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Spectroscopic signatures of many-body correlations 
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The discovery of superconducting and insulating states in magic-
angle twisted bilayer graphene (MATBG)1,2 has ignited considerable 
interest in understanding the nature of electronic interactions 
in this chemically pristine material. The transport properties 
of MATBG as a function of doping are similar to those of high-
transition-temperature copper oxides and other unconventional 
superconductors1–3, which suggests that MATBG may be a highly 
interacting system. However, to our knowledge, there is no direct 
experimental evidence of strong many-body correlations in MATBG. 
Here we present high-resolution spectroscopic measurements, 
obtained using a scanning tunnelling microscope, that provide such 
evidence as a function of carrier density. MATBG displays unusual 
spectroscopic characteristics that can be attributed to electron–
electron interactions over a wide range of doping levels, including 
those at which superconductivity emerges in this system. We show 
that our measurements cannot be explained with a mean-field 
approach for modelling electron–electron interactions in MATBG. 
The breakdown of a mean-field approach when applied to other 
correlated superconductors, such as copper oxides, has long inspired 
the study of the highly correlated Hubbard model3. We show that a 
phenomenological extended-Hubbard-model cluster calculation, 
which is motivated by the nearly localized nature of the relevant 
electronic states of MATBG, produces spectroscopic features 
that are similar to those that we observed experimentally. Our 
findings demonstrate the critical role of many-body correlations in 
understanding the properties of MATBG.

The stacking of two graphene layers on top of each other results in a 
moiré superlattice with a periodicity that depends on the angle between 
the layers. Close to the ‘magic angle’ of approximately 1°, a non- 
interacting continuum model of the band structure of this system 
predicts nearly flat low-energy valence and conduction bands4,5. 
Previously, studies of MATBG using a scanning transmission micro-
scope (STM) have visualized the moiré superlattice, identified differ-
ent regions of sublattice stacking (AA and AB/BA) of the graphene 
sheets, and have resolved two peaks in the tunnelling spectrum 
(dI/dV) associated with the large density of states (DOS) of the flat 
bands6–10. Transport studies show that the partial occupation of the 
two flat bands of MATBG results in a cascade of insulating phases 
and superconducting domes as a function of electron filling1,2,11,12. 
Considering the fourfold degeneracy (spin and valley) of the two flat 
bands, novel insulating phases occur at partial moiré band fillings of 
ν =  0, ±¼, ±½, ±¾, where ν is the moiré band filling factor, which 
suggests that electron–electron interactions have a predominant role 
in the formation of the insulating phases. Interactions also result in 
the development of magnetism in MATBG12,13, although the break-
ing of the crystalline symmetry by the underlying hexagonal boron 
nitride substrate may be a requirement for such magnetic phases. The 
observation that resistivity increases linearly with temperature (T-linear 
resistivity) at high temperatures14 may also be indicative of interactions; 
however, the origin of this behaviour is still debated15. Beyond these 

observations and despite many theoretical studies16–20, there are many 
unresolved questions regarding the role of interactions in this system. 
Among these is the question of whether interactions in MATBG are 
not only strong when the system is insulating, but also when supercon-
ductivity emerges at other doping levels1,2,11,12. To construct the correct 
model of superconducting pairing, we require an accurate picture of 
how interactions influence the low-energy excitations of the system. 
Here we perform high-resolution spectroscopy studies of MATBG 
using the STM to address these questions. We show that when the 
nearly flat valence and conduction bands are either filled or unoccu-
pied, a non-interacting model—which includes the influence of strain 
and relaxation—captures the spectroscopic properties of MATBG. 
However, at partial band fillings, we demonstrate that the quasiparticle 
spectrum is strongly modified from that of a non-interacting model, 
over a wide range of energies that far exceed that of the bandwidth of 
the flat bands or their separation to remote bands. Without any theoret-
ical modelling, these experimental observations illustrate that MATBG 
is a highly interacting problem, the physics of which cannot be captured 
with weak-coupling theoretical approaches. The strong correlations 
uncovered by our experiments are key to the properties of MABTG 
when superconductivity emerges in this system.

