each of the configurations (i)-(iv) in
Eq. (C5) are

[[Foo][=+o]foo—])

(iii) : {} (No configuration possible)
(iv) : {} (No configuration possible). (C6)
Note that none of the sets (i)-(iv) in Eq. (C6) have com-
mon elements. Moreover, since the constraints (d1) and
(d2) are constraints only between nearest neighbor unit
cells, the cardinality of the set {|7[N])} only depends on
the configuration of the leftmost unit cell 75 of |7[N — 1]).
Hence, for the purposes of counting the number of con-
nected configurations, it is sufficient to keep track of the



number of connected configurations with a fixed config-
uration of the leftmost unit cell. Thus, we introduce the
quantity

Cn,r : Number of connected configurations |&) of N
unit cells that have the leftmost unit cell con-
figuration o7 = 7. Note that as a conse-
quence of (¢3) 7 only consists of +’s and 0’s
with P, > 1, and is not a valid configuration
because by definition the configuration |5} is

connected.

We express Cy in terms of Cn ;- as

Cn = ZCN,Tv

TeEL

(c)

where L, the set of possible configurations of the leftmost
unit cell, defined as:

L: Set of single unit cell configurations that reside
on the leftmost unit cell of a connected con-
figuration of N > 2 unit cells. That is, they
are the set of configurations of the unit cell 7
that satisfy P, > 1 and M, = 0 (since these
are satisfied by (d1) and (c3) respectively).

For example, when p = 3, the configurations of the left-
most unit cell shown in the examples in Eqgs. (C5) and
(C6) all belong to the set L.

Before proceeding with the counting of C, we set the
notation for the elements in the set £. Since each spin-1
in the leftmost unit cell can be in either the states o or +,
and we exclude the state [0o0--- o], the number of config-
urations in £ is 2P — 1. Note that it is convenient to think
of configurations in £ as numbers between 1 and 2P — 1
by viewing the configuration as a binary number with 1
and 0 representing + and o. For example, when p = 3,
the set £ has 7 configurations that are shown in the first
column in Table I. There we label each of the configura-
tions by binary numbers from 1 to 7 by replacing o with
0 and + with 1. For example, the binary representation
of T = is 100, i.e. 4 in decimal notation. This bi-
nary/decimal notation provides a natural ordering of the
configurations in £ that we will rely on to write vectors
in the basis labelled by configurations of in £. In the
following, we will abuse notation and use 7 to denote the
decimal number as well as the corresponding configura-
tion in £. For example, when 7; = 4 and p = 3, we mean
T; = since 100 is the binary representation of 4.

In order to obtain the cardinality of {|7[N])} given
a configuration |7[N — 1]), we first determine the num-
ber 77, r,, which is the number of N unit cell connected
configurations of the form |7[N]) = |71 7273 - - TN ), where
T3, T4, - - - Ty are the unit cell configurations of |7[N — 1]),
and 75 and 79 are unit cell configurations which have the
same positions of the +’s, as shown in Egs. (C5) and
(C6). Given a configuration 71 (and hence Py, the num-
ber of +’s in 7 is specified), the number of choices of 7o
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7 |Binary|Decimal|Z, | P,
00+ 001 1 211
o+o 010 2 1|1
o++| 011 3 1(2
+o00 100 4 0|1
+o+ 101 5 0|2
++4+o0| 110 6 0|2
++4+| 111 7 0|3

TABLE I. Table of properties of all the 7 (27 —1)configurations
7 € L for p = 3. The binary representations of the configura-
tions are obtained by replacing o by 0 and + by 1.

depends uniquely on 7. In particular, according to (c2),
the —’s can be inserted into 7o only in the Z., leading
0’s of 19, where we define

Zr Number of leading o’s in the single unit cell
configuration 7 € £, i.e. the number of con-
secutive o’s in the left end of the configuration.

