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Twisted bulk-boundary correspondence of fragile topology
Zhi-Da Song1, Luis Elcoro2, B. Andrei Bernevig1,3,4*

A topological insulator reveals its nontrivial bulk through the presence of gapless edge states: This is called the
bulk-boundary correspondence. However, the recent discovery of “fragile” topological states with no
gapless edges casts doubt on this concept. We propose a generalization of the bulk-boundary correspondence:
a transformation under which the gap between the fragile phase and other bands must close. We derive
specific twisted boundary conditions (TBCs) that can detect all the two-dimensional eigenvalue fragile
phases. We develop the concept of real-space invariants, local good quantum numbers in real space, which
fully characterize these phases and determine the number of gap closings under the TBCs. Realizations of
the TBCs in metamaterials are proposed, thereby providing a route to their experimental verification.

T
opological insulators are materials that
conduct no electricity in the bulk but
that allow perfect passing of the current
through their edges. This is the basic
concept of the bulk-boundary correspon-

dence: A topological bulk is accompanied by a
gapless edge. New theories (1–4) have de-
veloped systematic methods for searching
topological materials (5–7). This led to the
discovery of higher-order topological insulators
(HOTIs) (8–11) and fragile topological states
(12–16), the latter being predicted (17, 18) to
exist in the newly discovered twisted bilayer
graphene (19). The fragile phases generally
do not exhibit gapless edges, thereby violat-
ing the bulk-boundary correspondence.
We show that fragile phases exhibit a new

type of bulk-boundary correspondence with
gapless edges under “twisted” boundary con-
ditions (TBCs). TBCs were introduced (20) to
prove the quantization of Hall conductance.
On a torus, a particle under U(1) TBCs gains
a phase eiqx;y whenever it undergoes a period
in the x/y direction. This phase was generalized
to a complex number l ¼ reiqð0 ≤ r ≤ 1Þ(21)
for a trivial state with two pairs of helical edge
states, with unclear results. We consider a slow
deformation of the boundary condition con-
trolled by a single parameter, l . If the fragile
phase, determined by eigenvalues, can be writ-
ten as a difference of a trivial atomic insulator
and an obstructed atomic insulator (with elec-
tron center away from atoms), the energy gap
between the fragile bands and other bands
must close as we tune l on a particular path.
We develop a real-space invariant (RSI)

(22, 23), to classify eigenvalue fragile phases
(EFPs) and their spectral flowunder TBCs. RSIs
are local quantum numbers protected by point
group (PG) symmetries. With translation sym-
metry, they can be calculated from symmetry
eigenvalues of the band structure. Under a

specific evolution of the boundary condition,
where the symmetry of some lattice (Wyckoff)
position is preserved, the system goes through
a gauge transformation, which does not
commute with the symmetry operators. The
symmetry eigenvalues and the RSIs at this
Wyckoff position also go through a transfor-
mation: If the RSIs change, a gap closing hap-
pens during the process. We find that EFPs
always have nonzero RSIs: Therefore, TBCs
generally detect fragile topology. A real-space
approach has also been useful for (non-) inter-
acting (24–26) strong crystalline topological
states. We obtain the full classification of RSIs
for all two-dimensional (2D) PGs with and
without spin-orbit coupling (SOC) and/or time-
reversal symmetry (TRS), and we derive their
momentum space formulae [table S5 (27)]. For
each 2D PG, we introduce a set of TBCs to
detect the RSIs (27). Criteria for stable and frag-
ile phases arewritten in terms of RSIs [table S6
(27)] and exemplified on a spinless model.
The symmetry property of bands is fully de-

scribed by its decompositions into irreducible
representations (irreps) of little groups at mo-
menta in the first Brillouin zone (BZ). Topo-
logical quantum chemistry (1) and related
theories (3, 4) provide a general framework to
diagnose whether a band structure is topo-
logical from the irreps. If the irreps of a band
structure are the same as those of a band rep-
resentation (BR), which is a space group rep-
resentation formed by decoupled symmetric
atomic orbitals, representing atomic insula-

tors, then the band structure is consistentwith
topologically trivial state; otherwise, the band
structure must be topological. Generators of
BRs are called elementary BRs (EBRs) (1). The
EBRs in all space groups are available on the
Bilbao Crystallographic Server (BCS) (1, 28).
We will demonstrate this principle using a
tight-binding model in the following.
There are two distinct categories of topolog-