We examine the properties of exposed MATBG as a function of elec-
tron density in back-gated devices (Fig. 1a, b; see Methods for details of 
fabrication21,22) using a home-built ultrahigh-vacuum STM operating at 
1.4 K. Consistent with previous studies6–10, the STM topographies of our 
devices reveal a moiré superlattice in which the bright (dark) regions 
correspond to the AA (AB/BA) stacking region, where high (low) local 
density of states (LDOS) is expected (Fig. 1c). From the observed peri-
odicity of the moiré lattice, we confirm that the twist angle in this region 
of the sample is close to the magic-angle value of approximately 1°. A 
more detailed examination of topographies also reveals the presence of 
strain and lattice relaxation, the information on which can be extracted 
from STM topographies (see Methods) and can be used to theoretically 
model the spectroscopic properties of MATBG when electron–electron 
interactions are not important. Figure 1d shows the dI/dV spectrum 
measured at the AA regions shown in Fig. 1c at a gate voltage (Vg) 
of −4 V. The spectrum features two sharp peaks below the Fermi level 
and two weaker step-like features at other energies (arrows in Fig. 1d). 
As expected from the continuum model, and consistent with previous 
measurements6–10, the two sharp peaks are associated with the van Hove 
singularities of the occupied, nearly flat conduction and valence bands 
of MATBG. However, the original, non-interacting continuum model4,5 
would predict these bands to have far shaper peaks than those that are 
observed in our experiments. Including the influence of strain23and 
relaxation24,25 in the continuum model results in additional dispersion 
of the valence and conduction bands (Fig. 1e, f), which not only better 
captures the width and separation of the double peaks in the tunnel-
ling spectra but also the presence of the step-like features at higher and 
lower energies (arrows in Fig. 1d, f). In our calculations, these step-
like features are associated with the van Hove singularities of the bands 
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remote to the flat bands. We have repeated similar local modelling of 
the dI/dV spectra measured at AA sites using information extracted 
from topographies at other locations of our devices (see Extended Data 
Fig. 1). The description of the local spectra is satisfactory when disorder 
is weak, and when the double peaks associated with the flat bands are 
either below or above the chemical potential.

The breakdown of this single-particle description of the spectro-
scopic properties of MATBG when interactions are important becomes 
evident when we study the evolution of the quasiparticle spectra in our 
device as a function of electron density controlled by Vg. Figure 2 shows 
dI/dV measurements on the AA region as a function of Vg, which spans 
three different regions of occupation for the two flat bands: when the 
flat bands are both occupied (Vg > −5.5 V), when they are being 
depleted (−53.5 V < Vg < −5.5 V), and after they have been depleted 
(Vg < −53.5 V). The rate of the shift of the flat-band peaks with Vg 
reflects the DOS at the Fermi level. Therefore, a change in slope of the 
lines in Fig. 2a signals a transition in band filling. The nearly vertical 
features signal the slow change of occupation of the flat bands with large 
DOS. In the range −58 V < Vg < −53.5 V, the change in slope might be 
related to the presence of an energy gap between the flat bands and the 
remote bands (estimated to be around 15 meV, which is roughly con-
sistent with the calculated band structure in Fig. 1e). When the nearly 
flat bands are filled or fully depleted, the spectra—which are individu-
ally plotted in Fig. 2b, e—show relatively sharp double peaks at all gate 
voltages, and the widths of these peaks change weakly with their energy 
separation to the Fermi level (see Extended Data Fig. 2 and Methods). 
As described above, these spectra are consistent with those calculated 
from a non-interacting model that includes the effects of strain and 
relaxation. However, the most notable change in the quasiparticle spec-
tra occurs when one of the flat bands begins to overlap with the Fermi 
level, as demonstrated by contrasting the data in Fig. 2c, d with those 
in Fig. 2b, e. In this region, as one of the flat bands is being depleted, 
not only does the peak associated with that band near the Fermi level 
develop substantial features and broaden, but the peak associated with 
the other valence (conduction) band below (above) the Fermi level is 
also substantially modified. Notably, the strong distortion of the shape 

of the quasiparticle spectra—which is caused by interactions during the 
partial filling of the flat bands—spans an energy range (30–50 meV) 
that is wider than both the separation of the flat bands to the remote 
bands and the apparent bandwidths of the flat bands, as measured when 
fully occupied or unoccupied. This observation demonstrates that the 
largest energy scale for determining the properties of MATBG at partial 
filling of the flat bands is set by electron–electron interactions. This sig-
nature of strong correlations occurs not just at commensurate fillings, 
but over all doping ranges for which transport studies1,2,11,12 have found 
superconductivity in this system below 1 K.