For example, when p =7 and 7 = (r=171n

the decimal representation), Z, = 2. Since P, = Mz, >
1 (according to (c1) and (d2)) and M,, = 0 (according to
(¢3) and (d1)), T+,.r, is the number of ways to insert P,
—’s into the Z,, leading o’s of the unit cell configuration
To, and it reads

z,
T = <P2)’ for 1<m,m <2P -1, (C8)

T1

where we have abused notation for 71 and 7 to represent
both the configuration as well as the corresponding dec-
imal number. For example, if N = 3, p = 3, as seen in

Egs. (C5) and (C6), for |7[2]) = ‘ > and 1 =
, there are two allowed configurations for |7[3]):
‘ ‘o—&— OH—O—&—HO—O‘> and ‘ ‘o—l— oHo——l—Ho—o‘ > In
this example, P-, = land 7o = , and hence Z, = 1.
Thus, according to Eq. (C8), T;, -, = 2. T can also be
expressed as a (2P — 1) x (2P — 1) matrix with bases as
the configurations in £. For example, when p = 3, the
configurations in £ are given in the first column of Ta-
ble I, along with the corresponding values of Z, and P;.
Consequently, using Eq. (C8), the matrix 7 reads (using
the ordering specified by the binary representations in
Table I)

221211 0]
1101000
1101000

T=10000000 (C9)
0000000
0000000
000000 0]

Given T, ,, the cardinality of the set {|T[N])} given

|7IN —1]) = |ra73---7n) is given by > T, .-, Thus,
T1EL



we obtain
Cn= Y TrmCn-1m
T1,T2€L

Using Egs. (C10) and (C7), we deduce that Cy ;, is re-
lated to Cn—_1,r, via the relation

(C10)

CN,n: E 7—71,7'ch—177'2'

ToEL

In Eq. (C11), T can be viewed as a (2P — 1) x (27 — 1)
“transfer matrix”. Applying Eq. (C11) repeatedly and
using Eq. (C7), we obtain

(C11)

C1N = Z 7;'1,7'27;'2,7'3 to ﬁj77j+1 s 7:'1\;,2771\7,1 C2,TN,17
{r;€L}

(C12)
We now focus on computing C3 -, the number of con-
nected two unit cell configurations of the form |ro) for
some o, which is required to evaluate C'y using Eq. (C12).
Such a configuration satisfies P, = M, > 1 (according
to (cl) and (d1)). Moreover, M, = P, = 0 according to
(c3). For example, the only connected 2 unit cell config-
urations when p = 2 are

e[| Be) o] )

)

(C13)

For a fixed unit cell configuration 7, the number of con-
nected 2 unit cell configurations of the form |ro) is the
number of distinct configurations ¢ with M, = P, —’s
(since the configuration o does not have any +’s). Thus,

we obtain
Cyr = ( 1]337)'

Thus, using Egs. (C12) and (C14), and noting that Cy =

1 (because | ) is the only connected configuration
when N = 1) we can express Cy as

(C14)

1 it N =1
un] BB o3
Do Tanlnl ) 625
1 it N =1
g
1| " it N=2
= (por_,) " (C15)
Py
p
(11 - 1] 7N (sz) it N>3
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In Eq. (C15), we have abused notation for 7 to represent
both the configuration in £ as well as the index of the
configuration (the correspondence being one to one using
the binary representation). For example, P> should be

understood as PT:. The expression for C'y

in Eq. (C15) can thus be rewritten as

1 it N=1
Cy =< hTv if N=2
WTTN=2y if N >3

: (C16)

where h and v are (2P — 1)-dimensional vectors whose
bases are labelled by the configurations in the set £. In
Eq. (C16), the components of h and v thus read

h, =1, UT:<p>, 1<r<2° 1.

b (C17)

Thus, using Eq. (C17) and the values of P, given in Ta-
ble I, the vectors h and v read (using the ordering speci-
fied by the binary representations in Table I)

(C18)

>=
Il
el T e T
<
Il
— W W Wwwww

3. Counting Dy

Given the number of connected configurations C,, for
every size n < N, we describe two ways to obtain the
total Hilbert space dimension.

First, a recursion relation for the Hilbert space dimen-
sion for a chain of NV unit cells can be obtained by noting
that a connected configuration of size n (1 <n < N —1)
can be appended to any configuration of size N — n to
obtain a valid configuration with N unit cells. Thus, the
recursion relation reads

N-1

Dy =Cn+ ZDanCn.

n=1

(C19)

Alternately, Dy can be computed directly without the
use of recursion. This method will enable an estima-
tion of the quantum dimension of the constrained Hilbert
space in App. C5. Given the number of connected con-
figurations C,, for every size n < N, the total Hilbert
space dimension Dy can be obtained by viewing con-
nected configurations as the fundamental building blocks
of any valid configuration, as illustrated in Egs. (C2) and
(C3). Thus, any valid configuration of N unit cells can
be constructed by placing one or more connected con-
figurations adjacent to each other. Since we know the
number of connected configurations of n unit cells to be