ical band structures. If a topological band struc-
turebecomes aBR (in termsof irreps) after being
coupled to a topologically trivial band, the band
structure has at least a fragile topology. We
refer to such a phase as an EFP. An EFP may
also have a stable topology undiagnosed from
symmetry eigenvalues (14, 29). If the band
structure remains inconsistent with a BR af-
ter being coupled to any topologically trivial
bands, theband structure has a stable topology.
Further discussions about the classifications of
topological and nontopological bands can be
found in (27).
We build a spinlessmodel whose bands split

into an EFP branch and an obstructed atomic
insulator branch. Consider a C4 symmetric
square lattice (wallpaper group p4). Its BZ has
three maximal momentaGð0; 0Þ, Mðp; pÞ, and
Xðp; 0Þ. The little group of G and M is PG 4,
and the little group of X is PG 2, with irreps
tabulated in Table 1. The irreps form co-irreps
whenwe impose TRS.We tabulate all the EBRs
of p4 with TRS in Fig. 1. Here we consider the
EFP 2G1 þ 2M2þ 2X1 , a state of two bands
where each band forms the irreps G1,M2, X1

at G;M;X . These bands are topological: They
cannot decompose into a sum of EBRs. The
EFP is (necessarily) a difference of EBRs as
2ðAÞb↑G⊕ð1E2EÞb↑G⊖ð1E2EÞa↑G.
Consider a four-band model of two s (s1 and

s2), one px, and one py orbitals at the b posi-
tion (Fig. 2A). Per Table 1, s1,2 orbitals (irrepA)
induce the BR 2ðAÞb↑G ¼ 2G1 þ 2M2 þ 2X2;
px,y orbitals (irrep 1E2E ) induce the EBR
ð1E2EÞb↑G ¼ G3G4 þM3M4 þ 2X1. Let the px,y
orbitals have a higher energy than the s1,2 or-
bitals. We band invert at the X point such that
the upper two bands’ irreps become G3G4þ
M3M4 þ 2X2 ¼ ð1E2EÞa↑G (an EBR), and the
lower two bands have the EFP irreps 2G1þ
2M2 þ 2X1 . Because the upper band forms
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Table 1. Character tables of irreps of PGs 2 and 4. First column: BCS notations (28) of the PG
irreps. Second column: notations of momentum space irreps at X, G, andM for wallpaper group p4. The
third column is the atomic orbitals forming the corresponding irreps. In the presence of TRS, the two
irreps 1E (G3, M3) and 2E (G4, M4) of PG 4 form the co-irrep 1E2E (G3G4, M3M4).

PG 2 1 2 PG 4 1 4+ 2 4−

A X1 s 1 1 A G1, M1 s 1 1 1 1
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

B X2 px 1 −1 B G2, M2 dxy 1 −1 1 −1
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

1E G3, M3 px + ipy 1 −i −1 i
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

2E G4, M4 1 i −1 i
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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an EBR at the empty Wyckoff position, where
no atom exists, it forms an obstructed atom-
ic insulator band. The model, in the basis
ðpx;py; s1; s2Þ, is (27)

HðkÞ ¼ tzs0
�
E þ 2t1cosðkx þ kyÞ þ

2t1cosðkx � kyÞ
�
þ tyszt2sinðkxÞ þ

tysxt2sinðkyÞ ð1Þ
E (�E) is the onsite energy for the px,y (s1,2)
orbitals, t1 band inverts at X, and t2 guarantees
a full gap between the upper and lower two
bands. We introduce DHðkÞ (27) to break two
accidental symmetries, Mz (z →� z) ¼ tzsy ,
chiral txs0 . The band structure of HðkÞ þ
DHðkÞ is plotted in Fig. 2B.
We construct a finite-size (30 × 30) TRS

Hamiltonian with C4 rotation symmetry pre-
served at the coordinate origin on the a site
(Fig. 2C). The spectrum consists of 1798 oc-
cupied states, 4 degenerate partially occupied
levels at the Fermi level, and 1798 empty
levels; they form the representations 450A⊕
450B⊕449ð1E2EÞ , A⊕B⊕1E2E , and 449A⊕
449B⊕450ð1E2EÞ, respectively. The partially
occupied states are corner states, or the “fil-
ling anomaly” of fragile topology (Fig. 2C).
The gap between the four partially occupied
levels and the occupied or empty levels is
about 0:3=0:01, as DHðkÞ breaks the acci-
dental chiral symmetry. Every four states
forming the irreps A⊕B⊕1E2E can be recom-
bined as j1i ¼ ðjAi þ jBi þ j1Ei þ j2EiÞ=2,
j2i ¼ ðjAi�jBi� ij1Eiþ ij2EiÞ=2, j3i ¼ ðjAiþ
jBi � j1Ei� j2EiÞ=2 , and j4i ¼ ðjAi � jBi þ
ij1Ei � ij2EiÞ=2, which transform to each other
under the C4 rotation and have Wannier cen-
ters away from theC4 center:Wehencemove the
occupied and empty states, both of which form
the representation 449A⊕449B⊕449ð1E2EÞ,
away from the C4 center. We are left with two
occupied states, A⊕B, and two empty states,
ð1E2EÞ, at theC4 center. These four states form
a level crossing under TBC evolution.
We divide (Fig. 2C) the system into four