To further relate our spectroscopic measurements to the transport 
properties of MATBG, in Fig. 3 we plot the tunnelling conductance at 
zero energy dI/dV(0)—which is a measure of the DOS at the Fermi 
level—as a function of Vg. From the changes in dI/dV(0) and the meas-
ured energies of the van Hove singularity peaks in Fig. 2, we identify 
the Vg values that correspond to the point at which there is full local 
depletion of the conduction or valence flat bands (n = ±n0, where n 
and n0 denote the carrier density of the system and that of a moiré 
band, respectively); at this point, the transport measurements reveal 
evidence for a band insulator. Further assignment of the occupation 
level within the flat bands with Vg is made complicated in our experi-
ments by the presence of the STM tip (see Methods and Extended Data 
Fig. 3). Focusing on the gate region of Vg at which we are depleting 
the conduction flat band, a region where the tip-induced effects are 
minimal, we find some features in the tunnelling spectra that correlate 
with the transport studies. Most notably we find that, at half-filling of 
the conduction band (n = n0/2)—where transport measurements reveal 
the strongest insulating behaviour—dI/dV(0) vanishes and a gap-like 
feature appears in the spectrum. Recent STM studies of MATBG have 
reported a similar gap feature, but the suppression of the DOS at the 
Fermi level was less than 50%9,10. However, we caution that this gap at 
half-filling is much larger (about 20 times) than that observed in trans-
port measurements, and may be related to a soft gap observed at other 
doping levels (Fig. 2c). Interactions, together with the localization of 
electrons either by disorder or large magnetic fields, are well known to 
induce soft Coulomb gaps in tunnelling spectroscopy26–28. Close to the 
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Fig. 1 | Non-interacting spectroscopic properties of MATBG.  
a, Schematic of the STM setup on MATBG devices. b, Optical image of the 
device. c, STM topography showing the moiré superlattice with a twist 
angle θ  of 1.01°. d, Scanning tunnelling spectrum measured on an AA site 
for slight electron doping (Vg = −4 V, bias voltage Vset = 200 mV, current 
Iset = 120 pA, modulation voltage Vmod = 1 mV). The blue and green 
arrows mark the step-like features at higher and lower energies, 
respectively. e, Band structure calculated using the continuum model 

including the effects of strain and relaxation. ΓMΛM is a non-high-
symmetry direction along which the Dirac points (locally protected by 
C2zT symmetry) are located. The black dotted line indicates the Fermi 
level. The blue (green) dashed line corresponds to the van Hove 
singularities of the first conduction (valence) remote band.  
f, Corresponding LDOS (offset by −17 meV) calculated on an AA site. 
The blue and green arrows mark the van Hove singularities of the first 
conduction and valence remote bands, respectively.
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charge neutrality point (CNP)—at which the two flat-band peaks are 
roughly symmetric about the Fermi level (green curve in Fig. 3b)—we 
observe a strong increase (around 20 meV) in the separation between 
these flat-band peaks. This enhanced separation is another indication 
of the importance of interactions in MATBG20. Notably, the peaks asso-
ciated with the fully occupied or unoccupied flat bands regain some 
of their sharpness near the CNP. The suppression of the DOS at the 
Fermi level near the CNP is also consistent with a recent report of 
insulating behaviour at zero doping12. The apparent gap at n = n0/2, 

and other finer features in the spectra at other rational fillings, show 
variability between devices; it may therefore be necessary to examine 
cleaner samples before these features can be fully established as intrin-
sic effects. Nevertheless, our key fundamental finding—the dramatic 
deviation from single-particle spectra at partial fillings—is reproducible 
(see Extended Data Fig. 4) and is unique to the magic-angle device (see 
Extended Data Fig. 5 for results from the non-magic-angle device). We 
can therefore use this information to discriminate between different 
models of interactions in MATBG.
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Fig. 2 | Breakdown of non-interacting description. a, dI/dV measured 
on an AA site as a function of sample bias and gate voltage (Vset = 200 mV, 
Iset = 120 pA, Vmod = 1 mV). b–e, Normalized dI/dV spectra at different 

gate voltages extracted from a. The curves are shifted vertically by 0.5 each 
for clarity. c and d demonstrate the breakdown of the non-interacting 
description. The black dotted line indicates the Fermi level.
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Fig. 3 | Evidence for correlated insulating state at half-filling.  
a, Conductance at the Fermi level as a function of gate voltage. Grey areas 
correspond to fully (un)occupied flat bands with sharp quasiparticles 
(QPs). The blue rectangles define the full filling of the two flat bands. The 
CNP is located inside the green region. The light yellow rectangle is the 
midpoint between the edges of the CNP and full filling. The black dotted 

line marks zero conductance. The asymmetry in gate responses between 
the conduction and valence flat bands is due to the tip band bending 
(see Methods). b, Individual spectra at different gate voltages from 
different shaded areas in a. The spectra are vertically shifted by 1.8 nS each 
for clarity. The black dotted line indicates the Fermi level.
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Our first approach towards understanding the effects of electronic 
correlations on the spectroscopic properties of MATBG is to perform 
self-consistent Hartree–Fock calculations by adding the Coulomb 
interaction to the continuum model (see Methods). These calcula-
tions allow the possibility of interaction-induced spontaneous valley 
and/or spin polarization, without making any assumptions about the 
symmetry breaking in the ground state. The resulting spectra from 
these calculations (see Extended Data Fig. 6) show the pinning of the 
flat bands during filling (vertical feature in Fig. 2a) and the generic 
broadening of the bands, as well as the enhanced separation between 
the van Hove singularities near the CNP due to the exchange interac-
tions. However, these calculated spectra fail to reproduce the abrupt 
distortion of the experimental quasiparticle spectra during the partial 
filling of the flat bands. During the partial filling of the conduction flat 
band, our calculations show no discernible distortion of the valence 
flat band. More generally, if a mean-field order parameter is added to 
the bands self-consistently, there would be no reason to expect a large 
distortion of the unoccupied valence flat band when the occupation 
of the conduction flat band is slowly changed. We therefore conclude 
that a weak coupling mean-field picture of interactions is inadequate 
for producing spectra that match our findings.