C,,, we will now count the number of valid configurations
by counting the number of ways connected configurations
can be placed adjacent to each other to construct valid
configurations of N unit cells. Hence we define the quan-
tity

Number of valid configurations that are
composed of j; connected configura-
tions of 1 unit cell, jo connected config-
urations of 2 unit cells, and so on up to
jn connected configurations of N unit
cells. Here we do not impose any re-
strictions on the total number of unit
cells in the valid configuration, which is

N
given by > 1j;.
=1

Clir garin)

Given that the number of connected configurations of n
unit cells is C,,, the number C;, , ... j,) is given by the
standard combinatorics result

21

Furthermore, using Eq. (C17), we obtain

h=[1] v=1[1]. (C24)

Thus, when p = 1, using Eqs. (C16), (C23) and (C24),

we obtain

CN:{l 1fN:1,27

0if N>3 (C25)

which means that one cannot obtain a connected config-
uration of more than two unit cells. Indeed, the longest

connected configuration with p = 1 is ’ E] > Sub-
stituting Eq. (C25) into Eq. (C19), we obtain
Dy =Dn_1+ Dn_o, (C26)

which is the usual Fibonacci recursion relation. Since
Dy = 1 (the only valid configuration is | [0])) and

Dy = 2 (the valid configurations are ‘E]> and

et i (Oy)? N '
Clir g in) = ( ’ N) (C1)" (Co)’ ... (Cx )|, [0][0] )), we obtain

j17 j27 ey ]N
(C20)
where
(J1_+J_2+ +.JN> _ Uitiete )l (C21)
Jis, J2, ---5 JN Jilgal . gn!

is a multinomial coefficient. Thus, using Eq. (C20), we
obtain the expression for total number of valid configu-
rations, i.e. the Hilbert space dimension as

N N )
Dy = Z C(jlvjm“ij)é‘ (Zl]hN)
{jk}=0 =1

Dy = Fy.1, (C27)

where F;, is the n-th Fibonacci number. The same result
can be obtained using Egs. (C22) and (C25):

_ J1+7J2
DN_- Z ( J1 )

(C28)

N o : . . . N
= 3 G @) (@00 6 (SN,

{ik}=0

(C22)

where we have imposed the constraint that the chain
has N unit cells using the Kronecker delta function

N
(L),
=1

4. Examples of Counting

We now provide explicit examples of the counting of
Dy whenp=1and p= 2.

a. p=1

When p = 1, the only configuration in the set L is
T = , which has Z, = 0 and P, = 1. Thus, using
Eq. (C8), T is a1 x 1 matrix

T =10]. (C23)

When p = 2, the set £, i.e. the set of all possible
configurations of the leftmost unit cell in a connected
configuration, has three configurations

lot} [Fo) [++) (C29)

which have Z, = 1,0,0 and P, = 1,1,2 respectively.
Thus, using Eq. (C8), T is a 3 x 3 matrix that reads

T = (C30)

OO =

1
0
0

o O O

Similarly, using Eq. (C17) and the values of Z, and
P, for the configurations in Eq. (C29), h and v are 3-
dimensional vectors that read

(C31)
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Thus, using Egs. (C30), (C31) and (C16), we obtain to the multinomial coefficient of Eq. (C21) and obtain
N
Lif N=1 vy (E)
Cy={5ifN=2, C32 o ) jz( jz)
- . . . ~ N—_1 N N .
J1, J25 ---5 JN . .
(2m) 2 i T
= =1

and the Hilbert space dimension Dy can be computed
numerically using Egs. (C32) and (C22). (C34)
Introducing the notations

5. Quantum Dimension
and

We now estimate the quantum dimension for the con- N N N
strained Hilbert space for general p using Egs. (C16) and H ({zx}) = <Z$l> log (le) = 2 (wlogay)

(C22) by performing a saddle point approximation with =1 l:]i =1
N as the large parameter. We first apply Stirling’s ap- N PED
proximation =>|zlog | = , (C35)

n! =~ v2rn (%)n (C33)  Eq. (C34) reads

N

> T
=1 _NH({zk})
~ ¢ ’“ (C36)