parts (m ¼ I, II, III, IV), which transform into
each other under C4. We introduce the TBC
by multiplying the hoppings between differ-
ent parts by specific factors such that the
twisted and original Hamiltonians are equiv-
alent up to a gauge transformation. Specifi-
cally, the multiplication factors on hoppings
from mth part to ðmþ 1Þth part, from mth part
to ðmþ 2Þth part, from mth part to ðm� 1Þth
part are i;�1;�i. The twisted and untwisted
Hamiltonians Ĥ ðiÞ; Ĥ ð1Þ satisfy

hm; ajĤ ðiÞjn; bi ≡ ðiÞn�mhm; ajĤ ð1Þjn; bi ð2Þ

jm; ai is the ath orbital in the mth part, andHðlÞ
is the Hamiltonian with multiplier l. We intro-
duce the twisted basis V̂ jm;ai ¼ ð�iÞm�1jm; ai.
The elements of Ĥ ðiÞ on the twisted basis

equal those of Ĥ ð1Þ on the untwisted basis:
hm;ajV̂ †

Ĥ ðiÞV̂ jn; bi ¼ hm;ajĤð1Þjn; bi.C4 trans-
forms themth part into the ðmþ 1Þth part: The
twisting phases of jm;ai and Ĉ 4jm; ai under
V̂ are ð�iÞðm�1Þ and ð�iÞm , implying V̂ Ĉ 4 ¼
�iĈ 4V̂ . If jyi is an eigenstate of Ĥ ð1Þwith C4

eigenvalue x, then V̂ jyi will be an eigenstate

of Ĥ ðiÞ ¼ V̂ Ĥ ð1ÞV̂ †
of equal energy but dif-

ferent C4 eigenvalue ix. The irreps A, B, 1E, 2E
become 2E , 1E , A, B under the gauge trans-
formation (Table 1). Therefore, two of the ir-
reps A⊕B in the occupied states interchange
with two of the irreps 1E⊕2E in the empty states
after the gauge transformation; all other irreps,
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Fig. 1. EBRs of wallpaper group p4 without SOC with TRS. [See BCS (1, 2, 28)]. The square represents the unit
cell. a ð0; 0Þ, b 1

2 ;
1
2

� �
, c 0; 12
� �

; 1
2 ;0
� �

are maximal Wyckoff positions. The yellow, red and blue, and green and gray
orbitals represent the s, px;y, and dx2�y2 orbitals, respectively.

Fig. 2. Spectral flow of fragile phase under TBCs. (A) Fragile phase model (wallpaper group p4 with TRS). The
yellow, green, and red and blue orbitals are the two s and the px;y orbitals. The gray parallelogram is the unit cell, and

black lines are the hoppings. (B) Band structure of the fragile phase. (C) The C4-symmetric TBCs of a finite size system.
Black dots are the atoms; bonds are hoppings; four yellow circles are corner states of the fragile state. Four shaded regions
(m ¼ I, II, III, IV) transform to each other under C4 action. Hoppings from the mth part to the ðmþ 1Þth part (red bonds),
from the mth part to the ðmþ 2Þth part (green bonds), and from the mth part to the ðm� 1Þth part (red bonds)
aremultiplied by a complexl/realReðl2Þ/complex l�. (D) TheC2 and TRS symmetricTBCs. The two shaded regions
(m ¼ I, II) transform to each other under C2 rotation. The hoppings between I, II (red bonds) are multiplied by a
real number l. (E) Spectral flow under C4-symmetric TBC. (F) Spectral flow under C2 and TRS symmetric TBCs.
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(449A⊕449B⊕449ð1EÞ⊕449ð2EÞ), remain un-
changed. We generalize the C4 symmetric TBC:

hm; ajĤ ðlÞjn; bi ¼
hm; ajĤ ð1Þjn; bi; n ¼ m
lhm;ajĤ ð1Þjn; bi; n ¼ mþ 1 mod4
l�hm; ajĤ ð1Þjn; bi; n ¼ m� 1 mod4
Reðl2Þhm; ajĤ ð1Þjn; bi; n ¼ mþ 2 mod4