Next, we consider whether the features that we observe could 
be a consequence of the symmetry breaking in the ground state of 
MATBG18. It is instructive to contrast our findings with recent STM 
studies of valley-polarized quantum Hall states, in which the occu-
pation of the flat Landau level bands can be adjusted29,30. These 
experiments show that interactions produce symmetry-broken valley- 
polarized ground states, which induce spectral splitting at the Fermi 
level. However, in stark contrast to our observation, the line shape of the 
filled or unfilled Landau levels in those experiments remain unaffected 
even when symmetry is broken in the system. We therefore conclude 
that in MATBG, although interactions can break the valley or spin sym-
metry at fractional fillings of the flat bands12,20, such changes should 

only alter the states of the partially filled band in which such symme-
tries are broken, and would not generically alter the fully occupied or 
unoccupied flat bands. We attribute this behaviour, which has been 
previously observed in quantum Hall ferromagnets29,30, to the fact that 
cyclotron energy is much larger than that of the interactions. By con-
trast, in MATBG, the lack of capacity of the weakly interacting model 
(mean-field) to explain the features of the data forces us to consider 
a physical picture in which the effects of interactions are dominant.

The salient features of our data can be captured within a phenome-
nological model in which the effects of Coulomb interactions of the 
nearly localized states of the moiré flat bands can be studied without 
relying on a mean-field approximation. To motivate our phenomeno-
logical model, we note that the maximally localized Wannier orbitals 
that correspond to the flat bands of the MATBG are shaped as three 
lobes symmetrically distributed around the AB/BA moiré sites, with 
their wavefunctions strongly localized at the three nearby AA sites16–18. 
Theoretical studies have emphasized that the shape of these Wannier 
functions suggests that it is necessary to include the nearest-neighbour 
Coulomb interactions, and extended Hubbard models have been con-
structed on the basis of this idea. Given that the charge density is 
peaked on the AA sites (Fig. 1c), the simplest model to consider is that 
of a triangular lattice with two orbitals per site at energies ±ε (no spin/
valley flavour). We include a hopping between nearest sites (t) and both 
the on-site (U) and the nearest-neighbour (V0, V1) Coulomb repulsions 
(Fig. 4a; see Methods). To compare the results of such a model with 
those of our experiments, we carry out an exact diagonalization calcu-
lation for small clusters (see Methods and Extended Data Fig. 7). The 
resulting local spectral weight from this toy model as a function of 
electron filling (Fig. 4b) exhibits the same behaviour as that observed 
experimentally in Fig. 2b–e. When the two orbitals in the model— 
corresponding to the two flat bands—are fully occupied or empty, the 
spectra show sharp peaks (broadened by a bandwidth 6t ≈ 5 meV), 
whereas at partial fillings of either orbitals (flat bands) we see substan-
tial broadening of the two peaks. The broadening (or splitting) of the 
flat-band peaks in our model at partial fillings is tuned by the strength 
of Coulomb interactions: a value of U/6t ≈ 6 produces spectra with a 
broadening (around 20 meV) that is comparable to our experiments. 
We note that the discrete broadening (splitting) is due to our use of 
singly degenerate orbitals to make the computation tractable, and we 
anticipate that restoring spin and valley flavours would further 
smoothen the broadened spectra with the added presence of more 
peaks. We also observe an interaction-enhanced energy separation 
between the peaks when the chemical potential is in between the ener-
gies of the two flat bands. This agrees well with the experimental results 
observed near the CNP. The parameters used to calculate the spectra 
in Fig. 4b, the on-site U (about 30 meV) and the nearest-neighbour 
values of V (about 5 meV) are consistent with recent estimates for the 
Coulomb interactions in magic-angle moiré superlattices with an 
underlying hexagonal boron nitride substrate16. Similar calculations 
on a honeycomb lattice (see Extended Data Fig. 8) result in the same 
conclusions, indicating that they are independent of the choice of lattice 
structure.