[T

=1

Q

(jl +j2+"'+jN>
Jis J25 ooy IN

]szxl N N
l;1 5 <lel - 1) exp <N (H ({zi}) + Zzl log C’l>> (C37)
[[a: \i=t =1

=1

2
N—-1

=1 (27’(’) 2

We now want to obtain an approximation of Eq. (C37) for large N. A standard method is to apply the saddle point
approximation, which, for a single variable reads

b b
1’7 2T
Az a(z)eNF@ %/ dz g(z)eNFE+E 1 @) @=20)* _ g(g)eNF@o) [ 2T 038

where f’(z¢) = 0 such that a < xg < b and f”(z¢) < 0. While a rigorous saddle point approximation with multiple
variables in the presence of a constraint (¢ function) requires careful treatment, we follow Eq. (C38) and approximate
the exponential-in-N dependence of Dy in Eq. (C37) as

N
Dy ~ exp <N (H {yn}) + > _wilog Ol)) ; (C39)
=1
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N
where {yi} are the parameters {x} at which the function H ({z})+ > 2;1log C; has a “saddle point” in the presence
=1

N N
of the constraint Y ly; = 1. That is, introducing a Lagrange multiplier log A that enforces > ly; = 1 we obtain

=1

6 (
8z —

({zx}) +ZajllogCl log A

P N
dlog A <H( ) —

When evaluated, Eq. (C40) reads

()

Evaluating Eq. (C39) using Eq. (C42), we obtain

{z}) + Zml log C; — log A

N
—logyk +1log C — klogA =0 = My =Cy> yi, Vk, 1<k <N.

=1

N N
Dy ~ exp < ( le log lCl) + le log Cl>>
1=1

=1

~ exp <N (log A;m»

N
N)\’

where we have used Eq. (C41) or

(C44)

N
lel =1.
=1

Thus, A is the quantum dimension defined in Eq. (C1).
A can be obtained using Eq. (C42), which can be written
as

Ck)\fk — _Yk

N
— Z Ck)\_k =1
k=1

N
Z Ck/\N_k =0
k=1

= AV - (C45)

Using Eq. (C16), Eq. (C45) can be rewritten as

N
AN = AV ANZ2RTy N ORI TE 20 AN TE (C46)

k=3
To compute the quantum dimension, we want to ob-
tain an equation independent of N. We thus simplify
Eq. (C46) further. We numerically observe that 7 is

diagonalizable for p < 8. Assuming 7 is always diago-
nalizable, if written in terms of its eigenstates as

2P —1

T = Zlﬁmrmlﬁ,

(C47)

lel — 1)) =0,
=1 {zr}={yx}
(C40)
N
<Zm — 1)) =0, Vk, 1<k<N. (C41)
=1 {ze}t={yx}
(C42)
=1
(C43)
[
Eq. (C46) simplifies to
N 2P—-1
)\N )\N 1 )\N QhTU_ZZ ek 2)\]\7 k
k=3 m=1
N-22P—1
)\N 2 Z Z em ()
j=1 m=1
2P _1 (0 )N72

/\NQZ m SN

(C48)

where we have defined
em = (h'rm) (Lhv) . (C49)
For large N and small p, Eq. (C48) simplifies to
21 g
N A—hTy = mon (C50)
A= O
which is a (p + 1)-th degree equation for p > 1. Note

that Eq. (C50) is only valid if (9—)\1)1\[ — 0: that is, if the
largest eigenvalue of T, 67 satisfies 81 < A, which we have
self-consistently verified for p < 8 in Table II.

We now provide examples of the computation of the
quantum dimension. When p = 1, using Egs. (C23),



AP gif’)
1.61803 0
3.16425 1
6.35065| 3.303
12.9044| 8.309
26.3557(18.9515
53.7857(41.2559
109.464|87.5446
222.135(182.926

oo| 1| | | x| cof po| — [N

TABLE II. Table of quantum dimensions A and 05”), the
eigenvalue of largest magnitude of the transfer matrix 7T for

the constrained Hilbert space at filling v = ﬁ, 1<p<8.
(C24), and (C49), (C50) reduces to
M -A-1=0, (C51)

and thus the quantum dimension AV is the Golden ratio

1+5
2

)\(1) =p=

. (C52)

When p = 2, using Egs. (C30), (C31) and (C49), one
directly obtains

e =4, 0, =1, hTv=5. (C53)
Thus, Eq. (C50) simplifies to
M 222 4N+ 1=0
= \ ~ 3.16425. (C54)

For other values of p, Eq. (C50) can be solved numer-
ically. The quantum dimensions for a few values of p
are tabulated in Table II. We empirically find that the
quantum dimension A®) roughly scales as

AP op=1o (C55)
However, we observe that the true Hilbert space dimen-

sion converges to its asymptotic scaling extremely slowly
in N.