0
BBBB@

ð3Þ
Reðl2Þ is the real part of the complex l2. The
factor between the mth and ðmþ 2Þth part is
real owing to C2 (27). Equation 2 is the l ¼ i
case of Eq. 3. Under continuous tuning of l
from 1 to i, two occupied irreps A⊕B inter-
change with two empty irreps 1E⊕2E. Their
level crossings are protected by C4 symmetry
(Fig. 2E) [see (27) for other C4 paths].
NowweconsiderC4-breakingbutC2- andTRS-

preservingTBCs.Divide the system into twoparts
(I,II), transforming into eachother underC2 (Fig.
2D), and multiply all hoppings between orbitals
in part I and II by a real l. The gauge trans-
formation relating the twisted and untwisted
Hamiltonians anticommuteswithC2:fV̂ ; Ĉ 2g ¼
0. V̂ transforms between eigenstates of Ĥ ð1Þ;
Ĥ ð�1Þ with equal energy but opposite C2 eigen-
value. Under a continuous tuning ofl from1 to
�1, the two final occupied (empty) states must
have theC2 eigenvalue�1 (1). This inconsistency
impliesC2-protectedgap closing, as shown inFig.
2F. The unitary transformation relating Hð�1Þ
toHð1Þ also mapsHð�lÞ toHðlÞ, and the gap
must close as l changes from 1 to 0. In (27), we
generalize the TBCs to all the 2D PGs. The
gapless states under TBCs are the experimen-
tal consequences of the fragile states.
We introduce the RSI as an exhaustive de-

scription of the local states, pinned at the C4

center, that undergo gap closing under TBCs.
The Wannier centers of occupied states of a
Hamiltonian can adiabatically move if their
displacements preserve symmetry. Orbitals
away from a symmetry center canmove on it
and form an induced representation of the
site-symmetry group at the center. Conversely,
orbitals at a symmetry center can move away
from it symmetrically if and only if they form a
representation induced from the site-symmetry
groups away from the center. The RSIs are
(27) linear invariant—upon such induction
processes—functions of irrep multiplicities.

For the PG 4 with TRS, we assume a linear-
form RSI of the occupied levels d ¼ c1mðAÞþ
c2mðBÞ þ c3mð1E2EÞ . The induced represen-
tation at the C4 center from four states at C4 -
related positions away from the center is
A⊕B⊕1E2E (27). After the induction pro-
cess, the irrep multiplicities at the C4 center
change as mðAÞ→mðAÞ þ 1, mðBÞ→mðBÞþ
1 , mð1E2EÞ→ mð1E2EÞ þ 1 . The two linear
combinations of irrep multiplicities that re-
main invariant are

d1 ¼ mð1E2EÞ �mðAÞ;
d2 ¼ mðBÞ �mðAÞ ð4Þ

In our model, the occupied states that can be
moved away from the C4 center form the rep-
resentation449A⊕449B⊕449ð1E2EÞand have
vanishing RSIs. The states pinned at the C4

center form A⊕Bwith RSIs d1 ¼ �1, d ¼ 0. If
an RSI is nonzero, spectral flow exists upon a
particular TBC (27). We calculate all the RSIs
in all 2D PGs with and without SOC or TRS
[table S4 (27)]. The groups formed by RSIs are
shown in Table 2. PG 4 with TRS has two
integer-valued RSIs: The RSI group isℤ2. Most
RSIs are ℤ-type; some groups with SOC and
TRS have ℤ2-type RSIs, the parities of the
number of occupied Kramer pairs.
For the C4-symmetric TBC (3), the occupied

irrep multiplicitiesm′ at l ¼ i are determined
by the multiplicities m at l ¼ 1 as m′ðAÞ ¼
mð1EÞ, m′ðBÞ ¼ mð2EÞ, m′ð1EÞ ¼ mðBÞ, and
m′ð2EÞ ¼ mðAÞ. The changes of irreps in the
evolution l ¼ 1→ i are DmðAÞ ¼ m′ðAÞ �
mðAÞ ¼ mð1EÞ �mðAÞ ¼ d1 , DmðBÞ ¼ d1�
d2 , Dmð1EÞ ¼ d2 � d1 , and Dmð2EÞ ¼ �d1 .
Therefore, there will be jd1j crossings formed
byA and 2E and jd2 � d1j crossings formed by
B and 1E. This and the similar analysis for C2

and TRS-symmetric TBCs are given in Tables 3
and 4 and expanded in (27). Our model (d1 ¼
�1 and d2 ¼ 0) has two level crossings pro-
tected by C2 in the process l ¼ 1 →� 1.
The RSI can be calculated either from the

momentum space irreps of the band structure
or from symmetry-center PG-respecting dis-
ordered configurations. In (27), we develop a
general framework to calculate the RSIs from
momentum space irreps and obtain the expres-
sions of RSIs in all wallpaper groups [table S5
(27)]. Here we give the expressions for RSIs of
wallpaper group p4. p4 has two inequivalent