Our toy model succeeds in capturing the broadening of MATBG 
quasiparticle spectra because it incorporates various correlated 
charge configurations at partial fillings, which considerably affect the  
electron addition and removal energies of the localized orbitals. The 
mean-field approach replaces these configurations with a simple average  
and ignores the fluctuations among them, therefore resulting in far 
less complex spectral features compared with those observed exper-
imentally. More realistic extended Hubbard models with larger clus-
ter calculations31 can be used to more precisely compute the electron 
addition and removal spectra for MATBG. Most broadly, our obser-
vation that U is the largest energy scale in the problem indicates the 
inaccuracy of models that project the physics of electronic interactions 
onto the two lowest flat bands. Our results indicate that MATBG is 
truly a many-body problem—possibly not confined to the lowest two 
bands. This poses a formidable theoretical challenge for finding the 
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Fig. 4 | Extended Hubbard model. a, Schematic of a seven-site cluster 
two-orbital Hubbard model with on-site energy ±ε, hopping t, on-site 
Coulomb interaction U and near-neighbour interactions V0 (same orbital) 
and V1 (different orbitals). b, Local spectral weight computed from the 
exact diagonalization of a seven-site cluster Hubbard model for different 
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Fermi level from the remote bands. The curves are shifted vertically by 
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broadening (splitting). c, Band broadening as a function of the ratio of the 
on-site Coulomb interaction U to the non-interacting band width 6t, while 
maintaining V0 = U/6, V1 = U/7.9.
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true ground-state for realistic models, because the size of the Hilbert 
space—which includes valley and spin flavours—is far beyond the limit 
of computation with a classical computer. Regardless, our experiments 
and toy model calculations demonstrate that many-body correlations—
at least as complex as those present in a Hubbard model—are required 
to describe the low-energy properties of this system. Our finding 
therefore establishes a more robust connection between MATBG and 
high-transition-temperature superconducting copper oxides, beyond 
the phenomenological resemblance of their transport phase diagrams. 
Such a connection renders MATBG a potential model system in which 
a mechanism for strongly correlated superconductivity could be more 
precisely established.
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Methods
Sample preparation. The device was made using a modified ‘tear and stack’  
technique21,22. We used a polypropylene carbonate (PPC) film and polydimethyl-
siloxane (PDMS) stack on a glass slide to first pick up a 30–40-nm-thick hexagonal 
boron nitride (hBN) flake. Then we used the van der Waals force between hBN and 
monolayer graphene to tear and pick up half of the graphene flake. The remaining 
graphene flake on the Si substrate was rotated by 1.3° and picked up. In order to 
expose the graphene surface, the resulting stack with PPC was transferred onto a 
second PDMS stamp. After dissolving the PPC film in acetone, the inverted stack 
was placed in between pre-patterned Au contacts deposited on a SiO2 wafer with 
a Si back gate (Fig. 1a, b). Before inserting into the scanning transmission micro-
scope, the sample was annealed for 10 h in ultrahigh vacuum at 250 °C. In these 
devices, we adjusted the electron density in situ in the microscope by adjusting the 
back-gate voltage. The 1.72° device (Extended Data Fig. 5) was fabricated by first 
picking up a graphite flake followed by the preparation of an hBN/twisted bilayer 
graphene stack. The resulting stack with the PPC film was dropped off directly 
on a pre-patterned SiO2 wafer. The PPC film was removed by radiation heating 
in a high-vacuum chamber. Finally, a second graphite flake was placed to ensure 
the connectivity between the twisted bilayer graphene and the pre-patterned Au 
contact.
STM measurements. All measurements were performed on a home-built ultrahigh- 
vacuum scanning transmission microscope operating at T = 1.4 K, which can store 
two samples simultaneously. The dI/dV spectra were acquired using a standard 
lock-in technique with a modulation voltage Vmod (root mean square, f = 4 kHz) 
and a time constant of 5 ms while keeping the feedback opened using an appropriate  
bias Vset and current Iset to stabilize the tip–sample distance.
Estimating the effect of strain using a heterostrain model. Owing to the presence 
of strain, STM topographies show different moiré periodicities along different 
superlattice directions. We estimate the effect of strain and a more precise value of 
the local twist angle using a uniaxial strain model as described previously9. The free 
parameters are the twist angle θ, the strength of strain ε and the direction of strain 
θs. We numerically find the set of parameters (θ, ε, θs) that best reproduces the three 
moiré wavelengths from STM topography. For the first sample—with L1 = 14.04 nm,  
L2 = 14.98 nm, L3 = 12.84 nm—we find θ = 1.01°, ε = 0.3%, θs = 27°. For the 
second sample (see Extended Data Fig. 1a), the moiré wavelengths are L1 = 13 nm, 
L2 = 12.2 nm, L3 = 11.8 nm and we find θ = 1.14°, ε = 0.2%, θs = 35°.
Extended continuum model. We modified a continuum model described previ-
ously23 to include the effect of strain. The influence of relaxation is incorporated 
by estimating the area ratio of AA and AB regions, which translates to the ratio of 
uAA/uAB as described previously24. Here we set uAA/uAB = 0.83 from Fig. 1c and 
0.80 from Extended Data Fig. 1a. The amplitude and the angle of the strain, the 
twist angle, and the ratio of interlayer tunnelling amplitude extracted from STM 
topography analysis are used to calculate the band structure and LDOS. The super-
lattice Hamiltonian contains 8 shells (146 bands per spin per valley) in our calcula-
tion. We note that the presence of uniaxial strain seen in STM topography implies 
that the C3z symmetry is broken. The absence of degeneracy at KM (see Fig. 1e) 
is consistent with this symmetry breaking. We note that the Dirac points are still 
protected by C2zT symmetry, but there is no more constraint on their locations.
Lifetime broadening. We extract the width of the van Hove singularities (VHSs) 
of the flat bands when they are both occupied (Vg > −5.5 V) and emptied (Vg < 
−53.5 V) using Gaussian fitting. The peak width as a function of the VHS energy 
for both conduction and valence flat bands is plotted in Extended Data Fig. 2. For 
fully occupied bands (Extended Data Fig. 2a), we find that the peak width follows 
an E2 broadening with a proportional factor λ that depends on the details of avail-
able scattering channels near the Fermi surface, as expected from the Fermi liquid 
theory, until the VHS energy is about 20 meV below the Fermi level. For VHS ener-
gies lower than −20 meV, the peak width appears to reach a plateau: 10 meV for the 
conduction flat band and 13.5 meV for the valence flat band. We speculate that the 
deviation from Fermi liquid theory possibly arises because of the greater distance 
to the Fermi level and the detailed Fermi surface when the Fermi level is inside the 
first conduction remote band(s). For fully emptied bands (Extended Data Fig. 2b), 
the peak width first decreases until the VHS energy reaches 17 meV. We interpret 
this behaviour as the suppression of electron–electron scattering channels due to 
the presence of an energy gap separating the valence flat band and the first valence 
remote band(s). The VHS energy from which the peak width starts to increase is 
approximately 17 meV, which is consistent with the gap value found in Fig. 2a. For 
VHS energies higher than 17 meV, the peak width can be fit with an E2 function in 
which the value of λ is almost 30 times smaller, possibly due to a different Fermi 
surface when the Fermi level is crossing the first valence remote band(s).
Gate voltage asymmetry between the two flat bands. In Fig. 3a, we find that 
the scale of gate voltage for the positive side of the charge neutrality (depletion of 
conduction flat band) is consistent with that estimated from capacitive coupling 
to a silicon back gate for a twist angle of 1.01°. The scale of the gate voltage for the 
depletion of the valence flat band—that is, negative side of the CNP—is, however, 

