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PHYSICS

Twisted bulk-boundary correspondence of fragile topology

Zhi-Da Song!, Luis Elcoro?, B. Andrei Bernevigh>#*

A topological insulator reveals its nontrivial bulk through the presence of gapless edge states: This is called the
bulk-boundary correspondence. However, the recent discovery of “fragile” topological states with no
gapless edges casts doubt on this concept. We propose a generalization of the bulk-boundary correspondence:
a transformation under which the gap between the fragile phase and other bands must close. We derive
specific twisted boundary conditions (TBCs) that can detect all the two-dimensional eigenvalue fragile
phases. We develop the concept of real-space invariants, local good quantum numbers in real space, which
fully characterize these phases and determine the number of gap closings under the TBCs. Realizations of
the TBCs in metamaterials are proposed, thereby providing a route to their experimental verification.

opological insulators are materials that

conduct no electricity in the bulk but

that allow perfect passing of the current

through their edges. This is the basic

concept of the bulk-boundary correspon-
dence: A topological bulk is accompanied by a
gapless edge. New theories (I-4) have de-
veloped systematic methods for searching
topological materials (5-7). This led to the
discovery of higher-order topological insulators
(HOTIs) (8-11) and fragile topological states
(12-16), the latter being predicted (17, 18) to
exist in the newly discovered twisted bilayer
graphene (19). The fragile phases generally
do not exhibit gapless edges, thereby violat-
ing the bulk-boundary correspondence.

We show that fragile phases exhibit a new
type of bulk-boundary correspondence with
gapless edges under “twisted” boundary con-
ditions (TBCs). TBCs were introduced (20) to
prove the quantization of Hall conductance.
On a torus, a particle under U(1) TBCs gains
a phase ¢®%+ whenever it undergoes a period
in the a/y direction. This phase was generalized
to a complex number A = 7¢®(0 <7 <1)(2I)
for a trivial state with two pairs of helical edge
states, with unclear results. We consider a slow
deformation of the boundary condition con-
trolled by a single parameter, A. If the fragile
phase, determined by eigenvalues, can be writ-
ten as a difference of a trivial atomic insulator
and an obstructed atomic insulator (with elec-
tron center away from atoms), the energy gap
between the fragile bands and other bands
must close as we tune A on a particular path.

We develop a real-space invariant (RSI)
(22, 23), to classify eigenvalue fragile phases
(EFPs) and their spectral flow under TBCs. RSIs
are local quantum numbers protected by point
group (PG) symmetries. With translation sym-
metry, they can be calculated from symmetry
eigenvalues of the band structure. Under a
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specific evolution of the boundary condition,
where the symmetry of some lattice (Wyckoff)
position is preserved, the system goes through
a gauge transformation, which does not
commute with the symmetry operators. The
symmetry eigenvalues and the RSIs at this
Wyckoff position also go through a transfor-
mation: If the RSIs change, a gap closing hap-
pens during the process. We find that EFPs
always have nonzero RSIs: Therefore, TBCs
generally detect fragile topology. A real-space
approach has also been useful for (non-) inter-
acting (24-26) strong crystalline topological
states. We obtain the full classification of RSIs
for all two-dimensional (2D) PGs with and
without spin-orbit coupling (SOC) and/or time-
reversal symmetry (TRS), and we derive their
momentum space formulae [table S5 (27)]. For
each 2D PG, we introduce a set of TBCs to
detect the RSIs (27). Criteria for stable and frag-
ile phases are written in terms of RSIs [table S6
(27)] and exemplified on a spinless model.
The symmetry property of bands is fully de-
scribed by its decompositions into irreducible
representations (irreps) of little groups at mo-
menta in the first Brillouin zone (BZ). Topo-
logical quantum chemistry (Z) and related
theories (3, 4) provide a general framework to
diagnose whether a band structure is topo-
logical from the irreps. If the irreps of a band
structure are the same as those of a band rep-
resentation (BR), which is a space group rep-
resentation formed by decoupled symmetric
atomic orbitals, representing atomic insula-

tors, then the band structure is consistent with
topologically trivial state; otherwise, the band
structure must be topological. Generators of
BRs are called elementary BRs (EBRs) (7). The
EBRs in all space groups are available on the
Bilbao Crystallographic Server (BCS) (I, 28).
We will demonstrate this principle using a
tight-binding model in the following.