Appendix D: Transformation of charge under
symmetries

In this appendix, we show the transformation of the

charge Qép ) of Eq. (61) under the symmetry ZP. The
quantities in Eq. (25) transform under ZP as

Paj - MUN+1—]'7 MUj - PUN+17]”
P M M P
xP o xP o xM  xB) (D)

where the inversion center is the center of the chain, on
a site (resp. bond) if N is odd (resp. even). Thus, using
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Egs. (61) and (D1), the charge Qg’) transforms as

N, _ Moy, 1 4+Ps M P
Qép) N Z:I(il)ﬁrl (% — (X<(7N+)17' JrX((;N),]
=

J

—k—1 (Mo +Fo M P
(_1)N k 1( k+§ ko (Xt(fk+)1 +X<§k))>

(_1)j+1 (P”j+]2\4°‘j+1 _ (X((If) —I—X(M) ))

Tj+1

(D2)

Using Eq. (D2) and that N = N —1 (resp. N = N) for
OBC (resp. PBC), we obtain

Q(ﬂP) - (_1)NQ1(}.P) +

g

0 if OBC
{ 26N 0dd (w - (Xf,f? +X§§‘“)) if PBC -

(D3)

Thus, the parity of Qép ) is invariant under ZP, and the
Zs index Cép ) defined in Eq. (64) transforms under ZP as

P ).

G

(D4)

Appendix E: Structure of the effective Hamiltonians
HP)

In this appendix we discuss the action of the Hamil-
tonians HP) in the constrained Hilbert space K(®). We
also show that it can be written as a sum of charge-raising

and charge-lowering operators, where the charge Qép ) is
defined in Eq. (61).

1. p=1

The action of the Hamiltonian H®) is shown in
Eq. (28). We split the Hamiltonian as

HY = H(j) + H(,l) (E1)
where
(1) % (1)
1\ — E 1! , E2
+ ( + )j,j+1 (E2)



and the non-vanishing actions of ’H(j) and HY

ten compactly)

are (writ-

j j+1 Jj j+1
(’H@) |---[o][o]---) = |- [+] -+ ) if j is even
5,3 +1
j j+1 J j+1
(HS)) |---[F[=) ) = | [o] -+ )if j is odd
J,g+1
j j+1 Jj j+1
(7—[_”) |---[e][o]---)y =1 [+] -+ ) if j is even
J,3+1
) J j+1 J j+1
(H*))Jj+1""E]"'>:‘ -[o][o]--) if j is odd.

(E3)

The actions of Eq. (E3) are chosen such that ’ngl)

and H are charge-raising and charge-lowering parts
of the action of the Hamiltonian H(®) (see Eq. (28)),
where the charge Q1) is defined in Eq. (58). Note that

[/HS?),/H(,I))] # 0. Using Eq. (E3), if
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Thus, using the definition of charge in Eq. (58), in either
of the cases (i) or (ii) we obtain

oW = oW +1. (E5)
Thus, H(f) and HY are the charge raising and lowering

operators respectively. In the operator language, 7—[5:)
and ’H(_l) read

)
WY = Y Ul - YTl
j even 7 odd
1
HE == 37 Taalin = D Ul Tie. (B6)
J even 7 odd

Thus, using Egs. (31) and (E6), Eq. (E1) is verified.

2. General p

A similar property holds for the Hamiltonian H®) of
Eq. (49) as well. That is, it can be split into two parts
as

HE) = 1P 4P (E7)
(1) .
() =1 (B9 where
(p) 1P
for product gonﬁgurations |6} and |T), then exactly one " ]Z< 4 ) T Z( )J i+ (E8)
of the following holds: where N, = — 1 for OBC and N, = N for PBC.
Further,
(i) Py, = Py, £l and M,,,, = M,, , +1if (-1)7 = +1 ) p-1 )
<Hi )j N U;((Hi )j)n,n-l-l' (E)
(i) Py, = Py;¥1land M,,,, = M, , F1if (-1) = F1 The non-vanishing actions of Hgf’) and ”H(f) read
J
n n+l n n+1
7(P) ) ‘ PTI :‘ it o0 if 71
OO

n n+1 n n+1
((H@)j> . ‘ (ot ]y =|[Fo ] ) it jisodd (E10)

n n+1 n n+1

()} | Ea]) = [ ) e

n n+1 n n+1

((/H(_P)>J> " +O‘>:“O+‘>1fjlseven (Ell)