much smaller. This asymmetry is due to the tip-induced band bending caused 
by the difference in the work function between the STM tip and the sample. This 
band bending changes the effective doping of the region underneath the tip rela-
tive to regions further away. In this situation, the region in which measurements 
of the DOS are performed (under the tip) is doped not only by the gate but also 
by the regions surrounding it—both of which respond to varying gate voltage. 
As a result, the density under the tip is not simply a linear function of Vg as it 
would be in a transport experiment. To understand this effect of tip gating, we 
have performed self-consistent finite element electrostatic simulation using the 
band structure shown in Fig. 1e without considering interactions. The detailed 
geometry of the simulation is shown in Extended Data Fig. 3a. The results of the 
calculations in Extended Data Fig. 3b confirm that the density in the region under 
the STM tip (blue curve) is not simply a linear function of Vg. This density changes 
more quickly when the valence flat band overlaps with the Fermi level because 
of the influence of regions in the sample away from the tip. As a result, the gate 
voltages required to deplete the conduction and valence flat bands are different, as 
measured by the gate dependence of dI/dV(0) in both the model (Extended Data 
Fig. 3c) and measurements in Fig. 3a. The simulation in Extended Data Fig. 3c 
shows a 2:1 ratio for the difference in depletion of the conduction and the valence 
bands. This ratio for the data in Fig. 3a is 3.8:1; however, the exact results in the 
model depend on microscopic details such as the exact tip shape, the difference 
in work function and the tip–sample distance. Extended Data Fig. 3d, e shows the 
measurement on the same AA site with the same microscopic STM tip (as Fig. 3a) 
but with different set point conditions, which adjust the tip height. We find that 
the gate range for the valence flat band is sensitive to the tip height—consistent 
with our model—and the ratio of conduction to valence flat bands is reduced 
from that of Fig. 3a. The sensitivity of the dI/dV(0) to fractional filling of valence 
and conduction bands (that is, gaps), and the gate voltages at which they occur, 
also change with the height of the tip. Extended Data Fig. 3d, e also shows that 
the regions of zero conductance near the CNP depends on the tip height. Using 
different tip conditioning, we also find an example in which the gate voltage for 
depleting the lowest conduction and valence bands is nearly symmetric (Extended 
Data Fig. 5). As noted in the manuscript, further experiments are required to 
associate features in dI/dV(0) with intrinsic behaviour of MATBG and to cor-
relate them with transport studies precisely. Last, in the same finite elements 
electrostatic simulation, we find that the tip band bending effect has negligible 
influence on the line shape of the flat bands.
Self-consistent Hartree–Fock calculations. We apply the self-consistent Hartree–
Fock method to the extended continuum model in the presence of Coulomb  
interaction. The Coulomb interaction takes the form
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where = π /εqV e q( ) 2 2  (for q ≠ 0; for q = 0 one has V(0) = 0) is the Fourier trans-
form of Coulomb interaction /εe r2 , A is the area of the sample. ψα,k is the annihi-
lation operator of the Dirac electron of graphene at momentum k, and α denotes 
the sublattice, layer, spin and valley indices. The mean-field Hartree (ΣH) and Fock 
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where h.c. is the Hermitian conjugate.
In the extended continuum model, the momenta k and k + m1g1 + m2g2 of the 

same spin and same valley are coupled via (multiple) momentum space hoppings, 
where g1 and g2 are the reciprocal vectors of the moiré superlattice. We assume  
that the translation symmetry is unbroken, so ⟨ ⟩ψ ψβ ′α k,k,