C4 Wyckoff positions, a and b, and one C2

Wyckoff position, c (Fig. 1). PG4has two RSIs,
d1 and d2 (Eq. 4), and PG 2 has a single RSI,
d1 ¼ mðBÞ �mðAÞ [table S2 (27)]. The band
structure expressions are

da1 ¼ �mðG1Þ �mðG2Þ
2

�mðG3G4Þ þ
mðM2Þ

2
þmðM3M4Þ þmðX2Þ

2
ð5Þ

da2 ¼ �mðG1Þ �mðG3G4Þ þmðM2Þ þ
mðM3M4Þ ð6Þ

db1 ¼ 1

2
mðG2Þ þmðG3G4Þ � 1

2
mðM2Þ �

1

2
mðX2Þ ð7Þ

db2 ¼ mðG2Þ þmðG3G4Þ �mðM2Þ �
mðM3M4Þ ð8Þ

dc1 ¼ mðG3G4Þ �mðM3M4Þ ð9Þ

One can immediately verify that the band
structure shown in Fig. 2B has the RSIs
da1 ¼ �1 , da2 ¼ 0 at the a position, which
are the same as the results calculated from
the disordered configuration.
We find that the RSIs fully describe eigen-

value band topology: EFP is diagnosed by in-
equalities or mod-equations of RSIs (15), and
stable topology is diagnosed by fractional RSIs.
We prove this in all the wallpaper groups in
(27). For the wallpaper group p4, the stable
topology is diagnosed by fractional da1 and db1,
which imply topological semimetal phasewith
Dirac nodes at general momenta (30). The
fragile topology, by contrast, is diagnosed by
the inequality

N < maxð2jda1j þ da2; 2da1 � 3da2Þ þ
maxð2jdb1j þ db2; 2db1 � 3db2Þ þ jdc1j ð10Þ

whereN is the number of bands. When this
inequality is fullfilled, the RSIs and band num-
ber are not consistent with any Wannierizable
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Table 3.

C4 : l 1 → i

DmðAÞ d1. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

Dmð1EÞ d2 � d1. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

DmðBÞ d1 � d2.. .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ..

Dmð2EÞ �d1.. .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ..

Table 4.

C2 ∈ R 1 → −1

DmðAÞ 2d1 � d2.. .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ..

DmðBÞ �2d1 þ d2.. .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ..

Table 2. The RSI groups of 2D PGs.

SOC TRS 2 m 2mm 4 4mm 3 3m 6 6mm

✗ ✗ Z Z Z Z3 Z2 Z2 Z Z5 Z3
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

✗ ✓ Z Z Z Z2 Z Z Z Z3 Z3
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

✓ ✗ Z Z Z1 Z3 Z Z2 Z Z5 Z2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

✓ ✓ Z2 Z2 Z2 Z2 � Z Z2 � Z Z Z Z2 � Z2 Z2 � Z2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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state. One can verify that the band structure
shown in Fig. 2B satisfies this inequality and
hence has a fragile topology. [See (27) for
details of the stable and fragile criteria in p4.]
Metamaterial systems (31, 32) are the ideal

platforms where TBCs can be mechanically
tuned. We imagine that Eq. 1 is a Hamiltonian of
a mechanical system consisting of mass points
connected by rigid bonds or springs. The TBCs
of Fig. 2D can be realized by tuning the springs
connecting mass points in part I and II from
their original values to zero, mimicking l ¼ 1
tol ¼ 0. The gap between the fragile bands and
the other bands must close during this process.
In addition to diagnosing the stable and

fragile topological phases, the RSI provides a
framework to understand and compute the elec-
tronic properties of topologically trivial materials.
Many Wannier function–related physical quan-
tities, such as electric or magnetic polarization
and multipole, and their responses under ex-
ternal fields, can be qualitatively determined
by RSIs. We leave detailed discussions to fu-
ture studies.
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