26

n n+1 n n+1
((Hf))j>n,n+1 ’ ‘0 — ‘>: ‘~~fo~~‘> if j is odd
®) -T;n—H- = "_"(‘)H if j is even E12
(), I = =5y o o
n n+l n n+1
((H@)j)nnﬂ o)) =|[o—]) itjiseven
<(H(_p))j>n,n+1 | n—n:-\>= \---Zn—+.1--\> if j is odd (E13)
J j+1
() . \-- = | [ #][= ] ) if j is oad
Jj J+1
( ) J+1‘-- —‘-IZ]> if § is even (E14)
(ne )“+1H—j¥J!L\>—|I—Hﬁ>ifjiseven-
J g+
(1) | = | allo]) it i oaa (E15)

As we will shortly show, the actions in Egs. (E10) to

(E15) have been chosen so that Hf) and HP are the
charge-raising and charge-lowering parts of the actions
of H®) (see Eqs. (46) and (48)), where the charge Q)

is defined in Eq. (61). Using Eqs. (E10) to (E15), if
((2)) o= (E16)
J n,n+1
or
(H) 19 =17 (E17)
Jj+1

for product configurations |&) and |7), then exactly one
of the following holds:

(i) é{ﬁj’ EE: )ifgf V4 1if (1) = F1 (BEq.(E10) or
q. (E11

(i) é{ﬁj”(’E:»X,Sﬁ@ +1if (-1)7 = +1 (Eq.(E12) or
q. (E13

(iii) Py, = Py, +1, My, = M, +1, X\ = x{P 41,

gﬁf‘ngz))Xé?Q +1if (1) = +1 (Bq.(B14) or
q. (E15

Thus, using Eq. (61), in all the cases (i), (ii) and (iii) we
obtain
Qr

= Qs+ 1. (B18)

(

In the operator language, ’Hf ) and HP respectively read

HY =~ 3 Ul Tja - Z

Jj even ]+1 1
p—1 t
+ j%d n§1 (Uj,n+1Uj,n +1T] i1y, )
p—1 +
+ ) Z Zl (U] Uj77l+1 + Tj,nﬂ7n+1>7 (Elg)
j even n=
and
ng) = Z ]+1 U Z Tj+1,1
j even
I (ot f
SHDOEDY (Uj,nt,nJrl + Tj,nTj,nH)
j odd n=1
+ Z Z ( 7, 'IL+1 nt T]T,n—&-lijn) . (E20)
j even n=1

Using Egs. (E19), (E20), and (49), Eq. (E7) is verified.

Appendix F: Symmetry-Protected Zero-modes

To obtain a lower-bound on the number of zero-modes,
we need to obtain N? and NP (see Eq. (69)). That is,
we need to study symmetric product configurations (i.e.
those that satisfy |&) = ZP |5), see Eq. (68)) and their

7 indices C[(?p) = +1 as defined in Eq. (64). As shown in



Egs. (58) and (61), the charge for a product configuration
Qép ) is of the form

Ny
Q((?P) - ZQETZ;),U]'H’ (F1)
j=1

where

o) = (_q (PffJfow - (xp +X<M>)> .
05,0541 o;

9 Tj+1
(F2)
If the configuration & is an ZP-symmetric product state,
according to Eq. (D1), the following identities hold

. . N
Q((Tz;)vgj+1 = (71)NQ‘(TPJ\2_J',JN_J~+1’ Vi, 1<j< 5
P) - .
Q((Tpéﬂ%“ - PU% - 2X¢(7%) if N is even,

Qgp]\zﬁl =P,, — 2X((Ti) for PBC. (F3)

Lo . ®
For such a configuration &, its Zs index Cép ) = (-1)2
can be written as

(1) "% if OBC, N even

C((?p) _J1 P i if OBC, N odd (F4)
(-1) = if PBC, N even
(=1)Fon if PBC, N odd

Since N? = 0 when N is odd for OBC, according to
Eq. (69) the number of zero modes is lower bounded
by the total number of (even) symmetric product states.
Since symmetric product configurations can be uniquely

determined by the configuration of half of the chain, we
(p)

expect the number of zero modes to scale as D /2~
\/D%)). We believe that for a large N the same scaling
holds for systems with PBC and those with OBC. The
lower bound for the number of zero models has been cal-
culated exactly for the PXP model,?® which is equivalent
to the p = 1 case.