There are two distinct categories of topolog-
ical band structures. If a topological band struc-
ture becomes a BR (in terms of irreps) after being
coupled to a topologically trivial band, the band
structure has at least a fragile topology. We
refer to such a phase as an EFP. An EFP may
also have a stable topology undiagnosed from
symmetry eigenvalues (74, 29). If the band
structure remains inconsistent with a BR af-
ter being coupled to any topologically trivial
bands, the band structure has a stable topology.
Further discussions about the classifications of
topological and nontopological bands can be
found in (27).

We build a spinless model whose bands split
into an EFP branch and an obstructed atomic
insulator branch. Consider a C, symmetric
square lattice (wallpaper group p4). Its BZ has
three maximal momentaI'(0, 0), M (=, ), and
X (m, 0). The little group of T" and M is PG 4,
and the little group of X is PG 2, with irreps
tabulated in Table 1. The irreps form co-irreps
when we impose TRS. We tabulate all the EBRs
of p4 with TRS in Fig. 1. Here we consider the
EFP 2Ty + 2M,+ 2X;, a state of two bands
where each band forms the irreps I'y, My, X;
at I', M, X. These bands are topological: They
cannot decompose into a sum of EBRs. The
EFP is (necessarily) a difference of EBRs as
2(4),1Go('E’E),1GO('E’E),,1G.

Consider a four-band model of two s (s; and
S»), One p,, and one p,, orbitals at the b posi-
tion (Fig. 2A). Per Table 1, s » orbitals (irrep A4)
induce the BR 2(4),1G = 2I'y + 2M, + 2X>;
Pay Orbitals (irrep 'E2E) induce the EBR
(‘E’E),1G = '3y + M3M, + 2X1. Let the p,,,
orbitals have a higher energy than the s, or-
bitals. We band invert at the X point such that
the upper two bands’ irreps become I'sI'4+
MM, + 2X, = ('E®E),1G (an EBR), and the
lower two bands have the EFP irreps 2I'y+
2M, + 2X;. Because the upper band forms

Table 1. Character tables of irreps of PGs 2 and 4. First column: BCS notations (28) of the PG
irreps. Second column: notations of momentum space irreps at X, T, and M for wallpaper group p4. The
third column is the atomic orbitals forming the corresponding irreps. In the presence of TRS, the two
irreps E (I'3, M3) and 2E (T4, Ma) of PG 4 form the co-irrep 1E2E (I'sT4, M3Ma).

PG 2 1 2 PG 4 1 4* 2 4"
A X1 S 1 1 A Iy, My S 1 1 1 1
B Xo 0 1 -1 B I, Mo dyy 1 -1 1 -1
1F T3, M3 Px + lpy 1 - -1 i
E Ty, M4 1 I -1 I
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an EBR at the empty Wyckoff position, where
no atom exists, it forms an obstructed atom-
ic insulator band. The model, in the basis
(D> Py $1,82), 18 (27)

H(K) = 1,00 (E +2ticos(ky + k) +

2tycos(ky — ky)> + 1y05tesin(ky) +
TyOptasin(ky) (1)

E (—E) is the onsite energy for the p,, (s12)
orbitals, #; band inverts at X, and 7, guarantees
a full gap between the upper and lower two
bands. We introduce AH (k) (27) to break two
accidental symmetries, M, (2 — — 2) = 1,0,
chiral t,00. The band structure of H(K) +
AH (K) is plotted in Fig. 2B.