†  is non-zero only if 
− ′ = +k k g gm m1 1 2 2

 ( Z∈m m,1 2 ) and α, β belong to the same spin and valley. 
The mean-field Hartree–Fock Hamiltonian is then given by

Σ Σ= + +H H0 H F

where H0 is the free Hamiltonian of the continuum model. For each fixed total 
filling density, we diagonalize H and calculate ΣH and ΣF iteratively to find the 
self-consistent solution. In the calculations, we allow the four different spin and 
valley flavours to have different fillings, so that the system could spontaneously 
develop a flavour polarization. We keep six momentum shells in the continuum 
model (74 bands per spin per valley) for our self-consistent Hartree–Fock calcu-
lations. Our calculations (Extended Data Fig. 5b) show generic broadening of the 
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flat bands independent of the fillings, in contrast to the abrupt broadening seen in 
the experiments and possibly a gap near half-filling of the conduction flat band. 
In addition, we find a small spontaneous spin and/or valley polarization (when 
the Fermi level is in the flat bands) with maximum amplitude near half-filling of 
the flat bands.
Exact diagonalization of an extended Hubbard model. To capture the flat band 
broadening, we use exact diagonalization to study two single-flavour toy models 
of two nearly flat bands with on-site and neighbouring-site interactions. The first 
model is defined on a triangular lattice (representing the lattice of AA stacking 
positions), with two orbitals per site corresponding to the two flat bands. The 
Hamiltonian is given by

∑ ∑
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= − + + + + . .

+ + + +

ε[ ]H n n U n n t c c c c
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where ⟨ ⟩ij  represents neighbouring sites in a triangular lattice. We perform our 
exact diagonalization for both a six-site cluster and a seven-site cluster and extract 
out the spectral weight at various fillings. The chemical potential μ = dEg(N)/dN 
is calculated from the ground-state energy Eg(N) at various total electron numbers 
N. For the six-site exact diagonalization, we assume a 2 × 3 triangular lattice (see 
Extended Data Fig. 6a) with periodic boundary conditions in both directions. For 
the seven-site exact diagonalization (see Fig. 4a), periodic boundary conditions 
are impossible; instead, we assume that ⟨ ⟩ij  runs over all pairs of sites, so that each 
site still has six neighbours (as is true for a triangular lattice), and all the sites are 
equivalent. Owing to the delocalized nature of the remote bands, the interaction 
between the remote band and the flat bands is insignificant. When both flat bands 
are empty or fully occupied, and the Fermi level is in the remote band, the spectral 
weight only shifts in energy with respect to the electron filling. The slope is deter-
mined by the density of states of the remote band. The second model is defined on 
a honeycomb lattice (representing the lattice of AB and BA stacking positions, see 
Extended Data Fig. 7a), where each site has one orbital, so that there are two bands 
in total. The Hamiltonian is given by

⟨⟨ ⟩⟩
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where i runs over all the honeycomb lattice sites. ηi = +1 and −1 for sublattices 
AB and BA, respectively, and ε is a staggered potential between the two sublattices. 
⟨ ⟩ij  and ⟨⟨ ⟩⟩ij  denote the nearest and next-nearest neighbours, respectively. t is 
the nearest-neighbour hopping, whereas V0 and V1 are the interactions between 
nearest neighbour and next-nearest neighbour, respectively. Because each site has 
only one orbital, there is no on-site interaction. Our exact diagonalization  

calculation for this model is performed for six unit cells, which form a 2 × 3 hon-
eycomb lattice with periodic boundary conditions. Independent of the choice  
of the lattice, our exact diagonalization calculations show a generic broadening 
(splitting) of the band broadening stemming from the interplay between strong 
correlations and flat bands, as seen in the experiment. Adding spin and valley 
degeneracy would create more possible charge configurations for a given fillings, 
thus would further smoothen the broadened spectra with the added presence of 
more peaks, as can already be seen in the honeycomb calculations (see Extended 
Data Fig. 7b).
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Extended Data Fig. 1 | Non-interacting spectroscopic properties on 
another region. a, STM topography showing the moiré superlattice with 
θ = 1.14°. b, Scanning tunnelling spectra measured on an AA site for  
slight electron doping (Vg = −10 V, Vset = −200 mV, Iset = 500 pA, 
Vmod = 0.5 mV). The blue and green arrows mark the step-like features.  
c, Band structure calculated using the continuum model including the 
effects of strain and relaxation. MMΛm is a non-high-symmetry direction 