Appendix G: Lowest and Highest Charged States

In this appendix, we obtain the lowest charge and high-
est charge configurations for N unit cells with OBC and
PBC. We focus on the case where N is even, since this
is the relevant one for the discussion of quantum many-
body scars in Sec. V.
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1. p=1
a. PBC

As shown in Eq. (58), the charge for a configuration
when p = 1 is defined as (for even N)

Q) = 53 (1 (Mg

(o = 2

N (P, —M,.
= 3 (1 (), (G1)

j=
where
_ 11fO'J:+ _ 1if0’j:—

Foy = { 0 otherwise ’ Mo, = { 0 otherwise * (G2)

Using Eq. (G1), the lowest (resp. highest) charge config-
uration can be obtained by setting

+1 if j is odd (resp. even)

—1 if j is even (resp. odd) ° (G3)

P, — M, = {

Thus the lowest and highest charge states, which we re-
spectively call ‘Zgl)> and ‘Z;(1)>, read (for even N)

z") = B EE--EEE)
)= DEE-EEE), (@

which have charges

o) = -N/2, Q) = +N/2.

(G5)

b. OBC

For open boundary conditions, the definition Qgp ) for
even N reads
N—1

W _ N~ (qyi (oot Moyin
o = Y- (-1 (F )

(G6)
The lowest (resp. highest) configuration can then be ob-
tained by satisfying Eq. (G3) for all j, 2 < j < N — 1.
Moreover, the lowest (resp. highest) charge configuration
should satisfy P,, = 1 (resp. P,, = 0) and M,, =1
(resp. M,, = 1). Thus the lowest and highest charge
states for OBC (for even N) read

) =1 HEE-EEE)

z®) - | DEE-EEE).  ©)
which have charges (according to Eq. (58))
QY = -Nj2, Q) =+N/2-1. (G8)



2. General p
a. PBC

As shown in Eq. (61), the charge Qép) for PBC is de-
fined as (for even N)

Q) = 3" (—1)it! (P o +2va+1 - (X;f> v Xf,ﬁvﬂ)),

j=1

N P, — M,.

=Sy (g - (g - x80) oo

j=1

where
p P
Po; = l;‘sﬂjz»% My, = l;(;"jlv_

p
Xg)) = E(p +1- l) 6<sz,+
(G10)

where o; is the configuration of the I-th spin in the
j-th unit cell. The lowest charge possible for a sys-
tem of N unit cells are configurations that maximize

((ng —M,,) /2 x{P —I—Xg.”)) when j is odd and
minimize it when j is even. Thus, the lowest charge con-
figuration can be obtained by setting

xP) _ p(p;_l)éj,odd X(gjj\/f) - P(P;l)(;j

oj ,even

Pa]- =p 5j,odd7 Mcrj =P 5j,even~ (G].l)
Similarly, the highest charge for a system of N unit

cells are configurations that minimize and maximize
((Paj —Moj)/Q—X§f)+X§Jjw)) when j is odd and
even respectively. Thus, the highest charge configuration
satisfies

x (P _ p(p;l)éj!even Xééw) - p(p2+1)5j

oj ,odd

Pa'j =p (sj,eveny MO']- =p 6j,0dd- (G12)

Thus, the lowest and highest charged configurations,
which we refer to as ‘ng )> and ‘Z;(p )> respectively, read
(for even N)

}ng>>:“+...+”_..._‘ \+"'+H—'“—\>
Z;(p)>:“f...f‘,+...+‘ ,f...fH+...+‘>_
(G13)
They have charges
o=, - (e
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b. OBC

For open boundary conditions, the definition of Ql(}p )
for even N reads

N-1 . P, +M,.
o = apn (B — (x84 xB0))).

<.
Il

Po; =M,
2

—1 -
= J;z (_1)]+ (

Py _ x(P) (D)

_ X1 x(0)

+ (G15)

Thus, the lowest (resp. highest) charge configurations
can be obtained by satisfying Eq. (G11) for all j, 2 <
j < N — 1. Furthermore, the we set P,, = p (resp.
P, =0), X((,};) = % (resp. X((,};) =0), My, =p

(resp. My, = 0) and X0 = 2D (reop, XD =

0) for the lowest (resp. highest) charge configurations.
Thus, these states for OBC and even N read

20 = | - )
Z;<P>>:’[ﬁ]\+~-+\ ‘_..._Hﬁ]>7
(G16)

which respectively have charges

Np?