We construct a finite-size (30 x 30) TRS
Hamiltonian with C, rotation symmetry pre-
served at the coordinate origin on the a site
(Fig. 2C). The spectrum consists of 1798 oc-
cupied states, 4 degenerate partially occupied
levels at the Fermi level, and 1798 empty
levels; they form the representations 4504A®
450B®449(1E%E), A®B®'E’E, and 4494®
449B®450(1E2E), respectively. The partially
occupied states are corner states, or the “fil-
ling anomaly” of fragile topology (Fig. 2C).
The gap between the four partially occupied
levels and the occupied or empty levels is
about 0.3/0.01, as AH(K) breaks the acci-
dental chiral symmetry. Every four states
forming the irreps A@B®'E%E can be recom-
bined as [1) = (|4) + [B) + ['E) + [E))/2,
[2) = (4) — B) — i'E) + i[2E))/2, [3) = (|4)+
|B) — ['E)— °E))/2, and |4) = (|4) — [B) +
i|'E) — i|2E)) /2, which transform to each other
under the C, rotation and have Wannier cen-
ters away from the C, center: We hence move the
occupied and empty states, both of which form
the representation 4494®449B®449('E%E),
away from the C, center. We are left with two
occupied states, A®B, and two empty states,
(1E%E), at the C, center. These four states form
a level crossing under TBC evolution.

We divide (Fig. 2C) the system into four
parts (u = I, IL, III, IV), which transform into
each other under C,. We introduce the TBC
by multiplying the hoppings between differ-
ent parts by specific factors such that the
twisted and original Hamiltonians are equiv-
alent up to a gauge transformation. Specifi-
cally, the multiplication factors on hoppings
from pth part to (u + 1)th part, from pth part
to (u+ 2)th part, from pth part to (un — 1)th
part are 7, —1, —i. The twisted and untwisted
Hamiltonians H (i), H (1) satisfy

(W alH @)V, B) = (&) " (W alH(D)v,B) (2)
|1, @) is the oth orbital in the uth part, and H (1)
is the Hamiltonian with multiplier .. We intro-

duce the twisted basis ¥ |u, &) = (—2)""[u, o).
The elements of H () on the twisted basis
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Fig. 1. EBRs of wallpaper group p4 without SOC with TRS. [See BCS (I, 2, 28)]. The square represents the unit
cell.a(0,0),b(3,3).¢(0,3), (%,0) are maximal Wyckoff positions. The yellow, red and blue, and green and gray
orbitals represent the s, p,,, and d,._,» orbitals, respectively.
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Fig. 2. Spectral flow of fragile phase under TBCs. (A) Fragile phase model (wallpaper group p4 with TRS). The
yellow, green, and red and blue orbitals are the two s and the p,, orbitals. The gray parallelogram is the unit cell, and
black lines are the hoppings. (B) Band structure of the fragile phase. (C) The C4-symmetric TBCs of a finite size system.
Black dots are the atoms; bonds are hoppings; four yellow circles are corner states of the fragile state. Four shaded regions
(=1, II, I, IV) transform to each other under C, action. Hoppings from the uth part to the (1 + 1)th part (red bonds),
from the uth part to the (u + 2)th part (green bonds), and from the uth part to the (u — 1)th part (red bonds)
are multiplied by a complex./real Re(A?)/complex 2. (D) The C, and TRS symmetric TBCs. The two shaded regions
(u = I, ) transform to each other under C, rotation. The hoppings between |, Il (red bonds) are multiplied by a
real number A. (E) Spectral flow under C4-symmetric TBC. (F) Spectral flow under C, and TRS symmetric TBCs.

equal those of H(1) on the untwisted basis:
<u,0£|V H(Z)V|V7 B> = <H7OI|H(1)‘V B> C4~ trans-
forms the uth part into the (u + 1)th part: The
twisting phases of |u, o) and Cyu, o) under
v are (—i)* Y and (—i)*, implying V' C, =
—iC4 V. If [y) is an eigenstate of H (1) with C,
eigenvalue &, then V |y) will be an eigenstate

14 February 2020

of H(i) = Vﬁ](l)f/* of equal energy but dif-
ferent C, eigenvalue i, The irreps 4, B, 'E, °E
become 2E, 'E, A, B under the gauge trans-
formation (Table 1). Therefore, two of the ir-
reps A®B in the occupied states interchange
with two of the irreps LZE®?E in the empty states
after the gauge transformation; all other irreps,
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(4494®449BH449 ('E) @449 (*E)), remain un-
changed. We generalize the C, symmetric TBC:

(.ol H (), B) =
(.ol H(1)|v. B),
Mu.alH (D)v.B),
N (. o L (D]v. B),
Re(22) (. ofH (1)|v. ),

v=u
v=u+1 mod4
v=un—1 mod4
v=u-+2 mod4

(3)

Re(A?) is the real part of the complex A?. The
factor between the pth and (u+ 2)th part is
real owing to C, (27). Equation 2 is the A = ¢
case of Eq. 3. Under continuous tuning of A
from 1 to %, two occupied irreps A®B inter-
change with two empty irreps 'E@®?E. Their
level crossings are protected by C, symmetry
(Fig. 2E) [see (27) for other C, paths].