along which the Dirac points (protected by C2zT symmetry) are located. 
The black dotted line indicates the Fermi level. The blue (green) dashed 
line corresponds to the VHS of the first conduction (valence) remote band.  
d, Corresponding LDOS (offset by −28 meV) on an AA site. The blue 
and green arrows mark the VHS of the first conduction and valence 
remote bands.
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Extended Data Fig. 2 | Lifetime broadening. a, b, Peak width of the VHS as 
a function of the VHS energy when both flat bands are filled (a) or emptied 
(b). The green (a) and yellow (b) curves are the fit using p(E) = p0 + λE2 

with p0 = 5.25 meV, λ = 0.021 meV−2 for a and with p0 = 5.1 meV,  
λ = 0.00072 meV−2 for b. The black dotted line marks E = 17 meV.
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Extended Data Fig. 3 | Tip band bending effect a, Schematic (not to 
scale) of the electrostatic simulation for the device geometry in our 
experiment. b, Density under and away from the tip as a function of gate 
voltage, calculated using the geometry in a with height z = 4 Å, radius 
r = 0.6 nm, a work function difference of 0.25 V and the band structure 

from Fig. 1e. c, Density and DOS at the Fermi level as a function  
of gate voltage under the tip with the same parameters as in b.  
d, e, Zero-bias conductance as a function of gate voltage with different set 
point conditions (Vset = +200 mV, Iset = 120 pA for d and Vset = −200 mV,  
Iset = 500 pA for e) showing different apparent gate efficiencies.
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Extended Data Fig. 4 | Additional example of the breakdown of the 
non-interacting description. a, dI/dV spectra measured on an AA site 
as a function of sample bias (energy) and gate voltage on the region with 
θ = 1.14° (Vset = −200 mV, Iset = 500 pA, Vmod = 0.5 mV). b, Normalized 

dI/dV spectra at different gate voltages extracted from a. The curves are 
shifted vertically by 0.5 nS each for clarity. The black dotted line indicates 
the Fermi level.
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Extended Data Fig. 5 | Density-dependent spectroscopy on a non-
magic-angle device. a, dI/dV measured on an AA site as a function of 
sample bias and gate voltage on the region with θ = 1.72° (Vset = −100 mV,  
Iset = 180 pA, Vmod = 2 mV). b–e, Normalized dI/dV spectra at different 

gate voltages extracted from a. The curves are shifted vertically by 0.4 each 
for clarity. The black dotted line indicates the Fermi level. We note that 
the electron and hole dopings are symmetric, which can be achieved by 
different tip conditioning (see Methods for discussion).
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Extended Data Fig. 6 | Mean-field calculations. a, b, Normalized dI/dV 
spectra obtained from a non-interacting model (a) and a Hartree–Fock 
calculation (b) for different filling factors. The curves are each shifted 
vertically by 0.3 each for clarity. c, Individual flavour filling as a function 

of total filling factor, indicating the presence of spontaneous spin or valley 
polarization near half-filling of the flat bands from the Hartree–Fock 
calculation.
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Extended Data Fig. 7 | Extended Hubbard model with six sites.  
a, Schematic of a six-site cluster two-orbital Hubbard model with on-site 
energy ±ε, hopping t, on-site Coulomb interaction U, near-neighbour 
interactions V0 (same orbital) and V1 (different orbitals). b, Local spectral 
weight computed from the exact diagonalization of a six-site cluster 
Hubbard model for different filling factors with =ε 9, t = 0.75, U = 30, 
V0 = 5, V1 = 3.8 (see Methods). The curves beyond ±n0 are obtained by 
assuming a constant DOS at the Fermi level from the remote bands. The 
curves are shifted vertically by 0.25 each for clarity. c, Band broadening as 
a function of the ratio of the on-site Coulomb interaction U to the non-
interacting band width 6t, while maintaining V0 = U/6, V1 = U/7.9.
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Extended Data Fig. 8 | Extended Hubbard model on a honeycomb 
lattice. a, Schematics of a 6-unit-cell lattice with one orbital per site, 
hopping t, nearest site interaction V0 (different sublattices) and next-
nearest site interaction V1 (same lattices). b, Local spectral weight 
computed from the exact diagonalization of a 6-unit-cell lattice Hubbard 
model for different filling factors with = .ε 8 5, t = 0.75, V0 = 18.2, V1 = 4.4 
(see Methods). The curves beyond ±n0 are obtained by assuming a 
constant DOS at the Fermi level from the remote bands. The curves are 
shifted vertically by 0.25 each for clarity. c, Band broadening as a function 
of the ratio of the nearest site interaction V0 to the non-interacting band 
width 3t, while maintaining V0 = 4.2V1.
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