Q(p)_ Np? 2
2’ '

=t P

. (G17)

of) - -

Appendix H: Action of the electrostatic terms

Here we consider the action of the electrostatic terms
in the spin-1 basis. The electrostatic part of the Hamil-
tonian within a Landau level on a thin-torus reads (see
Eq. (82))

Ly
SH =Y (Viofynjp1 + Vaorjia).

j=1

(H1)

Note that it is diagonal in the spin-1 basis. The only
non-vanishing action of § H on configurations of orbitals
are

0H[11)=Vig|ll), dH|1 * 1) =Va0]|l = 1),
(H2)
where * is either 0 or 1. For convenience, we define the
spin-1 operators (see Eq. (83))
zt=U'U, z-=TT", z°=T'"T =UU'.  (H3)
Using Eq. (B2) in App. B, the non-vanishing actions of
these operators on the spin-1 basis states read

ZT ) =1+), Z7|-)=1-), 2°lo)=]o). (H4)



We then obtain the action of H in terms of the spin-1
basis states, i.e. 6H®P). Similar to Eq. (20), we split
SH®) as

N Ny
SH®) — Z((m(m)j + ;(m(m)mﬂ’ (H5)

j=1

where N, = N with PBC and N, = N — 1 with OBC.

1. p=1

When p = 1, using Eq. (H2), the only non-vanishing
action of §H on the states in K1) is

Jji+l

Vl,oﬁjﬁjﬂ" . >
j it

(H6)

=V1,0"" >

which, in terms of the spin-1 degrees of freedom reads
(see Eq. (22))

J_J+1

(5H(1)>j7j+1| [HE ) = Vag| - JE] ).

(HT)
Indeed, nearest neighbor unit cells can only have the con-
figurations shown in Eq. (29)). Thus, the perturbation

J

Jj J+1
Vioigigia| [+ 00 1[0] 10 -
Jj J+1
Vioigigga| [+ 01[0] 100 -
J Jj+2
Va 042 ‘~~001[O]01~-~
J Jj+2
Vaoitjja| [+ 010[0] 10 -
J Jj+2
Va,oitjija| [+ 10[0] 100 -
Jji+1
vl,oﬁjﬁj+1’\--~001\\100~-

where [0] depicts a pseudozero, and 0 may be a pseu-
dozero. In terms of spin-1 degrees of freedom defined in

29

reads

Ny
HW =V10> Z)1 75,0 5. (H8)
j=1

Using Eq. (H7) and the mapping of Eq. (32) to the spin-
1/2 degrees of freedom, the non-vanishing action of the
perturbation dH,; on the dual lattice corresponding to
SHM) reads

its Jt+%
(5Hd)j_%7j+%7j+%| L1d)=VipldTi). (H9)
Thus, the operator form of 6 H; reads (for PBC)
N+3
(H10)

1+ 07
0Hy = ZPl—l ( 20l > Pry1,
=3

where P is defined in Eq. (40). This is one of the pertur-
bations to the PXP model studied in Ref. [30], and is dif-
ferent from the class of perturbations studied in Refs. [36]
and [39].

2. General p

For general p, we observe that the non-vanishing ac-
tions of the terms of 0 H read (after the addition of pseu-
dozeroes)

Jj g1

= Viol| .001[0]10~.~\>
j o j+1
= Viol| ~01[0]100~~\>
J j+2
=Va| ~001[0]01...\>
J Jj+2
= Vaol] ~010[0]10~~\>
J Jj+2
= Vaol] .10[0]100~~\>
Jj g+l
=V1,0‘\ 001][100 ),

(H11)

Eq. (22), these actions read
J J
), )=t )
J J
(570, | ) =Vio| )

(H12)



Jj J+1 Jj j+1
(1), | [ ) = Vi )0,

(H13)

(5%<p>>_¢ﬁ> Vzo\—>
(0H®)) |_> Vzo|_>
<<m<p>>j\> wo\>

30

Thus, using Eq. (H4), the expression for the perturbation

reads
Nb _
SHP) = Zlvl OZJ v Zit11

j=

N p—1 -~

Z Z (Vio (2 i nZJ ni1 T L5025, i)

: n=1

+‘/2 ,0 ( J+ jm+1 + Z Zon+1 + Zj nZ]_n+1)XH14)
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