Now we consider C,-breaking but Cy- and TRS-
preserving TBCs. Divide the system into two parts
(LII), transforming into each other under C, (Fig.
2D), and multiply all hoppings between orbitals
in part I and II by a real A. The gauge trans-
formation relating the twisted and untwisted
Hamiltonians anticommutes with Co: {7, Cs} =
0. V transforms between eigenstates of H (1),
H (—1) with equal energy but opposite C, eigen-
value. Under a continuous tuning of A from1to
—1, the two final occupied (empty) states must
have the C, eigenvalue —1 (1). This inconsistency
implies Cs-protected gap closing, as shown in Fig.
2F. The unitary transformation relating H(—1)
to H (1) also maps H(—A) to H()), and the gap
must close as A changes from 1 to 0. In (27), we
generalize the TBCs to all the 2D PGs. The
gapless states under TBCs are the experimen-
tal consequences of the fragile states.

We introduce the RSI as an exhaustive de-
scription of the local states, pinned at the C,
center, that undergo gap closing under TBCs.
The Wannier centers of occupied states of a
Hamiltonian can adiabatically move if their
displacements preserve symmetry. Orbitals
away from a symmetry center can move on it
and form an induced representation of the
site-symmetry group at the center. Conversely,
orbitals at a symmetry center can move away
from it symmetrically if and only if they form a
representation induced from the site-symmetry
groups away from the center. The RSIs are
(27) linear invariant—upon such induction
processes—functions of irrep multiplicities.

For the PG 4 with TRS, we assume a linear-
form RSI of the occupied levels § = ¢;m(4)+
com(B) + ¢sm(*E2E). The induced represen-
tation at the C, center from four states at Cy-
related positions away from the center is
A®B®'E’E (27). After the induction pro-
cess, the irrep multiplicities at the C, center
change as m(4) — m(4) + 1, m(B) — m(B)+
1, m(*E®E) — m('E%E) + 1. The two linear
combinations of irrep multiplicities that re-
main invariant are

81 = m(\E%E) — m(A),
5, = m(B) - m(4) ()

In our model, the occupied states that can be
moved away from the C, center form the rep-
resentation 4494@449B&449(' E2E) and have
vanishing RSIs. The states pinned at the C,
center form A®B with RSIs §; = —1,8 = 0. If
an RSI is nonzero, spectral flow exists upon a
particular TBC (27). We calculate all the RSIs
in all 2D PGs with and without SOC or TRS
[table S4 (27)]. The groups formed by RSIs are
shown in Table 2. PG 4 with TRS has two
integer-valued RSIs: The RSI group is Z2. Most
RSIs are Z-type; some groups with SOC and
TRS have Z,-type RSIs, the parities of the
number of occupied Kramer pairs.

For the C,-symmetric TBC (3), the occupied
irrep multiplicities ' at A = 7 are determined
by the multiplicities m at L =1 as m'(4) =
m('E), m'(B) = m(*E), m'("E) = m(B), and
m'(*E) = m(A). The changes of irreps in the
evolution L =1—1 are Am(4) =m'(4) —
m(A) = m('E) — m(4) = &, Am(B) = &—
8y, Am('E) = 8, — 8;, and Am(’E) = —&;.
Therefore, there will be |;| crossings formed
by Aand2E and |3, — & crossings formed by
Band 'E. This and the similar analysis for Cy
and TRS-symmetric TBCs are given in Tables 3
and 4 and expanded in (27). Our model (§; =
—1 and &, = 0) has two level crossings pro-
tected by C, in the processA =1 — — 1.

The RSI can be calculated either from the
momentum space irreps of the band structure
or from symmetry-center PG-respecting dis-
ordered configurations. In (27), we develop a
general framework to calculate the RSIs from
momentum space irreps and obtain the expres-
sions of RSIs in all wallpaper groups [table S5
(27)]. Here we give the expressions for RSIs of
wallpaper group p4. p4 has two inequivalent

Table 2. The RSI groups of 2D PGs.

SOC TRS 2 m 2mm 4 4mm 3 3m 6 6mm
X X 7 7 Z VA 7? 7 7 VAl VAl
X v Z 7 Z 7?2 Z Z Z 73 73
v X Z Z 7y z3 Z 7?2 Z Z° 72
Vv v Zz Zz Zg Zz X Z Zz X Z Z Z Zg x 7?2 ZZ x 72
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C, Wyckoff positions, a and b, and one C,
Wyckoff position, ¢ (Fig. 1). PG4 has two RSIs,
8; and &, (Eq. 4), and PG 2 has a single RSI,
& = m(B) — m(A) [table S2 (27)]. The band
structure expressions are

= —m(r) - "0 )
% + m(MsM,) + @ (5)

Sag = —m(T'1) — m(T'3Ty) +m(My) +

m(MzM,,) (6)
B = 5 m(Ta) + m(T3Ty) - m(My) -
Zmi%a) @
82 = m(Iy) + m(Isly) — m(Ma) —

8 = m(I'3'y) — m(M3Ms,) 9)

One can immediately verify that the band
structure shown in Fig. 2B has the RSIs
84 = —1, 842 = 0 at the a position, which
are the same as the results calculated from
the disordered configuration.

We find that the RSIs fully describe eigen-
value band topology: EFP is diagnosed by in-
equalities or mod-equations of RSIs (15), and
stable topology is diagnosed by fractional RSIs.
We prove this in all the wallpaper groups in
(27). For the wallpaper group p4, the stable
topology is diagnosed by fractional 8,; and &,
which imply topological semimetal phase with
Dirac nodes at general momenta (30). The
fragile topology, by contrast, is diagnosed by
the inequality

N < max(2|5a1\ + 61127 26(11 — 36(12) +
max(2\8b1| =+ 8},2, 25[]1 — 3552) =+ |5¢1| (10)
where N is the number of bands. When this

inequality is fullfilled, the RSIs and band num-
ber are not consistent with any Wannierizable

Table 3.

Cs: ) 1-i
Am(A) 8
Am(1E) 8 — 9
Am(B) o =&
Am(ZE) =5

Table 4
Cz eR 1--1
Am(A) )
Am(B) =281 + &
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state. One can verify that the band structure
shown in Fig. 2B satisfies this inequality and
hence has a fragile topology. [See (27) for
details of the stable and fragile criteria in p4.]

Metamaterial systems (31, 32) are the ideal
platforms where TBCs can be mechanically
tuned. We imagine that Eq. 1is a Hamiltonian of
a mechanical system consisting of mass points
connected by rigid bonds or springs. The TBCs
of Fig. 2D can be realized by tuning the springs
connecting mass points in part I and II from
their original values to zero, mimicking A = 1
toA = 0. The gap between the fragile bands and
the other bands must close during this process.

In addition to diagnosing the stable and
fragile topological phases, the RSI provides a
framework to understand and compute the elec-
tronic properties of topologically trivial materials.
Many Wannier function-related physical quan-
tities, such as electric or magnetic polarization
and multipole, and their responses under ex-
ternal fields, can be qualitatively determined
by RSIs. We leave detailed discussions to fu-
ture studies.
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Understanding fragile topology

Exploiting topological features in materials is being pursued as a route to build in robustness of particular
properties. Stemming from crystalline symmetries, such topological protection renders the properties robust against
defects and provides a platform of rich physics to be studied. Recent developments have revealed the existence of
so-called fragile topological phases, where the means of classification due to symmetry is unclear. Z.-D. Song et al. and
Peri et al. present a combined theoretical and experimental approach to identify, classify, and measure the properties of
fragile topological phases. By invoking twisted boundary conditions, they are able to describe the properties of fragile
topological states and verify the expected experimental signature in an acoustic crystal. Understanding how fragile
topology arises could be used to develop new materials with exotic properties.
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